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Chapter 1

Introduction

1.1 Introduction

The main purpose for writing this book is to convey to the general math-
ematical audience the notion of a Zariski geometry along with the whole
spectrum of geometric ideas arising in model theoretic context. The idea
of a Zariski geometry is intrinsically linked with Algebraic Geometry, as are
many other model-theoretic geometric ideas. But not only. There are also
very strong links and motivations coming from combinatorial geometries such
as matroids (pregeometries) and abstract incidence systems. Model theory
developed a very general unifying point of view which is based on the model-
theoretic geometric analysis of mathematical structures as divers as compact
complex manifolds and general algebraic varieties, differential fields, differ-
ence fields, algebraic groups and others. In all these Zariski geometries have
been detected and proved crucial for the corresponding theory and applica-
tions. More recent works by the author established a robust connection to
noncommutative algebraic geometry.

Model theory has always been interested in studying the relationship
between a mathematical structure, such as the field of complex numbers
(C,+, ·), and its description in a formal language, such as the finitary lan-
guage suggested by D.Hilbert, the first order language 1. The best possible
relationship would be when a structure M is the unique, up to isomorphism,

1David Hilbert and Wilhelm Ackermann 1950. Principles of Theoretical Logic (English
translation). Chelsea. The 1928 first German edition was titled Grundzge der theoretis-
chen Logik.
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8 CHAPTER 1. INTRODUCTION

model of the description Th(M), the theory of M. Unfortunately, for a first
order language this is the case only when M is finite, for in the first order
way it is impossible to fix an infinite cardinality of (the universe of) M. So,
the next best relationship is when the isomorphism type of M is determined
by Th(M) and the cardinality λ of M (λ-categoricity), such as Th(C,+, ·),
the theory of the field of complex numbers, in which “complex algebraic ge-
ometry lives” . Especially interesting is the case when λ is uncountable and
the description is at most countable. In fact, in this case Morley’s Theorem
(1965) states that the theory Th(M) is not sensitive to a particular choice
of λ, it has a unique model in every uncountable cardinality.

The proof of Morley’s theorem marked the beginning of stability theory
which studies theories categorical in uncountable cardinals, and generali-
sations (every theory categorical in uncountable cardinals is stable). Cate-
goricity and Stability turned out to be an amazingly effective classification
principle. To sum up the results of the 40-years research in a few lines we
would lay out the following conclusions:

1. There is a clear hierarchy of the “logical perfection” of a theory in
terms of stability. Categorical theories and their models are on the top of
this hierarchy.

2. The key feature of stability theories is a dimension theory and, linked
to it, a dependence theory, resembling the dimension theory of algebraic
geometry and the theory of algebraic dependence in fields. In fact, algebraic
geometry and related areas is the main source of examples.

3. There is a considerable progress towards classification of structures
with stable and especially uncountably categorical theories. The (fine) clas-
sification theory makes use of certain geometric principles, both classical and
specifically developed in model theory. These geometric principles proved
useful in applications, e.g. in Diophantine geometry.

In classical mathematics three basic types of dependencies have been
known:

(1) algebraic dependence in the theory of fields;
(2) linear dependence in the theory of vector spaces;
(3) dependence of trivial (combinatorial) type (e.g. two vertices of a

graph are dependent if they belong to the same connected component).
One of the useful conjectures in fine classification theory was
The Trichotomy Principle. Every dependence in an uncountably cat-

egorical theory is based on one of the three classical types.
More elaborate form of this conjecture implies that any uncountably cate-
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gorical structure with a non-linear non-trivial geometry comes from algebraic
geometry over an algebraically closed field. (It makes sense to call a depen-
dence type non-linear if it does not belong to types (2) and (3).) E.g. a
special case of this conjecture known since 1975, and still open (see a survey
[14]), states:

The Algebraicity Conjecture. Suppose (G, ·) is a simple group with
Th(G) categorical in uncountable cardinals. Then G = G(K) for some simple
algebraic group G and an algebraically closed field K.

The Trichotomy principle proved to be false in general (E.Hrushovski,
1988) but nevertheless holds for many important classes. The notion of a
Zariski structure was designed primarily to identify all such classes.

Originally, the idea of a Zariski structure was one of a condition which
would isolate the “best” possible classes on the top of the hierarchy of stable
structures. Since it has been realised that purely logical conditions are not
sufficient for the Trichotomy principle to hold it has also been realised (see
e.g. [R]) that a topological ingredient added to the definition of a categorical
theory might suffice. In fact, a very coarse topology similar to the Zariski
topology in algebraic geometry is sufficient. Along with the introduction of
the topology one also postulates certain properties of it, mainly of how the
topology interplays with the dimension notion. One of the crucial properties
of this kind is in fact a weak form of smoothness of the geometry in question,
in this book it is called the presmoothness property.

In more detail, a (Noetherian) Zariski structure is a structure M = (M, C),
on the universe M in the language given by the family of relations listed in
C.

For each n, the subsets of Mn corresponding to relations from C form a
Noetherian topology.

The topology is endowed with a dimension notion (e.g. the Krull dimen-
sion).

Dimension is well-behaved with respect to projections Mn+1 →Mn.
M is said to be presmooth if for any two closed irreducible S1, S2⊆Mn,

for any irreducible component S0 of the set S1 ∩ S2,

dimS0 ≥ dimS1 + dimS2 − dimMn.

It has been said already that the basic examples of presmooth Noetherian
Zariski structures come from algebraic geometry. Indeed, let M = M(K) be
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the set of K-points of a smooth algebraic variety over an algebraically closed
field K. Take for C the family of Zariski closed subsets (= relations) of Mn,
all n. Set dimS to be the Krull dimension. This is a presmooth Zariski
structure (geometry).

Another important class of examples is the class of compact complex
manifolds. Here M should be taken to be the underlying set of a manifold
and C the family of all analytic subsets of Mn, all n.

Proper analytic varieties in the sense of rigid analytic geometry (ana-
logues of compact complex manifolds for non-Archimedean valued fields) is
yet another class of Noetherian Zariski structures.

It follows from the general theory developed in these lectures that all these
(and Zariski structures in general) are on the top of the logical hierarchy (that
is have finite Morley rank, and in most important cases are uncountably
categorical). Interestingly, for the second and third classes this is hard to
establish without checking first that the structures are Zariski.

The main result of the general theory so far is the classification of one-
dimensional presmooth Noetherian Zariski geometries M :

If M is non-linear then there is an algebraically closed field K, a quasi-
projective algebraic curve CM = CM(K) and a surjective map

p : M → CM

of a finite degree (i.e. p−1(a) ≤ d for each a ∈ CM) such that
for every closed S⊆Mn, the image p(S) is Zariski closed in Cn

M (in the
sense of algebraic geometry);

if Ŝ⊆Cn
M is Zariski closed, then p−1(Ŝ) is a closed subset of Mn (in the

sense of the Zariski structure M).
In other words, M is almost an algebraic curve. In fact, it is possible to

specify some extra geometric conditions for M which imply that M is exactly
an algebraic curve (see [HZ]).

The proof of the classification theorem proceeds as follows (chapters3 and
4.

First, we develop, for general Zariski structures, an infinitesimal analysis
which culminates with the introduction of local multiplicities of covers (maps)
and intersections and the proof of the Implicit Function Theorem.

Next we focus on a specific configuration in a 1-dimensional M given
by the 2-dimensional presmooth “plane” M2 and an n-dimensional (n ≥
2) presmooth family L of curves on M2. We use the local multiplicities of
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intersections to define what it means to say that two curves are tangent at a
given point. This is well-defined in non-singular points of the curves but in
general we need a more subtle notion. This is a technically involved notion
of a branch of a curve at a point. Once this is properly defined we develop
a theory of tangency for branches and prove, in particular, that tangency
between branches is an equivalence relation.

Now we treat branches of curves on the plane M2 as (graphs of) local
functions from an infinitesimal neighbourhood of a point on M onto another
infinitesimal neighbourhood. One can prove that the composition of such
local functions is well-behaved with respect to tangency. In particular, with
respect to composition modulo tangency, local functions form a local group
(pregroup, or a group-chunk in terminology of A.Weil). A generalisation of a
known proof by Weil produces a presmooth Zariski group, more specifically
an abelian group J of dimension 1.

We now replace the initial 1-dimensional M by the more suitable Zariski
curve J and repeat the above construction on the plane J2. Again we consider
the composition of local functions on J modulo tangency. But this time
we take into account the existing group structure on J and find that our
new group operation interacts with the existing one in a nice way. More
specifically the new group structure acts (locally) on the existing one by
(local) endomorphisms. Using again the generalisation of Weil’s pregroup
theorem we find a field K with a Zariski structure on it.

Notice that at this stage we don’t know if the Zariski structure on K is
the classical (algebraic) one. It obviously contains all algebraic Zariski closed
relations but we need to see that there are no extra ones in the Zariski topol-
ogy. For this purpose we undertake an analysis of projective spaces Pn(K).
We prove first that Pn(K) are weakly complete in our Zariski topology, which
is the property analogous to the classical completeness in algebraic geometry.
Then, expanding the intersection theory of first sections, we manage to prove
a generalisation of the Bezout Theorem. This theorem is key in proving the
generalisation of the Chow Theorem: every Zariski closed subset of Pn(K)
is algebraic. (Note that Pn(C) is a compact complex manifold, and every
analytic subset of it is Zariski closed by our definition.) This immediately
implies that the structure on K is purely algebraic.

It follows from the construction of K in M that there is a non-constant
Zariski-continuous map f : M → K, with the domain of definition open inM.
Such maps we call a Z-meromorphic functions. Based on the generalisation
of Chow’s Theorem we prove that the inseparable closure of the field KZ(M)
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of Z-meromorphic functions is isomorphic to the field of rational functions of
a smooth algebraic curve CM . By the same construction we find a Zariski-
continuous map p : M → CM which satisfies the required properties. This
completes the proof of the Classification Theorem.

The Classification Theorem asserts that in the one-dimensional case a
non-linear Zariski geometry is almost an algebraic curve. This statement is
true in full in algebraic geometry, compact complex manifolds and proper
rigid analytic varieties, in the last two due to the Riemann Existence Theo-
rem. But in the general context of Noetherian Zariski geometries the adverb
“almost” can not be omitted. In section 5.1 we present a construction which
provides examples of non-classical Noetherian Zariski geometries, that is ones
which are not definable in an algebraically closed field. We study a special
but typical example and look for a way to “explain” the geometry of M in
terms of co-ordinate functions to K and co-ordinate rings. We conclude that
there are just not enough of regular (definable Zariski-continuous) functions
M → K and we need to use a larger class of functions, semi-definable coor-
dinate functions φ : M → K. We introduce a K-vector space H generated
by these functions and define linear operators on H corresponding to the
actions by G̃. These generate a non-commutative K-algebra A on H. Impor-
tantly, A is determined uniquely (up to the choice of the language) in spite
of the fact that H is not. Also, a non-trivial semi-definable function induces
on K some extra structure which we call here ∗-data. Correspondingly it
adds some extra structure to the K-algebra A which eventually makes it a
C∗-algebra. Finally, we are able to recover the M from A. Namely, M is
identified with the set of eigenspaces of “self-adjoint” operators of A with
the Zariski topology given by certain ideals of A. In other words, this new
and more general class of Zariski geometries can be appropriately explained
in terms of non-commutative co-ordinate rings.

We then discuss further links to non-commutative geometry. We show
how, given a typical quantum algebra A at roots of unity, one can associate
with A a Zariski geometry. This is similar to, although slightly different from
the connection between M and A in the preceding discussion. Importantly,
for a typical noncommutative such A the geometry turns out to be non-
classical, while for a commutative one it is equivalent to the classical affine
variety MaxA.

The final chapter introduces a generalisation of the notion of a Zariski
structure. We call the more general structures analytic Zariski. Main differ-
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ence is in the fact that we don’t assume the Noetherianity of the topology
anymore. This makes the definition more complicated because we now have
to distinguish between general closed subsets of Mn and the ones with better
properties, which we call analytic. The main reward for the generalisation
is that now we have much wider class of classical structures (e.g. universal
covers of some algebraic varieties) satisfying the definition. One hope (which
has not been realised so far) is to find a way to associate with a generic
quantum algebra an analytic Zariski geometry.

The theory of analytic Zariski geometries is still in its very beginning. We
don’t even know if the Algebraicity Conjecture is true for analytic Zariski
groups and this problem seems to be interesting and important. One of the
main results about analytic Zariski structures presented here is the theorem
stating that any compact one is Noetherian, that is satisfies the basic def-
inition. We also prove some model-theoretic properties of analytic Zariski
structures, establishing their high level in logical hierarchy, but remarkably,
this is the non-elementary logic stability hierarchy formulated in terms of
Shelah’s abstract elementary classes. This is a relatively new domain of
model theory and analytic Zariski structures is a large class of examples for
this theory.

We hope that these notes may be useful not only for model theorists but
also for people who have more classical, geometric background. For this rea-
son we start the notes with a crush course in model theory. It is really basic
and the most important thing to learn in this section is the spirit of model
theory. The emphasis on the study of definability with respect to a formal
language is perhaps central for doing mathematics model-theoretic way.

Acknowledgements The work on the material started in 1991 and
through all these years many people helped me with their suggestions, ques-
tions and critical remarks. First of all Kobi Peterzil who on the basis of my
very row lecture notes wrote in 1994 a lecture course which is now the core of
Chapters 3 and 4 of this book. Practically all the exercises in these chapters
are due to him. Tristram de Piro read the lecture notes in 2000-2001 and
discussions with him and his further work on the topic has a big impact on
the content of the book. A lot of material of Chapter 6 is based on the joint
work with Nick Peatfield, explicit references are therein. With Assaf Hasson
we worked on a problem related to the content of Chapter 6 and although
the work didn’t result in a paper yet it made a significant contribution to
the content of the chapter. This chapter has also been essentially influenced



14 CHAPTER 1. INTRODUCTION

by the thesis written by Lucy Burton (Smith). Jonathan Kirby made many
useful suggestions and remarks, in particularly concerning the Chapter 2. I
am indebted to Matt Piatkus for the present form of Lemma 2.2.21. Kanat
Kudajbergenov read carefully sections 2 and 3 of the book at an early stage
and made many useful comments and corrections.

1.2 About Model Theory

This section gives a very basic overview of model theoretic notions and meth-
ods. We hope that the reader will be able to grasp the main ideas and the
spirit

of the subject. We did not aim in this section to give proofs of every
statement we found useful to present and even definitions are missing some
detail. To compensate for this in Appendix A we give a detailed list of basic
model-theoretic facts, definitions and proofs. Appendix B surveys Geometric
Stability Theory and some more recent results relevant to the material in the
main chapters.

There is now of course a good selection of textbooks on model theory, the
most adequate for our purposes is [M], see also a more universal book [Ho].

The crucial feature of model theoretic approach to mathematics is the
attention

paid to the formalism in which one considers particular mathematical
structures.

A structure M is given by a set M, the universe (or the domain) of M,
and a family L of relations on M, called primitives of L or basic relations.
One often writes M = (M,L). L is called the language for

M.
Each relation has a fixed name and arity, which allows to consider also

classes of L-structures of the form (N,L), where N is a universe and L is the
collection of relations on N with the names and arities fixed (by L). Each
such structure (N,L) represents an interpretation of the language L.

Recall that a n-ary relation S on M can be identified with a subset
S ⊆ Mn. When S is just a singleton {s}, the name for S is often called
a constant symbol of the language. One can also express functions in
terms of relations; instead of saying f(x1, . . . , xn) = y one just says that
〈x1, . . . , xn, y〉 satisfies the (n+ 1)-ary relation f(x1, . . . , xn) = y. So there is
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no need to include special function and constant symbols in L.

One always assumes that the binary relation = is in the language and is
interpreted canonically.

Definition 1.2.1 The following is an inductive definition of a definable set
in an L-structure M :

(i) a set S⊆Mn interpreting a primitive S of the language L is definable;

(ii) given definable S1 ⊆Mn and S2 ⊆Mm, the set S1 × S2 ⊆Mn+m is
definable (here S1 × S2 = {x_y : x ∈ S1, y ∈ S2});

(iii) given definable S1, S2⊆Mn, the sets S1 ∩ S2, S1 ∪ S2 and Mn \ S1

are definable;

(iv) given definable S⊆Mn and a projection pr : 〈x1, . . . , xn〉 7→ 〈xi1 , . . . , xim〉,
pr : Mn →Mm, the image prS⊆Mm is definable.

Note that (iv), for n = m, allows a permutation of variables.

The definition can also be applied to speak on definable functions, defin-
able relations and even definable points.

An alternative but equivalent definition is given by introducing the (first-
order) L-formulas. In this approach we write S(x1, . . . , xn) instead of 〈x1, . . . , xn〉 ∈
S, starting from basic relations and then construct arbitrary formulas by in-
duction using the logical connectives ∧,∨ and ¬ and the quantifier ∃.

Now, given an L-formula ψ with n free variables, the set of the form

ψ(Mn) := {〈x1, . . . , xn〉 ∈Mn : M ² ψ(x1, . . . , xn)},

is said to be definable (by formula ψ).

The approach via formulas is more flexible as we may use formulas to
define sets with the same formal description, say ψ(Nn), in arbitrary L-
structures.

Moreover, if formula ψ has no free variables (called a sentence then), it
describes a property of the structure itself. In this way classes of L-structures
can be defined by axioms in the form of L-formulas.

One says that N is elementarily equivalent to M (written N ≡ M) if
for all L-sentences ϕ,

M ² ϕ⇔ N ² ϕ.
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Example 1.2.2 Groups can be considered L-structures where L is having
one constant symbol e and one ternary relation symbol P (x, y, z) interpreted
as x · y = z. The associativity property, e.g., then can be written as

∀x, y, z, u, v, w, t (P (x, y, u) ∧ P (u, z, v) ∧ P (x,w, t) ∧ P (y, z, w) → v = t) .

Here ∀xA means ¬∃x¬A, and the meaning of B → C is ¬B ∨ C.
The centre of a group G can be defined as ϕ(G), where ϕ(x) is the formula

∀y, z (P (x, y, z) ↔ P (y, x, z)) .

Of course, this definable set can be described in line with the definition 1.2.1,
although this would be a bit longer description.

One important advantage of definition 1.2.1 is that it provides a more
geometric description of the set.

We will use both approaches interchangingly.

One of the most useful type of model-theoretic results is a quantifier
elimination statement. One says that M (or more usually, the theory of
M) has quantifier elimination, if any definable set S ⊆ Mn is of the form
S = ψ(Mn), where ψ(x̄) is a quantifier-free formula, that is one obtained
from primitives of the language using connectives but no quantifiers.

Example 1.2.3 Define the language LZar with primitives given by zero-sets
of polynomials over the prime subfield.
Theorem (Tarski, also Seidenberg and Chevalley). An algebraically closed
field has quantifier elimination in language LZar.

Recall that in algebraic geometry a Boolean combination of zero-sets of
polynomials (Zariski closed sets) is called a constructible set. So the theorem
says, in other words, that the class of definable sets in an algebraically closed
field is the same as the class of constructible sets.

Note that, for each S, the fact that S = ψ(Mn) is expressible by the
L-sentence ∀x̄(S(x̄) ↔ ψ(x̄)). Hence quantifier elimination holds in M if and
only if it holds in any structure elementarily equivalent to M.

Given a class of elementarily equivalent L-structures, the adequate notion
of embedding is that of an elementary embedding. We say that M =
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(M,L) is an elementary substructure of M′ = (M ′, L) if M⊆M ′ and for any
L-formula ψ(x̄) with free variables x̄ = 〈x1, . . . , xn〉 and any ā ∈Mn,

M ² ψ(ā) ⇔ M′ ² ψ(ā).

More generally, elementary embedding of M into M′ means that M is isomor-
phic to an elementary substructure of M′. We write the fact of an elementary
embedding (elementary extension) as

M 4 M′.

Note that M 4 M′ always implies that M ≡ M′, since an elementary
embedding preserves all L-formulas, including sentences.

Example 1.2.4 Let Z be the additive group of integers in the group lan-
guage of Example 1.2.2. Obviously z 7→ 2z embeds Z into itself, as 2Z. But
this is not an elementary embedding since the formula ∃y y + y = x holds
for x = 2 in Z but does not in the substructure 2Z. On the other hand,
for K⊆K ′ algebraically closed fields in language LZar, the embedding is al-
ways elementary. This is immediate from the quantifier elimination theorem
above.

A simple but useful technical fact is given by the following.

Exercise 1.2.5 Let

M1 ≺ . . .Mα ≺ Mα+1 ≺ . . .

be an ascending sequence of elementary extensions, α ∈ I, and let

∗M =
⋃
α∈I

Mα

be the union. Then, for each α ∈ I, Mα ≺ ∗M.

When we want to specify an element in a structure M in terms of L we
describe its type. Given ā ∈ Mn the type of ā is the set of L-formulas
with n-free variables x̄

tp(ā) = {ψ(x̄) : M ² ψ(ā)}.
Often we look for n-tuples, in M or its elementary extensions that satisfy
certain description in terms of L. For this purposes one uses a more general
notion of a type.
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Definition 1.2.6 An n-type in M is a set p of L-formulas ψ(x̄) (with free
variables x̄ = 〈x1, . . . , xn〉) satisfying the consistency condition:

ψ1(x̄), . . . , ψk(x̄) ∈ p⇒ M ² ∃x̄ ψ1(x̄) ∧ . . . ∧ ψk(x̄).
Obviously, the M in the consistency condition can be equivalently replaced

by any M′ elementarily equivalent to M.

Example 1.2.7 Let R be the field of reals in language LZar. Note that the
relation x ≤ y is expressible in R by the formula ∃uu2 + x = y. So, we can
write down in the language the type of a real positive infinitesimal,

p = {0 < x <
1

n
: n ∈ Z, n > 0}.

Obviously, this type is not realised in R itself. But there is R′ Â R which
realises p.

Often we have to consider L-formulas with parameters. E.g. in Exam-
ple 1.2.3 the basic relations are given by polynomial equations over the
prime field but one usually is interested in polynomial equations over K.
Clearly, this can be achieved within the same language if we use parameters:
if P (x1, . . . , xn, y1, . . . , ym) is a polynomial equation over the prime field and
a1, . . . , am ∈ K, then P (x1, . . . , xn, a1, . . . , am) is a polynomial equation over
K and all polynomial equations over K can be obtained in such way. There
is no need to develop an extra theory to deal with formulas with parameters,
these can be simply seen as formulas of the extended language L(C), where
C is the set of parameters which we want to use. E.g. if we want to use for-
mulas with parameters in M, the universe of M, the language will be called
L(M) and it will consist of the primitives of L plus one singleton primitive
(constant symbol) for each element of M.

Formulas and types of language L(C) are also called formulas and types
over C. For corresponding sets we often say just C-definable. When this
terminology is used, 0-definable means definable without parameters.

A basic but very useful theorem of Model Theory is the Compactness
Theorem (A.Mal’tsev, 1936). In its basic form it states that any finitely
satisfiable set of L-sentences has a model. Here finitely satisfiable means
that any finite subset of the set of sentences has a model.

In this book we usually work with a given structure M and its elementary
extensions. More useful in this situation is the following corollary of the
compactness theorem.
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Theorem 1.2.8 (Corollary of the Compactness Theorem) Let M be an
L-structure and P a set of types over M. Then there is an elementary ex-
tension M′ ºM in which all the types of P are realised. Moreover, we can
choose M′ to be of cardinality not bigger than max{M,P}.

In particular, we can choose P to be the set of all n-types over M, all n.
Then any M′ realising P will be said to be saturated over M.

Consider
M0 4 M1 4 . . .Mi 4 . . .

an ascending chain of elementary extensions, i ∈ N, such that Mi+1 realises
all the types over finite subsets of Mi. Then

⋃
i Mi has the property that

every n-type over a finite subset of the structure is realised in this structure.
A structure with this property is said to be ℵ0-saturated (or ω-saturated).

More generally, a structure M such that every n-type over a subset of
cardinality less than κ is realised in the structure is said to be κ-saturated.

It is easy to see that all these definitions remain equivalent if we ask just
for 1-types to be realised.
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Chapter 2

Topological structures

2.1 Basic notions

Let M be a structure and let C be a distinguished sub-collection of the defin-
able subsets of Mn, n = 1, 2, . . .. The sets in C are called (definable) closed.
The relations corresponding to the sets are the basic (primitive) relations of
the language we will work with. 〈M, C〉, or M, is a topological structure
if it satisfies axioms:

(L) Language: The primitive n-ary relations of the language are exactly
the ones that distinguish definable closed subsets of Mn, all n (that is the
ones in C), and every quantifier-free positive formula in the language defines
a closed set. More precisely:

1. the intersection of any family of closed sets is closed;

2. finite unions of closed sets are closed;

3. the domain of the structure is closed;

4. the graph of equality is closed;

5. any singleton of the domain is closed;

6. Cartesian products of closed sets are closed;

7. the image of a closed S ⊆Mn under a permutation of coordinates is
closed;

21
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8. for a ∈Mk and S a closed subset of Mk+l defined by a predicate S(x, y)
(x = 〈x1, . . . , xk〉, y = 〈y1, . . . , yl〉), the set S(a,M l) (the fibre over a)
is closed.

Here and in what follows the fibre over a

S(a,M l) = {b ∈M l : M |= S(a, b)}

and projections are the maps

pri1,...,im : 〈x1, . . . , xn〉 7→ 〈xi1 , . . . , xim〉, i1, . . . , im ∈ {1, . . . , n}.

L6 needs some clarification. If S1 ⊆ Mn and S2 ⊆ Mm are closed the
assumption states that S1×S2 canonically identified with a subset of Mn+m

is closed in the latter. The canonical identification is

〈〈x1, . . . , xk〉, 〈y1, . . . , ym〉〉 7→ 〈x1, . . . , xk, y1, . . . , ym〉.

Remark 2.1.1 A projection pri1,...,im is a continuous map in the sense that
the inverse image of a closed set S is closed. Indeed,

pr−1
i1,...,im

S = S ×Mn−m

up to the order of coordinates.

Exercise 2.1.2 Prove that, given an a ∈Mk, the bijection

concatna : x ∈Mn 7→ a_x ∈ ({a} ×Mn)

is a homeomorphism Mn → {a} ×Mn, that is the closed subsets on (Mn)m

correspond to closed subsets on ({a} ×Mn)m and conversely, for all m.

We sometimes refer to definable subsets of Mn as logical predicates. E.g.
we may say F (a) instead of saying a ∈ F , or S1(x) & S2(x) instead of S1∩S2.

We write U ⊆op M
n to say that U is open in Mn and S ⊆cl M

n to say
’closed’.

Constructible sets are by definition the Boolean combinations of mem-
bers of C.
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it is easy to see that a constructible sebset of Mn can be equivalently
described as a finite union of sets Si, such that Si ⊆cl Ui ⊆op M

n.

A subset of Mn will be called projective if it is a finite union of sets of
the form prSi, for some Si ⊆cl Ui ⊆op M

n+ki and projections pr (i) : Mn+ki →
Mn.

Note that any constructible set is projective with trivial projections in its
definition.

A topological structure is said to be complete if

(P) Properness of projections condition holds:
the image pri1,...,im(S) of a closed subset S ⊆cl M

n is closed.

A topological structure M will be called quasi-compact (or just com-
pact) if it is complete and satisfies

(QC) For any finitely consistent family {Ct : t ∈ T} of closed subsets of
Mn ⋂

t∈T
Ct is non-empty.

The same terminology can be used for a subset S ⊆Mn if the induced
topological structure satisfies (P) and (QC).

Notice that (QC) is equivalent to saying that every open cover of Mn has
a finite sub-cover.

A topological structure is called Noetherian if it also satisfies:

(DCC) Descending chain condition for closed subsets: for any closed

S1 ⊇ S2 ⊇ . . . Si ⊇ . . .

there is i such that for all j ≥ i, Sj = Si.

A definable set S is called irreducible if there are no relatively closed
subsets S1 ⊆cl S and S2 ⊆cl S such that S1 ( S2, S2 ( S1 and S = S1 ∪ S2.

Exercise 2.1.3 (DCC) implies that for any closed S there are distinct closed
irreducible S1, . . . , Sk such that

S = S1 ∪ · · · ∪ Sk.
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These Si will be called irreducible components of S. They are defined
uniquely, up to numeration.

We can also consider a decomposition S = S1 ∪ S2 for S constructible and
S1, S2 closed in S. If there is no proper such a decomposition of a constructible
S, we say that S is irreducible.

Exercise 2.1.4 Let pr : Mn →Mm be a projection.
(i) For S ⊆cl M

n, pr : Mn → Mk, we have prS irreducible if S is
irreducible.

(ii) If M is Noetherian and prS is irreducible then prS = prS ′, for some
irreducible component S ′ of S.

Exercise 2.1.5 1. For every n and k, the topology on Mn+k extends the
product topology on Mn ×Mk.

2. If S1, S2 are closed irreducible sets then prS1 and S1×S2 are irreducible
as well.

3. If F (x, y) is a relation defining a closed set then ∀yF (x, y) defines a
closed set as well.

2.2 Specialisations

We introduce here one of the main tools of the theory which we call a spe-
cialisation. It has analogs both in model theory and algebraic geometry. In
the latter the notion under the same name has been used by A.Weil [51],
namely, if K is an algebraically closed field and ā a tuple in an extension K ′

of K, then a mapping K[ā] → K is called a specialisation if it preserves all
equations with coefficients in K.

In the same setting a specialisation is often called a place.

The model-theoretic source of the notion is A.Robinson’s standard-part
map from an elementary extension of R (or C) onto the compactification of
the structure, see example 2.2.4 below. More involved and very essential way
the concept emerges in model theory is in the context of atomic compact
structures, introduced by J. Mycielski [34] and given a thorough study by B.
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Weglorz [50] and others.

A structure M is said to be atomic (positive) compact if any finitely
consistent set of atomic (positive) formulas is realised in M. It can be easily
seen that Noetherian topological structures are atomic compact. The main
result of [50] (see also [52] for a proof) is

Theorem 2.2.1 (B. Weglorz) The following are equivalent for any struc-
ture M :
(i) M is atomic compact;
(ii) M is positive compact;
(iii) M is a retract of any M′ Â M, i.e. there is a surjective homomorphism

π : M′ → M, fixing M point-wise,

Our proofs of Propositions 2.2.7 and 2.2.10 below are essentially based on
the arguments of Weglorz.

Throughout this section we assume that M is just a topological structure.

Definition 2.2.2 Let ∗MºM be an elementary extension of M and M ⊆
A ⊆ ∗M. A map π : A→M will be called a (partial) specialisation, if for
every a from A and an n-ary M -closed S, if a ∈ ∗S then π(a) ∈ S, where ∗S
stands for the set of realisations of the relation S in ∗M, equivalently S(∗M).

Remark 2.2.3 By definition a specialisation is an identity on M, since any
singleton {s} is closed.

Example 2.2.4 Take ∗M = 〈∗R,+, ·〉 a nonstandard elementary extension
of 〈R,+, ·〉. ∗M interprets in the obvious way an elementary extension of
〈C,+, ·〉, where the universe of the latter is R2. Let R̃⊆ ∗M be the convex
hull of R with respect to the linear ordering. There is then a map st : R̃→ R
which is known as the standard-part map. It is easy to see that st induces
a total map from ∗R ∪ {∞} = P1(∗R) onto R ∪ {∞} = P1(R). In the same
way st induces a total map

π : P1(∗C) → P1(C).

Using standard arguments, it is not difficult to see that π is indeed a
specialisations of Zariski structures.
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Example 2.2.5 Let K be an algebraically closed field and ∗K = K{tQ} the
field of Puiseux series over K, that is the formal expressions

f =
∞∑
n≥m

ant
n
k

with an ∈ K, n ∈ Z, and k ∈ N fixed for each sum. This is known to be an
algebraically closed field, so K ≺ ∗K.

Assuming am 6= 0, let v(f) = m
k
. Then v : ∗K → Q is a valuation.

The valuation ring Rv is equal to the ring of power series with non-negative
valuation, that is m ≥ 0. Set for f ∈ Rv the coefficient a0 = a0(f) to be
0 in case m > 0. Then the map π : Rv → K defined as π(f) := a0(f) is a
specialisation. One can extend it to the total specialisation P1(∗K) → P1(K)
by setting π(f) = ∞ when f /∈ Rv.

Example 2.2.6 The same is true if we replace K{tQ} by K{tΓ} where Γ
is an ordered divisible abelian group and the support of power series is well-
ordered, the field of generalised power series.

Proposition 2.2.7 Suppose M is a quasi-compact structure, ∗MºM. Then
there is a total specialisation π : ∗M → M. Moreover, any partial specialisa-
tion can be extended to a total one.

Proof. Define π on M ⊆ ∗M as the identity map. Suppose π is defined on
some D ⊆ ∗M and b′ an element of ∗M. We want to extend the definition of
π to D ∪ {b′}. In order to do this consider the set of formulas

{S(x, d) : S is a closed relation, ∗M |= S(b′, d′), d′ ∈ Dn, d = π(d′)}.
Each S(M,d) is nonempty. Indeed, d′ is in ∃xS(x, ∗M), which is closed

by (P), so M |= ∃xS(x, π(d′)). Similarly, every finite intersection of such sets
is nonempty. Thus, by (QC), the intersection of the sets in the above family
is non-empty. Put π(b′) = b for a b chosen in the intersection. It is immedi-
ate that the extended map is again a partial specialisation. Continuing this
process one gets a total specialisation. ¤

Definition 2.2.8 Given a (partial) specialisation π : ∗M → M, we will call
a definable set (relation) P ⊆Mn π-closed if π(∗P ) ⊆ P. (In fact, ⊆ can be
replaced here by =.)
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The family of all π-closed relations is denoted Cπ.

Exercise 2.2.9 Cπ satisfies (L), thus M becomes a Cπ-structure.

Proposition 2.2.10 Given a total specialisation π : ∗M → M, the Cπ-
structure M is quasi-compact, provided ∗M is saturated over M .

Proof. The completeness (P) of the topology is immediate, since any map
commutes with the projection.

In order to check (QC) consider any finitely consistent family {Ct : t ∈ T}
of closed subsets of Mn. Then

⋂{∗Ct : t ∈ T} 6= ∅, since ∗M is saturated,
and thus contains a point c′. Then π(c′) ∈ ⋂{Ct : t ∈ T} by the closedness
of Ct, so (QC) follows. ¤

Remark 2.2.11 (i) The π-topology essentially depends on π, in particularly,
on whether ∗M is saturated or not.

