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Categoricity and Stability are very powerful notions mastered by model-
theoreticians. By definition a structure is categorical in a certain formali-
sation if the description of this structure in terms of the formal language
determines the structure uniquely, up to isomorphism. This has been devel-
oped into the powerful Morley-Shelah classification theory. Various possible
levels of stability of structures form a hierarchy, basically indicating how far
a given structure is from categoricity.

On the one hand it is now commonly understood that these notions cover
rather narrow class of mathematical structures, one way or another related
to algebraic geometry. On the other hand the mere assumption that a struc-
ture under consideration is stable, or even better categorical, has very strong
consequences. I would like to claim that this kind of assumption (in fact
the assumption of uniqueness of a model of a description) has a very strong
predictive power (see e.g. [Z10]). This seems to be the property of a math-
ematical theory direly needed for models of physical reality. At the same
time model theory is extremely interested in finding and understanding ’new
stable structures’ most if not all of them mysteriously being associated with
Hrushovski’s construction [H] (see also [Z3] for a discussion of the construc-
tion).

We speculate here that there might be a two-way link between quantum
physics and stability theory. The former can be a source of important exam-
ples for the latter and the latter can provide the former with unconventional
mathematical tools and ideas.
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In sections 4 we duscuss two types of structures, the first of which is a
known example of a non-algebraic Zariski curve and the second one is one
of the ’new structures with exponentiation’, also known as “Poizat’s bicol-
ored field’. We show how the first class of examples can be considered as
non-commutative algebraic varieties, more specifically we study a class of
non-commutative algebraic curves T 1

N

“at root of unity”. The second exam-

ple we identify with the Connes’ quantum torus T 2
h . Importantly, we show

that T 2
h can be seen as a limit of T 1

N

as N → ∞.

One starts with a naive geometric nonlinear structure M. By the main
result on Zariski geometries [HZ] there is an algebraically closed field F living
in M (which one can see immediately in the examples discussed). Thus, one
gets Zariski-continuous coordinate functions M → F, which in a way can be
seen as measurements (observations) in M in terms of numbers of F. Naively
one could hope that the usual commutative algebra F(M) of regular maps
f : M → F is rich enough to represent the geometry of M by the spectrum
of F(M).

This is not the case in the examples T 1

N

mentioned above. The spectrum

of F(M) represents only the quotient C = M/E, where E is a nontrivial
equivalence relation given by the action of a finite group H. In fact, H is
a subgroup of a group G of regular automorphisms of the structure, which
does not split. For this reason the bundle M → C is nontrivial.

In order to represent all the structural information by way of “observa-
tions” we introduce sections C → M, which we show to generate an infinite-
dimensional vector space H(M) = H.

Now the group G acts on the space H. The sections are not regular
functions (that is are not definable) but it turns out that H along with the
action of G on it is determined uniquely up to isomorphism.

The F-algebra A(M) of the geometric transformations of H generated
by G is precisely the noncommutative coordinate ring of M which, as we
show, determines the geometry on M : the points of M can be recovered
as irreducible representations of A(M) of a certain orientation and Zariski
relations on M are also represented by the algebra.

We then go on to analyse the construction which leads to the quantum
torus T 2

h . In model theory this construction has been found by B.Poizat in an
attempt to produce a difficult counterexample of a “bad field”. In popular
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terms this is a structure based on an algebraically closed field F which behaves
in many ways like an object of complex algebraic geometry, and at the same
time has certain non-algebro-geometric properties. First of all, F contains a
subgroup G ≤ F∗ of dimension equal to half of that of F.

We have shown that Poizat’s example can be reinterpreted in terms of
the real-complex geometry, that is F = C and G is a certain real curve (a
tragectory) on the complex plane. Crucially, we could see that the only way
a real trajectory on a complex plane can be compatible with stability is by
assuming that the trajectory is indeterministic, in a typically quantum way.
Moreover, we show that the quotient C∗/G can be identified with the space
of leaves of the Kronecker foliation and so with the quantum torus T 2

h in the
sense of A.Connes (see [Co]).

We show that the latter example is naturally related to the series of
examples above. In fact, T 2

h can be interpreted as a limit of T 1

N

as N → ∞.
We don’t have a full clarity yet as to what properties can be passed to
the limit structure, which is obviously a very important question. We hope
that understanding the limit properties will help to clarify the meaning of
many typically nonconvergent infinite expressions in the theory of quantum
structures.

It is important also to stress the difference between the real and complex
numbers as structures. From model theoretic point of view the algebraic
structure (C,+, ·) of complex numbers is very good, technically its first-
order theory is categorical in uncountable cardinalities, and so is stable and
indeed Morley rank in this theory has the same meaning as the dimension
in algebraic geometry. In contrast the field of reals (R,+, ·) is very unstable,
though can be treated successfully in model theory by means of o-minimality.
Our approach is based on categoricity and stability assumptions so the reals
seem to be excluded from the context. In principle this poses a problem in
regards to the analogy of measurements or observations over a structure M
(see above). Rather interestingly our structure behind the quantum torus T 2

h

resolves this seeming contradiction. We explain in section 6 that the structure
despite being superstable interpretes the reals albeit in non-elementary way.
More precisely one can still produce a real number as a ’measurement’ for a
point in M but this has to come as a result of countably infinite process (an
Lω1,ω-formula).
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1 Analytic Zariski structures and real ana-