(ii) Note that we do not need the saturation of ∗M to establish the com-
pleteness of the π-topology.

2.2.1 Universal specialisations

Definition 2.2.12 For a (partial) specialisation π : ∗M → M, we say that
the pair (∗M,π) is universal (over M) if

for any M′º ∗MºM, any finite subset A ⊂ M ′ and a specialisation π′ :
A ∪ ∗M → M extending π, there is an elementary embedding α : A → ∗M,
over A ∩ ∗M , such that

π′ = π ◦ α on A.

Example 2.2.13 In examples 2.2.4 and 2.2.5 the pairs (∗C, π) and (∗K, π)
are universal if the structures (in the language extended by π) are ω-saturated.
Using A.Robinson’s analysis of valuation theory [45] M.Piatkus has shown
that for 2.2.5 this is the case when the valuation in question is maximal
(unpublished). In particular when Γ = R.

Example 2.2.14 Let R̃ be the compactified reals with Zariski topology.
That is the universe of R̃ is R∪{∞} and C consists of Zariski closed subsets
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of Cartesian powers of this universe. Obviously, R̃ is definably equivalent to
the field of reals.

Consider an elementary extension ∗R̃ Â R̃ and the surjective standard
part map st :∗ R̃ → R̃. This is a specialisation with regards to C, since the
metric topology extends the Zariski one.

Whatever the choice for ∗R̃ was, st is not universal. Indeed, in some
bigger elementary extension choose a /∈ ∗R̃. We may assume that a > 0.
So, a = b2 for some b ∈ ∗R̃. Since a is transcendental over ∗R̃ the extension
π of st sending a to −1 is a partial specialisation (with regards to Zariski
topology). But we can not embed a (and so b) into ∗R̃ since st(b) will be
then a real number and −1 = st(a) = st(b)2, a contradiction.

Proposition 2.2.15 For any structure M there exists a universal pair (∗M, π).
If M is quasi-compact, then π is total.

Proof. We construct ∗M and π by the following routine process (compare
with the proof of A.4.20(iii)):

Start with any M0 º M and a specialisation π0 : M0 → M. We will
construct a chain of length ω of elementary extensions M0¹M1¹ . . .¹Mi . . .
and partial specialisations πi : Mi → M, πi ⊇ πi−1. In case M is quasi-
compact πi is going to be total.

To construct Mi+1 and πi+1, we first consider the set

{〈Aα, āα, pα(x̄)〉 : α<κi},

of all triples where Aα is a finite subset of Mi, āα ∈ Mn and pα(x̄) is an
n-type over M ∪ Aα.

Now we construct specialisations πi,α, α ≤ κi, such that πi,α ⊃ πi, and
the domain of πi,α is Ni,α :
Let Ni,0 = Mi and πi,0 = πi. At limit steps α we take the union. On succes-
sive steps:
If there is b̄ |= pα and a specialisation π′ ⊃ πi,α, sending b̄ to āα.
Let Ni,α+1 = Ni,α ∪ {b̄}, πi,α+1 = π′.
Otherwise, let Ni,α = Ni,α+1, πi,α+1 = πi,α.

Put now Mi+1 to be a model containing Ni,κi
, and πi+1 ⊇ πi,κi

, a spe-
cialisation from Mi+1 to M. If M is quasi-compact, by Proposition 2.2.15 we
assume πi is total.



2.2. SPECIALISATIONS 29

It follows from the construction, that for any M′ºMi+1ºM, any finite
B ⊂ M ′ and a specialisation π′ : B ∪Mi → M extending πi, there is an
elementary isomorphism α : B →Mi+1, over M ∪ (B ∩Mi), such that

π′ = π ◦ α on B.

Now take ∗M =
⋃
i<ω Mi, π =

⋃
i<ω πi. ¤

Remark 2.2.16 One can easily adjust the construction to get ∗M saturated
over M.

The following lemma will be useful later.

Lemma 2.2.17 There exists a structure ∗∗Mº ∗M and a specialisation π∗ :
∗∗M → ∗M such that
(i) (∗∗M, π∗) is a universal pair over ∗M.
(ii) (∗∗M, π ◦ π∗) is a universal pair over M.
(iii) ∗∗M is |∗M|+-saturated.

Proof. We build ∗∗M just like in the proof of Proposition 2.2.15, taking
care of (i) and (ii), respectively, in alternating steps. Namely, we build an
ascending sequence of elementary models

∗M¹M1¹M2 · · ·¹Mn¹ . . . ,

and an ascending sequence of specialisations π∗n : Mn → ∗M, such that:
(i) For odd n, if M′ºMn−1, A⊆Mn−1 is finite, b̄ ∈M ′ and π′ : Mn−1∪{b̄} →
∗M is a specialisation extending π∗n−1, then there is a map τ : b̄ → Mn,
elementary over ∗M ∪ A, such that π∗nτ(b̄) = π′(b̄).
(ii) For even n > 0, if M′ º Mn−1, A ⊆ Mn−1 is finite, b̄ ∈ M′ and π′ :
Mn−1 ∪ {b̄} → M is a specialisation extending π ◦ π∗n−1, then there is a map
τ : b̄→ Mn, elementary over M ∪ A such that (π ◦ π∗n)τ(b̄) = π′(b̄).

We can now take ∗∗M =
⋃

Mn and π∗ = ∪π∗n. By repeating the process
we can take ∗∗M to be |∗M |+-saturated.¤
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2.2.2 Infinitesimal neighbourhoods

We assume from now on that, if not stated otherwise, π is a universal spe-
cialisation.

Definition 2.2.18 For a point a ∈ Mn we call an infinitesimal neigh-
bourhood of a the subset in ∗Mn given as

Va = π−1(a).

Clearly then, for a, b ∈M we have V(a,b) = Va × Vb.

Definition 2.2.19 Given b ∈Mn denote the n-type over ∗M :

Nbdb(y) = {¬Q(c′, y) : Q ∈ C, M |= ¬Q(c, b), c′ ∈ Vc, c ∈Mk}.

Nbd0
b(y) = {¬Q(y) : Q ∈ C, M |= ¬Q(b)}.

As usual Nbdb(
∗M) will stand for the set of realisations of the type in ∗M

and Dom π the domain of π in ∗M.

Remark 2.2.20 Nbd0
b is just the restriction of the type Nbdb to M.

Equivalently,

Nbd0
b(
∗M) =

⋂
{U(∗M) : U basic open, b ∈ U}.

Lemma 2.2.21 (i)
Vb = Nbdb(

∗M) ∩Dom π.

(ii) Given a finite a′ in ∗M and a type F (a′, y) over a′, there exists b′ ∈ Vb
satisfying F (a′, b′), provided the type Nbdb(y) ∪ {F (a′, y)} is consistent.

Proof. (i) If b′ ∈ Vb and ¬Q(c′, y) ∈ Nbdb(y) then necessarily ∗M |=
¬Q(c′, b′), for otherwise M |= Q(c, b). Hence b′ ∈ Nbdb(

∗M).
Conversely, suppose b′ realises Nbdb in ∗M and π(b′) = c. Then c = b for

otherwise M |= ¬c = b requires ¬c′ = y ∈ Nbdb(y) for every c′ ∈ π−1(c),
including c′ = b′, which contradicts the choice of b′.

(ii) Suppose the type is consistent, that is there exists b′′ realising F (a′, y)
and Nbdb(y) in some extension M′ of ∗M. Then an extension π′ ⊇ π to
Dom π ∪ {b′′}, defined as π′(b′′) = b, is a specialisation to M. Since (∗M, π)
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is universal we can find b′ ∈ ∗M such that π(b′) = b and the type of b′ over
Ma′ is equal to that of b′′ over Ma′ (here the A of the definition is equal to
a′b′′, A ∩ ∗M = a′ and α sends b′′ to b′.) So, F (a′, b′) holds. ¤

In particular, the universality of the specialisation guarantees that the
structure induced on Vb is “rich”, that is ω-saturated.

Exercise 2.2.22 A definable subset A ⊆ Mn is Cπ-closed iff for every a ∈
Mn Va ∩ ∗A 6= ∅ implies a ∈ A; correspondingly, A is Cπ-open iff for every
a ∈ A, Va ⊆ ∗A. Also Int(A) = {a ∈ A : Va ⊆ ∗A}.

Lemma 2.2.23 Let S0 be a relatively closed subset of S. Suppose for some
s ∈ S there exists s′ ∈ Vs ∩ S0. Then s ∈ S0.

Proof. We have by definitions S0 = S̄0 ∩ S and s = π(s′) ∈ S̄0.¤

Proposition 2.2.24 Assuming that π is universal, a definable subset S ⊆
Mn is closed in the sense of C if and only if S is π-closed.

Proof. The left-to-right implication follows from 2.2.23. Now suppose S is
π-closed. Let S̄ be the closure of S in the C-topology. Suppose s ∈ S̄.
Claim. The type Nbds(y) ∪ S(y) is consistent.
Proof. Suppose towards a contradiction it is not. Then ∗M |= S(y) → Q(c′, y)
for some closed Q such that π(c′) = c and M |= ¬Q(c, s).

Take any t ∈ S. Then ∗M |= Q(c′, t) and so M |= Q(c, t). This means
that S ⊆ Q(c,M). Hence S̄ ⊆ Q(c,M). But this contradicts the fact that
s /∈ Q(c,M). Claim proved.

It follows from the claim that Vs ∩ ∗S 6= ∅. By 2.2.22 we get s ∈ S and
hence S = S̄.¤

Corollary 2.2.25 Suppose for a given topological structure M = (M, C)
there exists a total universal specialisation π : ∗M →M. Then the C-topology
satisfies (P), that is is closed under projections.

The next theorem along with facts proved above essentially summarises
the idea that the approach via specialisations covers all the topological data
in classical cases and is generally a more flexible tool when one deals with
coarse topologies.
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Theorem 2.2.26 Let M be a topological structure. Let M ≺ ∗M be an ele-
mentary extension saturated over M.

The following two conditions are equivalent:
(i) there is exactly one total specialisation π : ∗M → M;
(ii) (M, C) is a compact Hausdorff topological space.

Proof. Assume (i). Then M is quasi-compact and, using 2.2.15, π is a
universal specialisation. By 2.2.24 C = Cπ. It remains to show that for
any given a ∈ M the intersection

⋂{U : U open, a ∈ U} (also equal to
Nbd0

a(M)) contains just the one point a. Suppose towards the contradiction
that also b is in this intersection and b 6= a. Take a′ ∈ Va \ {a}. Then

a′ ∈ Nbd0
a(
∗M) = Nbd0

b(
∗M).

Now define a new partial map π′ : a′ 7→ b. This is a partial specialisation,
since for every basic closed set Q(∗M) containing a′, ¬Q does not define an
open neighbourhood U of b, so b ∈ S(M). Extend π′ to a total specialisation
by 2.2.7. This will be different from π in contradiction with our assumptions.
We proved (ii).

Assume (ii). The existence of a specialisation π is now given by Proposi-
tion 2.2.7. π is unique since for any a′ ∈ ∗M, π(a′) = a iff a′ ∈ Nbd0

a(
∗M). ¤

2.2.3 Continuous and differentiable function

Definition 2.2.27 Let F (x, y) be the graph of a function on an open set
D, f : D → M. We say that f is strongly continuous if F is closed
in D × M and, for any universal specialisation π : ∗M → M for every
a′ ∈ Dom π ∩D(∗M) we have f(a′) ∈ Dom π.

Remark 2.2.28 If M is quasi-compact then by 2.2.7 any function with a
closed graph is strongly continuous.

Exercise 2.2.29 (Topological groups ) Let G be a topological structure
with a basic ternary relation P defining a group structure on G with the
operation

x · y = z ≡ P (x, y, z)

given by a closed P.
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Suppose that G is quasi-compact. Consider ∗G Â G, a universal special-
isation π : ∗G → G and the infinitesimal neighbourhood V ⊆ ∗G of the unit.
Then V is a nontrivial normal subgroup of G∗. In particular, ∗G can not be
simple.

Proposition 2.2.30 Given strongly continuous functions f : Dn → M and
gi : U → D, i = 1, . . . , n, the composition

f ◦ g : x 7→ f(g1(x), . . . , gn(x))

is strongly continuous.

Proof. First we note that the graph of f ◦ g is closed. Indeed, by 2.2.24 it
is enough to show that if a′ ∈ D(∗M), π(a′) = a ∈ D(M) and b′ = f ◦ g(a′),
π(b′) = b, then f ◦ g(a) = b. By definition b′ = f(c′1, . . . , c

′
n), for c′i = gi(a

′).
By continuity c′i ∈ Dom π, π(c′i) = ci and gi(a) = ci. By the same argument
f(c1, . . . , cn) = b.¤

Observe also the following

Lemma 2.2.31 The graph of a strongly continuous function Mm → M on
an irreducible M is irreducible.

Proof. We claim that the graph F of f is homeomorphic to Mm via the
map

〈x1, . . . , xm〉 7→ 〈x1, . . . , xm, f(x1, . . . , xm)〉,
that is the image and inverse image of a closed subset are closed. The latter
follows from axioms (L). The former follows by 2.2.24 and the assumption
on f.

So F is irreducible.¤

Definition 2.2.32 Assume that M = K is a topological structure which is
an expansion of a field structure (in the language of Zariski closed relations).
We say that the function f : Km → K, f = f(x̄, y), x̄ = 〈x1, . . . , xm−1〉, has
derivative with respect to y if there exists a strongly continuous function
g : Km+1 → K and a function fy : Km → K with closed graph such that

g(x̄, y1, y2) =

{ f(x̄,y1)−f(x̄,y2)
y1−y2 , if y1 6= y2,

fy(x̄, y1), otherwise

If this holds for f we say that f is differentiable by y.
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Example 2.2.33 Consider the Frobenius map Frob : y 7→ yp in a field
K of characteristic p > 0 and its inverse Frob−1. Both maps are strongly
continuous since, for α ∈ V0 (infinitesimal neighbourhood of 0), both αp ∈ V0

and α
1
p ∈ V0. The derivative of Frob is the constant function 0 since for any

y ∈ ∗K, the element

Frob(y + α)− Frob(y)

α
= αp−1

specialises to 0.
But there is no derivative of Frob−1 since

Frob−1(y + α)− Frob−1(y)

α
= α

1−p
p

specialises to no element in K.

Proposition 2.2.34 Assume that K is irreducible. Then the derivative fy
is uniquely determined.

Proof. First note that by assumptions Km+1 is irreducible. By 2.2.31 the
graph G of g is irreducible.

Suppose f̃y is also a derivative of f. Then also the graph G̃ of the corre-
sponding g̃ is irreducible. But the closed set G ∩ G̃ contains the set

{〈x̄, y1, y2,
f(x̄, y1)− f(x̄, y2)

y1 − y2

〉 : x̄ ∈ Km−1, y1, y2 ∈ K, y1 6= y2}

which is obviously open in G and G̃. So G = G̃.¤

Remark 2.2.35 Assume that +, ×, −1 and f are strongly continuous in K
and f has derivative with respect to y. Then by 2.2.30, for every infinitesimal
α ∈ V0,

π :
f(x̄, y + α)− f(x̄, y)

α
7→ fy(x̄, y).

In other words, there exists β ∈ V0 such that

f(x̄, y + α)− f(x̄, y)

α
= fy(x̄, y) + β.
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Exercise 2.2.36 Assume that +, ×, −1, f and h are strongly continuous
and f and h are differentiable in K. Then

1. (yn)y = nyn−1, for any integer n > 0;

2. every polynomial p is differentiable with respect to its variables;

3. (f + h)y = fy + hy;

4. (f · h)y = fy · h+ hy · f ;

5. f(x̄, h(x̄, y))y = fy(x̄, h(x̄, y)) · h(x̄, y)y.

In later sections we are going to use the notation ∂f
∂y

interchangeably with
fy.



36 CHAPTER 2. TOPOLOGICAL STRUCTURES



Chapter 3

Noetherian Zariski Structures

Zariski Geometries are abstract structures in which a suitable generalisation
of Zariski topology makes sense. Algebraic varieties over an algebraically
closed field and compact complex spaces in a natural language are examples
of (Noetherian) Zariski geometries. The main theorem by Hrushovski and the
author states that under certain non-degeneracy conditions a 1-dimensional
Noetherian Zariski geometry can be identified as an algebraic curve over an
algebraically closed field. The proof of the theorem exhibits, as a matter
of fact, a way to develop algebraic geometry from purely geometric abstract
assumptions not involving any algebra at all.

3.1 Topological structures with good dimen-

sion notion

We introduce a dimension notion on sets definable in M. We are interested
in the case when dimension satisfies certain conditions.

3.1.1 Good dimension

We assume that to any nonempty projective S a non-negative integer called
the dimension of S, dimS, is attached.

We postulate the following properties of a good dimension notion:

(DP) Dimension of a point is 0;

37
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(DU) Dimension of unions: dim(S1 ∪ S2) = max{dimS1, dimS2};

(SI) Strong irreducibility: For any irreducible S ⊆cl U ⊆op M
n and

its closed subset S1 ⊆cl S, if S1 6= S then dimS1 < dimS;

(AF) Addition formula: For any irreducible S ⊆cl U ⊆op M
n and a

projection map pr : Mn →Mm,

dimS = dim pr (S) + min
a∈pr (S)

dim(pr −1(a) ∩ S).

(FC) Fibre condition: For any irreducible S ⊆cl U ⊆op Mn and a
projection map pr : Mn → Mm there exists V ⊆op prS (relatively open)
such that

min
a∈pr (S)

dim(pr −1(a) ∩ S) = dim(pr −1(v) ∩ S), for any v ∈ V ∩ pr (S).

Remark 3.1.1 Note that for Noetherian topological structures we could
have defined dimension of closed sets to be the Krull dimension, as in [24], see
also Section 3.3 below. This is quite convenient and in particular the strong
irreducibility (SI) becomes automatic. But this would disagree with some
key natural examples, such as compact complex manifolds (see Section 3.4.2
below). Also, in the more general context of non-Noetherian structures the
reduction to irreducibles is quite subtle (see Section 6.1) and it is not even
clear if the Krull dimension can work in this case.

Once a dimension is introduced one can give a precise meaning to the
notion of a generic point used broadly in geometric context .

Definition 3.1.2 For M ≺ M′,

S⊆ clM
n irreducible and a′ ∈ S(M ′) (∗)

we say that a′ is generic in S if dimS is the smallest possible among S
satisfying (*).
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3.1.2 Zariski structures

We use the following property generalising the (P) of 2.1.

(SP) semi-Properness of projection mappings: given a closed irre-
ducible subset S ⊆cl M

n and the projection map pr : Mn → Mk, there
is a proper closed subset F ⊂ prS such that prS \ F ⊆prS.

Definition 3.1.3 Noetherian topological structures with good dimension
notion satisfying (SP) will be called Zariski structures, sometimes with
the adjective Noetherian, to distinguish from the analytic Zariski structures
introduced later.

Exercise 3.1.4 Prove that, for a closed S ⊆cl M
n, prS is constructible.

In many cases we assume that a Zariski structure satisfies also

(EU) Essential uncountability: If a closed S ⊆ Mn is a union of
countably many closed subsets, then there are finitely many among the sub-
sets, the union of which is S.

The following is an extra condition crucial for developing a rich theory
for Zariski structures.

(PS) Presmoothness: For any closed irreducible S1, S2 ⊆ Mn, the
dimension of any irreducible component of S1 ∩ S2 is not less than

dimS1 + dimS2 − dimMn.

Remark 3.1.5 Note that (DCC) guarantees that S is the union of irre-
ducible components.

For simplicity, we add also the extra assumption that M itself is irre-
ducible. However, most of the arguments in the chapter hold without this
assumption.

Exercise 3.1.6 1. In (FC) and (AF) we can write S(a,M) instead of
pr −1(a) ∩ S, if pr is the projection on the first m coordinates.
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2. Give an example where strict inequality may hold in 3.1.7.

3. If S is a closed infinite set then dimS > 0.

4. dimMk = k · dimM .

5. dimS ≤ dimMk, for every constructible S⊆Mk.

6. Assume that M is compact. Let S and prS be closed, prS irreducible
and all the fibres pr −1(a) ∩ S, a ∈ prS, irreducible and of the same
dimension. Then S is irreducible.

Exercise 3.1.7 For a topological structure M with a good dimension and a
subset S ⊆cl U ⊆op M

n assume that there is an irreducible S0 ⊆cl S with
dimS0 = dimS. Then

dimS ≥ dim pr (S) + min
a∈pr (S)

dim(pr −1(a) ∩ S).

(I.e. a ‘reducible’ version of (AF)).
In particular the reducible version of (AF) holds in Noetherian Zariski

structures for any closed S.

3.2 Model theory of Zariski structures

3.2.1 Elimination of Quantifiers

Theorem 3.2.1 A Zariski structure M admits elimination of quantifiers,
i.e. any definable subset Q ⊆Mn is constructible.

Proof. Recall that every boolean combination of closed sets can be written
in the form (3.2), section 3.1.2.

We now let pr : Mn+1 → Mn be the projection map along n + 1-th
coordinate. It is enough to prove that pr (Q) is again of the form (3.2), if
Q ⊆Mn+1 is. Without loss of generality we may assume that Q = S \ P,
nonempty, and use induction on dimS.
Let

dS = min{dimS(a,M)) : a ∈ prS};
F = {b ∈ prS : dimP (b,M) ≥ dS}.
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Let F̄ be the closure of the set F. This is a proper subset of the closure prS,
by (FC), and so dim F̄ < dim prS, since prS is irreducible, 2.1.4.

Let S ′ = S ∩ pr −1(F̄ ). Since F̄ ∩ prS 6= prS we have S ′ ( S, and hence,
since S is irreducible, dimS ′ < dimS.

Clearly,

prQ = pr (S \ P ) ⊆ pr (S ′ \ P ) ∪ (prS \ F ). (3.1)

But in fact, prS \ F ⊆ prQ, since if b ∈ prS \ F then P (b,M) ( S(b,M),
i.e. b ∈ prQ. So, equality holds in (3.1). We can now apply induction to
S ′ \ P and use the fact that prS \ F is already in the desired form. ¤

Exercise 3.2.2 Let M be a Zariski structure,

1. Let C ⊆Mk be an irreducible set of dimension 1, S ⊆ Cm relatively
closed and irreducible of dimension n > 1. Then
(i) m ≥ n;
(ii) there is a projection pr : Cm → Cn, for some choice of n coordi-
nates from m, and an open dense U⊆Cn such that S1 = pr −1(U) ∩ S
is dense in S and the projection map finite-to-one on S1.

2. Let C ⊆Mk be an irreducible set of dimension 1. Then C is strongly
minimal, i.e. any definable (with parameters) subset of C is either
finite or the complement to a finite subset.

Let Q̄ be the closure of a set Q, the smallest closed set containing Q.

Remark 3.2.3 Any constructible Q has the form

Q = ∪i≤k(Si \ Pi) for some k , (3.2)

where Si, Pi are closed sets, Pi ⊂ Si, Si irreducible. Consequently

Q̄ =
⋃

i≤k
Si.

So the dimension of a constructible set is

dimQ := dim Q̄ = max
i≤k

dimSi.
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Lemma 3.2.4 For a Zariski structure the following form of the fibre condi-
tion holds:

(FC’) Fibre condition: for any projection pr and a closed irreducible
S⊆Mn the set

Ppr (S, k) = {a ∈ prS : dim(S ∩ pr −1(a)) > k}
is constructible and is contained in a proper (relatively) closed subset of prS,
provided k ≥ mina∈pr (S) dim(pr −1(a) ∩ S)

Proof. By induction on dimS. The statement is obvious for dimS = 0. It
is also obvious for k < k0 = mina∈pr (S) dim(pr −1(a) ∩ S), so we assume that
k ≥ k0.

For dimS = d > 0, let U be the open subset of prS on which dim(pr −1(a)∩
S) is minimal. dimU = dim prS since prS is constructible and irreducible.
By (AF) the dimension of the set

S0 =
⋃
a∈U

pr −1(a) ∩ S

is equal to dimS. It follows that the complement S ′ = S \ S0 is of lower
dimension.

Note that (FC) in a Noetherian structure by 2.1.3 implies the fibre con-
dition for arbitrary closed sets. It is clear that under our assumptions
Ppr (S, k) = Ppr (S ′, k). The latter by induction is contained in a subset
closed in prS \ U, so closed in prS. ¤

Remark 3.2.5 We can also use a weakened form of the addition formula

(AF’) For any irreducible closed S⊆Mn and a projection map pr : Mn →
Mm,

dimS = dim pr (S) + min
a∈pr (S)

dim(pr −1(a) ∩ S).

One can check that this form of the addition formula is sufficient for prov-
ing elimination of quantifiers for Noetherian Zariski structures. So eventually
restricting ourselves to (AF’) we do not narrow the definition.
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3.2.2 Morley rank

First we give a model-theoretic interpretation of the Essential Uncountability
property (EU).

Lemma 3.2.6 A Zariski structure M satisfies (EU) iff it is ω1-compact, that
is all countable types are realised.

Proof. The direction from right to left is immediate, by the compactness
theorem. For the opposite direction, we have to check that any descending
chain

Q0 ⊇ Q1 ⊇ . . . Qi ⊇ . . .

of non-empty definable subsets of Mn has a common point. We may assume
that all Qi are of the same dimension and of the form S \Pi for closed S and
Pi. Now, apparently the intersection

⋂
Qi is non-empty iff S 6= ⋃

Pi, which
follows immediately from (EU). ¤

Remark 3.2.7 Since M may have an uncountable language the notion of
ω1-compact is weaker then the notion of ω1-saturated. R.Moosa has shown
that there are compact complex manifolds M which are not ω1-saturated
in the natural language. On the other hand he proved [44] that a compact
complex M is ω1-saturated if it is Kähler.

Theorem 3.2.8 Any Zariski structure M satisfying (EU) is of finite Morley
rank. More precisely, rkQ ≤ dimQ for any definable set Q.

Proof. We prove by induction on n that rkQ ≥ n implies dimQ ≥ n.
dimQ = 0 iff rkQ = 0, follows from definitions. Now to prove the general

case, suppose towards a contradiction that, for some Q, dim(Q) ≤ n > 0 and
rk (Q) ≥ n + 1. We may assume that Q is irreducible. By the assumptions
on Morley rank for any i ∈ N there are disjoint Q1, . . . Qi with rk(Qi) ≥ n
such that

Q ⊇ Q1 ∪ · · · ∪Qi.

Let i = 2. By the induction hypothesis dim(Q1) ≥ n and dim(Q2) ≥ n. By
the irreducibility of Q we then have dim(Q1 ∩Q2) ≥ n, which is a contradic-
tion. ¤
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3.3 One-dimensional case

We discuss here a specific axiomatisation of one-dimensional Zariski struc-
tures introduced in [24]. It is more compact and easier to use in appli-
cations (such as [23]). It is immediate, using Theorem 3.2.8, that every
one-dimensional presmooth Zariski structure (with irreducible universe) is
strongly minimal and satisfies the definition in [24], given below. It is not
clear if the inverse holds, but we show below that all the properties postu-
lated in Section 3.1.2, except maybe (FC), follow from (Z1)-(Z3) below. The
main classification theorem 4.4.1 is proved without use of (FC), effectively
only (Z1)-(Z3) is needed (see also the proof in [24]).

Definition 3.3.1 A one-dimensional Zariski geometry on a set M is
a Noetherian topological structure satisfying the properties (Z1)-(Z3) below
and with dimension defined as a Krull dimension, that is the dimension of a
closed irreducible set S is the length n of a maximal chain of proper closed
irreducible subsets

S0 ⊂ . . . ⊂ Sn = S.

Dimension of an arbitrary closed set is the maximum dimension of its irre-
ducible components.

Note that by this definition (SI) holds, that is irreducibles are strongly
irreducible.

The axioms for one-dimensional Zariski geometry are:

(Z1) prS⊇pr (S) \ F, some proper closed F ⊆cl pr (S).

(Z2) For S ⊆cl M
n+1 there is m, such that for all a ∈ Mn, S(a) = M or

|S(a)| ≤ m.

(Z3) dimMn ≤ n. Given a closed irreducible S ⊆Mn, every component
of the diagonal S ∩ {xi = xj} (i < j ≤ n) is of dimension ≥ dimS − 1.

Lemma 3.3.2 Mk is irreducible.

Proof. By induction on k. Note that M is irreducible since every infinite
closed subset T ⊆M must be equal toM, by (Z2) with n = 1 and S = {a}×T.
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Let S1 ∪ S2 = Mk+1, S1, S2 ⊆cl M
k+1. Consider

S∗i = {a ∈Mn : a_x ∈ Si, for all x ∈M}.

Clearly S∗i ⊆Mn is closed and, for any a ∈Mk, Si(a) = {x ∈M : a_x ∈ Si}
is closed andM = S1(a)∪S2(a). So Si(a) = M for some i. Thus S∗1∪S∗2 = Mk,
so by induction S∗i = Mk, for some i, and Si = Mk+1.¤

Lemma 3.3.3 Let S1⊆Mk, S2⊆Mm be both irreducible. Then
(i) S1 × S2 is irreducible;
(ii) dim(S1 × S2) ≥ dimS1 + dimS2.

Proof. (i) Let pr be the projection Mk+m → Mm. By definition pr(S1 ×
S2) = S2. Suppose S1 × S2 = P1 ∪ P2, P1, P2 ⊆cl M

k +m. For each a ∈ S1,
S2 = P1(a) ∪ P2(a), so P1(a) = S2 or P2(a) = S2. Consider P ∗i = {a ∈ Mk :
a_x ∈ Pi for all x ∈ S2}. These are closed subsets of S1 and S1 = P ∗1 ∪ P ∗2 .
By irreducibility S1 = P ∗i for some i, hence S1 × S2 = Pi.

(ii) Let S0
1 ⊂ . . . ⊂ Sd11 = S1 and S0

2 ⊂ . . . ⊂ Sd22 = S2 be maximal length
chains of irreducible closed subsets of S1 and S2, so that dimS1 = d1 and
dimS2 = d2 by definition. Now

S0
1 × S0

2 ⊂ . . . ⊂ S0
1 × Sd22 ⊂ S1

1 × Sd22 ⊂ S2
1 × Sd22 ⊂ . . . ⊂ Sd11 × Sd22

is the chain of closed irreducible subsets of S1 × S2 of length d1 + d2. ¤

Lemma 3.3.4 Let P ⊆cl M
n and S ⊆cl P ×M. Suppose S(a) is finite for

some a ∈ P. Then S(a) is finite for all a ∈ P \ R, for some proper closed
subset R ⊆cl P.

Proof. If S(a) is infinite, then S(a) = M. So it suffices to prove that {a :
S(a) = M} is closed. But this is the intersection of the sets {a : a_b ∈ S},
for all b ∈M, which is closed.¤

The next statement is just (PS), generalising (Z3).

Lemma 3.3.5 Suppose S1, S2⊆Mn both irreducible, dimSi = di. Then ev-
ery irreducible component of S1 ∩ S2 is of dimension at least d1 + d2 − n.
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Proof. Let Di be the diagonal xi = xn+i in M2n, and let D =
⋃
iDi. There

is an obvious homeomorphism between S1 ∩ S2 and (S1 × S2) ∩D. By 3.3.3
S1 × S2 is irreducible of dimension at least d1 + d2. Hence it suffices to show
that dimS ∩D ≥ dimS−n for any irreducible closed subset S of M2n. This
follows by applying (Z3) to the intersection with diagonals Di, i = 1, . . . , n,
in succession.¤

Lemma 3.3.6 Let S ⊆cl M
n be irreducible, pr : Mn →Mk.

(a) If prS = Mk then dimS ≥ k.
(b) pr−1(a) ∩ S is finite and nonempty for some a, then dimS ≤ k.
(c) dimS = k iff there exists pr as in (a) and (b).

Proof. (a) By induction on k. We have prS ⊇ Mk \ F for some proper
closed F ⊆Mk. For a ∈ M, let F (a) = {y ∈ Mk−1 : a_y ∈ F}. If for all
a ∈ M, F (a) = Mk−1, then F = Mk, a contradiction. Choose a ∈ M so
that F (a) ⊂Mk−1, proper. Let S ′ = {x ∈ S : pr x ∈ {a} ×Mk−1}. This is a
closed subset of S.

Let pr − : Mk → Mk−1 be the projection forgetting the first coordinate,
pr + = pr −pr . Clearly pr +S ′ contains Mk−1\F (a). Since Mk−1 is irreducible,
the closure Mk−1 \ F (a) contains Mk−1, so by 2.1.4(ii) pr +S ′′ = Mk−1, for
some component S ′′ of S ′. By induction dimS ′′ ≥ k − 1, so dimS ≥ k.

(b) Pick a ∈ Mk such that pr−1(a) ∩ S is finite. Clearly pr−1(a) ∩ S =
({a} ×Mn−k) ∩ S. So by 3.3.5

0 = dim pr−1(a) ∩ S ≥ dimS + dim({a} ×Mn−k)− n = dimS − k.

Hence dimS ≤ k.
(c) We first prove
Claim. Let S ⊂ Mn, be irreducible proper and closed. Then there is a

projection pr1 : Mn →Mn−1 and a ∈Mn−1 such that pr−1
1 (a) ∩ S is finite.

Proof. By induction on n. Let pr : Mn → Mn−1 be the projection along
the last co-ordinate. If the projection has a finite fibre on S then we are
done, so we assume otherwise, that is pr−1(a)∩S is an infinite closed subset
of {a} ×M for all a ∈ prS. By (Z2) the fibre is equal to {a} ×M. Hence

prS = {a ∈Mn−1 : ∀x ∈M a_x ∈ S},
which is a closed subset of Mn−1, and S = prS ×M. So prS is a proper
subset of Mn−1. By induction there is a projection pr′ : Mn−1 →Mn−2 with
a finite fibre on prS. The projection x_y 7→ pr′x_y satisfies the requirement.
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Now it follows from (b) that dimMn ≤ n. Hence dimMn = n.
Finally we prove (c) by induction on n. In case S = Mn we take pr to

be the identity map. If S is proper, then by the claim there exists a projec-
tion pr1 : Mn → Mn−1 and a ∈ Mn−1 such that pr−1

1 (a) ∩ S is finite. Let
P = pr1(S), irreducible by 2.1.4. By induction there exists pr2 : Mn−1 →Mk

such that pr2P is dense in Mk and pr−1
2 (a) ∩ P is finite for some a ∈ pr2P.

We have dimP = k. Using (Z1) and 3.3.4 there is F ⊂ P closed such that
pr1(S)⊇P \F and pr−1

1 (b)∩S is finite for all b ∈ P \F. Since dimF < k, by (a)
pr2(F ) is not dense in Mk. Choose a ∈Mk\pr2(F ) such that pr−1

2 (a)∩P is fi-
nite. Then (pr2pr1)

−1(a)∩S is finite. But pr2pr1(S) contains pr2(P )\pr2(F ),
hence is dense in Mk. Thus pr2pr1 is the projection satisfying (a) and (b).¤

We now draw some model-theoretic conclusions from the theory developed
above. Moreover, we use essentially general model theory (the theory of
strongly minimal structures) outlined in the Appendix, Chapter B, to prove
that the dimension notion we work with is good in the sense above.

The statements below are in fact special cases of Theorems 3.2.1 and
3.2.8, but we do not use (FC) and (AF) in the proofs.

Proposition 3.3.7 Let M be a one-dimensional Zariski geometry. Then the
theory of M admits elimination of quantifiers. In other words, the projection
of a constructible set is constructible.

Proof. We must show that if S⊆Mn×M is a closed subset, F ⊆S is a closed
subset, and pr1 denotes the projection to Mn, then pr1(S \ F ) is a Boolean
combination of closed sets. We show this by induction on dimS. Note that
we can immediately reduce to the case where S is irreducible. Let S1 = pr1S.
Then S1 is irreducible, and for some proper closed H ⊆ S1, pr1S ⊇ S1 \ H.
Let S0 = {x ∈ Mn : ∀y x_y ∈ S} and F0 = {x ∈ Mn : ∀y x_y ∈ F}. Then
S0 and F0 are closed and S0 ⊆ S1. The case S0 = S1 is trivial, since then
pr1(S \F ) = S0 \F0. Let F1 = pr1(F ). If F1 is a proper subset of S1, then so
is F2 = F1∪H, and (F2×M)∩S is a proper subset of S, and hence has smaller
dimension. Thus by induction pr1((F2×M)∩C\F ) is a Boolean combination
of closed sets. Hence so is pr1(S \F ) = pr1((F2×M)∩S \F )∪ (S1 \F2). The
remaining case is S1 = F1, S0 6= F1. In this case we claim that S = F. Since S
is irreducible, it suffices to show that dimS = dimF. In fact dimS = dimS1

and dimF = dimF1. This follows from the characterization of dimF in
Lemma 2.6. ¤
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Corollary 3.3.8 (i) M is strongly minimal (see B.1.22).

(ii) For S ⊆Mn constructible, the Morley rank of S is equal to the di-
mension of the closure of S, rkS = dimS.

Proof. (i) Let E ⊆Mn ×M be a denable set. It is enough to show that
E(a) is finite or co-finite, with a uniform bound for all a ∈ Mn. We may
take E = S \ F, with S and F closed. If S(a) is finite, then E(a) is finite,
with the same bound. The result is immediate from (Z2) applied to S and
to F.

(ii) We use the properties of Morley rank for strongly minimal structures
B.1.26. It is enough to prove the statement for S irreducible. Let P = S. We
use induction on dimP. Clearly, for dimP = 0, S is finite and so rkS = 0.

Let dimP = k. By 3.3.6 there is an open subset S ′⊆P and an open sub-
set T ⊆Mk such that a projection pr : Mn → Mk is finite-to-one surjective
map S ′ → T. We have dimMk \T < k and so rkMk \T < k. So rkT = k, by
B.1.26(i)-(iii). Now B.1.26(vi) implies rkS ′ = rkT. Since also by induction
rkP \ S ′ = dimP \ S ′ < k, we have rkP = k. ¤
¤

Remark 3.3.9 In particular, the addition formulas for dimension in the
form B.1.26(v)-(vi) hold.

Below, for a constructible set S, dimS will stand for dimS.

Proposition 3.3.10 Suppose (FC) holds for M. Then the addition formula
(AF) is true.

Proof. Consider an irreducible S ⊆cl U ⊆op Mn and a projection map
pr : Mn → Mm. Denote d = mina∈pr (S) dim(pr−1(a) ∩ S). Let V be the
open set as stated in (FC). Then the open subset S ′ = pr −1(V ) ∩ S is of
dimension dim prS + d, by the addition formula B.1.26(v) for Morley rank.
But dimS = dimS ′, which proves (AF). ¤
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3.4 Basic examples

3.4.1 Algebraic varieties and orbifolds over algebraically
closed fields

Let K be an algebraically closed field and M the set of K-points of an
algebraic variety over K. We are going to consider a structure on M :

The natural language for algebraic varieties M is the language the
basic n-ary relations C of which are the Zariski closed subsets of Mn.

Theorem 3.4.1 Any algebraic variety M over an algebraically closed field in
the natural language and the dimension notion as that of algebraic geometry
is a Zariski structure. The Zariski structure is complete if the variety is
complete. It satisfies (PS) if the algebraic variety is smooth. It satisfies
(EU) iff the field is uncountable.

Proof. Use a book on algebraic geometry, e.g. [48] or [15]. (L) and (DCC)
follows immediately from the definition of a Zariski structure and the noethe-
rianity of polynomial rings (sections 1 and 2, chapter 1 of [48]). The irre-
ducible decomposition is discussed in [Sh] section 3. (SP) is Theorem 2 and
(PS) is Theorem 5 of section 5 of the same book. The Fibre Condition (FC)
along with the addition formula (AF) is given by Fibres Dimension Theorem
of [15]. ¤

Orbifolds. Consider an algebraic variety M and the structure structure
M in the natural language as above on the set of its K-points. Suppose there
is a finite group Γ of regular automorphisms acting on M. We consider the
set of orbits M/Γ and the canonical projection p : M → M/Γ. Define the
natural topological structure with dimension (orbifold) on M/Γ to be given
by the family CΓ of subsets of (M/Γ)n, all n, which are of the form p(S)
for S ⊆ Mn closed in M. Set dim p(S) := dimS. In section 3.7 we prove
Proposition 3.7.22:

The orbifold M/Γ is a Zariski structure. The orbifold is presmooth if M
is.

Note that generally M/Γ is not an algebraic variety even if M is one.
Using the general quantifier-elimination theorem 3.2.1 we have as a corol-

lary.
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Corollary 3.4.2 (i) Any definable subset of Kn, for K an algebraically
closed field, is a Boolean combination of affine varieties (zero-sets of polyno-
mials).

(ii) Any definable subset of Mn, for M an orbifold over an algebraically
closed field, is a Boolean combination of Zariski closed subsets.

3.4.2 Compact complex manifolds

For the definitions and references on complex manifolds we refer mainly to
[20]. As in the book we identify theorems of [20] by a triple consisting of
a Roman number, a letter and an Arabic number. Chapter V, section B,
statement 20, for example, will be V.B.20, and in case the reference to a
book is omitted, we mean [20].

The natural language for a compact complex manifold M has the
analytic subsets of Mn as basic n-ary relations C.

Theorem 3.4.3 Any compact complex manifolds M in a natural language
and dimension given as complex analytic dimension is a complete Zariski
structure and satisfies assumptions (PS) and (EU).

Proof. We need to check the axioms.
(L) is given in definitions.
(P) is Remmert’s Theorem, V.C.5.
(DCC): to see this, first notice that any analytic S is at most a countable
union of irreducible analytic Si and the cover S =

⋃
i Si is locally finite ([18],

A,3, Decomposition Lemma). By compactness the number of irreducible
components is finite. Now (DCC) for compact analytic sets follows from
(DCC) for irreducible ones, which is a consequence of axiom (SI). The latter
as well as (DU) is immediate in III.C.
The condition (AF) is the second part of Remmerts Theorem V.C.5, which
also states that the minimum of dimension of fibres is achieved on an open
subset.

(FC) is less immediate.1

Let U be a neighbourhood of a point b ∈ S, which is locally biholomorphic
to a complex disk of dimension rn = dimMn and S ∩ U is given as the

1Alternatively to the argument below you can use Theorem 9F, p.240 in Whitney’s
book on Complex Analytic Varieties. You need to add to it Remmert’s Proper Mapping
Theorem



3.4. BASIC EXAMPLES 51

zero-set of f1, ...fm holomorphic in U. Projection pr is given by holomorphic
functions g1, ...grn−1 . Then p−1(a) ∩ S is the zero-set of f1, . . . fm and g1 =
a1, . . . , grn−1 = arn−1 , where ai are the coordinates of a ∈ pr (S ∩ U). And
if 〈a, b〉 is a point in a-fibre, then the fact that the dimension of the fibre
> k ≥ min dim of fibres implies:

(*) the rank of Jacobian of (f, g) in b is less than r − k.
This condition is equivalent to vanishing of all (r-k)-minors of the jacobian,
so it is a (local) analytic condition on 〈a, b〉, let S ′ be the global analytic set
defined by (*) in every U. By the construction all components of dimension
greater than k of fibres pr −1(a) ∩ S lie in S ′. This gives P(S ′, k) = P(S, k).
By the choice of k there is 〈a, b〉 not in P(S, k), thus S ′ is a proper subset of
S. Now the induction by dimS finishes the proof of (FC).
(EU) is given by V.B.1.
(PS): Let S1, S2 be irreducible subsets of Mn. It is easy to see that S1 ∩ S2

is locally biholomorphically isomorphic to S1 × S2 ∩ Diag(Mn ×Mn). Now
notice that locally Mn is represented by disks of Cd, where d = dimMn. Now
the condition (PS) is satisfied in M by III.C.11, since the diagonal is given
by d equations, each of them decreases the dimension at most by 1. ¤

Remark 3.4.4 In fact, the theorem holds for compact analytic spaces ( in
the sense of [20]), except for the pre-smoothness condition.

Remark 3.4.5 Proposition 3.7.22 about orbifolds is true also in the context
of complex geometry, that is when M is a complex manifold.

Again from Theorem 3.2.1 one derives.

Corollary 3.4.6 The family of constructible subsets of a compact complex
manifold is closed under projections.

3.4.3 Proper varieties of rigid analytic geometry

Now we consider a less classical subject, the so called rigid analytic geom-
etry, see [46] for references below. It is built over a completion of a non-
Archimedean valued algebraically closed field K. The main objects are ana-
lytic varieties over K. The natural language for an analytic variety M is again
the language with analytic subsets of Mn as basic relations. We have to warn
the reader that here the definition of a neighbourhood and so of an analytic
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subset is much more involved than in the complex case. The main obstacle
for an immediate analogy is the fact that the non-Archimedean topology on
K is highly disconnected.

Theorem 3.4.7 Let M be a proper (rigid) analytic variety. Then M, with
respect to the natural language, is a complete Zariski structure satisfying
(EU). It is pre-smooth if the variety is smooth.

Proof. For references we use [46] with the appropriate enumeration of
the statements.

(L) follows from definitions.
Notice that Mn is proper by Lemma 9.6.2.1.
The projections

pr : Mn+1 →Mn

are proper by Proposition 9.6.2.4, and particularly the subsequent comments.
If S ⊆ Mn+1 is analytic, then pr (S) ⊆ Mn is analytic by the Proper

Mapping Theorem 9.6.3.3. This gives us (P).
Since analytic subsets are defined locally and locally are in a correspon-

dence with Noetherian coordinate rings, which are also factorial domains, we
have (DCC) locally. By the properness we can reduce any admissible open
covering to a finite one, thus we have (DCC) globally, i.e. for analytic subsets
of Mn. Also the notion of irreducibility has a ring-theoretic representation
locally.

The dimension is defined locally as the Krull dimension. We thus get
(SI),(DU), (DP), (FC) and (AF).

To prove (EU) assume S⊆Mn is an analytic subvariety and S =
⋃
i∈N Si,

a union of analytic varieties. Since local coordinate rings of S are factorial,
locally S has a decomposition into finitely many irreducible analytic subva-
rieties. Consider an open admissible subset U ⊆Mn, where we may assume
S ∩ U is irreducible. Since S ∩ U is a complete metric space, at least one
of Si ∩ U must be a first category subset, that is it must contain an open
subset of S ∩ U. It follows that dimSi = dimS and thus by irreducibility
Si∩U = S∩U. This proves that (EU) holds locally. By the properness again
any admissible open covering can be assumed finite, and this yields that S
is a union of finitely many Si’s.

Finally, by the same reason as in the complex case, if M is smooth, we
have (PS). ¤
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Exercise 3.4.8 Let Λ⊆Cn be the additive subgroup with an additive basis
{a1, . . . , a2n}, linearly independent over the reals. Then the quotient space
T = Cn/Λ has a canonical structure of a complex manifold, called a torus.

1. Prove that in the natural language a commutative group structure is
definable in T. Moreover, the group operation x · y and the inverse x−1

are given by holomorphic mappings.

2. Prove, using literature, that if a1, . . . , a2n are algebraically independent
and n > 1, then any analytic subset of T n is definable in the group
structure (T, ·) (the generic torus).

3. Prove that for a generic torus T the classical analytic dimension is
dimT = n > 1 and at the same time T is strongly minimal, that is its
Morley rank and the Krull dimension both equal to 1.

The reader interested in model-theoretic aspects of the theory of compact
complex spaces may also consult [44], [33], [1][40] and [39].

3.4.4 Zariski structures living in differentially closed
fields

The first order theory DCF0 of differentially closed fields of characteristic
zero is one of the central objects of present day model theory. This theory
has quantifier elimination and is ω-stable, which makes it model theoretically
nice (see [16]), and at the same time its structure is very reach.

E.Hrushovski found an amazing application of the theory of differentially
closed fields in combination with the classification theorem of Zariski geome-
tries (see the main theorem, section 4.4). He proved the Mordell-Lang con-
jecture for function fields [23] and then extended his method to give a proof
of another celebrated number-theoretic conjecture, of Manin and Mumford.

In particular, Hrushovski used the fact (proved by him and Sokolovic)
that any strongly minimal substructure M of a model of DCF0 is a Zariski
structure. Removing finite number of points one can also makeM presmooth.

A.Pillay extended this result and proved in [38]

Theorem 3.4.9 (A.Pillay) Let K be a differentially closed field of char-
acteristic zero, X ⊆Kn be a definable set of finite Morley rank and Morley
degree 1. Then after possibly removing from X a set of smaller Morley rank
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than X, X can be equipped with a pre-smooth Zariski structure D; dim, in
such a way that the subsets of Xn definable in K are precisely those definable
in (X;D).

Of course, if we choose K to be ω1-saturated then D also satisfies (EU).

3.5 Further geometric notions

3.5.1 Presmoothness

We assume below that M is a Zariski structure. We give a wider notion of
presmoothness, which is applicable to subsets definable in Zariski structures.

Definition 3.5.1 A definable set A will be called presmooth (with M)
if for any relatively closed irreducible S1, S2 ⊆ Ak × Mm, any irreducible
component of the intersection S1 ∩ S2 is of dimension not less than

dimS1 + dimS2 − dim(Ak ×Mm).

We also discuss the following strengthening of (PS):

(sPS) M will be called strongly presmooth if for any definable irre-
ducible A⊆M r there is a definable presmooth A0⊆A open in A.

Definition 3.5.2 A Zariski structure satisfying (sPS) and (EU) will be called
a Zariski geometry

We will show later, in section 3.6.4, that a one-dimensional uncountable
Zariski structure satisfying (PS) is a Zariski geometry.

Lemma 3.5.3 Let A be an irreducible presmooth (with M) set and S ⊆
Ak ×M l closed irreducible. Let pr be a projection of S on any of its coor-
dinates and assume that pr (S) = Ak and r = mina∈pr (S) dimS(a,M). Then
for every a ∈ Ak, every component of S(a,M) has dimension not less then
r. In particular, if dimS(a,M) = r then all components of S(a,M) have
dimension r.
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Proof. Take a ∈ Ak, then by the presmoothness of A (and Exercise 2.1.5(2)),
every component C of S(a,M) satisfies

dimC ≥ dimS + dim(pr −1(a) ∩ (Ak ×M l))− dim(Ak ×M l)
≥ dimS − dim pr (S) = r.

(3.3)

¤

Definition 3.5.4 For D a definable set and b ∈ D, define dimbD the lo-
cal dimension of D in b to be the maximal dimension of an irreducible
component of D, containing b.

Corollary 3.5.5 A definable set A is presmooth (with M) iff for any k, m
and relatively closed sets S1, S2 ⊆ Ak ×Mm

dimx(S1 ∩ S2) ≥ dimx(S1) + dimx(S2)− dim(Ak ×Mm)

for any x ∈ S1 ∩ S2.

Proof. Clearly, if the condition is satisfied then A is presmooth. For the
converse, consider the components of S1 and S2 which contain x and have
maximal dimension in S1 and S2, respectively.¤

Corollary 3.5.6 If A is presmooth irreducible then any open subset B of it
is presmooth too.

Proof. Let in the above notations x be an element of (Bk ×Mm) ∩ S1 ∩ S2

and U⊆Ak ×Mm be an irreducible component of S1 ∩ S2 containing x and
of dimension equal to dimx(S1 ∩ S2). Then U ′ = U ∩ (Bk ×Mm) is an open,
and hence dense, subset of U. So, dimU ′ = dimU. Also Bk ×Mm is a dense
open subset of Ak ×Mm. It follows

dimU ′ ≥ dimx(S1 ∩ (Bk ×Mm)) + dimx(S2 ∩ (Bk ×Mm))− dim(Bk ×Mm).

¤

Exercise 3.5.7 Let D be presmooth (with M).
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1. If D1 is open and dense in D then D1 is presmooth. (Show also that
the following variations fail:
If D1 open and dense in D and D1 is presmooth then D is.
If D̄1 = D (D presmooth) then D1 is presmooth.)

2. Let F be a relatively closed, irreducible subset of D ×M l, pr (F ) = D,
and let

F̂ = {(x, y1, . . . , yk) : M |= F (x, y1) & · · ·& F (x, yk)}.

Then every irreducible component of F̂ has dimension d, where d =
dimD + k(dimF − dimD).

3. If F ⊆Dm is irreducible of dimension l then every component of F k is
of dimension k · l.

The family of examples below demonstrate why we indeed need in (2) to
assume that D is presmooth.

Example 3.5.8 We are going to clarify here the notion of presmoothness
for algebraic curves over an algebraically closed field K. One has first to
make precise the way an algebraic curve is considered a Zariski structure.
Of course, the best of all is to consider it in the natural language as in
Theorem 3.4.1 (i.e. all the analytic structure). Here for simplicity we use a
different representation. It follows from the Main Theorem and later results
that the present representation is equivalent to the natural one. So, speaking
on an algebraic curve C we consider the algebraic variety M = C ×K over
the algebraically closed field K in the language containing all the algebraic
subvarieties of Mn (in the complete version we can consider an embedding
of such an M into Pn, or M = C ×Pn, for some n.)

Proposition 3.5.9 Let C be an (irreducible) algebraic curve over an alge-
braically closed field K and {a1, . . . am} the set of all singular points of C.
Then
(i) there is a smooth algebraic curve A and a regular finite-to-one mapping
f : A→ C, such that f is a biregular bijection on C \ {a1, . . . am};
(ii) C is presmooth iff f is a bijection.



3.5. FURTHER GEOMETRIC NOTIONS 57

Proof. (i) is the classic “removal of singularities”; for curves it is given by
Theorem 6, section 5, chapter II of [48] (combined with Theorem 3 in the
same section).
(ii) We assumeA ⊆ Pn ⊆M. If f is a bijection, then it is a Z-homeomorphism,
i.e. it maps Z-closed subsets of Cn to that of An and conversely. Hence, it
transfers presmoothness from A to C.
If f is not a bijection then f−1(ai) = {bi1, . . . biki

}, ki > 1 for some of the ai’s
in C. Take

F1, F2 ⊆ C ×M ×M,

defined as

〈x, y, z〉 ∈ F1 iff x = f(y), 〈x, y, z〉 ∈ F2 iff x = f(z).

Now, dimF1 = dimF2 = 1 + dimM, and the irreducible components of
F1 ∩ F2 are {〈x, y, z〉 : y = z & x = f(y)} and {〈ai, bij, bil〉}, for distinct
i, j ≤ k. Thus, some of the components are of dimension 0, whereas dimF1 +
dimF2 − dim(C ×M) = 1, contradicting presmoothness.¤

Example 3.5.10 The presmooth case. Let C1⊆K×K be the projective
curve

{(x, y) : y2 = x3}.
The point (0, 0) is singular, yet C1 is presmooth by the above proposition,
since the regular map f : K → C1, given by t 7→ (t2, t3), is a bijection.

The non-presmooth case. Let C2⊆K ×K be the curve defined by

y2 = x3 + x2.

The point (0, 0) is singular on the curve. Consider the map f : K → C2

given by t 7→ (t2 − 1, t(t2 − 1)). f is a bijection on K \ {1,−1} but f(1) =
f(−1) = (0, 0), hence by the above proposition, C2 is not presmooth.

3.5.2 Coverings in structures with dimension

In this section M is a topological structure with dimension, (∗M, π) a universal
pair as constructed above such that ∗M is saturated over M.
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Definition 3.5.11 Assume F (x, y) ⊆cl V ⊆op M
n ×Mk is irreducible and

pr : Mn ×Mk → Mn, pr (F ) = D (thus D should be irreducible too). We
say then F is an (irreducible) covering of D.

Definition 3.5.12 We call the number r = mina∈D dimF (a,M). the dimen-
sion of a generic fibre.

a ∈ D will be called regular for F if dimF (a, y) = r. The set of points
regular for F will be denoted reg(F/D).

Lemma 3.5.13 dim(D \ reg(F/D)) ≤ dimD − 2.

Proof. The set of irregular points F ′ = {〈a, b〉 ∈ F : a ∈ (D \ reg(F/D))}
is a proper closed subset of F. By (SI) dimF ′ < dimF. By 3.1.7

dimF ′ ≥ r + 1 + dim(D \ reg(F/D)).

The required inequality follows. ¤

Corollary 3.5.14 Suppose F is a covering of an irreducible D, dimD = 1.
Then every a ∈ D is regular for the covering.

Definition 3.5.15 Let F be an irreducible covering of D, a ∈ D. We say
that F is a discrete covering of D at a (or in (a, b)) if dimF (a, v) = 0.

We say that F is a finite covering at a if F (a,M) is finite.

Clearly, if F is a finite covering of D at a, then the dimension of a generic
fibre of F is 0. Namely, a ∈ reg(F/D) = {d ∈ D : dimF (d, v) = 0} and
hence every a′ ∈ Va is in reg(F/D).

3.5.3 Elementary extensions of Zariski structures

We aim to show here that an elementary extension of a Zariski structure can
be canonically endowed with a topology and a dimension notion so that it
becomes a Zariski structure again.
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Definition 3.5.16 For any M′ºM introduce the notion of a closed relation
in M′ by declaring closed the sets (relations) of the form S(a,M ′m) for S
a closed (l + m)-ary relation in M and a ∈ M ′l. The closed sets which are
defined using parameters from a set A are called A-closed.

To define dimension in M′ notice first that by (AF), if S ⊆M l+m is M-
closed then there is a bound m dimM on the dimension of the fibres of S,
hence for every a ∈ pr (S) there is a maximal k ∈ N such that a ∈ P(S, k).
Since P(S, k) is a definable set we define

dimS(a,M ′) = max{k ∈ N : a ∈ P(S, k)}+ 1.

Exercise 3.5.17 Let M′ºM and S be a closed relation. Show that

1. for a ∈M, dimS(a,M) = dimS(a,M ′);

2. if S1 is another closed relation and a′, a′1 ∈M ′ are such that S(a′,M ′) =
S1(a

′
1,M

′), then dimS(a′,M ′) = dimS1(a
′
1,M

′).

3. for any closed S1, S2 closed in M and any a′1, a
′
2 in M ′

dim(S1(a
′
1,M

′) ∪ S2(a
′
2,M

′)) = max{dimS1(a
′
1,M

′), dimS2(a
′
2,M

′)},
that is (DU) holds in M ′.

So, the dimension notion is well defined.

Definition 3.5.18 For a ∈ M ′n, A ⊆M ′, define the locus of a over A,
locus(a/A), to be the intersection of all A-closed sets containing a. Define
the (combinatorial) dimension of a tuple a over A

cdim (a/A) := dim(locus(a/A)).

Clearly, for the canonical example of Zariski structure, an algebraically
closed field K, for a ∈ K ′n, A⊆K ′,

cdim (a/A) = tr.d.(a/A).

The following lemma will be very useful throughout.

Lemma 3.5.19 Assume that S is a closed set in Mk+l, pr : Mk+l →Mk is
the projection map and prS = locus(a/M) for some a ∈M ′k. Then

dimS(a,M ′) = min{dimS(a′,M) : a′ ∈ pr (S)}.
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Proof. Let l = dimS(a,M ′). Then a ∈ P(S, l − 1), hence P(S, l − 1) =
prS.¤

By the definition of dimension in M′ the above lemma holds even when
we take a′ ∈M ′.

Exercise 3.5.20 If for a specialisation π : a′ 7→ a then

dimS(a′,M ′) ≤ dimS(a,M).

Lemma 3.5.21 Let S(x, y), S1(x, y)⊆Mk+l be 0-closed, a′ ∈M ′ and S1(a′,M ′) ⊂
S(a′,M ′) , dimS1(a′,M ′) = dimS(a′,M ′). Then there is a closed S2(x, y)
such that S(a′,M ′) = S1(a′,M ′) ∪ S2(a′,M ′) and S(a′,M ′) 6= S2(a′,M ′).

Proof. Without loss of generality S1 ⊆ S. Let L = locus(a′/M) and T =
S(x, y) ∩ pr −1(L), T 1 = S1(x, y) ∩ pr −1(L), where pr : Mk+l → Mk is
the projection map. Notice that pr (T ) = pr (T 1) = L and S(a′,M ′) =
T (a′,M ′), S1(a′,M ′) = T 1(a′,M ′). In the following argument we can only
use the fact that M itself is a Zariski structure.

Let S2 be the union of all components K of T such that K 6⊆ T 1.
Clearly, T (a′,M ′) = T 1(a′,M ′)∪S2(a′,M ′). It is left to see that S2(a′,M ′) 6=
T (a′,M ′).

Assume that S2(a′,M ′) = T (a′,M ′). Let d = dimT (a′,M ′). Then there
is a component K of T , K 6⊆ T 1, such that dim(K(a′,M ′) ∩ T 1(a′,M ′)) = d
( use (DU) and Exercise 3.5.17(3)). But a′ ∈ pr (K ∩ T 1), hence pr (K) =
pr (K ∩ T 1) = L. By Lemma 3.5.19 (applied in M′) and Exercise 3.1.7 (ap-
plied in M), we have

dim(K ∩ T 1) ≥ d+ dimL = dimK,

which implies that K⊆T 1, contradicting our assumption. ¤

Corollary 3.5.22 M′ satisfies (SI).

Lemma 3.5.23 M′ satisfies (AF).

Proof. Let S be a closed subset of M r+n+k, a′ ∈ M ′r and S(a′,M ′,M ′)
be an irreducible closed subset of M ′n+k. Let pr : M ′r+n+k → M ′r+n be the
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projection map, L = prS and S(a′, b′,M ′) be a fibre of the projection of a
minimal possible dimension when b′ ∈ L(a′,M ′), d = dimS(a′, b′,M ′). We
want to prove that dimS(a′,M ′,M ′) = dimL(a′,M ′) + d.

W.l.o.g. we may assume that S is irreducible. Also, denoting pr1 :
M r+n →M r, the projection on the a-coordinates, we may assume

pr1L = locus(a′/M).

Then by Lemma 3.5.19 dimL(a′,M ′) and dimS(a′,M ′,M ′) are of minimal
dimension among the fibres with parameter ranging in pr1L in M ′.

Let
d0 = min{dimS(〈a, b〉,M) : 〈a, b〉 ∈ L}.

Claim. d0 = d.
Indeed, d0 ≤ d by definition. To see the converse, suppose towards a con-

tradiction that d0 < d. Then, by (FC) there exists a proper L′ ( L closed in L
such that, for any given a′′ in M and b′ ∈ L(a′′,M), if dimS(a′′, b′,M) > d0

then 〈a′′, b′〉 ∈ L. In particular, if a′′ is such that dimS(a′′, b′,M) > d0

for all b′ ∈ L(a′′,M) then L(a′′,M) ⊆ L′(a′′,M). By elementary equiva-
lence this holds in M ′, so L(a′,M ′) ⊆ L′(a′,M ′). But dim pr1L

′ has to be
strictly less than dim pr1L since dimL′ < dimL. This contradicts the fact
that locus(a′/M)⊆pr1L

′ and proves the claim.
We get by (AF), for sets in M,

dimS = dim pr1L+ dimS(a′,M ′,M ′)

(use the facts that dimS(a′,M ′,M ′) is equal the minimum of dimS(a,M,M)
and that pr1L = pr1prS)

and
dimS = dimL+ d = dim pr1L+ dimL(a′,M ′) + d

(here dimL(a′,M ′) stands in place of the minimum of dimL(a,M) for a ∈
pr1L).

Hence
dimS(a′,M ′,M ′) = dimL(a′,M ′) + d.

¤

Lemma 3.5.24 Any descending sequence of closed sets in M ′,

S1(a1,M
′) ⊃ S2(a2,M

′) . . . ⊃ Sn(an,M
′) . . .

stabilises at some finite step.
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Proof. Suppose not. We can express in a form of a countable type about
x0

1 the (infinite) statement that for each n there are x2, . . . xn such that

S1(x
0
1,M) ) S2(x2,M) · · · ) Sn(xn,M).

This type is consistent and so has a realisation in M by an element a0
1.

It follows from this definition of a0
1 that the type about x0

2 stating the
existence, for each n, of x3, . . . xn with

S1(a
0
1,M) ) S2(x

0
2,M) ) S3(x3,M) · · · ) Sn(xn,M)

is also consistent. So we can get a0
2 in M for x0

2. Continuing in this way we
will get a strictly descending chain of closed sets in M thus contradicting
(DCC) in M .¤

Theorem 3.5.25 For any essentially uncountable Noetherian Zariski struc-
ture M, its elementary extension M′ with closed sets and dimension as defined
above is a Noetherian Zariski structure. If we choose M ′ to be ω1-compact
then it satisfies (EU).

Proof. (L) and (SP) are immediate. (DU) is proved in Exercise 3.5.17(3).
For (SI) use Lemma 3.5.21. (DP) and (FC) are immediate from the definition
of dimension. (AF) and (DCC) have been proved in 3.5.23 and 3.5.24. (EU)
is a direct consequence of ω1-compactness. ¤

Notice that the Proposition fails in regard to (DCC) without assuming
(EU) for M.

Example 3.5.26 Consider a structure M in a language with an only binary
predicate E defining an equivalence relation with finite equivalence classes
– one class of size n for each number n > 0. The first order theory of the
structure obviously has quantifier elimination. We declare closed all subsets
of Mk defined by positive boolean combinations of E and =, with parameters
in M. This notion of closed satisfies (L), (P) and (DCC). Let dimM = 1,
dimE = 1, dimE(a,M) = 0, for all a ∈ M. One can easily extend this to
the dimension notion of any closed subset so that (DU) - (AF) and (PS) are
satisfied. But (EU) obviously fails as M is countable.
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Notice that, given a ∈M and b1, . . . , bm ∈ E(a,M), we have also
E(a,M) \ {b1, . . . , bm} as a closed set, for it is a union of finitely many
singletons.

Now consider an elementary extension M′ of M with at least one infinite
equivalence class E(a,M ′). By our definitions the sets of the form E(a,M ′)\
{b1, . . . , bm} are closed in M′, obviously contradicting (DCC).

Notice that this example shows also that (EU) is essential in Theo-
rem 3.2.8. Indeed, the correct Morley rank of the set M (calculated in an
ω-saturated model of Th(M)) is 2, but dimM = 1.

Example 3.5.27 Consider the structure (N, <), the natural numbers with
the ordering. The elementary theory of this structure is very simple and one
can easily see that any formula in free variables v1, . . . , vn is equivalent to a
Boolean combination of formulas of the form

vi ≤ vj and “the distance between vi and vj is less than n.”

Take finite conjunction of the basic formulas to be closed in (N, <), set
dimNk = k and extend the notion of dimension in an obvious way to all
closed sets. One can check that this is a Zariski structure satisfying also
the presmoothness condition, but not (EU). No elementary extension of the
structure is Zariski.

Moreover, in contrast to Theorem 3.2.8 the Morley rank of N in the
structure is ∞ and the theory of the structure is unstable.

Proposition 3.5.28 Suppose D is an irreducible set in a Zariski structure
M and π : ∗M → M a universal specialisation. Let dimD = d and b ∈ D.
Then there is b′ ∈ Vb ∩D(∗M), such that cdim (b′/M) = d.

Proof. By 2.2.21, it is sufficient to show that the type D(y) ∪ Nbdb(y) is
consistent and can be completed to a type of dimension d (i.e., every definable
set in the completion is of dimension at least d.)

Assume that this fails. Then there is a closed set Q as in the type Nbdb
such that dim(¬Q(c′, y)&D(y)) < d. Then dimQ(c′, y)&D̄(y) ≥ d and by
irreducibility applied in ∗M (see Lemma 3.5.21) D(∗M)⊆Q(c′, ∗M). Hence
|= Q(c′, b), and so applying π one gets |= Q(c, b), contradicting the choice of
Q.¤

Recall that for D a definable relation and b ∈ D, dimbD is the maximal
dimension of an irreducible component D containing b.
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Corollary 3.5.29

dimbD = max{cdim (b′/M) : b′ ∈ Vb ∩D∗},

that is dimension is a local property.

Lemma 3.5.30 The statement of Lemma 3.5.3 remains true in any M′ Â M.
That is, let A be an irreducible presmooth set definable in M and S⊆Ak×M l

closed irreducible. Let pr be a projection of S on any of its coordinates and
assume that prS = Ak and r = mina∈pr (S) dimS(a,M). Then for every
a′ ∈ Ak(M ′), every component of S(a′,M ′) has dimension not less then r.
In particular, if dimS(a′,M ′) = r then all components of S(a′,M ′) have
dimension r.