lytic structures

We think in terms of (proper) Zariski- and analytic-Zariski- ([HZ],[PZ] and
[Z1]) structures and ’non-standard analysis’ in analytic Zariski structures in
the sense of [Z1] (though it is still to be developed in the analytic Zariski
context). The (analytic) Zariski class has been introduced as an attempt to
develop a formal theory of a ’good’ analyticity, an analyticity relevant to al-
gebraic geometry and including both structures based on classical transcen-
dental analytic functions (exponentiation, Weierstrass functions e.c.) and
’new stable structures’ produced by Hrushovski’s construction as in [H],[Po]
and others.. See [Z2] and [Z3] for discussions around this subject.

The class of (proper) Zariski structures can be easily illustrated by clas-
sical examples, first of all the F-points of an algebraic variety over an al-
gebraically closed field F as well as compact complex spaces, both in their
natural languages [Z1]. The class of analytic Zariski, except for its proper
Zariski subclass, needs much more hard work to be provided with proven
examples. In most interesting cases we apparently would need the Schanuel
type conjectures (and probably a related Diophantine conjecture).

On the other end of our project there are examples of structures on the
reals which can be treated in a fashion similar to Zariski and which are
close to so called o-minimal structures. Of course, o-minimal analysis has a
rich topological ingredient in it. But it becomes even more interesting when
it is possible to combine o-minimality with stability, as e.g. Peterzil and
Starchenko show in [PS], Zariski-type topology and geometry arise immedi-
ately.

In [Z8] an example which is quite close to the real one-dimensional non-
commutative torus is shown to behave model-theoretically nicely, in fact there
is a natural dimension theory in it, similar to o-minimality or d-minimality.
Interestingly, this example can be naturally linked to a very similar ω-stable
structure on the complexes. In [Z5] (and in section 5) more complicated
structures are shown to have both real- and complex-analytic properties and
at the same time have ω-stable theories. We will try to exhibit here that this
is essentially an effect of what we call ( maybe incorrectly) a quantization of
a more simple d-minimal structure.

Finally in section 6 we show that the real and complex model theory can
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be really brought together providing a further analysis of the quantum torus
combined with a ’bad’ field of section 5. This turns out to be a superstable
structure with the field of reals Lω1,ω-definable in it. This seems to be a phe-
nomenon that might explain how in quantum mathematical physics the real
analysis interplays with the complex algebraic and noncommutative geome-
try. This example, in my opinion, alludes to the mystery of mirror symmetry
which puts in correspondence purely algebro-geometric structure of moduli of
Calabi-Yau manifolds with the essentially real symplectic structure of Kähler
classes.

2 Non-standard analysis in Zariski structures.

Following [HZ], [Z1] and [PZ] a (analytic) Zariski structure M is given with a
coarse (Zariski) topology on Mn, each n, sometimes assumed compactifyable,
i.e. there are definable completions Mn agreeing with natural embeddings.
Often it poses a problem to find or prove that certain completions are indeed
( atomic) compact. In particular, the compactified M̄ has the property that,
for any elementary extension M̄ ≺ ∗M̄ there is a surjective homomorphism,
which is the identity on M̄,

σ : ∗M̄ → M̄.

σ is said to be a specialisation, an example of a specialisation in case M = R

would be the standard part mapping, with R̄ = {−∞}∪R∪{+∞}. We fix a
universal specialisation σ and, given a point a ∈ Mn, call an infinitesimal
neighborhood of a the set

Va = {α ∈ ∗Mn : σ(α) = a}.

In fact, as is shown in the latest version of [Z1], we don’t need to consider
compactification to have infinitesimal calculus. A maximal partial mapping
(universal specialisation)

σ : ∗M →M

preserving Zariski closed sets (relations) provides us with the same tools.
The structure of such an infinitesimal neighborhood of an M is very

rich and we can study them when the theory of M allows elimination of
quantifiers. This is the case with the proper Zariski structures [Z1], and
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for analytic Zariski we usually have elimination of quantifiers to the level of
∃-formulas.

In particular, one can recover the intersection theory of algebraic varieties
(in any characteristic) as well as of compact manifolds in a uniform fashion
from the local infinitesimal theory.

Let V and V0 be infinitesimal neighborhoods. We say that φ : V → V0 is
a definable local function (germ) if there is a definable relation F on M
with

graph φ = F ∩ V × V0.

If F is (formal) analytic and regular at the point, φ is also said to be holo-
morphic.

Rigidity. Under the latter assumptions and irreducibility of F the cor-
respondence

F ↔ φ

between local functions and global irreducible analytic sets through the point
is one-to-one.

In generalM is a many sorted structure. If a is in sort S then we sometime
write Va(S) or just V(S) to point to the type of a non-standard neighborhood.

Suppose that in M there is a sort F which is an algebraically closed field
(with + and × in the language, of course).

Then for V in M and V0 = V0(F) in F, infinitesimal neighborhoods,
a definable local holomorphic function φ : V → V0 is said to be a local
coordinate into V0, or we rather should talk in general on n = dimV
independent functions φ1, . . . , φn into V1, . . . ,Vn forming a system of local
coordinates.