Proof. The estimate (3.3) remains valid. Indeed, suppose towards the
contradiction it is not. Then

S(a′,M ′) = P0(b
′
0,M

′) ∪ P1(b
′
1,M

′)

with Pi 0-definable closed sets, b′i tuples in M ′ and dimP0(b
′
0,M

′) < r
and P0(b

′
0,M

′) * P1(b
′
1,M

′). Then by elementary equivalence there are
a, b0 and b1 in M such that a ∈ Ak, S(a,M) = P0(b0,M) ∪ P1(b1,M),
dimP0(b0,M) < r and P0(b0,M) * P1(b1,M), which clearly contradicts
3.5.3. ¤

Notice the similarity between the last part of the above fact and Exercise
3.5.33 (1). (In 3.5.33 we do not assume presmoothness though.)

Proposition 3.5.31 If M′ºM and M satisfies (sPS) then so does M′.

Proof. Let C be definable irreducible in M r+n, c ∈ M ′r and C(c,M ′n) is
an irreducible subset of M ′n. By assumptions there is an open subset C0 of
C which is presmooth, then C0(c,M

′n) is an open subset of C(c,M ′n).
Let S1 and S2 be definable subsets of M r+k and M s+k, respectively. As-

sume that for a ∈ M ′r and b ∈ M ′s, the sets S1(a,M
′k) and S2(b,M

′k) are
irreducible closed subsets of C0(c,M

′n). Let

T1(c1,M
′k) ∪ · · · ∪ Tm(cm,M

′k)
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be the irreducible decomposition of S1(a,M
′k) ∩ S2(b,M

′k). By introducing
mock variables we can assume a = b = c = c1 · · · = cm.

Without loss of generality, S1, S2 and all Ti are irreducible and locus(a/M) =
pr (S1) = pr (S2) = pr (Ti) = pr (C) = L.

Using the fact that M¹M ′, choose in M, an a′ ∈ L such that:

S1(a
′,M) ∩ S2(a

′,M) = T1(a
′,M) ∪ · · · ∪ Tm(a′,M).

By Lemma 3.5.19 all the fibres Si(a
′,M), Tj(a

′,M), C(a′,M) ( i = 1, 2;
j = {1, . . . ,m}) are of the same dimension that Si(a,M), Tj(a,M), C(a,M),
correspondingly.

By Lemma 3.5.30 irreducible components of each of the sets Si(a
′,M),

Tj(a
′,M) and C(a′,M) are of the same dimension as the sets themselves.

By (sPS) for any x ∈ S1(a
′,M) ∩ S2(a

′,M)

dimx Ti(a
′,M) ≥ dimx S1(a

′,M) + dimx S2(a
′,M)− dim(C(a′,M)×Mk).

Thus

dimTi(a,M
′) ≥ dimS1(a,M

′) + dimS2(a,M
′)− dim(C(a,M ′)×Mk).

¤

Exercise 3.5.32 Let M be a Zariski structure.

1. If S is an A-closed irreducible set in M ′, a ∈M ′, then S = locus(a/A)
iff a is generic in S over A.

2. If Q is A-definable and a is generic in Q̄ over A then a′ ∈ Q.

3. L = locus(a_b/A) iff pr (L) = locus(a/A) and L(a,M) = locus(b/Aa).
Also, for every generic a ∈ pr (L) there is b such that (a, b) is generic
in L.

4. Let S be an A-definable irreducible set, and assume that a, b are generic
in S over A. Then tp(a/A) = tp(b/A).

5. If a is in the (model theoretic) algebraic closure of b ∈M l over A then
cdim (a/A) ≤ cdim (b/A).
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Exercise 3.5.33 Let M be a Zariski structure, a, b tuples from M and A⊆
M .

1. If L = locus(a_b/A) then the irreducible components of L are of equal
dimension. Also, the irreducible components of L(a,M) are of equal
dimension.

2. Prove the dimension formula:

cdim (a_b/A) = cdim (a/Ab) + cdim (b/A).

3.6 Non-standard in presmooth Noetherian

Zariski structures

3.6.1 Coverings in presmooth structures

The following proposition states that some useful definable sets are very
well approximated by closed sets when one assumes presmoothness. We also
assume (DCC) though the latter can be omitted as we show later in the
treatment of analytic Zariski structures.

Proposition 3.6.1 Suppose F ⊆ D ×Mk is an irreducible covering of a
presmooth D and Q(z, y) ⊆Mn+k closed. Define

L(z, x) = {(z, x) ∈Mn ×D : Q(z,Mk) ⊇ F (x,Mk)},
and assume that the projection of L onto D, ∃zL(z, x), is dense in D.

Then there is a (relatively) closed L̂(z, x)⊆Mn×D and D′ ⊂ D, dimD′ <
dimD, such that

L̂ ∩ (Mn × regF/D)⊆L⊆ L̂ ∪ (Mn ×D′).

Proof. Let L1, . . . , Ld be all the irreducible components of L for which
∃zLi(z, x) is dense in D. (Hence, dim ∃z(L(z, x) \⋃

Li(z, x)) < dimD.)
Let L̄i(z, x) be the closure in Mn ×D of Li. Consider

Si = {〈z, x, y〉 ∈Mn ×D ×Mk : L̄i(z, x)&F (x, y)} = (L̄i×Mk)∩(Mn×F ).

Let Si
0(z, x, y) be an irreducible component of Si such that

∃z∃y(S0
i ) ∩ reg(F/D) 6= ∅.
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If we let r be the dimension of a generic fibre of F then for every 〈c′, a′〉
generic in the projection ∃yS0

i we have dimSi
0(c′, a′,M) ≤ r. By (AF),

dim∃ySi0 + r ≥ dimSi
0,

but by pre-smoothness,

dimSi
0 ≥ (dim L̄i+dimMk)+(dimMn+dimF )−(dimMn+dimD+dimMk) =

= dim L̄i + (dimF − dimD) = dim L̄i + r.

Thus, dim ∃ySi0 ≥ dim L̄i and by definitions ∃ySi0 ⊆ L̄i and L̄i irreducible,
so ∃ySi0 is dense in L̄i.

Let 〈c′, a′, b′〉 be generic in S0
i . Since 〈c′, a′〉 is generic in L̄i it must be in

Li hence, since F (a′, b′) holds, we have Q(c′, b′). Since Si
0 is irreducible and

Q is closed, we get

Si
0 ⊆ {(z, x, y) : Q(z, y)&D(x)}.

By the choice of S0
i , we have then

Si ⊆ {(z, x, y) : Q(z, y) ∨ x ∈ F \ reg(F/D)}.

Assume now that L̄i(c, a) holds and that a ∈ reg(F/D). Then for every
b with F (a, b) we have Si(c, a, b) and hence, by the above, Q(c, b). Thus we
proved L̄i(c, a) implies Li(c, a) or dimF (a,M) > r.

Take now L̂ = L̄1 ∨ · · · ∨ L̄d and

D′ = {x : dimF (x, v) > r ∨ ∃z(L(z, x) \
⋃

i≤d
Li(z, x))}.

These L̂ and D′ are as required. ¤

Proposition 3.6.2 Let F be an irreducible covering of a pre-smooth set D,
〈a, b〉 ∈ F and assume that a ∈ D is regular for F. Then for every a′ ∈ Va∩∗D
there exists b′ ∈ Vb, such that 〈a′, b′〉 ∈ F and cdim (b′/a′) is equal to r, the
dimension of generic fibre of F.
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Proof. We first find some b0 ∈ Vb such that 〈a′, b0〉 ∈ F .
Case (i). Assume that a′ ∈ Va is generic in D(∗M) (over M). Consider the
type over ∗M ,

p(y) = {F (a′, y)} ∪ Nbdb(y).

Claim. p is consistent.
Proof of Claim. Assume not. Then ∀y(F (a′, y) → Q(c′, y)) holds for some
Q(z, y) and c′ as in the definition of Nbdb. Let L(z, y), L̂(z, y) and D′ be
as in Proposition 3.6.1. Since a′ is generic in D and L(c′, a′) holds, we have
L̂(c,′ a′) and hence L̂(c, a). Since a is regular, we have L(c, a). But F (a, b)
holds, so by the definition of L, we get Q(c, b), contradicting the choice of Q.
Claim proved.

By Lemma 2.2.21, the consistency of p implies the existence of b0 ∈ Vb
such that |= F (a′, b0). Case (i) solved.
Case (ii). Let now a′ ∈ Va be arbitrary. We want to find b0 ∈ Vb such that
|= F (a′, b0).

Let ∗∗Mº ∗M and π∗ : ∗∗M → ∗M be as in Lemma 2.2.17 (notice that
∗M is a Zariski structure but not necessarily pre-smooth, and similarly we do
not know whether ∗D is pre-smooth with ∗M). Let ∗Va = (π ◦ π∗)−1(a) and
for a′ ∈ ∗M let ∗∗Va′ = (π∗)−1(a′).

By Proposition 3.5.28, there is a′′ ∈ ∗∗Va′ , a′′ generic in D over ∗M . But
then a′′ is generic over M hence, by Case (i) above, there is b′′ ∈ ∗Vb such
that (a′′, b′′) ∈ F . We have then F (π∗(a′′), π∗(b′′)) where π∗(a′′) = a′ and
b0 = π∗(b′′) is in Vb.

Now we want to replace b0 by a generic element. Let F 0(y) be the
(∗M-definable) connected component of F (a′, y) containing b0. By 3.5.30,
dimF 0(y) = r. Choose b′ to be generic in F 0, overM∪{a′}, then cdim (b′/∗M) =
r. For every Q as in Nbdb, we must have dim(Q(c′, ∗M) ∩ F 0(a′, ∗M)) < r
since otherwise ¬Q(c′, ∗M) ∩ F 0(a′, ∗M) = ∅, contradicting the existence of
b0. Clearly then, b′ |= Nbdb, thus by the existential closedness of ∗M and
Lemma 2.2.21 we can choose b′ ∈ Vb with cdim (b′/a′) = r. ¤

Lemma 3.6.3 Let F be an irreducible covering of a presmooth D, a ∈ D,
a′ ∈ Va ∩D generic and b0 ∈ Vb, 〈a′, b0〉 ∈ F.
Then there is b′ ∈ Vb such that |= F (a′, b′) and cdim (b′/a′) is equal to r, the
dimension of generic fibre of F.

Proof. See the last part of the proof of Proposition 3.6.2.¤
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Example 3.6.4 We show here that it is essential in 3.6.2 that a is regular.
Let M = C, the field of complex numbers, D = C × C and F (x1, x2, y)

be given by the formula x1 · y = x2. Then the dimension of generic fibre
of F is 0 while the dimension of the fibre F (0, 0,M) is 1. So, (0, 0) is not
regular. Choose distinct b, c ∈ C and a′ ∈ V0, a

′ 6= 0. Then F (0, 0, b) holds
and (a′, a′c) ∈ V(0,0). Obviously, the only possible value for y in a′ · y = a′c is
c and c /∈ Vb, so 3.6.2 fails in the point (0, 0).

Example 3.6.5 1. Consider the plane complex curve F given by the equa-
tion

x− y3 − y2 = 0.

The projection 〈x, y〉 7→ x is a covering of C. Our 3.6.2 tells that for any α ∈
V0 there is β ∈ V0 such that 〈α, β〉 ∈ F. In fact the β in the neighbourhood is
defined uniquely since the equation α = y3 + y2 has only one solution in the
infinitesimal neighbourhood of 0. Notice that we can not use here the classical
Implicit Function Theorem as ∂f/∂y = 0 at 0, for f(x, y) = x− y3 − y2.

2. Consider the plane curve F given by the equation x2 − yp = 0 in an
algebraically closed field of characteristic p. Again we can solve the equation
locally, y = ϕ(x) near 0, with ϕ a ’local Zariski continuous function’, though
the Implicit Function Theorem is not applicable.

3.6.2 Multiplicities

Recall the definition of a finite covering 3.5.15.

Lemma 3.6.6 Let F ⊆D ×Mk be an irreducible finite covering of D in a,
D pre-smooth. If F (a, b) and a′ ∈ Va ∩D(∗M) is generic in D then

#(F (a′, ∗M) ∩ Vb) ≥ #(F (a′′, ∗M) ∩ Vb), for all a′′∈Va ∩D(∗M)

.

Proof. Take a′′ ∈ Va ∩ D(∗M) and assume that b′′1, . . . , b
′′
m ∈ Vb are

distinct and such that F (a′′, b′′1), . . . , F (a′′, b′′m) hold. Let F
(m)
0 be an irre-

ducible component of the set defined by F (x, y1)& · · ·&F (x, ym) which con-
tains 〈a′′, b′′1, . . . , b′′m〉. Notice that dimF = dimD, hence by Exercise 3.5.7(2),

dimF
(m)
0 = dimD. The projection of F

(m)
0 into D has finite fibre at a. It fol-

lows by (AF) that F
(m)
0 is a cover of D and the point a is regular for F

(m)
0 .
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Applying π to 〈a′′, b′′1, . . . , b′′m〉 we get F (m)(a, b . . . , b), and by Proposi-
tion 3.6.2, since a′ ∈ Va, there are b′1, . . . , b

′
m ∈ Vb such that

F
(m)
0 (a′, b′1, . . . , b

′
m).

Consider the open set

Um = {〈x, y1, . . . , ym〉 :
∧

i 6=j
yi 6= yj}.

By our assumption, Um ∩ F (m) 6= ∅, hence every generic point of F (m) lies in
Um. But (a′, b′1, . . . , b

′
m) is generic in F (m), hence

∧
i6=j b

′
i 6= b′j.¤

Definition 3.6.7 Let 〈a, b〉 ∈ F and F be a finite covering of D in 〈a, b〉.
Define

multb(a, F/D) = #F (a′, ∗Mk) ∩ Vb, for a′ ∈ Va generic in D over M.

By Lemma 3.6.6, this is a well-defined notion, independent on the choice of
generic a′. Moreover, the proof of Lemma 3.6.6 contains also the proof of the
following

Lemma 3.6.8 m ≥ multb(a, F/D) iff there is an irreducible component

F
(m)
0 of the covering F (x, y1)& · · ·&F (x, ym) of D, finite at a, such that

for any generic a′ ∈ Va ∩ D(∗M) there are distinct b′1, . . . , b
′
m ∈ Vb with

〈a′, b′1, . . . , b′m〉 ∈ F (m)
0 .

Call a finite covering unramified at 〈a, b〉 if multb(a, F/D) = 1 and let

unr(F/D) = {〈a, b〉 ∈ F : multb(a, F/D) = 1}.

Assuming a ∈ reg(F/D), set

mult(a, F/D) =
∑

b∈F (a,Mk)

multb(a, F/D).

Proposition 3.6.9 (Multiplicity Properties) Suppose D is pre-smooth.
Then

(i) the definitions above do not depend on the choice of ∗M and π;
(ii)

mult(a, F/D) = #F (a′, ∗Mk)
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for a′ ∈ D(∗M) generic over M (not necessarily in Va) and the number does
not depend on the choice of a in D;

(iii) the set

jm(F/D) = {〈a, b〉 : a ∈ reg(F/D) & multb(a, F/D) ≥ m}

is definable and relatively closed in the set reg(F/D)×Mk. Moreover, there
is m such that for every a ∈ reg(F/D) we have multb(a, F/D) ≤ m.

(iv) unr(F/D) is open in F and the set
D1 = {a ∈ reg(F/D) : ∀b(F (a, b) → 〈a, b〉 ∈ unr(F/D))}

is dense in D.

Remark. In classical algebro-geometric context jm(F/D) is defined in terms
of the length of the correspondent localisation of a certain commutative co-
ordinate ring (see [41] for a comparative study of the notions of multiplicity).
Proof. (i) Assume that 〈M ′, π′〉 is another universal pair and that

multb(a, F/D) ≥ m, calculated with respect to M ′. This implies the
consistency of a certain type, which by the universality of 〈M∗, π〉, must also
be realized in ∗M thus implying that multb(a, F/D) ≥ k, calculated with
respect to ∗M .
(ii) is immediate from the definitions.
(iii) Given m, consider the set F (m)(x, y1 . . . , ym) = F (x, y1)& · · ·&F (x, ym).
Let

Um = {〈x, y1, . . . , ym〉 :
∧

i 6=j
yi 6= yj},

and let F
(m)
1 , . . . , F

(m)
l be all those components of F (m) which have a nonempty

intersection with Um. By Lemma 3.6.8

jm(F/D) = {〈a, b〉 : a ∈ reg(F/D),M |=
l∨

i=1

F
(m)
i (a, b, . . . , b)}

(the set on the right is relatively closed in reg(F/D)×Mk). By (DCC) there
is an m such that for every p ≥ m we have jm(F/D) = jp(F/D).

(iv) First notice that by (iii) unr(F/D) is open in F . It follows that
dimF \ unr(F/D) < dimD, but D1 can be obtained as the complement of
pr (F \ unr(F/D)) hence D1 is dense in D. ¤
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Example 3.6.10 Assume now that M = K, for K an algebraically closed
field, as in the example 3.5.10. Consider the two curves discussed in the
example.

C1 = {y2 = x3} and C2 = {y2 = x2 + x3} can be considered coverings of
the affine line K, (x, y) 7→ x.

#C1(a,K) = 2 at every a ∈ K except a = 0, where #C1(a,K) = 1. It
follows that C1 is an unramified cover of K at every point except (0, 0) and
we have

mult0(0, C1/K) = 2.

We would get the same situation, with multiplicity 3, if we consider C1 as a
cover (x, y) 7→ y of K.

C2 as a cover (x, y) 7→ x of K behaves very similarly to C1. It is an
unramified cover of K at every point except 0 where it has multiplicity 2.

If we consider C2 as a cover (x, y) 7→ y of K, then #C2(K, a) = 3 for
every a except a = 0, a = ±

√
4/27. For these last three points we have

#C2(K, a) = 2. The cover is unramified at every (b, a) where a 6= 0, ±
√

4/27.

It is also unramified at the points (−1, 0), (2/3,±
√

4/27) assuming the char-
acteristic of K is not 3. Indeed, let us see what happens e.g. at (−1, 0).
For α ∈ V0 we look for solutions of α2 = x2 + x3 near −1, i.e. of the form
x = −1 + β, β ∈ V0. We thus have

α2 = (−1 + β)2 + (−1 + β)3 = β − 2β2 + β3.

So, if for the given α there is another solution β′ ∈ V0, then

0 = (β − β′)(1− 2(β + β′) + β2 + ββ′ + β′2)

and only β = β′ is possible.

At the points (0, 0) and (−2/3,±
√

4/27) the covering has multiplicity 2.

Exercise 3.6.11 Let F ⊆D ×Mk be a finite covering of D, D pre-smooth.
Let D1 be the set from Proposition 3.6.9(iv) and let s = #F (a′, ∗M) for a′

generic in D. Then

D1 = {a ∈ reg(F/D) : #F (a,M) = s}.
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3.6.3 Elements of intersection theory.

Definition 3.6.12 Let P and L be constructible irreducible sets and I ⊆
P × L be closed in P × L and irreducible, pr2I = L. We call such an I a
family of closed subsets of P. One can think of l ∈ L as the parameter
for a closed subset {p ∈ P : pIl}.

Any l ∈ L identifies a subset of those points of P, that are incident to l,
though we allow two distinct l′s of L represent the same set.
As a rule we write simply p ∈ l instead of pIl, thus the mentioning of I is
omitted and we simply refer to L as a family of closed subsets of P.

Definition 3.6.13 Let L1 and L2 be irreducible families of closed subsets of
an irreducible set P . We say that the families intersect in a finite way
if for any generic pair 〈l1, l2〉 ∈ L1 × L2 the intersection l1 ∩ l2 is non-empty
and finite. In this situation, for p ∈ P and l1 ∈ L1, l2 ∈ L2 such that l1 ∩ l2
is finite, define the index of intersection of l1, l2 at the point p with
respect to L1, L2 as

indp(l1, l2/L1, L2) = #l′1 ∩ l′2 ∩ Vp,

where 〈l′1, l′2〉 ∈ Vl1,l2 ∩ ∗L1 × ∗L2 is generic over M.

Definition 3.6.14 The index of intersection of the two families as above is

ind(L1, L2) = #l′1 ∩ l′2
where 〈l′1, l′2〉 ∈ ∗L1 × ∗L2 is generic over M.

Proposition 3.6.15 Assume that M is complete. Assume also that L1×L2

and P × L1 × L2 are presmooth, irreducible and the families intersect in a
finite way. Then

(i) the definition of the index at a point does not depend on the choice of
∗M, π and generic l′1, l

′
2;

(ii) ∑

p∈l1∩l2
indp(l1, l2/L1, L2) = ind(L1, L2);
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(iii) for generic 〈l1, l2〉 ∈ L1 × L2 and p ∈ l1 ∩ l2
indp(l1, l2/L1, L2) = 1;

(iv) the set

{〈p, l1, l2〉 ∈ P × L1 × L2 : indp(l1, l2/L1, L2) ≥ k}
is closed.

Proof. This is contained in the properties of multiplicities for finite cover-
ings. Let

D = {〈l1, l2〉 ∈ L1 × L2 : l1 ∩ l2 is nonempty and finite}.
This is an open subset of L1 × L2. Let

F = {〈p, l1, l2〉 : 〈l1, l2〉 ∈ D, p ∈ l1 ∩ l2}.
This is a covering (maybe reducible) of D. To apply Proposition 3.6.9 notice
that by presmoothness any component Fi of F is of dimension dimD, hence
the projection prFi of Fi on D is dense in D and Fi is finite in 〈p, l1, l2〉. By
completeness prFi = D. So, for each Fi we may apply 3.6.9. Obviously,

indp(l1, l2/L1, L2) =
∑
i

multp(〈l1, l2〉, Fi/D)

and the statements of the Proposition follow. ¤

Remark 3.6.16 The Proposition effectively states that closed subsets from
a given presmooth family are numerically equivalent (see [21]).

Exercise 3.6.17 ( Problem) Develop a theory of intersection and of numer-
ical equivalence of closed sets in presmooth Zariski structures.

Definition 3.6.18 Suppose for some 〈l1, l2〉 ∈ L1×L2 l1∩ l2 is finite. Two
closed sets l1, l2 from families L1, L2, respectively are called simply tangent
at the point p with respect to L1, L2 if there is an infinite irreducible
component of l1 ∩ l2, containing p or

indp(l1, l2/L1, L2) ≥ 2.

We study the tangency in projective spaces in section 4.3 and also a
more specific form of tangency between branches of curves at a fixed point
in section 3.8.
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3.6.4 Local isomorphisms and the implicit function the-
orem

Definition 3.6.19 (i) Let F ⊆D ×Mk be a definable relation, 〈a, b〉 ∈ F .
We say that F defines a local function from Va∩D into Vb if F |(Va×Vb)
is the graph of a function from Va ∩D into Vb.
(ii) Let F ⊆D × R be a finite-to-finite irreducible relation, relatively closed
in D ×R, prD(F ) = D.

We say that F defines a local function on D (and if prR(F ) = R, a
local isomorphism between D and R) if for every 〈a, b〉 ∈ F , F defines a
local function from Va into Vb (F |Va×Vb is the graph of a bijection between
Va ∩D and Vb ∩R).

The following Corollary is an immediate consequence of the definitions
and of Theorem 3.6.2.

Corollary 3.6.20 Let F ⊆D ×Mk be, generically, a finite covering of D,
D pre-smooth. Then F is unramified at a point (a, b) ∈ F if and only if
F defines a local function from Va into Vb. In particular, if D1 = {a ∈
reg(F/D) : ∀b(F (a, b) → (a, b) ∈ unr(F/D))} then F defines a local function
on D1.

Finally, we want to omit in the above corollary the assumption that D is
pre-smooth. We can do so if we work in a one-dimensional structure.

Theorem 3.6.21 A 1-dimensional uncountable pre-smooth, irreducible Zariski
structure M is a Zariski geometry.

First notice that M satisfies (EU). Indeed, 1-dimensionality and irreducibility
implies that any definable subset of M is either finite or a complement to a
finite set. Under the assumption of uncountability it is easy to deduce from
this, that M is strongly minimal and indeed ω1-compact, thus (EU) follows.

Now we are going to prove (sPS). We first prove the following lemma

Lemma 3.6.22 Assume that F ⊆D ×M r is an irreducible cover of D, F
defines a local function on D. If D is pre-smooth then so is F .



76 CHAPTER 3. NOETHERIAN ZARISKI STRUCTURES

Proof. Let F ′ be a set of the form F k×Mm, D′ = Dk×Mm. By reordering
the variables we may consider F ′ as a subset of D′ ×M r. It is then a finite
cover of D′ and defines a local function on it.

Let S1, S2 be closed irreducible subsets of F ′ and 〈a, b〉 ∈ D′ × M r, a
point in S1 ∩ S2. By 3.5.6, we just need to show that

dim〈a,b〉(S1 ∩ S2) ≥ dimS1 + dimS2 − dimF ′.

Consider the point (a, b, a, b) in the set S1 × S2 ∩∆, where

∆ = {(x1, y1, x2, y2) ∈ D′ ×M r ×D′ ×M r : x1 = x2}.
Since D is pre-smooth and S1 × S2, ∆ are closed and irreducible, every

component K of S1 × S2 ∩∆ satisfies

dimK ≥ dimS1 + dimS2 + dim ∆− 2 dim(D′ ×M r)
= dimS1 + dimS2 + dimD′ + 2 dimM r − 2 dim(D′ ×M r)
= dimS1 + dimS2 − dimD′.

Choose K a component containing (a, b, a, b) and let (a1, b1, a1, b2) ∈
V(a,b,a,b) be a generic element in K. Since (a1, b1), (a1, b2) are in V(a,b) ∩ F ′,
and since F ′ defines a local function on D′ we must have b1 = b2. I.e., (a1, b1)
is in S1 ∩ S2 and cdim (a1, b1/M) ≥ dimS1 + dimS2 − dimD′. Since F ′ is a
finite cover of D′ we have dimD′ = dimF ′, hence we showed

dim(a,b)(S1 ∩ S2) ≥ dimS1 + dimS2 − dimF ′.

¤

We can now prove Theorem 3.6.21:
By our assumption, there is a projection pr : Mm → Mn, such that

S is, generically, a finite cover of Mn (see Exercise 3.2.2(1)). Since Mn is
pre-smooth, we can use Corollary 3.6.20 to obtain an open dense D⊆Mn,
such that S1 = S ∩ (D ×Mm−n) defines a local function on D. By Exercise
3.5.7, D is pre-smooth so we can apply Lemma 3.6.22 to conclude that S1 is
pre-smooth.¤

Theorem 3.6.23 (Implicit Function Theorem) Let M be strongly pre-
smooth Zariski structure (e.g. 1-dimensional, pre-smooth), D ⊆ Mn irre-
ducible and let F ⊆ D ×M r be an irreducible finite covering of D, dimF =
dimD. Then there is an open dense subset D1 ⊆ D, such that F ∩(D1×M r)
defines a local function on D1.
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Proof. Without loss of generality, F is a finite covering of D. By strong
pre-smoothness, there is an open dense subset D1⊆D which is pre-smooth.
Now apply Corollary 3.6.20.¤

Our next goal is to show that a local isomorphism preserves the pre-
smoothness property between sets.

Lemma 3.6.24 Let D,R be irreducible sets and assume that F ⊆ D × R
defines a local function on R. If T ⊆ R is irreducible then any component of
Q = {x ∈ D : ∃y ∈ T (y)&F (x, y)} is of the same dimension as T .

Proof. For a ∈ Q, let b ∈ T be such that F (a, b). Since F defines a local
function on R, given b′ ∈ Vb∩T (∗M), b′ generic in T , there is a′ ∈ Va∩D(∗M)
such that F (a′, b′), hence a′ ∈ Q(∗M). By Exercise 3.5.32(5), cdim (a′/M) =
cdim (b′/M) hence

max{cdim (a′/M) : a′ ∈ Va ∩Q} ≥ max{cdim (b′/M) : b′ ∈ Vb ∩ T}.
By Corollary 3.5.29, dimaQ ≥ dimT and since F is a finite cover we have
dimaQ = dimT . It is easy to see that for every component K of Q there is
a ∈ Q such that dimK = dimaQ, hence dimK = dimT .¤

Lemma 3.6.25 Let D,R be irreducible sets, F ⊆D ×R a local function on
R. Assume further that F is the graph of a continuous function p : D → R.
If D is pre-smooth, then so is R.

Proof. Let R′ = Rk ×Mm, D′ = Dk ×Mm, and p′ : D′ → R′ be a mapping
which is p on the first k coordinates and the identity on the rest m. The
graph of p′ is a local isomorphism between D′ and R′. Take T1, T2 ⊆ R′

irreducible and t ∈ T1 ∩ T2 generic in a component T of T1 ∩ T2. Then there
is q ∈ Q1 ∩ Q2 such that p′(q) = t and Q1, Q2 are connected components
containing q of p′−1(T1), p

′−1(T2), respectively. Let Q be a component of
Q1 ∩ Q2 containing q. p′ is continuous hence p′(Q) is irreducible and since
T ⊆ p′(Q) ⊆ T1 ∩ T2 we must have p′(Q) = T. By the pre-smoothness of D
we have

dimQ ≥ dimQ1 + dimQ2 − dimF ′.

By the lemma above, the right hand side of the equation equals to
dimT1 +dimT2−dimR′ and, since Q a component of P ′−1(T ), dimT =

dimQ. ¤



78 CHAPTER 3. NOETHERIAN ZARISKI STRUCTURES

Proposition 3.6.26 Let D⊆Mn, R⊆M r be irreducible and locally isomor-
phic via F ⊆D × R. Assume further that F is closed in D ×M r. If D is
pre-smooth then so is R.

Proof. F is a local function on D hence, by Lemma 3.6.22, F is pre-smooth.
The graph of the projection map prR : F → R is easily seen to define a local
function on R, thus by Lemma 3.6.25 (with F in the role of D now), R is
pre-smooth. ¤

Even though Theorem 3.6.23 contains the assumption (used in the proof)
that F is relatively closed in D ×Mk we can now do away with it.

Exercise 3.6.27 Prove the following modification of Theorem 3.6.23: Let
M be pre-smooth 1-dimensional, irreducible Zariski structure, D⊆Mn irre-
ducible and let F ⊆ D ×M r, dimF = dimD, be an irreducible set whose
projection on D is surjective.

Then there is an open dense subset D1 ⊆ D, such that F ∩ (D1 ×M r) is
relatively closed and defines a local function on D1.

Exercise 3.6.28 Let M be pre-smooth 1-dimensional, irreducible Zariski struc-
ture, D ⊆Mm and R ⊆M r. Let F ⊆ D × R be irreducible, prD(F ) = D,
prR(F ) = R and F a finite-to-finite relation. Then there are D1 and R1,
open and dense in D and R, respectively, such that F defines a local isomor-
phism between D1 and R1.(In particular, F ∩D1 × R1 needs to be relatively
closed.)

Definition 3.6.29 Under assumption that M is 1-dimensional pre-smooth,
we call definable D ⊆ Mn smooth if D is locally isomorphic to an open
subset of Mk for some k.

Notice that under this terminology M itself is smooth.

Theorem 3.6.30 (Smoothness Theorem) Assuming M is 1-dimensional
pre-smooth

(i) Any open subset of Mn is smooth;
(ii) For every irreducible definable D ⊆Mn there is an open irreducible

D0⊆D which is smooth;
(iii) If D1 and D2 are smooth, then so is D1 ×D2.

Proof. (i) is part of the definition. (ii) is in fact proved in 3.6.21, and
(iii) is immediate from the definition.¤
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3.7 Getting new Zariski sets

Some constructions in later parts of the notes and, more generally, in alge-
braic geometry lead us to consider more complex definable sets (and struc-
tures) which yet can be seen as a Zariski geometry compatible with the initial
structure. We discuss two of such constructions in this section.

We fix now a Zariski structure M and consider a constructible irreducible
subset N ⊆ Mn and a (relatively) closed equivalence relation E on N. We
take p : N → N/E to denote the canonical projection mapping and use p
also for the induced map from Nk onto (N/E)k. We equip N/E, (N/E)2, . . .
with a topology as follows:

Definition 3.7.1 A subset T ⊆ (N/E)k is called closed in (N/E)k if
p−1(T ) is closed in Nk.
Sets of the form (N/E) together with the structure of closed subsets will be
called topological sorts in M.

Notice that we can identify (N/E)k with the quotient Nk/E(k), where

(a1, . . . , ak)E
(k)(b1 . . . , bk) ⇔ aiE

(k)bi, i = 1, . . . , k.

The topology we put on (N/E)k is then exactly the quotient topology in-
duced from Nk.

Notation. We use E(a, b) and aEb interchangeably. For s ∈ Nk, we denote
by sE the E(k)-equivalence class of s.

Lemma 3.7.2 Every topological sort satisfies (L), (DCC) and (SP) (or (P)
if M is complete).

Proof. Immediate from definitions. ¤

Lemma 3.7.3 (i) The map p : N → N/E is a continuous, closed and open
map.
(ii) T ⊆ (N/E)n is irreducible iff there is an irreducible S ⊆ Nn, such that
p(S) = T.

Proof. (i) If T = p(S), then

p−1(T ) = {a ∈ N : (∃b ∈ S)aEb}.
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So, if S is closed then so is p−1(T ) and hence T is closed. But p−1(T ) is the
complement of the set {a ∈ N : ∃b (b 6∈ S & aEb)}. Hence, if S is open so is
T .

(ii) follows easily from (i).¤

Definition 3.7.4 For N/E a topological sort, assume that T = p(S) ⊆
(N/E)k for some S ⊆ Nk closed irreducible (hence T also is). Define

dim(T/S) = dim(S)−min{dim(p−1(t) ∩ S) : t ∈ T}.

As we show below, the above definition does not depend on the choice of S.
We first introduce an alternative way of defining dimension: For S⊆(N/E)k

and l ≥ 0 define δlS = dim{a ∈ S : dim(aE ∩ S) = l}, and let

δS = max{δlS − l : l ≥ 0}.
For S irreducible and T = p(S), if l = min{dim(p−1(t)∩ S) : t ∈ T} then

the set {a ∈ S : dim(aE ∩S) = l} is open and dense in S, hence δlS = dimS
and so dim(T/S) = δS.

Lemma 3.7.5 For any irreducible closed S ⊆ Nk, if S1⊆Nk is closed and
p(S) = p(S1) then
(i) δS1 = dimS1 −m for m = min{dim(aE ∩ S1) : a ∈ S1}.
(ii) δS = δS1. In particular, if S1 is irreducible then dim(T/S) = dim(T/S1).

Proof. Let m = min{dim(aE ∩ S1) : a ∈ S1}, and let U be the set of all
a ∈ S such that dim(aE ∩ S1) = m. By Lemma 3.7.3 (and the fact that
p(S) = p(S1)), U is open and dense in S.
(i) If D is an irreducible component of S1, let m(D) = min{dim(aE ∩ S1) :
a ∈ D}. The set

V (D) = {a ∈ D : dim(aE ∩ S1) = m(D)}
is open inD, hence in S1. By Lemma 3.7.3, p−1p(V (D))∩S is open, nonempty
and hence dense in S. But then it must intersect U som(D) = m. We showed
then that there is an open dense subset V of S1 such that if a ∈ V then the
intersections of aE with S1 has minimal dimension. By the definition of δ
we get

δS1 = dimS1 −m.
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(ii) Let l = min{dim(aE ∩ S) : a ∈ S}, and let U⊆S be now all a ∈ S such
that dim(aE ∩ S) = l and dim(aE ∩ S1) = m. Again, U is an open dense
subset of S and just like in (i) we can show that V = p−1p(U) is an open
dense subset of S1. We take Ē1 ⊆ S × S1 to be the topological closure of
E1 = E ∩ (U × V ) and let pr1, pr2 be the projections on the first and second
coordinates, respectively.

Take K to be a component of Ē1 of maximal dimension. K is the closure
of a component of E1, hence pr1(K)∩U 6= ∅. It follows that min{dimK(a, S1) :
a ∈ pr1(K)} ≤ m, so dimK ≤ dimS+m. But dimK = dim Ē1 ≥ dimS+m
(see Fact 3.1.7), therefore dimK = dimS+m. Similarly (taking into account
that V may not be irreducible), dimK = dimV + l = dimS1 + l, hence

dimS − l = dimS1 −m.

¤

The lemma allows to define dimT as dim(T/S) for any irreducible closed
S such that p(S) = T independently on S.

Definition 3.7.6 For N/E a topological sort, if T ⊆ (N/E)k is closed and
T =

⋃
i≤k Ti is (the unique) irreducible decomposition of T , define

dim(T ) = max
i≤k

dim(Ti).

It is easy to see that this definition agrees with δS for any closed set S
such that p(S) = T : Let S =

⋃
i≤k Si, for Si closed irreducible, p(Si) = Ti.

We denote by S ′i the set p−1p(Si)∩S. Then S =
⋃
i≤k S

′
i, and it easily follows

from the definition that δS = max{δS′i : i ≤ k}, which by the above equals
max{dimTi : i ≤ k}.
Lemma 3.7.7 A topological sort with the notion of dimension as above sat-
isfies (DU), (SI), (DP).

Proof. (DP) is immediate and (DU) easily follows from (SI).
To prove (SI), let T1 ⊂ T2 be two irreducible closed sets in a closed

topological sort T = N/E. There are then S1 ⊂ S2⊆Nk irreducible closed
such that p(Si) = Ti, i = 1, 2. Let S ′1 = p−1p(S1) ∩ S2. Then it is sufficient
to show that δS′1<δS2 . But since S ′1 ⊂ S2 we have dimS ′1<dimS2, and also

min{dim(aE ∩ S ′1) : a ∈ S ′1} ≥ min{dim(aE ∩ S2) : a ∈ S2}.
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By Lemma 3.7.5(i), δS′1<δS2 . ¤

Lemma 3.7.8 Any definable subset R ⊆ (N/E)n is a Boolean combination
of closed subsets.

Proof. Use the elimination of quantifiers in M to see that p−1(R) is a
boolean combination of closed sets. Then use Lemma 3.7.3 to show that R
is. ¤

Example 3.7.9 Let N = P1 × P1 (P1 the projective line over an alge-
braically closed field), a ∈ P1, E an equivalence relation on N whose classes
are either a copy of the y-axis or singletons not on that axis. Namely, for
〈x, y〉, 〈x′, y′〉 ∈ N

〈x, y〉E〈x′, y′〉 iff x = x′&(y = y′ ∨ x = a).

Define S⊆N ×N to be the set

{(〈x1, y1〉, 〈x1, y2〉) : x1, y1, y2 ∈ P 1},
and let T = p(S). Now, if t ∈ T is in {(a, y) : y ∈ P1} then T (t, N/E)
contains exactly one element hence has dimension 0. However, for any other
t we have dimT (t, N/E) = 1. In particular, the set P(T, 0) is not closed,
hence (DF) does not hold.

Exercise 3.7.10 (i)Show that (AF) does not hold for N and E as in the
above example.
(ii) Find an example where, in the notations of the proof of Lemma 3.7.5,
dim(Ē1)<dimE.

Definition 3.7.11 A topological sort in M satisfying all the axioms of a
Zariski structure will be called a Zariski set (Z-set) in M.

Given two topological sorts T1 = N1/E1 and T2 = N2/E2, we can put a
natural product structure on T1×T2, namely the one induced by the equiva-
lence relation E1×E2 on N1×N2. For S1, S2 subsets of T k1 , T

l
2, respectively,

we call a map φ : S1 → S2 a morphism (Z-morphism) if the graph of φ is
closed in S1×S2. If φ is a bijection we say that φ is an isomorphism of S1

and S2.
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Exercise 3.7.12 For S1, S2, T1, T2 as above, if φ : S1 → S2 is a morphism
then inverse image of a closed set under φ is closed (in the topology induced
by T1, T2, respectively).

Definition 3.7.13 A topological sort T is called a pre-manifold in M if
there exists and a finite collection U1, . . . Uk of subsets which are open and
dense in T such that
(i) T = U1 ∪ · · · ∪ Uk;
(ii) for every i ≤ k there is an irreducible subset Vi ⊆ Mn, presmooth with
M, and an isomorphism φi : Ui → Vi.

Remark 3.7.14 For any i, j if Ui ∩ Uj 6= ∅ then the map φj ◦ φ−1
i is an

isomorphism between open subsets of Vi and Vj.

Definition 3.7.15 A topological sort T = N/E is called an eq-fold if E is
a finite equivalence relation, that is with all classes finite.

Proposition 3.7.16 Every pre-manifold T is an irreducible pre-smooth Z-
set.

Proof. T is irreducible. Indeed, every Ui must be irreducible since Vi
are. If T = S1 ∪ S2 for closed subsets S1 and S2 then by irreducibility
Ui ⊆ S1 or Ui ⊆ S2. By the density of Ui it follows that S1 = T or S2 = T,
correspondingly. Irreducibility follows.

To prove the rest, after 3.7.2 and 3.7.7, we need to check (AF),(FC) and
(PS) only. But all the three conditions are local, that is it is enough to check
the conditions for prS∩Ui, in the case of (AF) and (FC) for each i, and check
it for S1 ∩Ui and S2 ∩Ui for (PS). This obviously holds since the conditions
are preserved by continuous open dimension preserving bijections φi. ¤

Our aim in the remaining part of this section is to prove an analogous
result for eq-folds. We will be able to do that under some assumptions on E.

Definition 3.7.17 An equivalence relation E on N is called e-irreducible
if for any irreducible component Ei of E, both projections on N are dense in
N.
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Lemma 3.7.18 Let Γ be a finite group acting on an irreducible N by Zariski
continuous bijections. Then the equivalence EΓ given by

xEΓy iff ∃γ ∈ Γ γx = y

is e-irreducible.

Proof. Obviously

EΓ =
⋃
γ∈Γ

graph γ

and each graph γ is irreducible, isomorphic via projections to N. So we have
found the irreducible decomposition of EΓ which obviously satisfies the defi-
nition of e-irreducibility.¤

Definition 3.7.19 We will call an eq-fold of the form N/EΓ an orbifold.

Lemma 3.7.20 For any closed finite equivalence relation E on an irre-
ducible topological sort N

(i) dimE = dimN, moreover dimEi = dimN for every component of E
which projects densely on N,

and

(ii) there is an open dense U ⊆ N such that E ∩ U2 is e-irreducible.

Proof. (i) dimE ≥ dimN since E contains the diagonal. dimE ≤ dimN
since the projection E → N has finite fibres.

(ii) Components Ei of E with small projections can be characterised by
dimension dimEi < dimN. For every such Ei throw out the closure of the
small prEi. The remaining U satisfies the required.¤

Lemma 3.7.21 Let N/E be a topological sort, E a finite, closed, e-irreducible
equivalence relation on N, and N presmooth with M. Let T ⊆ (N/E)k×Mm

be closed and irreducible. Then every component of p−1(T )⊆Nk ×Mm is of
dimension equal to dimT.
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Proof. By an obvious isomorphism we may assume that

T ⊆(Nk ×Mm)/Ẽ

for Ẽ on Nk ×Mm defined as E on the first k coordinates and as equality
on the last m coordinates.

Now, if S0, S1⊆Nk×Mm are components of p−1(T ), and dimS0 = dimT,
then p(S0) = T ⊇ p(S1). The latter means that each point of S1 is Ẽ-
equivalent to a point in S0.

Let pri : S0 × S1 → Si, i = 0, 1, be the projections maps. Choose
〈s0, s1〉 ∈ Ẽ with s1 generic in S1 and let Ẽj be a component of Ẽ containing
〈s0, s1〉. Then Ẽj ∩ (S0 × S1) 6= ∅ and pr1Ẽj is dense in S1.

Consider the set

{〈x, y〉 : x, y ∈ Nk ×Mm & x ∈ S0 & 〈x, y〉 ∈ Ẽj},
which can also be seen as the intersection of two subsets, S0 × (Nk ×Mm)
and Ẽj, of (Nk×Mm)2. By pre-smoothness, the dimension of any component
K of the set is not less than

(dimS0+k dimN+m dimM)+(k dimN+m dimM)−2(k dimN+m dimM) = dimS0.

On the other hand, such a K projects into S0 with finite fibres hence dimK =
dimS0 and pr1(K) is dense in S0.

Pick a K containing the above pair 〈s0, s1〉. Then pr2(K) is dense in S1.
By the finiteness of Ẽ, we have dimS1 = dimK = dimS0.

So, we have proves that all components of p−1(T ) are of the same dimen-
sion equal to dimT. ¤

Proposition 3.7.22 Let U = N/E be an eq-fold, E a finite, closed, e-
irreducible equivalence relation on N, and N presmooth with M. Then U
is a Z-set presmooth with M. In particular, any orbifold on a presmooth N
is a presmooth Z-set.

Proof. As in the proof of 3.7.16 we need to check only three conditions,
(AF),(FC) and (PS). Now we notice that all three conditions are formulated
in terms of dimensions and irreducible sets. Lemma 3.7.21 allows one to
transfer the conditions from irreducible subsets of Cartesian products of U
and M to those of N and M, for which the properties hold by assumption. ¤
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Definition 3.7.23 Let M be a Zariski structure (not necessarily presmooth)
and C an irreducible Z-set in M. We say that C is presmooth if C as a
Zariski structure satisfies (PS).

We can now define the following useful notion.

Definition 3.7.24 Let M be a Zariski structure and C an irreducible pres-
mooth Zariski structure of dimension 1 (Zariski curve). Let U be a Z-set
in M. We will call U an n-manifold with respect to C if U is locally
isomorphic to Cn, for some n.

3.8 Curves and their branches

In this section we develop, under certain technical assumptions, a theory of
tangency between curves. This theory makes sense when we assume that the
curves are members of ’nice’ families. The theory of tangency is much easier
in non-singular points but we can not assume that it is always the case. To
deal with the more general situation we introduce the notion of a branch of a
curve at a point. We conclude the section with the proof that the tangency
for branches is an equivalence relation. Moreover, this relation is definable.

We assume for the rest of this Chapter and for the next one that M is a
one-dimensional irreducible pre-smooth Zariski structure satisfying (EU), on
the universe C. As we showed in subsection 3.5.3, any elementary extension
of M is a pre-smooth Zariski structure. We work in a suitable elementary
extension ∗M of M which is κ-saturated for a suitable κ (the universal domain,
see section A.4.2). In particular, every definable set in ∗M contains generic
points.

We also recall that by Theorem 3.2.8 such an ∗M model-theoretically is
a strongly minimal structure with Morley rank rk equal to dimension dim .
Thus the usual dimension calculus (see subsection B.1.2 and Exercise 3.5.33)
holds in ∗M, which we use below in several occasions.

Definition 3.8.1 By a (definable) family of curves in Cm, (m ≥ 2) we
mean a triple (P,L, I) where P is an open subset of Cm, L is a k-manifold
with respect to Ck, some k ≥ 1 (definition 3.7.24), and I ⊆ P × L is an
irreducible relation, closed in P × L, and:

(i) the corresponding projections of I cover P and L;
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(ii) for every l ∈ L, the set I(P, l) is one-dimensional, and for l generic
the set is irreducible;

We call I an incidence relation for family L.
We say that the family is faithful if also
(iii) for any l1, l2 ∈ L, the intersection I(P, l1)∩I(P, l2) is finite (or empty)

provided acl(l1) 6= acl(l2).

We say that I represents a family of curves in Cm through a point
p ∈ Cm if, for every l ∈ L, I(p, l) holds.

We often say L, instead of I, represents a family of curves, and when the
context is clear we identify every l ∈ L with the set {p : I(p, l)}.

Exercise 3.8.2 Prove that for a faithful family L,

1. for any closed S⊆P with dimS ≤ 1 (curve), for a generic l ∈ L
dim I(P, l) ∩ S < 1;

2. for any generic point q ∈ Cm

dim I(q, L) = dimL− 1.

Remark 3.8.3 By removing a small (proper closed) subset of points we may
always assume that every point belongs to a curve and no point belongs to
almost all curves, that is dim I(q, L) < dimL. The inverse is obvious by
Zariski axioms.

For the rest of the paper we add the assumption that the Zariski struc-
ture on C is non-linear (equivalently, non-locally modular) in the sense of
section B.1.3. By the results in the section non-linearity is equivalent to the
assumption that the Zariski geometry on C is ample:

(AMP) There is a 2-dimensional irreducible faithful family L of curves
on C2. L is locally isomorphic to an open subset of C2.

Exercise 3.8.4 Given I and L as above, show that any generic pair of points
p1, p2 from C2 there are finitely many lines from L through p1 and p2.
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Suppose we fix 〈a, b〉 generic in C2.
Then

L〈a,b〉 = I(L, 〈a, b〉)
represents a family of curves on C2 through 〈a, b〉 (with the incidence relation
I〈a,b〉 = I ∩ (L〈a,b〉 × C2).

By the assumptions dimL〈a,b〉 = 1. By the smoothness theorem 3.6.30
we can choose a 1-dimensional irreducible smooth G ⊆ L〈a,b〉 which, along
with the appropriate incidence relation, represents a family of curves through
〈a, b〉. Thus we have proved

Lemma 3.8.5 There exists an irreducible faithful 1-dimensional smooth fam-
ily N of curves through 〈a, b〉.

Remark 3.8.6 Notice that once 〈a, b〉 was fixed and N defined, {a, b} be-
come 0-definable and in particular it ceases to be generic.

Definition 3.8.7 Let 〈a, b〉 be a point in C2. A subset γ⊆V〈a,b〉 is said to be
a branch of a curve at 〈a, b〉 if there are m ≥ 2, c ∈ Cm−2, an irreducible
smooth family G of curves through 〈a, b〉_c with an incidence relation I and
a curve g ∈ G such that the cover I of G× C,

〈u, 〈x, y〉_z〉 7→ 〈u, x〉,

is regular (hence finite) and unramified at 〈g, 〈a, b〉_c〉, and

γ = {〈x, y〉 ∈ V〈a,b〉 : ∃z ∈ Vc 〈g′, 〈x, y〉_z〉 ∈ I}

for a g′ ∈ Vg ∩G(∗M).

The definition says that g′ is an infinitesimal piece of a possibly ’non-
standard’ curve in the neighbourhood of a nice standard g passing through
a standard point 〈a, b〉_c.

We usually denote γ by g̃′.

It follows from the definition and Proposition 3.6.2 that g̃′ is a graph of
a function from Va onto Vb.

We call the corresponding object the (local) function g̃ : Va → Vb
(from a to b ) from a family G with trajectory c.
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Example 3.8.8 Let C = C be the fields of complex numbers. Consider the
standard map from Example 2.2.4, as a partial specialisation from ∗C onto
C.

Let L be the family of curves in C3 given by

I = {ux+ v(y − 1) + z(z − 1) = 0 & ux2 + v(y − 1)z + z(z − 1) = 0}⊆C5.

For each choice of u, v ∈ C, u 6= 0 or v 6= 0, the curve gu,v = I(u, v,C3)
passes through the points (x, y, z) = (0, 1, 0) and (x, y, z) = (0, 1, 1).

The projections of the gu,v’s on the (x, y)-plane are curves through (0, 1)
given by the equation

uv2x(y − 1)2 − v3(y − 1)3 + u2x2(x− 1)2 + uv(x− 1)x(y − 1) = 0 (3.4)

with a nodal singularity in (0, 1).
On the other hand gu,v is nonsingular in both (0, 1, 0) and (0, 1, 1) and

so defines two families of local functions g̃0
u,v : V0 → V1,0 and g̃1

u,vV0 → V1,1.
The first coordinate of the functions define the branches of the planar curves
(3.4) through (0, 1), with the trajectory z = 0 and z = 1 correspondingly.

Lemma 3.8.9 Given an irreducible faithful smooth family G of curves through
〈a, b〉 and g1, g2 ∈ ∗G, if g̃1 = g̃2 as functions Va → Vb then g1 = g2. In other
words, G is represented faithfully by local functions.

Proof. Immediate by assumption (iii) on the family of curves.¤

Definition 3.8.10 Let I1 and I2 be two families of local functions from a
to b, with trajectories c1 and c2. We say that the correspondent branches
defined by g1 ∈ G1 and g2 ∈ G2 are tangent at 〈a, b〉, and write

g1 T g2,

if there is an irreducible component S = S(I1,I2,a,b,c1,c2) of the set

{〈u1, u2, x, y, z1, z2〉 ∈ G1 ×G2 × C2 × Cm1−2 × Cm2−2 :
〈u1, x, y, z1〉 ∈ I1 & 〈u2, x, y, z2〉 ∈ I2} (3.5)

such that

1. 〈g1, g2, a, b, c1, c2〉 ∈ S;



90 CHAPTER 3. NOETHERIAN ZARISKI STRUCTURES

2. the image of the natural projections of S into G1 ×G2

〈u1, u2, x, y, z1, z2〉 7→ 〈u1, u2〉

is dense in G1 ×G2.

3. for i = 1 and i = 2 the images of the maps

〈u1, u2, x, y, z1, z2〉 7→ 〈x, y, zi, ui〉

are dense in Ii and the corresponding coverings by S are regular at the
points 〈a, b, ci, gi〉.

Remark 3.8.11 Once I1, I2, a, b, c1, c2 have been fixed one has finitely many
choices for the irreducible component S.

Remark 3.8.12 We can write item 3 as a first-order formula

〈a, b, ci, gi〉 ∈ reg(S/Ii).

Corollary 3.8.13 The formula

T :=
⋃
S

S(u1, u2, a, b, c1, c2) & 〈a, b, c1, u1〉 ∈ reg(S/I1) & 〈a, b, c2, u2〉 ∈ reg(S/I2)

(with parameters a, b, c1, c2) defines the tangency relation between u1 ∈ G1

and u2 ∈ G2.

Proposition 3.8.14 Given G1, G2 families of curves defining local functions
from a to b, g1 ∈ G1, generic in G1, and g2 ∈ G2 generic in G2,

the following three conditions are equivalent:

1.
g1 T g2;

2. ∀x ∈ Va ∀g′1 ∈ Vg1 ∃g′2 ∈ Vg2 : g̃′1(x) = g̃′2(x);

3. ∀x ∈ Va ∀g′2 ∈ Vg2 ∃g′1 ∈ Vg1 : g̃′1(x) = g̃′2(x).

Moreover, there are Zariski-open subsets G0
1⊆G1 and G0

2⊆G2 such that
the three conditions are equivalent for any g1 ∈ G0

1 and g2 ∈ G0
2.
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Proof. Suppose 3.8.14.1 holds. Let S = S(I1,I2,a,b,c1,c2) define the tan-
gency of g1, g2.

Since, by 3.8.10.3, S is a covering of I1 regular at 〈a, b, c1, g1〉, Proposition
3.6.2 gives us

∀〈x, y, z1, g
′
1〉 ∈ Va,b,c1,g1∩I1 ∃〈z2, g

′
2〉 ∈ V〈c2,g2〉∩Cm2−2×G2 : 〈g′1, g′2, x, y, z1, z2〉 ∈

S
This immediately implies 3.8.14.2.
3.8.14.3 follows from 3.8.14.1. similarly when we consider I2 instead of

I1.
Conversely, assume 3.8.14.2. Choose 〈x, y, z1, g

′
1〉 generic in V〈a,b,c1,g1〉∩I1.

By 3.8.14.2 g̃′1(x) = y = g̃′2(x) for some g′2 ∈ Vg2 ∩ G1 as a branch with the
trajectory c2, that is 〈x, y, z2, g

′
2〉 ∈ I2 for some z2 ∈ Vc2 . Notice that 〈x, y〉 is

generic in C2 by our choice. By Lemma 3.6.3, with I2 in place of F and an
open subset of C2 in place of D, we can choose 〈z2, g

′
2〉 ∈ V〈c2,g2〉∩Cm2−2×G2

of maximal possible dimension, that is with cdim (g′2/x, y, z1,M) = dimG2−
1. We thus have

cdim (〈g′1, g′2〉) = cdim (〈g′1, g′2, x, y, z1, z2〉) = dimG1 + dimG2. (3.6)

Let S be the locus of 〈g′1, g′2, x, y, z1, z2〉 overM. By the dimension calculations
in (3.6) we see that S is an irreducible component of the set 3.8.10(3.5).

Applying the specialisation to the point 〈g′1, g′2, x, y, z1, z2〉 we see that
〈g1, g2, a, b, c1, c2〉 ∈ S. Also, S projects on dense subsets of I1 and I2 by
construction. By (3.6) S projects on a dense subset of G1 × G2. Finally,
3.8.10.3 follows from the following

Claim. For i = 1, 2 the point 〈a, b, ci, gi〉 belongs to reg(S/Ii).
Indeed, since gi is generic in Gi,

cdim (〈a, b, ci, gi〉/a, b, ci) = dimGi

and, by Lemma 3.5.13,

dim(Ii \ reg(S/Ii)) ≤ dim Ii − 2 = dimGi − 1.

So, S defines tangency of g1 and g2 and 3.8.14.1 follows.
Symmetrically we get 3.8.14.1 from 3.8.14.3.

It remains to prove the ’moreover’ clause of the proposition. This is im-
mediate after one notices that the only time we use the assumption of g1 and
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g2 being generic is in the proof of the above claim. And here the assumption
can be replaced by choosing G0

i so that {a} ×G0
i ⊆ reg(S/Ii) for each of the

finitely many possible S. ¤

Corollary 3.8.15 Tangency is a reflexive binary relation on an open subset
of curves through 〈a, b〉, that is gTg holds for any g ∈ G0 ⊆G of a faithful
smooth family G.

Proposition 3.8.16 Let Gi be families of branches of curves through 〈a, b〉
with trajectories ci and let gi ∈ Gi generic, i = 1, 2, 3. Assume g1Tg2 and
g2Tg3 hold. Then g1Tg3.

Moreover, for some open subsets G0
i ⊆Gi, i = 1, 2, 3,

∀g1, g2, g3 : g1 ∈ G0
1 & g2 ∈ G0

2 & g3 ∈ G0
3 & g1Tg2 & g2Tg3 ⇒ g1Tg3.

Proof. We may use 3.8.14.2 as the definition of tangency, which immedi-
ately implies the required. ¤

Proposition 3.8.17 Let G1, G2 be smooth faithful families of branches of
curves through 〈a, b〉 and g1 be generic in G1. Then the set g1T of curves in
G2 tangent to g1 is of dimension at most dimG2 − 1.

If the tangency relation T ⊆G1 × G2 projects densely on G1 or G2, then
dimT = dimG1 + dimG2 − 1. In particular, this is the case when G1 = G2.

Proof. Since I1g1 is a curve in Cm1 passing through 〈a, b, c1〉 there is
〈a′, b′, c′1〉 ∈ V〈a,b,c1〉 ∩∗ Cm2 generic over g1. Let D be the curve in C2 defined
by g1, that is the closure of the projection of I1g1 on C2. By construction
〈a, b〉, 〈a′, b′〉 ∈ D. We can consider an irreducible component of D containing
〈a′, b′〉 (and so 〈a, b〉) rather than D, so we assume D is irreducible.

The projection prC2I2 of the irreducible set I2 contains 〈a, b〉 and is dense
in C2. Hence the closed set

F = {〈x, y, z2, u2〉 ∈ I2 : 〈x, y〉 ∈ D}

is a cover (possibly reducible) of an open subset of D containing 〈a′, b′〉.
Obviously,

dimF = dim I2 − 1 = dimG2
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and by the addition formula the dimension of generic fibre is

dimF〈a′,b′〉 = dim I2 − 2 = dimG2 − 1.

Let
F = F 0 ∪ · · · ∪ F k

be the decomposition of F into irreducible components. Since {〈a, b, c2〉} ×
G2⊆F and is of the same dimension as F we have that {〈a, b, c2〉} × G2 is
a component of F, say F 0. This is the only component which projects into a
point, namely 〈a, b〉.

Any other component F i is a covering of an open subset of D and so by
3.5.14 is regular at every point. In particular, its fibre over 〈a, b〉, F i(〈a, b〉, y)
is either empty or of generic dimension, that is equal to dimG2 − 1. Let

Eg1(a, b, y) = F 1(a, b, y) ∨ · · · ∨ F k(a, b, y).

Claim 1. For any h ∈ G2 such that ¬Eg1(a, b, 〈c2, h〉) there is no h′ ∈
Vh ∩G2 and c′2 ∈ Vc2 with 〈a′, b′, c′2, h′〉 ∈ I2.

Indeed, if these exist then 〈a′, b′, c′2, h′〉 ∈ F and moreover 〈a′, b′, c′2, h′〉 ∈
F i for some i = 1, . . . , k. Applying the specialisation π and remembering
that F i is closed in F we get 〈a, b, c2, h〉 ∈ F i. This contradicts the choice of
h and proves the claim.

In particular, the type

Nbdc2,h(y) ∪ {F (a′, b′, y)}

(see definition 2.2.19) is inconsistent by 2.2.21. This means that

|= F (a′, b′, y) → Q(e′, y) (3.7)

for some e in M, e′ ∈ Ve and Zariski closed Q such that ¬Q(e, 〈c2, h〉) holds.
In particular, if Q(e, y) is consistent,

dimG2 − 1 = dimF (a′, b′, y) ≤ dimQ(e, y) < dimG2,

so
dimQ(e, y) = dimG2 − 1. (3.8)

By the assumption of the proposition, there is g2 ∈ G2 tangent to g1.
By the definition 3.8.13 we have that F (a′, b′, c′2, g

′
2), for some g′2 ∈ Vg2 and
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c′2 ∈ Vc2 , and Eg1(a, b, 〈c2, g2〉) hold. So, Eg1(a, b, y) can be taken as an
example of a consistent Q(e, y) (e = 〈a, b〉) for which (3.7) holds.

Choose now Zariski closed Q(e, y) ( e in M) minimal among those satis-
fying condition (3.7) and Q(e, 〈c2, g2〉). So, (3.8) holds for such a Q(e, y).

Claim 2. For any h such that Q(e, 〈c2, h〉) holds, the type

Nbdc2,h(y) ∪ {F〈a′,b′〉(y)}

is consistent.
Indeed, otherwise as above for some f in M, f ′ ∈ Vf and closed R(f, y)

such that ¬R(f, 〈c2, h) holds we have |= F (a′, b′, y) → R(f ′, y). In partic-
ular, R(f ′, 〈c′2, g′2〉) and R(f, 〈c2, g2〉) hold. Hence dimQ(e′, y)&R(f ′, y) ≥
dimG2 − 1. Hence

dimQ(e, y)&R(f, y) = dimG2 − 1.

By minimality Q(e, y)&R(f, y) ≡ Q(e, y) and so M |= R(f, 〈c2, g2〉). The
contradiction.

The claim implies, by 2.2.21, that there is 〈c′2, g′2〉 ∈ V〈c2,g2〉 generic in
F〈a′,b′〉(y) and so 〈a′, b′, c′2, g′2〉 ∈ I2.

Let S be the locus of 〈a′, b′, c′1, c′2, g1, g
′
2〉 over ∅. Taking into account that

F〈a′,b′〉(y) is defined over {a, b, c1, c2, g1a
′, b′} and the fact that g1, a

′, b′ have
been chosen generically over ab, we get by dimension calculations

cdim 〈a′, b′, c′1, g1〉 = dim I1

cdim 〈a′, b′, c′2, g′2〉 = dim I2

dimG1 + dimG2 = cdim 〈a′, b′, c′2, c′2, g1, g
′
2〉 = cdim 〈g1, g

′
2〉,

which show that S satisfies 3.8.10.2 and 3.8.10.3. By construction 3.8.10.1
holds as well. So, g1 is tangent to g2 via S.

Obviously, we can choose g1 ∈ G1 generic if and only if T projects generi-
cally on G1. Claim 2 allows us to choose g2 so that cdim (g2/g1) ≥ dimG2−1,
hence cdim (g1, g2) ≥ dimG1 + dimG2− 1. But Claim 1 does not allow g2 to
be generic over g1, so

cdim (g1, g2) = dimG1 + dimG2 − 1.
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Finally, since tangency is reflexive on an open subset of G, we have the
dimension equality in the case G1 = G2 = G.¤

We can now draw the following picture. Given a point 〈a, b〉 ∈ C2 we have,
for some trajectories c ∈ Cm, m ∈ N, definable irreducible smooth families
Gc,i (sorts) of branches (of curves) through 〈a, b〉. The tangency relation T
between elements of

G〈a,b〉 =
⋃

Gc,i

is definable when restricted to any pair of sorts, T ∩ (Gc1,i1 ×Gc2,i2).
The tangency properties can be summarised as

Corollary 3.8.18 T is an equivalence relation on G〈a,b〉. The restriction of
T to any pair of sorts is closed and proper (nontrivial).
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Chapter 4

Classification results

We assume throughout this chapter, unless stated otherwise, that our Zariski
geometry is C, the one-dimensional irreducible pre-smooth Zariski structure
satisfying (EU) which we studied in 3.8. We follow the notation and as-
sumptions of that subsection. Our main goal is to classify such structures
which is essentially achieved in Theorem 4.4.1. In fact the proof of the main
theorem goes through deepening the analogy between our abstract Zariski
Geometry and Algebraic Geometry. In particular, we prove generalisations
of Chao’s Theorem on analytic subsets of projective varieties and of Bezout’s
Theorem. As the byproduct we develop the theory of groups and fields living
in presmooth Zariski structures.

4.1 Getting a group

Our aim in this section is to obtain a Zariski group structure living in C. The
main steps of this construction are

- we consider the composition of local functions Va → Va (branches of
curves through 〈a, a〉) modulo the tangency and show that generically it
defines an associative operation on a presmooth Zariski set, a pre-group of
jets.

- we prove that any Zariski pre-group can be extended to a group with a
presmooth Zariski structure on it. This is an analogue of Weil’s Theorem on
group chunks in algebraic geometry.

We will consider tangency of branches of curves through 〈b, a〉, 〈a, a〉 and

97
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potentially through other points on C2. We keep the notation T for this
tangency as well, when there is no ambiguity about the point at which the
branches are considered. In case there is a need to specify the point, we do
it by adding a subscript, T〈a,b〉, T〈a,a〉 and so on.

4.1.1 Composing branches of curves

Definition 4.1.1 Given g ∈ Gc ⊆ G〈a,b〉, which we identify with the local
function g̃ : Va → Vb, we define the inverse

g−1 = {(y, x) ∈ Vb × Va : (x, y) ∈ g}.
and define G−1

c to be a copy of the definable set Gc with the inverse action
Vb → Va induced by its elements.

Obviously, g−1 above determines a branch through 〈b, a〉 with the trajec-
tory which we consider to be in inverse order to (the sequence) c and write
it c−1. We denote the new family of branches G−1

〈a,b〉.

Lemma 4.1.2 For every g1, g2 ∈ G〈a,b〉,
g1Tg2 iff g−1

1 Tg−1
2 .

Proof. Use the criterion given in Proposition 3.8.14 and the fact that the
local functions are bijections.¤

Definition 4.1.3 For any g1 ∈ Gc1 and g2 ∈ Gc1 with Gc1 , Gc2⊆G〈a,b〉, define
the composition curve

g−1
2 ◦ g1 = {(x1, x2) ∈ C2 : ∃y, z1, z2 (x1, y, z1) ∈ g1 & (z2, y, x2) ∈ g−1

2 }
and its branch at 〈a, a〉

(g−1
2 ◦ g1)〈a,a〉 = {(x1, x2) ∈ Va × Va : x2 = g̃−1

2 (g̃1(x1)}.
By the definition of branches, if c1, c2 are the trajectories of g1, g2 corre-

spondingly, then the composition (g−1
2 ◦g1)〈a,a〉 is a branch of g−1

2 ◦g1 at 〈a, a〉
with the trajectory c1bc

−1
2 . We denote the new family of branches G−1

〈a,b〉◦G〈a,b〉.
More generally, given two families of branches G〈a,b〉 and G〈b,d〉 through

〈a, b〉 and 〈b, d〉 correspondingly, we consider the family G〈b,d〉◦G〈a,b〉 of branches
of curves defined as compositions of the corresponding local functions.
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Lemma 4.1.4 T is preserved by composition of branches of sufficiently generic
pairs of curves. Namely, there is an open subset V ⊆G〈a,b〉 × G〈a,b〉 such that,
for any 〈g1, g2〉, 〈h1, h2〉 ∈ V,

g1Th1 & g2Th2 ⇒ g−1
2 ◦ g1 T h−1

2 ◦ h1.

Proof. Same as 4.1.2 ¤

Notice that by definition g−1 and g−1
2 ◦ g1 above are branches of curves

represented by members of families of curves G and G1 × G2 respectively
through correspondent fixed trajectories (c−1 for g−1 and c1bc

−1
2 for g−1

2 ◦g1).
It is also important to notice

Lemma 4.1.5 Given smooth and faithful families of branches of curves G1

and G2, the families G−1
1 and G−1

1 ◦G2 are smooth and faithful.

Proof. The statement for G−1
1 is obvious. Consider the second kind family.

By definition the family G−1
1 ◦G2 is represented by an incidence relation

between points of the smooth set G1×G2 and C2×Cm, some m determined
by the trajectories. Hence the smoothness.