Notice that any two neighborhoods in F are biholomorphically isomor-
phic.

Obviously we can apply the algebraic (field) operations to local func-
tions (though the result may change the target neighborhood). We restrict
ourselves with neighborhoods of F proper, that is avoiding ∞, thus local
coordinates form a usual commutative algebra over F.
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3 Examples of Zariski structures

Examples

1. Algebraic varieties over an algebraically closed field in the natural lan-
guage.

2. Compact complex spaces in the natural language (Zariski closed subset
of Mn ≡ analytic subset). [Z1]

3. Proper analytic varieties over complete algebraically closed non-Archimedean
valued fields (in the sense of rigid analytic geometry). [Z1]

4. The solution spaces of systems of differential equations in differentially
closed fields, provided ’the number of variables equals the number of
equations’ (A.Pillay, [Pi] )

Analytic Zariski

5. (M,R3) Hrushovski’s ab initio triple relation is analytic Zariski (see
[PZ]). The closest analog is M = C with the triple relation R(x, y, z)
given as f(x, y, z) = 0 with f a generic entire function.

6. (F,+, ·, R3) free triple relation on a.c.field F (see [P1]). The algebraic
geometry extended by R.

7. (C,+, ·, f(n))n∈Z f(n) the Liouville function and its derivatives. Un-
der assumptions that the “Schanuel property” of the Liouville function
(A.Wilkie, [W]) can be extended to its derivatives, see [P2].

8. A big class of two-sorted structures ((U, p,A) with A a complex al-
gebraic variety (typically semi-abelian variety) with the full Zariski
structure, U the covering space of A in a rich language and p : U → A
the corresponding holomorphic covering. This requires rather involved
arithmetic (M.Gavrilovich [G] and [Z10]).

9. (F,+, ·, xa) powered algebraically closed field of characteristic 0.
This is a two-sorted structure (V, ex ,F) with V = (V,+, a·) a vector
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space over Q(a), F = (F,+, ·) a field, and ex : V → F× covering
homomorphism satisfying the Schanuel property

tr.d.(x1, . . . , xn, ex x1, . . . , ex xn) ≥ lin.d.(x1, . . . , xn).

We can prove that the theory is superstable and the canonical model
of the theory is analytic Zariski ([Z6],[Z9]).

10. (C,+, ·, P ) Poizat’s black points (see [Z5])

11. (C,+, ·, G) Poizat’s green points (assuming the Schanuel conjecture,
see [Z5]) This and the previous examples are conjectured to be analytic
Zariski. Only some of the properties have been proved.

12. Same as example 9 but with the canonical V = C, F = C and ex = exp .
We need here the Schanuel conjecture (restricted to a). Most of this is
done in [Z9] using [Z6] and results of Khovanski and others.

13. (F,+, ·, ex ) abstract field with pseudo-exponentiation. The structure
(or rather its Lω1,ω(Q) theory) is excellent (see [Z7]), and is analytic
Zariski.

14. (C,+, ·, exp) the classical exponentiation. We can prove that it is the
same as 13 above, assuming Schanuel conjecture, CIT and existential
closedness conjectures.
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4 Non-algebraic Zariski geometries

4.0.1 Recall the following theorem C of [HZ].

Theorem There exist irreducible pre-smooth Zariski structures (in par-
ticular of dimension 1) which are not interpretable in an algebraically closed
field.

The construction

Let M be an irreducible pre-smooth Zariski structure, G ≤ ZAutM act-
ing freely on M and for some G̃ with finite H :

1 → H → G̃→p0 G→ 1.

Consider a set S ⊆ M of representatives of G-orbits: for each a ∈ M,
G · a ∩ S is a singleton.

Consider the formal set

M(G̃) = M̃ = G̃× S

and the projection map

p : (g, s) 7→ p0(g) · s.

Consider also, for each f ∈ G̃ the function

f : (g, s) 7→ (fg, s).

One can prove rather easily

Claim 1.The structure

(M̃, {f}f∈G̃, p
−1(Zariski relations on M))

is an irreducible pre-smooth Zariski structure, its isomorphism type is deter-
mined by M and G̃ only and dim M̃ = dimM.
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Claim 2. Suppose H does not split, for every proper G0 < G̃

G0 ·H 6= G̃.

Then, every equidimensional Zariski expansion M̃ ′ of M̃ is irreducible.

Claim 3. G̃ ≤ ZAut M̃, that is G̃ is a subgroup of the group ZAutM of
Zariski-continuous bijecions of M.

More technical is the following Lemma the proof of which uses the Claims
and some analysis of groups of rational automorphisms of algebraic curves.

Lemma. Suppose M is a rational or elliptic curve (over an algebraically
closed field F of characteristic zero), H does not split, G̃ is nilpotent and for
some big enough integer µ there is a non-abelian subgroup G0

|G̃ : G0| ≥ µ.

Then M̃ is not interpretable in an algebraically closed field.

In general it is harder to analyse the situation when dimM > 1 since the
group of birational automorphisms is not so immediately reducible to the
group of biregular automorphisms of a smooth variety in higher dimensions.
But nevertheless the same method can prove the useful fact that the con-
struction produces examples essentially of non algebro-geometric nature.

Proposition (i) Suppose M is an abelian variety, H does not split and
G̃ is nilpotent not abelian. Then M̃ can not be an algebraic variety with
p : M̃ →M a regular map.

(ii) Suppose M is the (semi-abelian) variety (F×)n. Suppose also that G̃ is
nilpotent and for some big enough integer µ = µ(n) has no abelian subgroup
G0 of index bigger than µ. Then M̃ can not be an algebraic variety with
p : M̃ →M a regular map.

Proposition. Suppose M is an F-variety and, in the construction of M̃,
the group G is finite. Then M̃ is definable in any expansion of the field F by
a total linear order.

10



In particular, if M is a complex variety, M̃ is definable in the reals.

Proof Extend the ordering of F to a linear order of M and define

S := {s ∈M : s = min G · s}.

The rest of the construction of M̃ is definable.2

Remark In other known examples of non-algebraic M̃ (with G infinite)
M̃ is still definable in any expansion of the field F by a total linear order.

Problem (i) Classify Zariski structures definable in the reals.
(ii) Classify Zariski structures definable in the reals as a smooth real

manifold.
(iii) Find new Zariski structures definable in Ran as a smooth real mani-

fold.

We hope that a solution to these problems may connect the theory of
Zariski geometries to the theory of symplectic manifolds.
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4.1 A non-algebraic Zariski curve and its coordinate
algebra

4.1.1 Let F be an algebraically closed field of characteristic 0 and N a pos-
itive integer. Consider the groups given by generators and defining relations,

G = 〈u,v : uv = vu〉,

G̃ = 〈U,V : [U, [U,V]] = [V, [U,V]] = 1 = [U,V]N〉.
Let a, b ∈ F∗ multiplicatively independent.
G acts on F× :

u · x = ax, v · x = bx.

Taking M to be F× this determines, by 4.0.1, a presmooth non-algebraic
Zariski curve M̃ which from now on we denote TN . Correspondingly, TN or
simply T is the universum of TN .

Since [U,V] is a central element, in every representation of G̃ one can
replace [U,V] by an ε ∈ F, a primitive root of unity of order N. So, the
defining relation for G̃ becomes just

VU = εUV,

or
VUV−1U−1 = ε.

The correspondent definition for the covering map p : M̃ →M then gives
us

p(Ut) = ap(t), p(Vt) = bp(t). (1)

4.1.2 Semi-definable functions.

By 4.0.1 TN constructed above is not algebraic. In particular, the field
F(TN) of definable (Zariski continuous) functions TN → F represents TN up
to the equivalence relation p(t) = p(t′), that is it can not distinguish t and t′

if t′ = H · t, where H = 〈[U,V]〉, the cenral subgroup of order N.
We want to introduce a wider class of functions, so that it represents TN

faithfully. We notice first that in correspondence with the local theory, in
infinitesimal neighborhoods Vt of any t ∈ T the map p : T → F∗ is a (local)
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bijection onto Vp(t). That is p is similar to the map t 7→ tN and TN , at least
locally, can be identified with F∗.

We are going to extend the local bijection by the cost of losing definability.

Lemma Given α, β such that αN = a, βN = b, one can define bijections

xk : TN → F∗ k = 0, . . . , N − 1

so that for any t ∈ TN the following functional equations are satisfied,

xk(t)
N = p(t) (2)

xk(Ut) = αεkxk(t), (3)

xk(Vt) = βxk+1(t), where xN = x0, (4)

xk+1(t)

xk(t)
=

xk(t)

xk−1(t)
. (5)

Proof First, notice that (3),(4) imply

xk([U,V]−1t) = εxk(t), (6)

where [U,V]−1 = U−1V−1UV.
To construct the xk choose randomly an injection N

√
: F× → F× with

the property
( N
√
w)N = w.

For t = UmVn[U,V]l · s, s ∈ S set xk(t) := αmβnεmk−l N
√
s.

This satisfies (2)-(5) and is bijective. 2

4.1.3 Define the angular function on F∗ as a function ang : F× → F[N ],
roots of unity of order N.

Set for λ ∈ F∗,

ang(λ) =
x1(t)

x0(t)
, if λ = x0(t).
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This is well-defined since x0 is a bijection. One can easily deduce from
definitions

angαλ = εang λ, (7)

and
ang ελ = ang λ, ang βλ = ang λ. (8)

Now we consider the structure

ŤN := (F,+, ·, ang).

It is clear that F is partitioned into N ’sectors’ using the angular function:

Pδ = {µ ∈ F∗ : ang µ = δ}.

Proposition TN is definable in ŤN using parameters α and β. Moreover,
x0, . . . , xN−1 are definable in the structure as well.

Proof Define T = F× as a set, and for any t ∈ F× set

p(t) = tN , Ut = α t, Vt = β ang(t) t.

This satisfies , so is, up to isomorphism, the same structure as TN .
Set xk(t) := (ang t)k · t. This satisfies 4.1.2. 2

Notice that the map p in the presence of the angular function can be
definably inverted. That is there is a section

y : F× → T

such that y(p(t)) = t. In fact we can have N such functions, yk, k =
0, . . . , N − 1. Just set, for w ∈ F×,

yk(w) = the unique t ∈ Pεk such that p(t) = w.