For faithfulness we need to check that for generic 〈g1, h1, g2, h2 ∈ G2
1×G2

2

the intersection g−1
2 ◦ g1 ∩ h−1

2 ◦ h1 is finite. Suppose it is not.
Notice first that g−1

2 ◦g1 is a 1-dimensional subset of C2×Cm. Applying h2

we get h2 ◦g−1
2 ◦g1 a one dimensional subset definable over 〈h2, g2, g1〉 and in-

tersecting the curve h1 in a 1-dimensional irreducible component. This holds
for every generic over 〈h2, g2, g1〉 element of G2. It follows that a generic pair
h2, h

′
2 from G2 has an infinite intersection, a contradiction with faithfulness

of G2. ¤

The Lemma shows that the properties of tangency of section 3.8 are
applicable, in particular T is a definable relation on G〈a,a〉.

Now we recall the smooth 1-dimensional family of curves N through 〈a, b〉
introduced in Lemma 3.8.5. By our definitions and the facts established
above N−1 ◦ N can be considered a smooth faithful family of branches of
curves through 〈a, a〉 with trajectory b. The family of branches will be de-
notedHaa.We also consider the family of curves denoted (N−1◦N)◦(N−1◦N)
and defined as compositions of pairs of curves of N−1 ◦ N. Correspond-
ingly this parametrises the family of branches through 〈a, a〉 with trajectory
〈a, b, a〉 which we denote Haa ◦Haa. In order to keep the nice behavior of T
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we restrict ourselves to an open subset (Haa ◦Haa)
0 of Haa ◦Haa for which

the equivalences of 3.8.14 hold.

Lemma 4.1.6 Let (n, `1, `2)∈N3 be generic. Then
(1) n−1 ◦ `1 is not tangent to n−1 ◦ `2 and
(2) `−1

1 ◦ n is not tangent to `−1
2 ◦ n.

Proof. By Lemmma 4.1.4 (iii), the two statements are equivalent to each
other. Suppose both (1) and (2) are negated. Then, since the tangency of
generic germs is witnessed by a closed relation, this holds for any generic
triple. Take any generic string of elements of N : n1,m1,m2, n2. By our as-
sumptions, m−1

1 ◦n1 T m−1
1 ◦n2, m

−1
1 ◦n2 T m−1

2 n2 so by transitivity m−1
1 ◦n1

is tangent to m−1
2 ◦ n2, contradicting the genericity, by 3.8.17. ¤

Lemma 4.1.7 Given a generic triple 〈`1, `2, n1〉 ∈ N3, there is n2 ∈ N such
that n−1

1 ◦ `1 T n−1
2 ◦ `2.

Moreover, n2 ∈ acl(`1, `2, n1) and every three of the four elements `1, `2, n1, n2

are independent.

Proof. By 3.8.17, the tangency class of n−1
1 ◦ `1 in Haa is a one-dimensional

set inN2. Choose n−1◦` tangent to n−1
1 ◦`1 and such that cdim (〈n, `〉/{n, `1}) =

1. Suppose, towards a contradiction, that cdim (`/{n1, `1}) = 0, that is
` ∈ acl(n1, `1). Then this is true of every pair 〈n, `〉 of the same type over
n1, `1. Then there is an ` ∈ N such that n−1

2 ◦ ` is tangent to n−1
1 ◦ `1 for

almost all n2 ∈ N. Hence without loss of generality we may assume that
n = n1. This clearly contradicts 4.1.6.

Thus, we have proven that ` is generic in N over {n1, `1}. Since any two
generic elements are of the same type, we may choose ` = `2.

Symmetrically, n = n2 is generic in N over {n1, `1}. Notice also that
n2 ∈ acl(`1, `2, n1) and `2 ∈ acl(`1, n1, n2) by dimension data. This proves
the independence statement. ¤

Lemma 4.1.8 Given a generic 〈f1, f2〉∈Haa ×Haa there is generic g∈Haa

such that g is tangent to the composition f1 ◦ f2.

Proof. Fix an `∈N generic over 〈f1, f2〉. By 4.1.7 there are n1, n2 ∈ N such
that

f1 T n−1
1 ◦ ` and f2 T `−1 ◦ n2. (4.1)
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Claim.
f1 ◦ f2 T n−1

1 ◦ n2.

To prove the claim we use 3.8.14. Notice that 〈n1, n2〉 is a genric pair, by the
last part of 4.1.7.

Consider x ∈ Va and 〈n′1, n′2〉 ∈ V(n1,n2). We need to find 〈f ′1, f ′2〉 ∈ V(f1,f2)

such that
f̃ ′1 ◦ f̃ ′2(x) = ñ′

−1

1 ◦ ñ′2(x).
By (4.1) we choose f ′2 ∈ Vf2 so that f ′2(x) = y = `−1 ◦ n′2(x). Next we choose
f ′1 ∈ Vf1 so that f ′1(y) = n′1

−1 ◦ `(y). These satisfy our requirement and prove
the claim.

4.1.2 Pre-group of jets

We are now ready to prove the main result towards establishing the existence
of a group structure which will be called the group of jets on C. The next
proposition and theorem are Z-analogues of the theory presented in purely
model theoretic context in chapter 5 of [42].

Proposition 4.1.9 (Pre-group of jets) There is a one-dimensional irre-
ducible manifold U and a constructible irreducible ternary relation P ⊆ U3

which is the graph of a partial map U2 → U and determines a partial Z-
group structure on U, that is there is an open subset V ⊆ U2 such that

(i) for any pair 〈u, v〉 ∈ V there is a unique w = u ∗ v ∈ U satisfying
〈u, v, w〉 ∈ P ;

(ii) for any generic 〈u, v, w〉 ∈ U3

u ∗ (v ∗ w) = (u ∗ v) ∗ w;

(iii) for each pair 〈u, v〉 ∈ V the equations

u ∗ x = v and y ∗ u = v

have solutions in U.

Proof. We start with the N of Lemma 3.8.5 and consider the smooth set
N × N (N−1 ◦ N) as a family of curves Haa. The equivalence relation T
by dimension calculations of 3.8.17 has classes of dimension 1 on an open
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subset H of N2 and dimH/T = 1. Since N is locally isomorphic to C and
C is ample there must be an irreducible curve S⊆H which intersects with
infinitely many classes of equivalence T, so each intersection is finite. By the
cost of deleting finitely many points we can assume that S is smooth. Hence,
by 3.7.22, U = S/T is a manifold. Since dimH/T = 1 = dimS/T and the
set on the right is irreducible, we can choose H so that

S/T = H/T = U.

The composition of branches preserves tangency and hence the partial
map of

S/T × S/T → (S × S)0/T ⊆U × U

is well defined generically, some open (S × S)0 ⊆ S × S. This map can be
equivalently interpreted as

Haa/T ×Haa/T → (Haa ◦Haa)
0/T,

some open (Haa ◦Haa)
0⊆Haa ◦Haa.

Lemma 4.1.8 identifies (Haa ◦Haa)
0 with an open subset of Haa/T. This

gives us the continuous map

∗ : U2 → U

defined on an open subset V of U2 and with the image a one-dimensional
subset of U. This proves (i).

(ii) follows from the fact that the operation ∗ corresponds to the compo-
sition of local functions.

(iii) Since generic pair 〈u, x〉 is sent by ∗ to a generic element of U (see
4.1.8 again), for every generic pair 〈u, v〉 the equation

u ∗ x = v (4.2)

has a solution in U. So, it holds for an open subset of U2. By symmetry the
same is true for y ∗ u = v. ¤

Definition 4.1.10 Let G be a manifold and P ⊆G3 a closed ternary relation
which is the graph of a binary operation

(u, v) 7→ u · v
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on G. We say that G is a Z-group if (G, ·) is a group.
A group G with dimension is called connected if the underlying set G

can not be represented as

G = S1 ∪ S2, S1 ∩ S2 = ∅, dimS1 = dimS2.

This definition is applicable to groups with superstable theories and is
known to be equivalent to the condition that G has no proper definable sub-
groups of finite index. Of course, in the Zariski context ’definable’ can be
replaced by ’constructible’.

If, for a Z-group G, the underlying set G is irreducible then G is obviously
connected. Conversely,

Lemma 4.1.11 A connected Z-group G is irreducible.

Proof. It follows from the definition of connectedness that G contains a
dense open subset, say U. For any g ∈ G we can find an h ∈ G so that
g ∈ h · U, and obviously h · U is a dense open subset. So, we can cover G by
a union of dense open subsets of the form h · U. By Noetherianity there is a
finite subcover of this cover. It follows by 3.7.16 that G is irreducible.¤

Exercise 4.1.12 Suppose G is connected. Prove that
(i) If H ⊆G is a finite subset with the property g−1Hg = H then H ⊆

C(G), the centre of G.
(ii) G/C(G) is connected and has no finite normal subsets.
(iii) If C(G) is finite then G/C(G) is not abelian.
(iv) If G is connected and dimG = 1 then for any a1, a2 ∈ G\C(G) there

is g ∈ G such that g−1a1g = a2.

Theorem 4.1.13 (Z-Version of Weil’s Theorem on Pregroups) For any
partial irreducible Z-group U there is a connected Z-group G and an Z-
isomorphism between some dense open U ′ ⊆ U and dense open G′ ⊆ G.

Proof. Similar to [4]. We use the notation of Proposition 4.1.9 without
assuming that U is one-dimensional.

Since projections are open maps we may assume that the projections of
V on both coordinates are equal to U.



104 CHAPTER 4. CLASSIFICATION RESULTS

We define G to be a semigroup of partial functions U → U generated by
shifts by elements a ∈ U :

sa : u 7→ a ∗ u.
We consider two elements h, g ∈ G equal if h(u) = g(u) on an open subset

of U. The semigroup operation is defined by the composition of functions.

Claim 1. For every a, b, c ∈ U there are d, f ∈ U such that

a ∗ (b ∗ (c ∗ u))) = d ∗ (f ∗ u)) on an open subset of U.

Proof. By 4.1.9(iii) we can find b′, b′′ ∈ U such that b′ ∗ b′′ = b and each
of them is generic in U over a, b, c. Then

a ∗ (b ∗ (c ∗ u))) = a ∗ ((b′ ∗ b′′) ∗ (c ∗ u))) = a ∗ (b′ ∗ (b′′ ∗ (c ∗ u))),
since b′′ ∗ (c∗u) and b′ ∗ (b′′ ∗ (c∗u)) are well defined. Since a, b′ and b′′ ∗ (c∗u)
are independent generics of U we can continue

a ∗ (b′ ∗ (b′′ ∗ (c ∗ u))) = (a ∗ b′) ∗ (b′′ ∗ (c ∗ u)).
Also b′′ and c are independent and b′′ is generic, so b′′ ∗ c = f ∈ U is defined.
Since u is generic over the rest, we have b′′ ∗ (c ∗u) = f ∗u. Letting a ∗ b′ = d
we finally have a ∗ (b ∗ (c ∗ u))) = d ∗ (f ∗ u)) for u generic over a, b, c, d, f,
which proves the claim.

As a corollary of the claim we can identify G with the constructible sort
(U × U)/E where E is an equivalence relation

〈a1, a2〉 E 〈b1, b2〉 iff a1 ∗ (a2 ∗ u) = b1 ∗ (b2 ∗ u) on an open subset of U.

The last condition can be replaced by the condition

dim{u : ∃v, w, x ∈ U P (a2, u, v) & P (a1, v, x) & P (b2, u, w) & P (b1, w, x)} = dimU

and so is constructible.
We also should notice that there is a natural embedding of shifts sa,

a ∈ U, into G, just consider a = a′ ∗ a′′ for a′, a′′ ∈ U.
The latter also gives us an embedding of the pregroup U into the semi-

group G.

Claim 2. G is a group.
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In fact, this is a general fact about semigroups without zero definable in
stable structures. If g ∈ G does not have an inverse then

gn+1G ( gnG, for all n ∈ Z>0.

This defines the strict order property om M, contradicting stability.

We have now the group G generated by its subset U as U · U = G.

Claim 3. Let d = dimU2. There is a finite subset {a1, . . . , ad} of U such
that

G = {a1, . . . , ad} · U−1 =
d⋃
i=1

{ai · v : v ∈ U}.

Proof. Choose a1, . . . , ad ∈ U generic mutually independent elements.

Subclaim. For any u ∈ U2 there is a j ∈ {1, . . . , d} such that cdim (u/aj) =
cdim (u).

Indeed, suppose this does not hold. By dimension calculus

cdim (〈u, ai+1〉/{a1, . . . , ai}) =

= cdim (u/{a1, . . . , ai, ai+1}) + cdim (ai+1/{a1, . . . , ai})
and

cdim (〈u, ai+1〉/{a1, . . . , ai}) =

= cdim (u/{a1, . . . , ai}) + cdim (ai+1/{a1, . . . , ai, u}).
By our assumptions, cdim (ai+1/{a1, . . . , ai}) = d and cdim (ai+1/{a1, . . . , ai, u}) ≤

cdim (ai+1/u) < d, hence

cdim (u/{a1, . . . , ai, ai+1}) ≤ cdim (u/{a1, . . . , ai})− 1.

Applying this inequality for all i we get a contradiction with the fact that
cdim (u) ≤ d, which proves the subclaim.

To prove the claim consider an arbitrary element g = u1 · u2 ∈ G. By the
subclaim there is aj, 1 ≤ j ≤ d, such that 〈u1, u2〉 and aj are independent.
Then the equation u1 ·x = aj has a solution x = u3 in U, generic over u2 and
hence u2 · y = u3 has a solution y = v in U. Hence in G

u1 · u2 · v = aj and u1 · u2 = aj · v−1.
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Claim proved.

In fact more has been proved: we can decrease U to a smaller open subsets
and still have the same {a1, . . . , ad} satisfying the statement of the claim.

Now notice that the ai · U−1 can be identified with {ai} × U and thus
considered as manifolds.

We have natural partial bijections

ai · U−1 → aj · U−1, 〈ai, v〉 7→ 〈aj, w〉 if ai · w = aj · v.

〈ai, v〉 ↔ 〈aj, w〉 defines a constructible equivalence relation E on the set

S =
d⋃
i=1

ai · U−1.

By the definition of a constructible relation the restriction of E to some dense
subset S ′×S ′ of S×S is closed in the set. By decreasing U to an open subset
U ′⊆U we also decrease S to a dense subset S ′ and thus for some choice of
U we may assume that E is a closed equivalence relation. In the same way
we can see that the ternary relation P corresponding to the multiplication
on G is closed for some choice of U.

We define G to be a manifold defined setwise as G = S/E and covered by
smooth subsets aiU

−1 by construction. The graph P of the multiplication is
a closed relation on G. Thus G is a Z-group.

Finally notice that some open subset U ′ of U is embedded in G as a dense
subset. Indeed, there is a natural bijection between U and a1 · U−1, and on
the other hand a1 · U−1 intersects any of the other ai · U−1 at a dense (in
both of them) subset via the correspondences 〈a1, v〉 7→ 〈ai, w〉. ¤

Corollary 4.1.14 The group J of jets on the curve C at a generated by
U = Haa/T is a connected Z-group of dimension 1.

Proposition 4.1.15 (Reineke’s Theorem) A 1-dimensional connected Z-
group G is abelian. In particular, J is abelian.

Proof. We use the exercise 4.1.12. Assume towards a contradiction that G
is not abelian. It follows that C(G) is finite.

Claim 1. Every element of G is of finite order.
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Indeed, if there is an element a ∈ G of infinite order then the centraliser
CG(a) = {g ∈ G : g−1ag = a} is an infinite constructible subgroup, so must
coincide with G. It follows a ∈ C(G) and the centre is infinite, contradicting
our assumption. Claim proved.

We may now assume by (iii) that G is centreless.

By (iv) any two nonunit elements must be conjugated. It follows that all
such elements are of the same order, say p.

Claim 2. p is prime and xp = 1 for all x ∈ G.
If p = q · r, q > 1, p > 1, then by (i) the map x 7→ xq maps G into the

finite centre, which is just 1 by our assumptions. Claim proved.

Note that p > 2, for otherwise the group would be abelian by elementary
group-theoretic calculations.

Let h be a nonunit element of G. Then so is h2. So both are outside the
centre and hence by (iv) there is g ∈ G with g−1hg = h2. Since 2p−1 ≡ 1
mod p, the nonunit element gp−1 = g−1 commutes with h. But then g must
commute with h. The contradiction. ¤

Exercise 4.1.16 Deduce from Weil’s Theorem that

(i) a constructible subgroup of a Z-group is a Z-group;

(ii) if (G, ∗) is a group structure given by a constructible operation ∗ on
a manifold G then G is a Z-group, i.e. the operation is given by a closed
ternary relation.

Before we move on to obtain a Z-field we want to transfer the (local)
group structure back to C. We can trace from our construction:

Remark 4.1.17 An open subset U(J) of J is locally isomorphic to an open
subset U(C) C, more precisely, there is a finite unramified covering

p : U(C) → U(J).

Exercise 4.1.18 For J as above, if e ∈ J is the identity element then the
structure induced by the group J on Ve is a subgroup of J .
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4.2 Getting a field

We start this section assuming the existence of an irreducible Zariski curve
J with an abelian group structure on it.

Notice that the assumption (Amp) of section 3.8 holds for J since J is
definable in the original C and thus there must be a finite-to-finite definable
correspondence between J and C (which can in fact be traced effectively
through our construction of J). So we may assume that the C of sections 3.8
is our J.

The group operation on J will be denoted ⊕. The graph of the operation
will be often denoted by the same sign. Notice that the graph of a binary
operation on J is Zariski isomorphic to J × J via the projection, hence the
graph of ⊕ is irreducible. We also define the operation ª in the obvious way,
its graph is also irreducible.

As noticed in the Exercise 4.1.18 ⊕ puts a commutative group structure
on Va.

By the assumption (Amp), for every generic 〈a, b〉 ∈ J2, there is a one-
dimensional smooth faithful family of curves on J2 through 〈a, b〉. Now we
can use the group operation to shift the curves point-wise

〈x, y〉 7→ 〈x− a, y − b〉
so our family becomes the family of curves through 〈0, 0〉. Thus we have
proved that

Lemma 4.2.1 There is a one-dimensional smooth faithful family N of curves
on J2 through 〈0, 0〉.

Like in sections 3.8 each curve g ∈ N defines a local bijection of V0 onto
itself (for both a and b are equal to 0 now) with all the properties that we
have already established.

We continue to assume that all families of curves we consider are smooth,
faithful and at least one-dimensional.

Definition 4.2.2 For g̃1, g̃2 branches of curves in J2 we define the sum of
branches curves g̃1 ⊕ g̃2 to be

{(x, y) ∈ J2 : ∃z1, z2 ∈ J ((x, z1) ∈ g̃1&(x, z2) ∈ g̃2&((z1, z2, y) ∈ ⊕))}.
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Equivalently, if we use notation g̃ for local functions on V0,

g̃1 ⊕ g̃2(x) = g̃1(x)⊕ g̃2(x),

is a well defined function from V0 into V0. Similarly, for ª.

Lemma 4.2.3 Tangency is preserved under ⊕ and ª. I.e., if G1 and G2 are
families of branches of curves through 〈0, 0〉 and if g1 T g2 and f1 T f2, then
g1 ⊕ f1 T g2 ⊕ f2 and g1 ª f1 T g2 ª f2

Proof. Use the criterion 3.8.14(2). Given x, y ∈ V0 we want to find g′1 ∈ Vg1 ,
f ′1 ∈ Vf1 , g′2 ∈ Vg2 and f ′2 ∈ Vf2 such that

(g′1 ⊕ f ′1)(x) = y = (g′2 ⊕ f ′2)(x). (4.3)

Choose first y1, y2 ∈ V0 so that y1⊕ y2 = y and then by tangency there exist
g′1 ∈ Vg1 , f ′1 ∈ Vf1 , g′2 ∈ Vg2 and f ′2 ∈ Vf2 such that

g′1(x) = y1 = f ′1(x) and g′2(x) = y2 = f ′2(x).

By definition (4.3) follows.
Similarly for ª. ¤

We are going to consider, as in the section 4.1 the operations ◦ and −1

of composition of (branches of ) curves through 〈0, 0〉 which obviously give
again curves through 〈0, 0〉.

Lemma 4.2.4 Let G1, G2 and G3 be families of curves through 〈0, 0〉 and
gi ∈ Gi, i = 1, 2, 3.

Then
(g1 ⊕ g2) ◦ g3 T (g1 ◦ g3)⊕ (g2 ◦ g3).

Proof. By definition of ⊕ on curves, we have for all x ∈ V0 and for all
g′i ∈ Gi

((g′1 ⊕ g′2) ◦ g′3(x) = g′1(g
′
3(x))⊕ g′2(g

′
3(x)) = (g′1 ◦ g′3)(x)⊕ (g′2 ◦ g′3)(x). (4.4)

We can choose, for any z1, z2 ∈ V0, an element g′i ∈ Vgi
∩ Gi, for each

i = 1, 2, 3, such that g′i(z1) = z2. Using this, for any x, y ∈ V0, one can find
g′i ∈ Vgi

∩ Gi, such that ((g′1 ⊕ g′2) ◦ g′3(x) = y. This gives us (4.4) and the
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tangency.¤

Obviously the symmetric distribution law holds too:

g3 ◦ (g1 ⊕ g2) T (g3 ◦ g1)⊕ (g3 ◦ g2).

Thus, applying the argument of section 4.1 to the pair of operations we get

Corollary 4.2.5 There is a one-dimensional irreducible manifold U and a
constructible irreducible ternary relations P, S⊆U3 which are the graphs of
partial maps U2 → U and determine a partial Z-field structure on U, that
is P determines a pregroup structure on U with a binary operation

〈u, v〉 7→ u · v

S determines a pregroup structure on U with a binary operation

〈u, v〉 7→ u+ v

and the distribution law holds for any generic triple 〈u, v, w〉 ∈ U3 :

(u+ v) · w = uw + vw and w · (u+ v) = wu+ wv.

We can go from here, in analogy with Theorem 4.1.13, to construct a
Z-field K with a dense partial field U ′ ⊆ U embedded in it. But working
with two partial operations at a time is not very convenient, so instead we
use an algebraic trick and replace the partial field structure by a pregroup
structure.

Lemma 4.2.6 In the notation of Corollary 4.2.5, there is a noncommutative
metabelian Z-pregroup structure T (U) on the set U × U.

For some dense open U ′⊆U there is a Z-embedding of the pregroup T (U ′)
into a connected Z-group G, dimG = 2, G is a solvable group with finite
centre.

Proof. Define a partial multiplication on U × U using the formula for the
triangular metabelian matrix group

(
u v
0 u−1

)
,
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that is (u1, v1) ∗ (u2, v2) = (u1u2, u1v2 + v1u
−1
2 ). Denote T (U) the pregroup

structure on U × U.
By Theorem 4.1.13 there is a Z-group G such that some open dense G′⊆G

is Z-isomorphic to an open dense subset of T (U). We may assume that the
latter is T (U ′) for some open dense U ′⊆U, and even, to simplify the notation,
that G′ is just T (U). It follows in particular that dimG = 2.

By Corollary 4.1.14 (U, ·) and (U,+) are commutative pregroup.
Moreover, T (U) satisfies the metabelian identity

[u1, v1] ∗ [u2, v2] = [u2, v2] ∗ [u1, v1] for every generic 〈u1, v1, u2, v2〉 ∈ T (U)4,

where [u, v] = u ∗ v ∗u−1 ∗ v−1. Indeed, one can standardly calculate that the
metabelian identity holds for generic variables using the partial field identities
and the commutativity.

On the other hand the generics of T (U) do not satisfy the class-2 nilpo-
tence identity

u ∗ [v, w] = [v, w] ∗ u
as the similar calculation with generic 〈u, v, w〉 ∈ T (U)3 show.

We claim that the group G is metabelian, that is the metabelian identity
[u1, v1] ∗ [u2, v2] = [u2, v2] ∗ [u1, v1] holds for every u1, v1, u2, v2 ∈ G.

Indeed, using 3.5.28 we can always find in M∗ a generic 〈u′1, v′1, u′2, v′2〉 ∈
G4 which specialise to the given 〈u1, v1, u2, v2〉. Since the metabelian identity
holds for the generic quadruple and the specialisation preserves the operation,
we get the identity for 〈u1, v1, u2, v2〉.

The centre C(G) of G is finite. Indeed, assuming towards a contradiction
that dimC(G) ≥ 1 we have that dimG/C(G) ≤ 1. This means that G/C(G)
is a stable minimal group. By Reineke’s Theorem it must be abelian, which
implies that the class-2 nilpotence identity holds for G. The contradiction.

¤

Theorem 4.2.7 There exists a Z-field in M.

Proof. We start with the Z-group G with finite centre C(G) constructed in
Lemma 4.2.6.

Claim 1. The quotient group G/C(G) is a connected Z-group.
It follows from Proposition 3.7.22 with N = G (smooth by definition)

and the equivalence relation

E(x, y) ≡ y ∈ x · C(G).
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Notice that such an equivalence relation is e-irreducible because E has an
obvious irreducible decomposition

E(x, y) ≡
∨

g∈C(G)

y = xg.

It follows from the claim and Exercise 4.1.12(i) that the orbit of any non-
unit element is infinite. In particular, G and G/C(G) have no finite normal
subgroups and thus G/C(G) has trivial centre. So, from now on we just
assume that G is centreless.

Consider the commutator subgroup [G,G] of G and 1 6= a ∈ [G,G]. Since
[G,G] is a normal proper subgroup of G, the orbit aG is a (constructible)
subset of [G,G] and 0 < dim aG < dimG = 2, that is dim aG = 1. If b is
another non-unit element of [G,G] then aG = bG or aG ∩ bG = ∅. Thus we
have a partition of [G,G]\{1} into one-dimensional orbits and by considering
dimensions we conclude that there are only finitely many such orbits. Thus
[G,G] is a constructible group of dimension 1 and it must contain a con-
nected subgroup [G,G]0, normal in G, of the same dimension. Since [G,G]0

is irreducible and normal the argument above shows that

[G,G]0 = aG ∪ {1}
for some non-unit element a.

Now denote K+ := [G,G]0 and write the group operation in K+ addi-
tively, x + y. The group G acts on K+ by conjugations; write gx for g ∈ G
and x ∈ K+ instead of g−1xg. Then x 7→ gx is an automorphism of the
Z-group K+.

Notice that g and g′ induce the same action on K+ if g−1g′ ∈ C(a), the
centraliser of a in G, which is a normal subgroup of G since it is equal to the
centraliser of the normal subgroup [G,G]0. Denote K× the quotient group
G/C(a). We have seen that K× acts transitively on K+ \ {0}. Also K× is a
connected one-dimensional group hence it is commutative. Using these facts
we easily get that, for g, g1, g2 ∈ K×

ga = g1a+ g2a⇒ gx = g1x+ g2x, for all x ∈ K+ \ {0}
and

g1a = −g2a⇒ g1x = −g2x, for all x ∈ K+ \ {0}.
So, we can identify g ∈ K× with ga ∈ K+ \ {0} and thus transfer the

multiplicative operation from K× to K+. Thus the manifold K+ gets the two
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operations of a field structure. It remains to note that + on K+ is given by
a Zariski closed ternary relation induced from the Z-group and the multipli-
cation is Zariski closed by the Exercise 4.1.16(ii). ¤

We can trace the construction to see that an open subset of J/C(G) can
be identified with a dense subset of K. Taking into account the last remark
of section 4.1 we notice:

Remark 4.2.8 An open subset U(K) of K is locally isomorphic to an open
subset U(C) of C, more precisely, there is a finite unramified covering

p : U(C) → U(K).

Example 4.2.9 It may happen that group (J,⊕) we found is different from
(K,+). For example it can be the multiplicative group K×. It is interesting
to see how the construction of 4.2.3 - 4.2.5 works in this case.

So, we work in V1⊆(K×)∗, and let the family of curves be rather simple,
say of the form

g(v) = a · v + b.

To have g(1) = 1 we must put b = 1− a, so

ga(v) = a · v + 1− a.

The natural composition of curves leads straightforward to the multiplication:

ga(v) ◦ gb(v) = ga·b.

Following our procedure we can use the multiplication to introduce

ga(v)⊕gb(v) = (a·v+1−a)·(b·v+1−b) = ab·v2+(a+b−2ab)·v+ab+1−a−b = f(v).

This curve has derivative at 1, f ′(1) = a + b. Thus it is tangent to ga+b =
(a+ b) · v + 1− a− b. And thus

ga(v)⊕ gb(v) T ga+b.

4.3 Projective spaces over a Z-field

We assume here that K is a 1-dimensional irreducible presmooth Zariski
structure on a field K obtained by an expansion of the natural language (of
Zariski closed algebraic relations). Such a Z-structure has been constructed
in section 4.2 by means of the ambient Zariski structure M.



114 CHAPTER 4. CLASSIFICATION RESULTS

4.3.1 Projective spaces as Zariski structures

By the standard procedure we construct projective spaces Pn(K) = Pn over
K as a quotient

Pn(K) =
(
Kn+1 \ 〈0, . . . 0〉) / ∼

where

〈x0, . . . , xn〉 ∼ 〈y0, . . . , yn〉 ⇔ ∃λ ∈ K× : 〈x0, . . . , xn〉 = 〈λy0, . . . , λyn〉.

We let θn stand for the natural mapping

θn : Kn+1 \ 〈0, . . . 0〉 → Pn(K).

There is a classical presentation of Pn as a Z-set (of type A). Let

Ui = {〈x0, . . . , xn〉 ∈ Kn+1 : xi 6= 0}.

We may identify θn(Ui) with

Ũi = {〈y0, . . . , yn〉 ∈ Kn+1 : yi = 1}

since in every class 〈x0, . . . , xn〉/ ∼ there is a unique element with xi = 1.
Obviously, with this identification in mind Pn =

⋃n
i=0 Ũi and the conditions

of Proposition 3.7.16 are satisfied, thus Pn with the corresponding collection
of closed subsets is a presmooth Zariski structure. In partucular, θn is a
Z-morphism.

4.3.2 Completeness

Though we can not prove the completeness of the Zariski structure on Pn

we prove a weaker but sufficient for our purposes condition.

Definition 4.3.1 We say that the Zariski topology on a set N is weakly
complete if, given a presmooth P, a closed subset S ⊆ P × N and the
projection pr : P ×N → P such that the image prS is dense in P, we have
prS = P.

Proposition 4.3.2 Pn is weakly complete.
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Proof. We are given S⊆P × Pn such that S projects onto a dense subset
of presmooth P.

We may assume that S is irreducible and so is P.
Let θ be the map from P × (Kn+1 \ (0)) to P × Pn given as θ(p, x) =

(p, θnx). Let S̃ be the closure in P×Kn+1 of θ−1(S). Since θ is a Z-morphism,
θ−1(S) is closed in P × (Kn+1 \ (0)) , so

S̃ ∩ P × (
Kn+1 \ (0)

)
= θ−1(S).

For λ ∈ K, x ∈ Kn+1 and p ∈ P, write λ · (p, x) for (p, λx). This is a
Z-isomorphism of P ×Kn+1 onto itself, if λ ∈ K×.

Claim 1. If (p, x) ∈ S̃ and λ ∈ K× then λ · (p, x) ∈ S̃.
Indeed, if (p, x) ∈ θ−1(S), then (p, λx) ∈ θ−1(S)⊆ S̃. Hence θ−1(S)⊆λ−1S̃

but the latter is closed as the inverse image of closed under a Z-morphism,
so S̃⊆λ−1S̃. This proves the claim.

We have dim S̃ = dimS + 1. Let Z be a component of S̃ of maximal
dimension.

Claim 2. For any λ ∈ K×, λ−1 · Z = Z.
Indeed, λ−1 · Z is also a component of maximal dimension. Thus the

group K× acts on the finite set of components of maximal dimension. Hence

{λ ∈ K× : λ−1 · Z = Z}

is a closed subgroup of finite index, but K is irreducible and hence this is the
whole of K×.

Since

dimZ = dim S̃ = dimS + 1 ≥ dimP + 1 > dim(P × (0)),

we have

dimZ ∩ (
P × (

Kn+1 \ (0)
))

= dimS + 1.

Thus θ (Z ∩ (P × (Kn+1 \ (0)))) is dense in S, so it projects onto a dense
subset of P. Let p be a generic element of P. Then there exists (p, x) ∈ Z.
Let Z(p,Kn+1) be the fiber of Z over the point p. Since Z is K×-invariant,
K× ·(p, x)⊆Z. But the latter is closed and the closure of K× ·(p, x) is (p,Kx),
thus (p, 0) ∈ Z. Now, the closed set

{p ∈ P : (p, 0) ∈ Z}
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contains a generic element, hence is equal to P. This proves that Z(p,Kn+1) 6=
∅ for any p ∈ P. But by presmoothness

dimZ(p,Kn+1) ≥ dimZ + dimKn+1 − dim(P ×Kn+1) ≥ 1.

Hence Z(p,Kn+1) is infinite and so contains a point (p, x) with x 6= 0. So
(p, x) ∈ S̃ ∩ (P × (Kn+1 \ (0))) = θ−1S and hence (p, θnx) ∈ S, showing that
p ∈ prS for any p ∈ P.¤

4.3.3 Intersection theory in projective spaces

We continue the study of the Zariski geometry on the field K.
In this section we are going to consider intersection theory for curves on

P2, where by ”curve” we understand a constructible 1-dimensional subset of
P2, given as a member of an irreducible family L. We fix the notation Ld for
the family of curves of degree d on P2, which are given by obvious polynomial
equations, and thus by classical facts Ld can be canonically identified as
projective space Pn(d) for n(d) = (d + 2)(d + 1)/2 − 1, which is also the
dimension of the space.

We don’t know yet whether all the curves on P2 are algebraic and the
crucial question is how given a general curve c an arbitrary algebraic curve
l ∈ Ld intersects c.

Two curves l1 and l2 from families L1, L2, respectively are said in this
section to be simply tangent (with respect to L1 and L2) at a common
point p, if

indp(l1, l2/L1, L2) > 1

or the curves have a common infinite component (see section 3.6.3).
In particular, we say that c is simply tangent to a curve l ∈ L at a point

p ∈ c if
indp(c, l/{c}, L) > 1,

that is there is a generic l′ ∈ Vl ∩ L such that

#(l′ ∩ c ∩ Vp) > 1.