In other words, the above representation of TN as the cover of F× by an-
other copy of F× can be seen as the bundle of N -fibres on F× with structural
group F[N ], and the yk’s are sections of the bundle.
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4.1.4 Consider the class TN of structures satisfying (7) - (??). Suppose ŤN

is existentially closed in this class. What is the model-theoretic status of the
theory of this structure?

Theorem (D.Evans) TN has model completion and every complete ex-
tension of the theory of TN is supersimple.

The fact that ŤN is supersimple has certain methodological significance.
There is a common, albeit informal, understanding that simple structures
(theories) come basically from stable structures by introducing a ’random
noise’. So, one may think of ŤN as an algebraic curve with a random angular
function.

Consider the group of periods of ang

G(TN) = G := {w ∈ F∗ : ∀t ang(w · t) = ang t}.

G is obviously definable in ŤN and by (8) G contains 〈β, ε〉, the group
generated by β and ε.

In case ŤN is existentially closed in TN we have the equality

G = 〈β, ε〉.

Problem Study the structure of definable subsets on ŤN . Is there a good
probabilistic measure theory on ŤN?

4.1.5 The space of semi-definable functions.
Let RN be the F-algebra of semi-definable functions on TN generated by

x0, . . . , xN−1, x
−1
0 , . . . , x−1

N−1.
Notice that RN is determined as a commutative F-algebra uniquely up

to isomorphism by its generators x0, . . . , xN−1 satisfying the relations (2).

We may also regard RN as an F-vector space.
We define linear operators U∗ and V∗ on the linear space RN :

U∗ : ψ(t) 7→ ψ(Ut),
V∗ : ψ(t) 7→ ψ(Vt).

(9)
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Denote G̃∗ the group generated by the operators U∗, V∗ and their in-
verses.

RN with the action of G̃∗ on it is determined uniquely up to isomorphism
by the defining relation (2)-(6) and so is independent on the arbitrariness in
the choices of x0, . . . , xN−1.

Notice that

The correspondence U 7→ U∗, V 7→ V∗ generates the anti-isomorphism
G̃→ G̃∗ satisfying the property

(g1g2)
∗ = g∗2g

∗
1, for any g1, g2 ∈ G̃.

This can be easily seen if we define the pairing

RN × T → F, (ψ, t) 7→ ψ(t).

This allows to consider the adjoint action of any g ∈ G̃ on RN setting g∗ψ
as the unique element of RN such that

(g∗ψ, t) = (ψ, gt), for all t ∈ T.

We can immediately identify that this definition extends (9). The desired
formula follows.

The advantage of using U∗ and V∗ instead of U and V is that U∗, V∗

and their inverses generate an F-algebra of linear operators acting on RN .
The group G̃∗ is a subgroup of the group of units of the algebra.

Consider the action of the central element [U∗,V∗]. It is easy to prove

Lemma The eigenvalues of the operator [U∗,V∗] on the linear space RN

are 1, ε, . . . , εN−1 and the linear space can be represented as the direct sum

RN = H0 ⊕H1 ⊕ · · · ⊕ HN−1

of the corresponding eigenspaces.

In fact Hm as a vector space is generated by monoms of order d ≡ m
mod m, where the order of the monomial xm0

0 · · · · ·xmN−1

N−1 is m0 + · · ·+mN−1.
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Denote H := H1. The algebra of linear operators on the linear space H
generated by U∗ and V∗ we denote A(TN) or simply A. Obviously, the only
defining relation for the algebra is

U∗V∗ = εV∗U∗.

4.1.6 Let Max(RN) be the space of maximal ideals of the commutative
algebra RN .

The standard fact of commutative algebra:
Max(RN) consists of ideals Iµ̄, µ̄ = 〈µ0, . . . , µN−1〉, µN

0 = · · · = µN
N−1,

Iµ̄ = 〈(x0 − µ0), . . . , (xN−1 − µN−1)〉.

Assuming F is endowed with an angular function ang : F× → F[N ] we
call µ̄ as above oriented positively if µk = ang(µ0)

k · µ0. Correspondingly,
we call an ideal Iµ̄, oriented positively if µ̄ is.

Max+(RN) will denote the subspace of Max(RN) consisting of positively
oriented ideals I.

It is easy to see that µ̄ is positively oriented if and only if

〈µ0, . . . , µN−1〉 = 〈x0(t), . . . , xN−1(t)〉,

for some t ∈ T.
Moreover:
(i) There is a bijective correspondence Ξ : Max+(RN) → TN between

the space of positively oriented maximal ideals and TN .
(ii) The action (9) of G̃∗ on RN induces an action on Max(RN) and leaves

Max+(RN) setwise invariant.
(iii) The action of g∗ ∈ G̃∗ on Max(RN)(and so on TN) can be identified

as
g∗ : I〈x0(t),...,xN−1(t)〉 7→ I〈x0(g−1t),...,xN−1(g−1t)〉.

4.1.7 We may also treat T as the space of F-linear functionals H → F
defined by the pairing of 4.1.5,

H∗
T = {Ft : ψ 7→ (ψ, t), t ∈ T}.
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Obviously, the kernel of a nonzero functional is a maximal ideal. More-
over,

kerFt = {φ ∈ H : (φ, t) = 0} = I〈x0(t),...,xN−1(t)〉.

We also denote kerFt := I t.
We call a linear functional F on H positive if kerF is a positive maximal

ideal.

Notice that a functional ψ 7→ ψ(t) defined on H can be extended to
the subalgebra F(p, p−1) of RN generated by the function p, since p = xN

k ,
k = 0, . . . , N − 1. Obviously F(p, p−1) is just the coordinate algebra of of
the usual torus and its maximal spectrum is F∗. We can hence say that the
functionals F p

t are in the bijective correspondence F p
t 7→ p(t) with the points

of F∗.
Proposition
(i) The correspondence

t 7→ Ft

between T and the space H∗
+ of positive linear functionals on H is bijective.

(ii) The correspondence transfers isomorphically the natural action of G̃
on T to a natural action of G̃ on H∗

+.
(iii) Consider also the commutative algebra F(p, p−1) generated by the

function t 7→ p(t) and, for each linear functional Ft its restriction F p
t on

F(p, p−1). Then, for any t1, t2 ∈ T,

F p
t1

= F p
t2

iff p(t1) = p(t2) iff Ft1 = εjFt2 , for some j ∈ {0, . . . , N − 1},

and the correspondence
Ft 7→ F p

t

is the one-to-N map from the space space H∗
+ of all the positive functionals

onto the space of linear functionals on F(p, p−1). This is in exact correspon-
dence with the map p : T → F×.

In other words, the structure TN is faithfully represented by the positive
linear functionals on H.
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4.2 The limit of TN and Connes’ non-commutative torus

4.2.1 Let α, β ∈ C×, αR+βR = C. Set, for w ∈ C, the α-β - decomposition
to be the uniquely determined decomposition

w = waα + wbβ, wa, wb ∈ R.

Let ia, ib ∈ R be the coordinates of the decomposition

= iaα + ibβ, here and below 2 = −1.

We also choose a real number h and assume that 1, 2πia and 2πiah are
linearly independent over Q.

We define an additive α-β-version of the angular function, which we call
band

bdh : C → 2πhZ, fixed h ∈ R \ Q

as follows.
First we define the function r 7→ [r]h from R to Z, the pseudo-integer

part of r with the properties, for all r ∈ R,

[0]h = 0, [r + 1]h = [r]h + 1, (10)

[r + 2πia]h = [r]h, (11)

[r + 2πiah]h = [r]h (12)

Example Consider a direct sum decomposition

R = R′+̇2πiaQ+̇2πiahQ, some subgroup Q < R′ < R,

and set, for all r′ ∈ R′, c ∈ Q,

[r′ + c1 · 2πia + c2 · 2πiah]h := [r′ + (c1 − [c1]) · 2πia + (c2 − [c2]) · 2πiah],

[ · ] the usual integer part of a real number. This satisfies (10)-(12).

Set
bdhw := 2πh [wa]h.
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Set,
Ũ : w 7→ α + w,

Ṽ : w 7→ β + w + bdhw.

We have
ṼŨw = ŨṼw + 2πh, (13)

4.2.2 Define the additive subgroup of C

Ah = βR + 2πhZ + 2πZ.

It is easy to see that
Ah is the subgroup of all periods of bdh, that is

Ah = {a ∈ C : bdh(a+ w) = bdhw}.

Ah is exactly the subgroup of shifts w 7→ a+ w of C which are automor-
phisms of (C, Ũ, Ṽ).

Ah is definable in (C,+, bdh).

4.2.3 We have a very interesting two-sorted structure here with both sorts
living on C. One sort is (C,+, bdh) where also Ah, V and Ũ are definable.
We also might want to consider multiplication by some elements, such as h,
which brings the structure of Q(h)-module on this sort.

The other sort is (C,+, ·) with 0 removed. It is perhaps more appropriate
to consider this sort in the language of Zariski closed relations, which is of
course interdefinable with (+, ·). We denote this sort C∗.

An important component of the whole structure is the map exp : C → C∗

from the first sort onto the other. We would like to know the stability status
of any version of the structure. So far we can prove the following.

Proposition 1 The theory of ((C,+,Ah), exp,C×) is superstable, pro-
vided the Schanuel conjecture is true.

Proof It is easy to see that the statement follows if the expansion of C×

with the unary predicate for the subgroup Gh = exp(Ah) = exp(2πhZ + βR)
is superstable. A stronger theorem, stating ω-stability of the theory, for
G = exp(βR + δQ), β ∈ C \ (R ∪ R), δ ∈ R \ 2πQ, was proved in [Z2].
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The same proof describes the elementary theory of the structure and yields
superstability for the present theory. See also [Z3]. 2

Notation Gh will stand for the subgroup exp(Ah) of C×.

On the other hand ((C,+, bdh), exp,C×) defines the following unstable
structure on the sort C×.

Denote, for t = expw,

anght := exp bdhw.

This is well-defined and we have analogues of (7)-(8), where q = exp 2πh,

anghqt = anght,
anghe

βt = anght, anghe
αt = q · anght.

Hence, defining

U : t 7→ eα · t, V : t 7→ eβ · t · anght,

we get
VU = qUV, on C×.