We may assume that c is irreducible.
Most of the time we say just tangent instead of simply tangent.
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Lemma 4.3.3 There is a finite subset cs of c such that for any d > 0 and
any line l ∈ Ld tangent to c at a point p ∈ c\cs there is a straight line lp ∈ L1

which is tangent to both l and c.

Proof. By definition of tangency there are distinct points p′, p′′ ∈ Vp∩ l′1∩ l′2
for generic l′ ∈ Ld ∩ Vl. Obviously, 〈p′, p′′〉 is generic in c × c. Take now the
straight line l′p passing through p′, p′′.

The statement of the lemma is obviously true if c coincides with a straight
line in infinite number of points. So we assume that this is not the case and
so the set of straight lines intersecting c in two distinct points is of dimension
2, that is the set contains a generic straight line. It follows that l′p is a generic
line in L1.

Claim. For some finite subset cs of c depending on c only, for any p ∈ c\cs,
there is lp ∈ L1 such that l′p ∈ Vlp , for l′p chosen as above.

Proof. Let S ⊆ c × c × L1 be the locus of 〈p′, p′′, l′p〉. Since L1 can be
identified with P2 we write

S⊆c× c×P2.

The projection of S on c×c is dense in c×c since 〈p′, p′′〉 is generic. Removing
a finite number of points we assume that c is presmooth. Thus, we are under
assumptions of Proposition 4.3.2. Hence S projects on the whole of c× c. In
other words, S is a covering of c×c with generic fibers consisting of one point.
By 3.5.13 all but finitely many points of c × c are regular for the covering.
We remove a finite subset of c and may now assume that all the points of
c× c are regular for S and p belongs to the new c (or rather to c \ cs).

So there exists lp ∈ L1 such that 〈p, p, lp〉 ∈ S. By the multiplicity property
3.6.9(ii) the lp is determined uniquely by p. By 3.6.2 for our 〈p′, p′′〉 there
exists l′′p ∈ Vlp ∩ L1 such that 〈p′, p′′, l′′p〉 ∈ S. But by the same multiplicity
property l′′p is determined uniquely by 〈p′, p′′〉, so l′′p = l′p. Claim proved.

It is easy to see now that lp is tangent to l and c at p. Indeed, by con-
struction

indp(lp, l/L1, Ld) ≥ #l′p ∩ l′ ∩ Vp ≥ 2

and

indp(lp, c/L1, {c}) ≥ #l′p ∩ c ∩ Vp ≥ 2.

¤
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Remark 4.3.4 The proof also shows that for each p ∈ c\cs there is a unique
straight line lp tangent to c at p. Correspondingly, cs may be interpreted as
the set of singular points of the curve c.

Lemma 4.3.5 Let l1 + · · ·+ ld denote a curve of degree d, which is a union
of d distinct straight lines with no three of them passing through a common
point. Then a straight line l is tangent to l1 + · · ·+ ld with respect to L1, Ld

iff it coincides with one of the lines l1, . . . , ld.

Proof. If l is tangent to l1 + · · ·+ ld, then they intersect in less than d points
or have an infinite intersection. In our case only the latter is possible. ¤

4.3.4 The generalised Bezout and Chow Theorems

Definition 4.3.6 For a family L of curves call degree of curves of L the
number

deg(L) = ind(L,L1),

that is the number of points in the intersection of a generic member of L
with a generic straight line.

For algebraic curves a of (usual) degree d, we always assume a ∈ Ld and
write deg(a) instead of deg(Ld) (which is just d, of course).

For a single curve c we write deg∗(c) for deg({c}), that is for the number
of points in the intesection of c with a generic straight line.

Theorem 4.3.7 (The generalised Bezout theorem) For any curve c on
P2

ind({c}, Ld) = d · deg∗ c,

in particular, for an algebraic curve a

#c ∩ a ≤ deg∗ c · deg a.

Proof. Assume a ∈ Ld and take l1 + · · ·+ ld as above such that none of the
straght lines is tangent to c (use 3.6.15(iii) to find such lines).

Claim. c and l1 + · · ·+ ld are not tangent.
By 4.3.3 the tangency would imply that there is an l tangent to c and

tangent to l1 + · · ·+ ld. Lemma 4.3.5 says this not the case.
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The claim implies that the intersection indices of the curves c and l1 + · · ·+ ld
are equal to 1 for any point in the intersection, so by formula 3.6.15(ii)

ind({c}, Ld) = #c ∩ (l1 + · · ·+ ld) = d · deg∗ c.

On the other hand
#c ∩ a ≤ ind({c}, Ld)

since point multiplicities are minimal for generic intersections, by 3.6.15(iii).
¤

Lemma 4.3.8 If a curve c is a subset of an algebraic curve a, then c is
algebraic.

Proof. There is a birational map of a into an algebraic group J(a) (the
Jacobian of a or the multiplicative group of the field in the case, when a is
a rational curve), which is abelian and divisible. So we assume a ⊆ J(a).
The properties of this embedding imply that for g = dim J(a) for any generic
x ∈ J(a) there is unique, up to the order, representation x = y1 + · · · + yg
for some y1, . . . yg from a. Now, if c is a proper subset of a, then the set a \ c
is also of dimension 1 and so

{y1 + · · ·+ yg : y1, . . . , yg ∈ c} and {y1 + · · ·+ yg : y1, . . . , yg ∈ a \ c}

are disjoint subsets of J(a) of the same dimension (equal to Morley rank) g
and this implies J(a) is of Morley degree greater than 1, and consequenly
the group has a proper subgroup of finite index (the connected component,
see [42]), contradicting divisibility of J(a). ¤

Theorem 4.3.9 (The generalised Chow theorem) Any closed subset of
Pn is an algebraic subvariety of Pn.

Proof. First we prove the statement for n = 2.
Let c be a closed subset of P2. W.l.o.g. we may assume c is an irreducible
curve. Let q = deg∗ c. Now choose d such that (d− 1)/2 > q. Fix a subset X
of c, containing exactly d · q + 1 points. Then by dimension considerations
there is a curve a ∈ Ld containing X. By the generalised Bezout Theorem
#(c∩a) ≤ d · q or the intersection is infinite. Since the former is excluded by
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construction, c has an infinite intersection with the algebraic curve a. Thus
c coincides with an irreducible component of a, which is also algebraic by
Lemma 4.3.8.
Now we consider a closed subset Q ⊆ Pn and assume that for Pn−1 the
statement of the theorem is true. By fixing a generic subspace H ⊂ Pn

isomorphic to Pn−2 and a generic straight line l ⊂ Pn, we can fiber Pn

and Q by linear subspaces Sp, generated by H and a point p, varying in
l. Evidently, Sp is biregularly isomorphic to Pn−1 and we can apply the
inductive hypothesis to Q∩Sp = Qp. This gives us a representation of Qp by
a set of polynomial equations fp,1 = 0, . . . , fp,kp = 0. We will now consider
only generic p ∈ l, thus kp = k and degrees of the polynomials do not depend
on p.

Denote the i-th coefficient of the polynomial fp,m as ai,m(p). This defines
on an open domain U ⊆ P1 a mapping U → K, which corresponds to a
closed curve in P2, and by above the curve is algebraic. This implies that
the dependence on p in the coefficients for p ∈ U is algebraic. This allows to
rewrite the polynomials fp,m(x), with x varying over an open subset of Sp, as
f ′m(p, x) where now 〈p, x〉 varies over an open subset of Pn. Thus q coincides
with an algebraic closed set on a subset, open in both of them, so q coincides
with the algebraic closed set. ¤

Theorem 4.3.10 (The purity theorem) Any relation R induced on K
from M is definable in the natural language and so is constructible.

Proof. By elimination of quantifiers for Zariski structures it suffices to prove
the statement for closed R⊆Kn. Consider the canonical (algebraic) embed-
ding of Kn into Pn and the closure R̄⊆Pm of R. By the generalised Chow
theorem R̄ is an algebraic subset of Pn. But R = R̄ ∩Kn.¤

4.4 The Classification Theorem

4.4.1 Main Theorem

Theorem 4.4.1 Let M be a a Zariski structure satisfying (EU) and C a
pre-smooth Zariski curve in M. Assume that C is non-linear (equivalently C
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is ample in the sense of section 3.8). Then there is a nonconstant continuous
map

f : C → P1(K).

Moreover, f is a finite map (f−1(x) is finite for every x ∈ C), and for any
n, for any definable subset S⊆Cn, the image f(S) is a constructible subset
(in the sense of algebraic geometry) of [P1(K)]n.

Proof. The field K has been constructed in section 4.2, Theorem 4.2.7.
By the construction K is definable in terms of the structure on C (induced
from M), more precisely, K is a 1-manifold with respect to C. So, there is a
finite-to-finite closed relation F ⊆C×K which projects on an open (cofinite)
subset of D⊆C and an open subset R⊆K.

Claim. There exist a cofinite subset D′⊆C and a nonconstant continuous
function s : D′ → K.

Proof. Consider x ∈ D and let F (x,K) be the fiber over x of the covering
〈x, y〉 7→ x of D. Assuming that x is generic in D there is an n such that
F (x,K) = {y1, . . . , yn}, with yi 6= yj, for any i < j ≤ n. Let s1, . . . , sn be the
standard symmetric functions of n-variables:

s1(ȳ) = y1 + · · ·+ yn, s2(ȳ) = y1 · y2 + . . . y1 · yn + · · ·+ yn−1 · yn, . . .

. . . sn(ȳ) = y1 · y2 · · · · yn.
We can identify each si(ȳ) as a function of the unordered set F (x,K) and
so it is a function of x, write it si(x). Conversely, by elementary algebra
the set {y1, . . . , yn} is exactly the set of all roots of the polynomial px(v) =
vn + s1(x)v

n−1 + · · · + sn(x). Hence, on a cofinite subset D′ of C we have
defined functions

si : D′ → K, i = 1, . . . , n.

At least one of the functions, say si, must be nonconstant, in fact have a cofi-
nite image in K, since {y ∈ K : ∃x ∈ D′ F (x, y)} is cofinite in K. Since the
graph of the function si is constructible, by possibly decreasing the domain
of the function by a finite subset we can get the condition that the graph
of si is closed inD′×K. This means that si is continuous onD′. Claim proved.

Now consider a continuous function s : D′ → K of the Claim and the
closure S⊆C ×P1(K) of its graph in C ×P1(K). S is irreducible since the
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graph of s is. By Proposition 4.3.2, S is a covering of C. Also, the covering
S is finite of multiplicity 1 in generic points. Then by 3.5.14 S is finite in
every point of C. By Multiplicity Properties (3.6.9(ii)) S has multiplicity 1
in every point, that is S is the graph of a function, call it again f. ¤

4.4.2 Meromorphic functions on a Zariski set

Definition 4.4.2 For a given Zariski set N and a field K a continuous func-
tion g : N → K with the domain containing an open subset of N will be
called Z-meromorphic on N .

Notice that the sum and the product of two meromorphic functions on N
are Z-meromorphic. Moreover, if g is Z-meromorphic and nonzero then 1/g
is a meromorphic function. In other words the set of meromorphic functions
on N forms a field.

We denote KZ(N) the field of Z-meromorphic functions on N.

Remark 4.4.3 Notice that if the characteristic of K is p > 0 then with
any Z-meromorphic function f one can associate distinct Z-meromorphic
functions φn ◦ f, n ∈ Z, where φ is the Frobenius automorphism of the field
x 7→ xp.

Of course, for negative n the map φn : K → K is not rational. So, when
N is an algebraic curve KZ(N) is the inseparable closure of the field K(N)
of rational functions on N, that is the closure of K(N) under the powers of
the Frobenius.

Proposition 4.4.4 (The second part of the Main Theorem) Under the
assumptions of 4.4.1 there exists a smooth algebraic quasi-projective curve X
over K and a Zariski epimorphism

ψ : C → X

with the universality property: for any algebraic curve Y over K and a Zariski
epimorphism τ : C → Y there exists a Zariski epimorphism σ : X → Y such
that σ ◦ τ = ψ.

The field K(X) of rational functions is isomorphic over K to a subfield
of KZ(C) and KZ(C) is equal to the inseparable closure of the field K(X).
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Proof. We start with

Claim 1. tr.d.(KZ(C)/K) = 1.

Proof. Let g be a nonconstant meromorphic function and h an arbitrary
nonconstant meromorphic function defined in M. Choose a generic (over M)
point x ∈ C and let y = g(x), z = h(x). We have cdim (y/M, x) = 0 =
cdim (x/M, y) and cdim (z/M, x) = 0. Hence cdim (z/M, y) = 0. This means
that there is an M -definable binary relation R on K such that R(y, z) holds
and R(y,K) is finite. By the Purity Theorem 4.3.10 R is given by a poly-
nomial equation r(y, z) = 0 over K. Since r, g and h are continuous and x
generic, r(g(v), h(v)) = 0 for every v ∈ C. In other words h is in the algebraic
closure (in the field-theoretic sense) of g and K, for every h ∈ KZ(C). Claim
proved.

Let again x be generic in C over M and let g1, . . . , gn be nonconstant
Z-meromorphic functions over K, yi = gi(x), i = 1, . . . , n. By dimension
calculations g−1

i (yi) is finite, so there exist an n such that

[x] =
n⋂
i=1

g−1
i (yi)

is minimal possible. It implies that for any other meromorphic function h
the value y = h(x) is determined by the class [x] (and h). Consequently,
y ∈ dcl(y1, . . . , yn, K), the definable closure of y1, . . . , yn, K. This means that
there is a definable (constructible) relation H(v1, . . . , vn, v) over K such that
H(y1, . . . , yn, v) is satisfied by the unique element y. It follows that there is
a partial Zariski continuous function p such that y = p(y1, . . . , yn). It follows
that h(v) = p(g1(v), . . . , gn(v)) for all v ∈ C.

Claim 2. The only constructible functions on an algebraically closed field
are of the form φn ◦ r, n ∈ Z, where r is rational and φ the Frobenius.

Proof. A function f(v̄) defined over a subfield K0 determines, for every
v̄ the unique element w = f(v̄). Assume v̄ is generic over K0. By Galois
theory w is in the inseparable closure of K0(v̄), that is w = φn(r(v̄)), for
some r(v̄) ∈ K0(v̄).

Hence we have proved

Claim 3. KZ(C) is equal to the inseparable closure of the fieldK(g1, . . . , gn).
More precisely, every element f ∈ KZ(C) is of the form φm(g), for some
g ∈ K(g1, . . . , gn) and a m ∈ Z.
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Let X be the image in [P1(K)]n of C under the map

ψ : v 7→ 〈g1(v), . . . , gn(v)〉.

By the Purity Theorem this is a constructible set. By assumptions X is
one dimensional and irreducible. So it has the form X = X̄ \ X0, for some
closed (projective) curve X̄ and a finite subset X0. This is, by definition
(see e.g. [48]), a quasi-projective algebraic curve. By construction X is
locally isomorphic to C, hence by Proposition 3.6.26 X is pre-smooth. By
the analysis of 3.5.9 X is Zariski isomorphic, via say a map e, to a smooth
algebraic curve. We may assume this curve is X by applying to ψ the Zariski
isomorphism e. Also, the domain of ψ must be C since the space [P1(K)]n is
weakly complete in our Zariski topology.

Obviously, to every rational function f : X 7→ K we can put in corre-
spondence the unique Z-meromorphic function ψ∗(f) on C : v 7→ f(ψ(v)).
Let K(X) be the field of rational functions on X. Then ψ∗ embeds K(X)
into KZ(C) and the coordinate functions of X correspond to g1, . . . , gn.

Suppose now τ : C → Y is a continuous epimorphism onto an algebraic
curve Y overK. Then as above τ ∗ embeds the fieldK(Y ) of rational functions
on Y into KZ(C). That is, by Claim 3, K(Y )⊆φm(K(X)) for some m ∈ Z.
This embedding as above can be represented as σ∗0 : K(Y ) → φm(K(X))
for some rational epimorphism σ0 : φ−m(X) → Y of algebraic curves. This
finally gives the Zariski epimorphism σ = σ0 ◦ φm sending X onto Y. ¤

Remark 4.4.5 In general ψ is not a bijection, that is C is not isomorphic
to an algebraic curve. See section 5.1 for examples.

4.4.3 Simple Zariski groups are algebraic

The main theorem is crucial to prove the Algebraicity Conjecture for groups
definable in presmooth Zariski structures.

Theorem 4.4.6 Let G be a simple Zariski group satisfying (EU) and such
that some one-dimensional irreducible Z-subset C in G is presmooth. Then
G is Zariski isomorphic to an algebraic group Ĝ(K), for some algebraically
closed field K.
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Proof. We start with a general statement.
Claim 1. Let G be a simple group of finite Morley rank. Then Th(G) is

categorical in uncountable cardinals (in the language of groups). Moreover,
G is almost strongly minimal.

This is a direct consequence of the Indecomposability Theorem on finite
Morley rank groups and is proved in [42], Proposition 2.12.

Claim 2. Given a strongly minimal set C definable in G, there is a
a definable relation F ⊆ G × Cm, m = rkG, establishing a finite-to-finite
correspondence between a subset R ⊆ G and a subset D ⊆ Cm such that
dim(G \R) < m and dim(Cm \D) < m.

This is a consequence of the proof of the above statement.
Claim 3. For G as in the condition of the theorem, there exists a a

nonconstant meromorphic function G→ K.
To prove the claim first notice that C in Claim 2 can be replaced by

K because there is a finite-to-finite correspondence between the two. Now
apply the argument with symmetric functions as in the proof of the Claim
in Main Theorem. This proves the present claim.

Now consider the field the field KZ(G) of meromorphic functions G→ K.
Each g ∈ G acts on KZ(G) by f(x) 7→ f(g · x). This gives a representation
of G as the group of automorphisms of KZ(G). This action can also be seen
as the K-linear action on the K-vector space KZ(G). As is standard in the
theory of algebraic groups (Rosenlicht’s Theorem) using the Purity Theo-
rem one can see that there is a G-invariant finite dimensional K-subspace
V of KZ(G). Hence G can be represented as a definable subsgroup Ĝ(K) of
GL(V ), and by the Purity Theorem again this subgroup is algebraic. This
representation is an isomorphism since G is simple.¤

Notice that presmoothness is paramount for this proof. In the case of
Zariski groups without presmoothness (which, of course, still are of finite
Morley rank by Theorem 3.2.8) the Algebraicity Conjecture remains open.
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Chapter 5

Non-classical Zariski geometries

5.1 Non-algebraic Zariski geometries

Theorem 5.1.1 There exists an irreducible pre-smooth Zariski structure (in
particular of dimension 1) which is not interpretable in an algebraically closed
field.

The construction

Let M = (M, C) be an irreducible pre-smooth Zariski structure,
G ≤ ZAutM (Zariski-continuous bijections) acting freely on M and for some
G̃ with finite H :

1 → H → G̃→pr G→ 1.

Consider a set X ⊆M of representatives of G-orbits: for each a ∈ M,
G · a ∩X is a singleton.

Consider the formal set

M̃(G̃) = M̃ = G̃×X

and the projection map

p : (g, x) 7→ pr (g) · x.

Consider also, for each f ∈ G̃ the function

f : (g, x) 7→ (fg, x).

127
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We thus have obtained the structure

M̃ = (M̃, {f}f∈G̃ ∪ p−1(C))

on the set M̃ with relations induced from M together with maps {f}f∈G̃.
We set the closed subsets of M̃n to be exactly those which are definable by
positive quantifier-free formulas with parameters. Obviously, the structure
M and the map p : M̃ →M are definable in M̃. Since, for each f ∈ G̃,

∀v pf(v) = fp(v)

the image p(S) of a closed subset S⊆M̃n is closed in M. We define dimS :=
dimp(S).

Lemma 5.1.2 The isomorphism type of M̃ is determined by M and G̃ only.
The theory of M̃ has quantifier elimination. M̃ is an irreducible pre-smooth
Zariski structure.

Proof. One can use obvious automorphisms of the structure to prove quan-
tifier elimination. The statement of the claim then follows by checking the
definitions. The detailed proof is given in [24] Proposition 10.1.¤

Lemma 5.1.3 Suppose H does not split, that is for every proper G0 < G̃

G0 ·H 6= G̃.

Then, every equidimensional Zariski expansion M̃′ of M̃ is irreducible.

Proof. Let C = M̃ ′ be an |H|-cover of the variety M, so dimC = dimM
and C has at most |H| distinct irreducible components, say Ci, 1 ≤ i ≤ n.
For generic y ∈M the fibre p−1(y) intersects every Ci (otherwise p−1(M) is
not equal to C).

Hence H acts transitively on the set of irreducible components. So, G̃
acts transitively on the set of irreducible components, so the setwise stabiliser
G0 of C1 in G̃ is of index n in G̃ and also H ∩ G̃0 is of index n in H. Hence,

G̃ = G0 ·H, with H * G0

contradicting our assumptions. ¤
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Lemma 5.1.4 G̃ ≤ ZAut M̃, that is G̃ is a subgroup of the group of Zariski-
continuous bijecions of M̃.

Proof. Immediate by construction.¤

Lemma 5.1.5 Suppose M is a rational or elliptic curve (over an algebraically
closed field K of characteristic zero), H does not split, G̃ is nilpotent and for
some big enough integer µ there is a non-abelian subgroup G0 ≤ G̃

|G̃ : G0| ≥ µ.

Then M̃ is not interpretable in an algebraically closed field.

Proof. First we show.
Claim. Without loss of generality we may assume that G̃ is infinite.
Recall that G is a subgroup of the group ZAutM of rational (Zariski)

automorphisms of M. Every algebraic curve is birationally equivalent to a
smooth one, so G embeds into the group of birational transformations of a
smooth rational curve or an elliptic curve. Now remember that any birational
transformation of a smooth algebraic curve is biregular. If M is rational
then the group ZAutM is PGL(2, K). Choose a semisimple (diagonal) s ∈
PGL(2, K) be an automorphism of infinite order such that 〈s〉 ∩ G = 1
and G commutes with s. Then we can replace G by G′ = 〈G, s〉 and G̃ by
G̃′ = 〈G̃, s〉 with the trivial action of s on H. One can easily see from the
construction that the M̃ ′ corresponding to G̃′ is the same as M̃, except for
the new definable bijection corresponding to s.

We can use the same argument when M is an elliptic curve, in which case
the group of automorphisms of the curve is given as a semidirect product
of a finitely generated abelian group (complex multiplication) acting on the
group on the elliptic curve E(K).

Now, assuming that M̃ is definable in an algebraically closed field K ′ we
will have that K is definable in K ′. It is known to imply that K ′ is definably
isomorphic to K, so we may assume that K ′ = K.

Also, since dim M̃ = dimM = 1, it follows that M̃ up to finitely many
points is in a bijective definable correspondence with a smooth algebraic
curve, say C = C(K).
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G̃ then by the argument above is embedded into the group of rational
automorphisms of C.

The automorphism group is finite if genus of the curve is 2 or higher, so
by the Claim we can have only rational or elliptic curve for C.

Consider first the case when C is rational. The automorphism group
then is PGL(2, K). Since G̃ is nilpotent its Zariski closure in PGL(2, K) is
an infinite nilpotent group U. Let U0 be the connected component of U, which
is a normal subgroup of finite index. By a theorem of A.I.Malcev there is a
number µ (dependent only on the size of the matrix group in question but
not on U) such that some normal subgroup U0 of U of index at most µ is a
subgroup of the unipotent group

(
1 z
0 1

)

this is Abelian, contradicting the assumption that G̃ has no abelian subgroups
of index less than µ.

In case C is an elliptic curve the group of automorphisms is a semidirect
product of a finitely generated abelian group (complex multiplication) acting
freely on the abelian group of the elliptic curve. This group has no nilpo-
tent non-abelian subgroups. This finishes the proof of the lemma and of the
theorem.¤

In general it is harder to analyse the situation when dimM > 1 since the
group of birational automorphisms is not so immediately reducible to the
group of biregular automorphisms of a smooth variety in higher dimensions.
But nevertheless the same method can prove the useful fact that the con-
struction produces examples essentially of non algebro-geometric nature.

Proposition 5.1.6 (i) Suppose M is an abelian variety, H does not split
and G̃ is nilpotent not abelian. Then M̃ can not be an algebraic variety with
p : M̃ →M a regular map.

(ii) Suppose M is the (semi-abelian) variety (K×)n. Suppose also that
G̃ is nilpotent and for some big enough integer µ = µ(n) has no abelian
subgroup G0 of index bigger than µ. Then M̃ can not be an algebraic variety
with p : M̃ →M a regular map.

Proof. (i) IfM is an abelian variety and M̃ were algebraic, the map p : M̃ →
M has to be unramified since all its fibers are of the same order (equal to
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|H|). Hence M̃ being a finite unramified cover must have the same unversal
cover as M has. So, M̃ must be an abelian variety as well. The group of
automorphisms of an abelian variety A without complex multiplication is the
abelian group A(K). The contradiction.

(ii) Same argument as in (i) proves that M̃ has to be isomorphic to (K×)n.
The Malcev theorem cited above finishes the proof.¤

Proposition 5.1.7 Suppose M is an K-variety and, in the construction of
M̃, the group G̃ is finite. Then M̃ is definable in any expansion of the field
K by a total linear order.

In particular, if M is a complex variety, M̃ is definable in the reals.

Proof. Extend the ordering of K to a linear order of M and define

S := {s ∈M : s = min G · s}.
The rest of the construction of M̃ is definable.¤

Remark 5.1.8 In other known examples of non-algebraic M̃ (with G infi-
nite) M̃ is still definable in any expansion of the field K by a total linear
order. In particular, for the example considered in the next section.

5.2 Case study

5.2.1 The N-cover of the affine line.

We assume here that the characteristic of K is 0.
Let a, b ∈ K be additively independent.
G acts on K :

ux = a+ x, vx = b+ x.

Taking M to be K this determines, by subsection 5.1, a presmooth non-
algebraic Zariski curve M̃ which from now on we denote PN , and PN will
stand for the universe of this structure.

The correspondent definition for the covering map p : M̃ →M = K then
gives us

p(ut) = a+ p(t), p(vt) = b+ p(t). (5.1)
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5.2.2 Semi-definable functions on PN

Lemma 5.2.1 There are functions y and z

PN → K

satisfying the following functional equations, for any t ∈ PN ,

yN(t) = 1, y(ut) = εy(t), y(vt) = y(t) (5.2)

zN(t) = 1, z(ut) = z(t), z(vt) = y(t)−1 · z(t). (5.3)

Proof. Choose a subset S⊆M = K of representatives of G-orbits, that is
K = G+S. By the construction in section 5.1 we can identify PN = M̃ with
G̃×S in such a way that p(γs) = pr (γ) + s. This means that, for any s ∈ S
and t ∈ G̃ · s of the form t = umvn[u,v]l · s,

p(umvn[u,v]l · s) := ma+ nb+ s,

set also
y(umvn[u,v]l · s) := εm

z(umvn[u,v]l · s) := εl.

This satisfies (5.2) and (5.3). ¤

Remark 5.2.2 Notice, that it follows from (5.1)-(5.3):

1. p is surjective and N -to-1, with fibres of the form

p−1(λ) = Ht, H = {[u,v]l : 0 ≤ l < N}.

2. y([u,v]t) = y(t),

3. z([u,v]t) = εz(t).

Definition 5.2.3 Define the band function on K as a function bd : K →
K[N ].

Set for λ ∈ K
bd(λ) = y(t), if p(t) = λ,

This is well-defined by the remark above.
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Acting by u on t and using (5.1) and (5.2) we have

bd(a+ λ) = εbdλ. (5.4)

Acting by v we obtain
bd(b+ λ) = bdλ. (5.5)

Lemma 5.2.4 The structure PN is definable in

(K,+, ·, bd).

Proof. Indeed, set

PN = K ×K[N ] = {〈x, εl〉 : x ∈ K, l = 0, . . . , N − 1}

and define the maps

p(〈x, εl〉) := x, y(〈x, εl〉) := bd(x), z(〈x, εl〉) := ε−l.

Also define

u(〈x, εl〉) := 〈a+ x, εl〉), v(〈x, εl〉) := 〈b+ x, εlbd(x)〉.

One checks easily that the action of G̃ is well-defined and that (5.1)-(5.3)
hold.¤

Assuming that K = C and for simplicity that a ∈ iR and b ∈ R, both
nonzero, we may define, for z ∈ C,

bd(z) := exp(
2πi

N
[Re(

z

a
)]).

This satisfies (5.4) and (5.5) and so PN over C is definable in C equipped
with the measurable but not continuous function above.

5.2.3 The space of semi-definable functions

Let H be the K-algebra of semi-definable functions on PN generated by
x, y, z.
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We define linear operators X,Y,Z, U and V on H :

X : ψ(t) 7→ p(t) · ψ(t),
Y : ψ(t) 7→ y(t) · ψ(t),
Z : ψ(t) 7→ z(t) · ψ(t),
U : ψ(t) 7→ ψ(ut),
V : ψ(t) 7→ ψ(vt).

(5.6)

Denote G̃∗ the group generated by the operators U, V,U−1, V−1, denote Xε

(or simply X) the K-algebra K[X,Y,Z] and Aε (or simply A) the extension
of the K algebra Xε by G̃∗.

H with the action of A on it is determined uniquely up to isomorphism
by the defining relation (5.1)-(5.3) and so is independent on the arbitrariness
in the choices of x,y and z. The algebra Aε is determined by its generators
and the following relations, for E standing for the commutator [U,V],

XY = YX;XZ = ZX;YZ = ZY;
YN = 1;ZN = 1;
UX−XU = aU;VX−XV = bV;
UY = εYU;YV = VY;
ZU = UZ;
VZ = YZV;
UE = EU;VE = EV;EN = 1.

(5.7)

5.2.4 The representation of A
Let Max(X) be the set of isomorphism classes of 1-dimensional irreducible
X-modules.

Lemma 5.2.5 Max(X) can be represented by 1-dimensional modules 〈eµ,ξ,ζ〉
(= Keµ,ξ,ζ) for µ ∈ K, ξ, ζ ∈ K[N ], defined by the action on the generating
vector as follows:

Xeµ,ξ,ζ = µeµ,ξ,ζ , Yeµ,ξ,ζ = ξeµ,ξ,ζ , Zeµ,ξ,ζ = ζeµ,ξ,ζ .

Proof. This is a standard fact of commutative algebra.¤
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AssumingK is endowed with the function bd : K → K[N ] we call 〈µ, ξ, ζ〉
as above real oriented if

bdµ = ξ.

Correspondingly, we call the module 〈eµ,ξ,ζ〉 real oriented if 〈µ, ξ, ζ〉 is.
Max+(X) will denote the subspace of Max(X) consisting of real oriented

modules 〈eµ,ξ,ζ〉.¤

Lemma 5.2.6 〈µ, ξ, ζ〉 is real oriented if and only if

〈µ, ξ, ζ〉 = 〈p(t),y(t), z(t)〉,

for some t ∈ T.

Proof. It follows from the definition of bd that 〈p(t),y(t), z(t)〉 is real
oriented.

Assume now that 〈µ, ξ, ζ〉 is real oriented. Since p is a surjection, there
is t′ ∈ T such that p(t′) = µ. By the definition of bd, y(t′) = bdµ. By
the Remark after Lemma 5.2.1 both values stay the same if we replace t′ by
t = [u,v]k t′. By the same Remark, for some k, z(t) = ζ. ¤

Now we introduce an infinite-dimensionalA-moduleH0. As a vector space
H0 is spanned by {eµ,ξ,ζ : µ ∈ K, ξ, ζ ∈ K[N ]}. The action of the generators
of A on H0 is defined on eµ,ξ,ζ in accordance with the defining relations of
A. So, since

XUeµ,ξ,ζ = (UX− aU)eµ,ξ,ζ = (µ− a)Ueµ,ξ,ζ ,

YUeµ,ξ,ζ = ε−1UYeµ,ξ,ζ = ε−1ξUeµ,ξ,ζ ,

ZUeµ,ξ,ζ = UZeµ,ξ,ζ = ζUeµ,ξ,ζ ,

and
XVeµ,ξ,ζ = (VX− bV)eµ,ξ,ζ = (µ− b)Veµ,ξ,ζ ,

YVeµ,ξ,ζ = VYeµ,ξ,ζ = ξUeµ,ξ,ζ ,

ZVeµ,ξ,ζ = VY−1Zeµ,ξ,ζ = ξ−1ζVeµ,ξ,ζ ,

we set

Ueµ,ξ,ζ := eu〈µ,ξ,ζ〉, with u〈µ, ξ, ζ〉 = 〈µ− a, ε−1ξ, ζ〉
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and
Veµ,ξ,ζ := ev〈µ,ξ,ζ〉, with v〈µ, ξ, ζ〉 = 〈µ− b, ξ, ξ−1ζ〉.

We may now identify Max(X) as the family of 1-dimensional X-eigenspaces
of H0. Correspondingly, we call the X-module (state) 〈eµ,ξ〉 real oriented if
〈µ, ξ〉 is. H+

0 will denote the linear subspace of H0 spanned by the posi-
tively oriented states 〈eµ,ξ〉. We denote Max+(X) the family of 1-dimensional
real oriented X-eigenspaces of H0, or states as such things are referred to in
physics literature.

Theorem 5.2.7 (i) There is a bijective correspondence Ξ : Max+(X) → PN
between the set of real oriented X-eigensubspaces of H0 and PN .

(ii) The action of G̃∗ on H0 induces an action on Max(H) and leaves
Max+(X) setwise invariant. The correspondence Ξ transfers anti-isomorphically
the natural action of G̃∗ on Maxω(X) to a natural action of G̃ on PN .

(iii) The map
pX : 〈eµ,ξ,ζ〉 7→ µ

is a N-to-1-surjection Max+(X) → K such that

(
Max+(X),U,V,pX, K

) ∼=ξ (PN ,u,v,p, K) .

Proof. (i) Immediate by Lemma 5.2.6.
(ii) Indeed, by the definition above the action of U and V corresponds to

the action on real oriented N -tuples:

U : 〈p(t),y(t), z(t)〉 7→ 〈p(t)−a, ε−1y(t), z(t)〉 = 〈p(u−1t),y(u−1t), z(u−1t)〉,

V : 〈p(t)− b,y(t),y(t)−1z(t)〉 7→ 〈p(v−1t),y(v−1t), z(v−1t)〉.
(iii) Immediate from (i) and (ii).¤

C∗-representation.