It is easy to see that also

U expw = exp Ũw, V expw = exp Ṽw.

We define
Ťh := (C,+, ·, angh).

This is an obvious analogue of ŤN defined in 4.1.3.
Note that the group Γh = exp 2πhZ = angh(C

×) is definable in Ťh.

The full analogy with ŤN of 4.1.3 requires also a definition of ph. We
define

ph : C× → C×/Γh,

the canonical homomorphism. This agrees with 4.1.3, moreover in the finite
case C×/〈ε〉 can be definably identified with C× in the full Zariski language,
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in particular the whole construction is a Zariski structure (obviously, of finite
Morley rank).

We also define the maps u and v on C×/Γh by

u ph(t) := ph(Ut), v ph(t) := ph(Vt),

that is
u : t · Γh 7→ eα · t · Γh, v : t · Γh 7→ eβ · t · Γh.

This is obviously well-defined.

Proposition 2 The group of shifts t 7→ gt on C× commuting with angh

(and so with U and V) is Gh. This group is definable in Ťh. The theory of
the structure (C,+, ·,Gh,Γh) is superstable.

Proof Essentially the same argument as for Proposition 1. The super-
stability of the weaker structure (C,+, ·,Γh) is well-known and follows from
the Lang property of Γh. 2

4.2.4 Now we redefine ŤN in a way compatible both with 4.1.3 and 4.2.3.

Define, for each positive N ∈ N the map

eNh : C → C×; eNh(w) = exp(N−1h−1w).

It is convenient to distinguish the copies of C× which are images of eNh

for different N as TN .
Set, for t = eNh(w) ∈ TN ,

UN t := eNh(Ũw), VN t := eNh(Ṽw).

It follows,

UN t := eNh(α) · t, VN t := eNh(β) · t · exp
2π

N
[wa]h.

Denote

angN(t) := exp
2π

N
[wa]h.
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This is well-defined. Indeed, any other representation of t would be of
the form t = eNh(w + 2πhNk), k ∈ Z. But (w + 2πhNk)a = wa + 2πiahNk,
and [wa + hNk]h = [wa]h by (12).

Define
ŤN = (C,+, ·, angN)

This is the same definition as 4.1.3 except here we specified our choice of the
angular function.

Proposition The group of periods of angN , that is g ∈ C× such that
angN(g · t) = angN t is equal to

GN−1h−1,αh−1 · C[N ] = exp(2πN−1h−1 + αh−1Z + βR) · C[N ].

In particular, this group is definable in the above ŤN and the theory of

(C,+, ·,GN−1h−1,αh−1)

is superstable.

Problem Is the theory of ŤN as given by the present construction, su-
persimple?

4.2.5 Denote
U = (C,+, bdh, h· ).

By the construction in 4.2.3 and 4.2.4 ŤN is definable in (U , exp,C×) , for
all N ∈ N ∪ {h}.

The resulting picture is as follows, with the arrows showing definable
surjections.
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where e1(w) := expw.
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5 Quantum torus

Our aim here is to connect the construction of Ťh to the well-known definition
of the noncommutative (quantum) torus usually denoted T2

h.

5.0.6 Following the pattern of 4.1.2 and 4.1.3 we introduce the C-linear
space H spanned by functions

xk : C× → C×, k ∈ Z,

where x0 = x is the identity function and

xk = ξk · x, ξ(t) = anght.

We have by 4.2.3,
xk(Ut) = eαqk · xk(t),

xk(Vt) = eβxk+1(w),

ξ(Ut) = q · ξ(t), ξ(Vt) = ξ(t).

We can normalise V∗ so that on H we have equivalent operators

U̇ : ψ 7→ U∗ψ, U∗ψ(w) = ψ(Uw);

V̇ : ψ 7→ ξ · ψ.

Using the identities above we get immediately the usual

U̇V̇ = qV̇U̇.

5.0.7 The space H is an analogue of the space S(R2,C) of all Schwartz
functions R2 → C decaying at infinity along with all its derivatives faster
than 1

|x|n
, any n (see [C]), or S(Z2,C) the Hilbert space of Schwartz sequences,

that is complex valued sequences (cm,n) decaying faster than any polynomial
of m,n.

In [C] with each leaf of the Kronecker foliation

La = {〈r, s〉 ∈ R2 : s+ θr = a}

one associates the C[U̇, V̇, U̇−1, V̇−1]-module Ha obtained by restricting func-
tions of S(R2,C) to La and defining operators U̇ and V̇. Namely, the operator
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U̇ is defined by exactly the same formula as here and V̇ sends ψ(r, s) (func-
tion of two real variables r and s) to exp(s) · ψ(r, s) (notice that extra to
these data there is a linear dependence between r and s). So, ξ is a good
analogue of the function exp(s) taking values in the unit circle.

Notice that U̇ and V̇ are unitary operators if we see Ha as a Hilbert
space. This makes the completion of C[U̇, V̇, U̇−1, V̇−1] a C∗-algebra.

By A.Connes the quantum torus T2
θ is the space of all the modules Ha

on the correspondent La.

Remark Consider again the space of functions H and denote, for a ∈ C,
Ha the algebra obtained by restricting functions from H to the coset a+Ah.
It follows from Proposition 4.2.2(ii) that the action of U̇ and V̇ on H induces
a well-defined action on Ha, so this is a C[U̇, V̇, U̇−1, V̇−1]-module for any
a ∈ C.

5.0.8 To understand further relations of Connes’ construction to our Th we
prove the following.

Claim 1. There is a natural bijective correspondence

φ : C/Ah → T2
θ,

for θ = h, where T2
θ is seen as the space of leaves of the Kronecker foliation.

Indeed, we have the decomposition of C into two real lines

C = R + αR, for any z ∈ C z = x+ yα, x, y ∈ R.

Rescale the real coordinates

r := h−1x, s := 2π(2πia)
−1y

and consider the mapping onto the direct product of two unit circles

z 7→ 〈x, y〉 7→ 〈r, s〉 7→ 〈exp r, exp s〉.

Under the map

2πhZ + 2πiaαZ → 〈2πhZ, 2πiaZ〉 → 〈2πZ, 2πZ〉 → 1,
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and since 2π − 2πiaα ∈ βR,

βR → 〈2π,−2πia〉R → 〈2πh−1,−2π〉R → L0.

This establishes the bijection between the cosets of Ah and the leaves La of
the foliation.

Claim 2. There is a bijective correspondence

p̃h : C/Ah → C×/Gh,

induced by ph. Moreover, the action of Ũ and Ṽ on C induces a well-defined
action on C/Ah and correspondingly the action on C×/Gh. The latter action
coincides with the one induced by u and v on the cosets of Gh.

This is the direct consequence of Proposition 4.2.2(iii) and the definition
of ph.

Corollary p̃h ◦ φ−1 identifies T2
h with C×/Gh, with all the structure on

the latter induced from Ťh.
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6 Recovering a real curve in a superstable

structure

The structure (C,+, ·,Gh) of the complex field with the spiral (Kronecker
foliation) playing the key role in sections 4.2 and 5 has another amazing
model-theoretic property. It shows a way to reconcile the apparent con-
tradiction of the attempt to interprete the Zariski geometries as observable
worlds. The ultimate observations are made in trms of real numbers, yet the
classical examples of Zariski structures come from algebraic geometry over
an algebraically closed field. Moreover, the field of real numbers is inherently
unstable in the sense of model theory.

6.0.9 Proposition Assume Schanuel’s conjecture. Then the field (R,+, ·)
of real numbers is Lω1,ω-definable in (C,+, ·,Gh).

Proof First we notice that the spiral

G0
h = exp(βR) ⊂ C

is an Lω1,ω-definable subset of our structure. In fact it is first-order type-
definable.

Indeed, Gh/G0
h is the cyclic group qZ and G0

h is ’divisible’ (if written addi-
tively). So, the subgroups Gn

h of n-powers of Gh is of index n in Gh and

G0
h =

⋂

n∈N

Gn
h ,

which is type-definable.
Now we refer to a general technical argument by D.Marker (unpublished):
Suppose C ⊂ C is a Jordan curve which is not dense in C. Then in

(C,+, ·, C) the reals R ⊂ C are definable.
Applying this to C = G0

h we get the desired conclusion.

This remarkable property of the superstable structure (C,+, ·,Gh) says
that the reals are in effect present in our otherwise very algebro-geometric
structure but to extract a real number one has to go through an infinite
(countable) process encoded in the correspondent Lω1,ω-formula. In contrast
the complex geometric structure is readily (first-order) available. Moreover,
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the subgroup Gh itself behaves in a typically global way like a complex ana-
lytic subvariety.

6.0.10 On the other hand the first-order theory of (C,+, ·,Gh) is tame and
can be obtained by Hrushovski construction similarly to examples 5-14 of
section 3. More precisely the Hrushovski construction adapted as in [Z7]
produces a canonical model, call it (F,+, ·,Gh(F)), of the first-order the-
ory, see [Z12]. One of the defining fitures of the canonical model is the
non-elementary stability and probably categoricity for uncountable cardi-
nals. This immediately excludes the possibility of a real closed field being
definable in (F,+, ·,Gh(F)), in particular (F,+, ·,Gh(F)) is not isomorphic to
(C,+, ·,Gh). One of the abstract properties ditinguishing the two structures:

(C,+, ·,Gh) is rigid while (F,+, ·,Gh(F)) is at least ω-homogeneous.

Problem Study non-elementary properties of (F,+, ·,Gh(F)).
(i) Prove that a natural non-elementary axiomatisation of the structure

is uncountably categorical.
(ii) Prove that (F,+, ·,Gh(F)) is analytic Zariski.

Very unusually we have here a case of a nice complete first-order theory
which has two canonical models of cardinality continuum, (C,+, ·,Gh) and
(F,+, ·,Gh(F)). In particular, both models must have a common elementary
extension (F̃,+, ·,Gh(F̃)).

In the first model various construction of real and complex analysis, such
as integration, power series calculations and so on make sense. These con-
structions can be carried over to (F̃,+, ·,Gh(F̃)) in the style of non-standard
analysis. Now one can try to use a specialisation from (F̃,+, ·,Gh(F̃)) to
(F,+, ·,Gh(F)) to give a new topological meaning to the same constructions.
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