Our aim again is to introduce an involution onA.We assumeK = C, a = 2πi
N
,

b ∈ R and start by extending the space H of semi-definable functions with a
function w : PN → C such that

expw = y, w(ut) =
2πi

N
+ w(t), w(vt) = w(t).
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We can easily do this by setting as in (5.2.1)

w(umvn[u,v]l · s) :=
2πim

N
.

Now we extend A to A# by adding the new operator

W : ψ 7→ wψ

which obviously satisfies

WX = XW, WY = YW, WZ = ZW.

UW =
2πi

N
+ WU, VW = WV.

We set
U∗ := U−1, V∗ := V−1

Y∗ := Y−1, W∗ := −W, X∗ := X− 2W,

implying that U,V and Y are unitary and iW and X − W are formally
selfadjoint.

Proposition 5.2.8 There is a representation of A# in an inner product
space such that U,V and Y act as unitary and iW and X−W as selfadjoint
operators.

Proof. Let HR be the subspace of the inner product space H0 spanned by
vectors eµ,ξ,ζ such that

µ = x+
2πik

N
, ξ = e

2πik
N , ζ = e

2πim
N , for x ∈ R, k,m ∈ Z. (5.8)

One checks that HR is closed under the action of A on H0 defined in 5.2.4,
that is HR is an A-submodule. We also define the action by W

W : eµ,ξ,ζ 7→ 2πik

N
eµ,ξ,ζ

for µ = x+ 2πik
N
. This obviously agrees with the defining relations of A#. So

HR is an A#-submodule of H0.
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Now U and V are unitary operators on HR since they transform the
orthonormal basis into itself. Y is unitary since its eigenvectors form the
orthonormal basis and the corresponding eigenvalues are of absolute value 1.
iW and X −W are selfadjoint since their eigenvalues on the orthonormal
basis are the reals −2πk

N
and x, correspondingly.¤

Comments 1.Note that following Theorem 5.2.7 we can treat the set of
“states” 〈eµ,ξ,ζ〉 satisfying (5.8) as a substructure of PN . When one applies
the definition of the band function 5.2.3 to these one gets

bdµ = exp
2πik

N
, for µ = x+

2πik

N
.

In other words, in this representation the band function is again a way to
separate the real and imaginary parts of the complex numbers involved.

2. The discrete nature of the imaginary part of µ in (5.8) is necessitated
by two conditions: the interpretation of ∗ as taking adjoints and the non-
continuous form of the band function. The first condition is crucial for any
physical interpretation and the second one follows from the description of
the Zariski structure PN . Compairing this to the real differentiable structure
P∞ constructed in Section 5.2.5 as the limit of the PN we suggest to inter-
prete the latter along with its representation via A in this section as the
quantisation of the former.

5.2.5 The metric limit

Our aim in this section is to find an interpretation of the limit, as N tends
to ∞, of structures PN in “classical” terms. “Classical” here is supposed
to mean “ using function and relations given in terms of real manifolds and
analytic functions”. Of course, we have to define the meaning of the “limit”
first. We found a satisfactory solution to this problem in case of PN which
is presented below.

The Heisenberg Group

First we want to establish a connection of the group G̃N with the integer
Heisenberg group H(Z) which is the group of matrices of the form


1 k m
0 1 l
0 0 1


 (5.9)
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with k, l,m ∈ Z. More precisely, G̃N is isomorphic to the group

H(Z)N = H(Z)/N.Z,

where N.Z is the central subgroup

N.Z =








1 0 Nm
0 1 0
0 0 1


 : m ∈ Z





Similarly the real Heisenberg group H(R) is defined as the group of ma-
trices of the form (5.9) with k, l,m ∈ R. The analogue (or the limit case) of
H(Z)N is the factor-group

H(R)∞ := H(R)/




1 0 Z
0 1 0
0 0 1




In fact there is the natural group embedding

iN :




1 k m
0 1 l
0 0 1


 7→




1 k√
N

m
N

0 1 l√
N

0 0 1




inducing the embedding H(Z)N ⊂ H(R)∞.

Notice the following

Lemma 5.2.9 Given the embedding iN for every 〈u, v, w〉 ∈ H(R)∞ there is
〈 k√

N
, l√

N
, m
N
〉 ∈ iN(H(Z)N) such that

|u− k√
N
|+ |v − l√

N
|+ |w − m

N
| < 3√

N
.

In other words, the distance (given by the sum of absolute values) between
any point of H(R)∞ and the set iN(H(Z)N) is at most 3/

√
N. Obviously,

also the distance between any point of iN(H(Z)N) and the set H(R)∞ is 0,
because of the embedding. In other words, this defines that the Hausdorff
distance between the two sets is at most 3/

√
N.
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In situations when the pointwise distance between sets M1 and M2 is
defined we also say that the Hausdorff distance between two L-structures on
M1 and M2 is at most α if the Hausdorff distance between the universes M1

and M2 as well as between R(M1) and R(M2), for any L-predicate or graph
of an L-operation R, is at most α.

Finally, we say that an L-structure M is the Hausdorff limit of L-
structures MN , N ∈ N, if for each positive α there is N0 such that for all
N > N0 the distance between MN and M is at most α.

Remark 5.2.10 It makes sense to consider the similar notion of Gromov-
Hausdorff distance and Gromov-Hausdorff limit.

Lemma 5.2.11 The group structure H(R)∞ is the Hausdorff limit of its
substructures H(Z)N , where the distance is defined by the embeddings iN .

Proof. Lemma 5.2.9 proves that the universe of H(R)∞ is the limit of the
corresponding sequence. Since the group operation is continuous in the topol-
ogy determined by the distance, the graphs of the group operations converge
as well.¤

The action

Given nonzero real numbers a, b, c the integer Heisenberg group H(Z) acts
on R3 as follows:

〈k, l,m〉〈x, y, s〉 = 〈x+ ak, y + bl, s+ acky + abcm〉 (5.10)

where 〈k, l,m〉 is the matrix (5.9).
We can also define the action of H(Z) on C × S1, equivalently on R ×

R× R/Z, as follows

〈k, l,m〉〈x, y, exp 2πis〉 = 〈x+ ak, y + bl, exp 2πi(s+ acky + abcm)〉 (5.11)

where x, y, s ∈ R.
In the discrete version intended to model 5.2.1 we consider q

N
, q ∈ Z, in

place of s ∈ R and take a = b = 1√
N
. We replace (5.11) by

〈k, l,m〉〈x, y, e 2πiq
N 〉 = 〈x+

k√
N
, y+

l√
N
, exp 2πi

q + k[y
√
N ] +m

N
〉 (5.12)
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One can easily check that this is still an action.
Moreover, we may take m modulo N in (5.12), that is 〈k, l,m〉 ∈ H(Z)N ,

and simple calculations similar to the above show the following.

Lemma 5.2.12 The formula (5.12) defines the free action of H(Z)N on
R× R× exp 2πi

N
Z (equivalently on C× exp 2πi

N
Z).

We think of 〈x, y, exp 2πiq
N
〉 as an element t of PN (see 5.2.1), x + iy as

p(t) ∈ C. The actions x + iy 7→ a + x + iy and x + iy 7→ x + i(y + b) are
obvious rational automorphisms of the affine line C.

We interpret the action of 〈1, 0, 0〉 and 〈0, 1, 0〉 by (5.12) on C× exp 2πi
N
Z

as u and v correspondingly. Then the commutator [u,v] corresponds to
〈0, 0,−1〉, which is the generating element of the centre of H(Z)N . In other
words, the subgroup gp(u,v) of H(Z)N generated by the two elements is
isomorphic to G̃. We thus get, using Lemma 5.1.2

Lemma 5.2.13 Under the above assumption and notation the structure on
C × exp 2πi

N
Z described by (5.12) in the language of subsection 5.2.1 is iso-

morphic to the PN of 5.2.1 with K = C.

Below we identify PN with the structure above based on C×{exp 2πi
N
Z}.

Note that every group word in u and v gives rise to a definable map in
PN . We want introduce a uniform notation for such definable functions.

Let α be a monotone nondecreasing converging sequence of the form

α = { kN√
N

: kN , N ∈ Z, N > 0}.

We call such a sequence admissible if there is an r ∈ R such that

|r − kN√
N
| ≤ 1√

N
. (5.13)

Given r ∈ R and N ∈ N one can easily find kN satisfying (5.13) and so
construct an α converging to r, which we denote α̂,

α̂ := limα = lim
N

kN√
N
.
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We denote I the set of all admissible sequences converging to a real on
[0, 1], so

{α̂ : α ∈ I} = R ∩ [0, 1].

For each α ∈ I we introduce two operation symbols uα and vα. We denote
P#
N the definable expansion of PN by all such symbols with the interpretation

uα = ukN , vα = vkN (kN -multiple of the operation),

if kN√
N

stands in the Nth position in the sequence α.
Note that the sequence

dt := { 1√
N

: N ∈ N}

is in I and udt = u, vdt = v in all P#
N .

We now define the structure P∞ to be the structure on sorts C × S1

(denoted P∞) and sort C, with the field structure on C and the projection
map p : 〈x, y, e2πis〉 7→ 〈x, y〉 ∈ C, and definable maps uα and vβ, α, β ∈ I,
acting on C× S1 (in accordance with the action by H(R)∞) as follows

uα(〈x, y, e2πis〉) = 〈α̂, 0, 0〉〈x, y, e2πis〉 = 〈x+ α̂, y, e2πi(s+α̂y)〉
vβ(〈x, y, e2πis〉) = 〈0, β̂, 0〉〈x, y, e2πis〉 = 〈x, y + β̂, e2πis〉 (5.14)

Theorem 5.2.14 P∞ is the Hausdorff limit of structures P#
N .

Proof. The sort C is the same in all structures.
The sort P∞ is the limit of its substructures PN since S1 (= exp iR) is

the limit of exp 2πi
N
Z in the standard metric of C. Also, the graph of the

projection map p : P∞ → C is the limit of p : PN → C for the same reason.
Finally it remains to check that the graphs of u and v in P∞ are the

limits of those in PN . It is enough to see that for any 〈x, y, exp 2πiq
N
〉 ∈ PN

the result of the action by uα and vβ calculated in P#
N is at most at the

distance 2/
√
N from the ones calculated in P∞, for any 〈x, y, exp 2πiq

N
〉 ∈ P∞.

And indeed, the action in P#
N by definition is

uα : 〈x, y, exp 2πiq
N
〉 7→ 〈x+ kN√

N
, y, exp 2πi

N
(q + kN [y

√
N ])〉

vβ : 〈x, y, exp 2πiq
N
〉 7→ 〈x, y + lN√

N
, exp 2πi q

N
〉 (5.15)
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Obviously,

|kNy√
N
− kN [y

√
N ]

N
| = kN√

N
|y
√
N − [y

√
N ]√

N
| < kN√

N

1√
N
≤ 1√

N
,

which together with (5.13) proves that the right hand side of (5.15) is at
the distance at most 2√

N
from the right hand side of (5.14) uniformly on the

point 〈x, y, exp 2πiq
N
〉. ¤

Comment The structure P∞ can be seen as the principal bundle over
R×R with the structure group U(1) (the rotations of S1) and the projection
map p. The action by the Heisenberg group allows to define a connection on
the bundle. A connection determines “a smooth transition from a point in
a fibre to a point in a nearby fibre”. As noted above u and v in the limit
process correspond to infinitesimal actions (in a nonstandard model of P∞)
which can be written in the form

u(〈x, y, e2πis〉) = 〈x+ dt, y, e2πi(s+ydt)〉
v(〈x, y, e2πis〉) = 〈x, y + dt, e2πis〉

These formulas allow to calculate the derivative of a section

ψ : 〈x, y〉 7→ 〈x, y, e2πis(x,y)〉

of the bundle in any direction on R × R. In general moving infinitesimally
from the point 〈x, y〉 along x we get 〈x+ dt, y, exp 2πi(s+ ds)〉. We need to
compare this to the parallel transport along x given by the formulas above,
〈x+ dt, y, exp 2πi(s+ ydt)〉. So the difference is

〈0, 0, exp 2πi(s+ ds)− exp 2πi(s+ ydt)〉.

Using the usual laws of differentiation one gets for the third term

exp 2πi(s+ ds)− exp 2πi(s+ ydt) =
(exp 2πi(s+ ds)− exp 2πis)− (exp 2πi(s+ ydt)− exp 2πis) =

d exp 2πis− 2πiy exp 2πis dt = (d exp 2πis
dt

− 2πiy exp 2πis)dt

which gives for a section ψ = exp 2πis the following covariant derivative
along x,

∇xψ =
d

dx
ψ − 2πiyψ.
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Similarly, ∇y the covariant derivative along y is just d
dy
ψ, the second term

zero.
The curvature of the connection is by definition the commutator

[∇x,∇y] = 2πi,

that is in physicists terms this pictures an U(1)-gauge field theory over R2

with a constant nonzero curvature.

5.3 From quantum algebras to Zariski struc-

tures

In the previous section we started with an existing construction of a series of
nonclassical Zariski structures and showed that, on the one hand, this series
approximates in some precise sense a classical albeit nonalgebraic structure
and, on the other hand, each of the Zariski structures has an adequate rep-
resentation by an appropriate noncommutative C∗-algebra. Here in contrast
we present a construction which for any of a wide variety of K-algebras A
produces in a canonical way a Zariski geometry Ṽ(A) so that A can be seen
as a (in general noncommutative) coordinate algebra of the structure Ṽ(A).
For commutative A the geometry Ṽ(A) is just the algebraic variety corre-
sponding to the coordinate algebra A, and for almost all noncommutative
algebras Ṽ(A) is a nonclassical (that is not definable in terms of the field K)
Zariski structure.

A few words on the different ways, here and in the section 5.1, of repre-
senting algebras A. Recall that the points of the structure PN associated to
A in section 5.1 correspond to irreducible modules of a specific commutative
subalgebra X of A, with X invariant under conjugation by invertible elements
of A. The conjugation then induces definable bijections on PN . In the present
section we assume that A has a large central subalgebra Z, which plays the
role of X and the irreducible Z-modules, seen as points, form a classical part
V of Ṽ(A), in fact V is simply MaxZ. In each point m of V we “insert” the
structure of the corresponding A-module Mm and so the universe of Ṽ(A) is
the union of all the modules. Note that by our assumptions all irreducible
modules are finite dimensional as K-vector spaces. Once we have finite-
dimensional modules M1 and M2 in our structure we can definably introduce
M1 ⊕ M2, M1 ⊗ M2 and eventually any finite dimensional module can be



5.3. FROM QUANTUM ALGEBRAS TO ZARISKI STRUCTURES 145

definably described in terms of irreducible ones. For this reason Ṽ(A) is in
fact definably equivalent to the category A-mod of all finite-dimensional A-
modules. We do not prove, neither do we use this fact, but it is conceptually
important point of the construction and an important link to category theory
approach to geometry. The fact that here A is a quantum algebra at roots of
unity is important to our construction and especially to the A-category rep-
resentation, and note that A of section 5.1 does not satisfy this assumption.

In more detail, we consider K-algebras A over an algebraically closed field
K. Our assumptions imply that a typical irreducible A-module is of finite
dimension over K.

We introduce the structure associated with A as a two-sorted structure
(Ṽ, K) where K is given with the usual field structure and Ṽ is the bundle
over an affine variety V of A-modules of a fixed finite K-dimension N. Again
by the assumptions the isomorphism types of N -dimensional A-modules are
determined by points in V. “Inserting” a module Mm of the corresponding
type in each point m of V we get

Ṽ =
∐
m∈V

Mm.

In fact, all the modules in our case are assumed to be irreducible but in a
more general treatment in [13] we only assume that Mm is irreducible for any
m belonging to an open subset of V.

Our language contains a function symbol Ui acting on each Mm (and so
on the sort Ṽ) for each generator Ui of the algebra A. We also have the
binary function symbol for the action of K by scalar multiplication on the
modules. Since Mm may be considered an A/AnnMm-module we have the
bundle of finite-dimensional algebras A/AnnMm, m ∈ V, represented in Ṽ.
In typical cases the intersection of all such annihilators is 0. As a consequence
of this, the algebra A is faithfully represented by its action on the bundle
of modules. This is one more reason to believe that our structure represents
the category of all finite dimensional A-modules.

We write down our description of Ṽ as the set of first-order axioms
Th(A-mod).

We prove two main theorems.

Theorem A ( 5.3.5 and 5.3.10) The theory Th(A-mod) is categorical in
uncountable cardinals and model complete.
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Theorem B (5.3.11) Ṽ is a Zariski geometry in both sorts.

Theorem A is rather easy to prove, and in fact the proof uses not all of
the assumptions on A we assumed. Yet despite the apparent simplicity of
the construction, for certain A, Ṽ is not definable in an algebraically closed
field, that is Ṽ(A) is not classical (Proposition 5.3.7).

Theorem B requires much more work, mainly the analysis of definable
sets. This is due to the fact that the theory of Ṽ, unlike the case of Zariski
geometries coming from algebraic geometry, does not have quantifier elimina-
tion in the natural algebraic language. We hope that this technical analysis
will be instrumental in practical applications to noncommutative geometry.

5.3.1 Quantum algebras at roots of unity and associ-
ated structures

The assumptions on A which allow us to carry out all the steps of the con-
struction are listed below. There is a good chance that every known quan-
tum algebra at roots of unity satisfies these assumptions, or a modified
version of these which still is sufficient for our construction. Note that there
is no definition of quantum algebras at roots of unity, only a list of examples
under the accepted common title. We give examples of a few such algebras
satisfying our assumptions and invite the reader to check if the assumptions
below cover all the cases of quantum algebras at roots of unity.

We fix until the end of the section a K-algebra A, satisfying the following
Assumptions.

1. We assume that K is an algebraically closed field and A is an associa-
tive unital affine K-algebra with generators U1, . . . ,Ud and defining
relations with parameters in a finite C ⊂ K. We also assume that A is
a finite dimensional module over its central subalgebra Z.

2. Z is a unital finitely generated commutative K-algebra without zero
divisors, so MaxZ, the space of maximal ideals of Z, can be identified
with the K-points of an irreducible affine algebraic variety V over C.
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3. There is a positive integer N such that to every m ∈ MaxZ we can
put in corresponds with m an A-module Mm of dimension N over K
with the property that the maximal ideal m annihilates Mm.

The isomorphism type of the module Mm is determined uniformly by a
solution to a system of polynomial equations PA in variables tijk ∈ K
and m ∈ V such that:

for every m ∈ V there exists t = {tijk : i ≤ d, j, k ≤ N} satisfying
PA(t,m) = 0 and for each such t there is a basis e(1), . . . , e(N) of the
K-vector space on Mm with

∧

i≤d, j≤N
Ui e(j) =

N∑

k=1

tijke(k).

We call any such basis e(1), . . . , e(N) canonical.

4. There is a finite group Γ and a map g : V × Γ → GLN(K) such that,
for each γ ∈ Γ, the map g(·, γ) : V → GLN(K) is rational C-definable
(defined on an open subset of V) and, for any m ∈ V,

Domm, the domain of definition of the map g(m, ·) : Γ → GLN(K), is
a subgroup of Γ,

g(m, ·) is an injective homomorphism on its domain,

and for any two canonical bases e(1), . . . , e(N) and e′(1), . . . , e′(N) of
Mm there is λ ∈ K∗ and γ ∈ Domm such that

e′(i) = λ
∑

1≤j≤N
gij(m, γ)e(j), i = 1, . . . , N.

We denote

Γm := g(m,Domm).

Remark 5.3.1 The correspondence m 7→Mm between points in V and the
isomorphism types of modules is bijective by the assumption 2. Indeed, for
distinct m1,m2 ∈ MaxZ the modules Mm1 and Mm2 are not isomorphic, for
otherwise the module will be annihilated by Z.
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The associated structure

Recall that V(A) or simply V stands for the K-points of the algebraic variety
MaxZ. By assumption 5.3.1.1 this can be viewed as the set of A-modules
Mm, m ∈ Z.

Consider the set Ṽ as the disjoint union

Ṽ =
∐
m∈V

Mm.

We also pick up arbitrarily for eachm ∈ V a canonical basis e = {e(1), . . . , e(N)}
in Mm and all the other canonical bases conjugated to e by Γm. We denote
the set of bases for each m ∈ V as

Em := Γme = {(e′(1), . . . , e′(N)) : e′(i) =
∑

1≤j≤N
γije(j), γ ∈ Γm}.

Consider, along with the sort Ṽ also the field sort K, the sort V identified
with the corresponding affine subvariety V ⊆Kk, some k, and the projection
map

π : x 7→ m if x ∈Mm from Ṽ to V.

We assume the full language of Ṽ contains:

1. the ternary relation S(x, y, z) which holds if and only if there is m ∈ V
such that x, y, z ∈Mm and x+ y = z in the module;

2. the ternary relation a · x = y which for a ∈ K and x, y ∈ Mm is
interpreted as the multiplication by the scalar a in the module Mm;

3. the binary relations Uix = y, (i = 1, . . . , d) which for x, y ∈ Mm are
interpreted as the actions by the corresponding operators in the module
Mm;

4. the relations E⊆V × ṼN with E(m, e) interpreted as e ∈ Em.
The weak language is the sublanguage of the full one which includes 1-3

above only.

Finally, denote Ṽ the 3-sorted structure (Ṽ,V, K) described above, with
V endowed with the usual Zariski language as the algebraic variety.
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Remark 5.3.2 1.Notice that the sorts V and K are bi-interpretable over C.
2. The map g : V× Γ → GLN(K) being rational is definable in the weak

language of Ṽ.

Now we introduce the first order theory Th(A-mod) describing (Ṽ,V, K).
It consists of axioms:

Ax 1. K is an algebraically closed field of characteristic p and V is the Zariski
structure on the K-points of the variety MaxZ.

Ax 2. For each m ∈ V the action of scalars of K and operators U1, . . . ,Ud

defines on π−1(m) the structure of an A-module of dimension N.

Ax 3. Assumption 5.3.1.3 holds for the given PA.

Ax 4. For the g : V× Γ → GLN(K) given by the assumption 5.3.1.4, for any
e, e′ ∈ Em there exists γ ∈ Γ such that

e′(i) =
∑

1≤j≤N
gij(m, γ)e(j), i = 1, . . . , N.

Moreover, Em is an orbit under the action of Γm.

Remark 5.3.3 Note that if Mm is irreducible then associated to a particular
collection of coefficients tkij there is a unique (up to scalar multiplication)
canonical base for Mm (as in 2.1.3). It follows that the only possible auto-
morphisms of Ṽ which fix all of F are induced by multiplication by scalars
in each module (the scalars do not have to be the same for each fibre, and
typically are not). So the ’projective’ bundle

∐
m∈V(Mm/scalars) is internal

to the field K, but the original Ṽ is not.

5.3.2 Examples

We assume below that ε ∈ K is a primitive root of 1 of order `, and ` is not
divisible by the characteristic of K.

0. Let A be a commutative unital affine K-algebra. We may let Z = A
and so V = MaxZ = MaxA is the corresponding affine variety. Ideals of
m ∈ MaxA annihilate irreducible 1-dimensional (over K) A-modules Mm,
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and this gives us a trivial line bundle {Mm : m ∈ V}. Triviality means that
the bundle is definable in K in the sense of algebraic geometry and we have
a section, that is a rational map

s : V →
∐
m∈V

Mm.

s(m) can be considered a canonical basis of Mm, for every m ∈ V. Γm is the
unit group for all m.

In other words, for a commutative algebra, Ṽ is just the affine variety
MaxA equipped with a trivial linear bundle.

1. Let A be generated by U,V,U−1,V−1 satisfying the relations

UU−1 = 1 = VV−1, UV = εVU.

We denote this algebra T 2
ε (equivalent to Oε((K

×)2) in the notations of [26]).

The centre Z = Z of T 2
ε is the subalgebra generated by U`,U−`,V`,V−`.

The variety MaxZ is isomorphic to the 2-dimensional torus K∗ ×K∗.

Any irreducible T 2
ε -modules M is an K-vector space of dimension N = `.

It has a basis {e0, . . . , e`−1} of the space consisting of U-eigenvectors and
satisfying, for an eigenvalue µ of U and an eigenvalue ν of V,

Uei = µεiei

Vei =

{
νei+1, i < `− 1,
νe0, i = `− 1.

We also have a basis of V-eigenvectors {g0, . . . , g`−1} satisfying

gi = e0 + εie1 + · · ·+ εi(`−1)e`−1

and so
Vgi = νεigi

Ugi =

{
µgi+1, i < `− 1,
µg0, i = `− 1.

For µ` = a ∈ K∗ and ν` = b ∈ K∗, (U` − a), (V` − b) are generators of
Ann(M). The module is determined uniquely once the values of a and b are
given. So, V is isomorphic to the 2-dimensional torus K∗ ×K∗.
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The coefficients tijk in this example are determined by µ and ν, which
satisfy the polynomial equations µ` = a, ν` = b.

Γm = Γ is the fixed nilpotent group of order `3 generated by the matrices



0 1 0 . . . 0
0 0 1 . . . 0
. . . . . .
1 0 . . . 0


 and




1 0 0 . . . 0
0 ε 0 . . . 0
. . . . . .
0 0 . . . ε`−1




2. Similarly, the d-dimensional quantum torus T dε,θ generated by U1, . . . ,Ud,

U−1
1 . . . ,U−1

d satisfying

UiU
−1
i = 1, UiUj = εθijUjUi, 1 ≤ i, j ≤ d,

where θ is an antisymmetric integer matrix, g.c.d.{θij : 1 ≤ j ≤ d}) = 1 for
some i ≤ d.

There is a simple description of the bundle of irreducible modules all of
which are of the same dimension N = `.

T dε,θ satisfies all the assumptions.

3. A = Uε(sl2), the quantum universal enveloping algebra of SL2(K). It
is given by generators K,K−1, E, F satisfying the defining relations

KK−1 = 1, KEK−1 = ε2E, KFK−1 = ε−2F, EF − FE =
K −K−1

ε− ε−1
.

The centre Z of Uε(sl2) is generated by K`, E`, F ` and the element

C = FE +
Kε+K−1ε−1

(ε− ε−1)2
.

We use [26], Chapter III.2, to describe Ṽ. We assume ` ≥ 3 odd.
Let Z = Z and so V = MaxZ is an algebraic extension of degree ` of the

commutative affine algebra K`, K−`, E`, F `.
To every point m = (a, b, c, d) ∈ V corresponds the unique, up to isomor-

phism, module with a canonical basis e0, . . . , e`−1 satisfying

Kei = µε−2iei,

Fei =

{
ei+1, i < `− 1,
be0, i = `− 1,

Eei =

{
ρe`−1, i = 0,

(ρb+ (εi−ε−i)(µε1−i−µ−1εi−1)
(ε−ε−1)2

)ei−1, i > 0.
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where µ, ρ satisfy the polynomial equations

µ` = a, ρb+
µε+ µ−1ε−1

(ε− ε−1)2
= d (5.16)

and

ρ

`−1∏
i=1

(
ρb+

(εi − ε−i)(µε1−i − µ−1εi−1)

(ε− ε−1)2

)
= c. (5.17)

We may characterise V as

V = {(a, b, c, d) ∈ K4 : ∃ ρ, µ (5.16) and (5.17) hold }.
In fact, the map (a, b, c, d) 7→ (a, b, c) is a cover of the affine variety A3∩{a 6=
0} of order `.

In almost all points of V, except for the points of the form (1, 0, 0, d+)
and (−1, 0, 0, d−), the module is irreducible. In the exceptional cases, for
each i ∈ {0, . . . , ` − 1} we have exactly one `-dimensional module (denoted
Z(εi) or Z(−εi) in [26], depending on the sign) which satisfies the above
description with µ = εi or −εi. The Casimir invariant is

d+ =
εi+1 + ε−i−1

(ε− ε−1)2
or d− = −ε

i+1 + ε−i−1

(ε− ε−1)2

and the module, for i < `−1, has the unique proper irreducible submodule of
dimension `− i−1 spanned by e(i+1), . . . , e(`− 1). For i = `−1 the module
is irreducible. According to [26],III.2 all the irreducible modules of A have
been listed above, either as Mm or as submodules of Mm for the exceptional
m ∈ V.

To describe Γm consider two canonical bases e and e′ in Mm. If e′ is not
of the form λe, then necessarily e′0 = λek, for some k ≤ `− 1, b 6= 0 and

e′i =

{
λei+k, 0 ≤ i < `− k,
λbei+k, `− 1 ≥ i ≥ `− k,

If we put λ = λk = ν−k, for ν` = b, we get a finite order transformation. So
we can take Γ(a,b,c,d), for b 6= 0, to be the Abelian group of order `2 generated
by the matrices




0 ν−1 0 . . . 0
0 0 ν−1 . . . 0
. . . . . . ν−1

ν`−1 0 . . . 0


 and




ε 0 0 . . . 0
0 ε 0 . . . 0
. . . . . .
0 0 . . . ε



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where ν is defined by

ν` = b.

When b = 0 the group Γ(a,0,c,d) is just the cyclic group generated by the scalar
matrix with ε on the diagonal.

The isomorphism type of the module depends on 〈a, b, c, d〉 only. This
basis satisfies all the assumptions 1-4.

Uε(sl2) is one of the simplest examples of a quantum group. Quantum
groups, as all bi-algebras, have the following crucial property: the tensor
product M1 ⊗M2 of any two A-modules is well-defined and is an A-module.
So, the tensor product of two modules in Ṽ produces a Uε(sl2)-module of
dimension `2, definable in the structure, and which ’contains’ finitely many
modules in Ṽ. This defines a multivalued operation on V (or on the open
subset of V, in the second case).

More examples and the most general known cases Uε(g), for g a semisimple
complex Lie algebra, and Oε(G), the quantised group G, for G a connected
simply connected semisimple complex Lie group, are shown to have properties
1 and 2 for the central algebra Z generated by the corresponding U `

i , i =
1, . . . , d.

The rest of the assumptions are harder to check. We leave this open.

4. A = Oε(K
2), Manin’s quantum plane is given by generators U and

V and defining relations UV = εVU. The centre Z is again generated
by U` and V` and the maximal ideals of Z in this case are of the form
〈(U` − a), (V` − b)〉 with 〈a, b〉 ∈ K2.

This example, though very easy to understand algebraically, does not
quite fit into our construction. Namely, the assumption 3 is satisfied only in
generic points of V = MaxZ. But the main statement still hold true for this
case as well. We just have to construct Ṽ by glueing two Zariski spaces each
corresponding to a localisation of the algebra A.

To each maximal ideal with a 6= 0 we put in correspondence the module
of dimension ` given in a basis e0, . . . , e`−1 by

Uei = µεiei

Vei =

{
ei+1, i < `− 1,
be0, i = `− 1.
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for µ satisfying µ` = a.
To each maximal ideal with b 6= 0 we put in correspondence the module

of dimension ` given in a basis g0, . . . , g`−1 by

Vgi = νεigi

Ugi =

{
gi+1, i < `− 1,
ae0, i = `− 1.

for ν satisfying ν` = b.
When both a 6= 0 and b 6= 0 we identify the two representations of the

same module by choosing g (given e and ν) so that

gi = e0 + ν−1εie1 + · · ·+ ν−kεikek + · · ·+ ν−(`−1)εi(`−1)e`−1.

This induces a definable isomorphism between modules and defines a glueing
between Ṽa6=0 and Ṽb6=0. In fact Ṽa6=0 corresponds to the algebra given by
three generators U,U−1 and V with relations UV = εVU and UU−1 = 1,
a localisation of Oε(K

2), and Ṽb6=0 corresponds to the localisation by V−1.

Categoricity

Lemma 5.3.4 (i) Let Ṽ1 and Ṽ2 be two structures in the weak language
satisfying 5.3.1.1-5.3.1.3 and 5.3.1.1-5.3.1.3 with the same PA over the same
algebraically closed field K. Then the natural isomorphism i : V1 ∪ K →
V2 ∪K over C can be lifted to an isomorphism

i : Ṽ1 → Ṽ2.

(ii) Let Ṽ1 and Ṽ2 be two structures in the full language satisfying 5.3.1.1-
5.3.1.4 and 5.3.1.1-5.3.1.4 with the same PA over the same algebraically
closed field K. Then the natural isomorphism i : V1 ∪K → V2 ∪K over C
can be lifted to an isomorphism

i : Ṽ1 → Ṽ2.

Proof. We may assume that i is the identity on V and on the sort K.
The assumptions 5.3.1 and the description 5.3.1 imply that in both struc-

tures π−1(m), form ∈ V, has the structure of a module. Denote these π−1
1 (m)

and π−1
2 (m) in the first and second structure correspondingly.
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For each m ∈ V the modules π−1
1 (m) and π−1

2 (m) are isomorphic.
Indeed, using 5.3.1.3 choose tijk satisfying PA for m and find bases e in

π−1
1 (m) and e′ in π−1

2 (m) with the Ui’s represented by the matrices {tijk :
k, j = 1, . . . , N} in both modules. It follows that the map

im :
∑

zje(j) 7→
∑

zje
′(j), z1, . . . , zN ∈ K

is an isomorphism of the A-modules

im : π−1
1 (m) → π−1

2 (m).

Hence, the union

i =
⋃
m∈V

im, i : Ṽ1 → Ṽ2,

is an isomorphism. This proves (i).
In order to prove (ii) choose, using 5.3.1.4, e and e′ in Em in π−1

1 (m)
and π−1

2 (m) correspondingly. Then the map im by the same assumption also
preserves Em, and so i is an isomorphism in the full language. ¤

As an immediate corollary we get

Theorem 5.3.5 Th(A-mod) is categorical in uncountable cardinals both in
the full and the weak languages.

Remark 5.3.6 The above Lemma is a special case of the Lemma 5.3.9 in
the next subsection.

We now prove that despite the simplicity of the construction and the
proof of categoricity the structures obtained from algebras A in our list of
examples are nonclassical.

Assume for simplicity that charK = 0. The statements in this subsection
are in their strongest form when we choose the weak language for the struc-
tures.

Proposition 5.3.7 Ṽ(T nε ) is not definable in an algebraically closed field,
for n ≥ 2.
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Proof. We write A for T 2
ε . We consider the structure in the weak language.

Suppose towards the contradiction that Ṽ(A) is definable in some K ′.
Then K is also definable in this algebraically closed field. But, as is well-
known, the only infinite field definable in an algebraically closed field is the
field itself. So, K ′ = K and so we have to assume that Ṽ is definable in K.

Given W ∈ A, v ∈ Ṽ, x ∈ K and m ∈ V, denote Eig(W; v, x,m) the
statement:

v is an eigenvector of W in π−1(m) (or simply in Mm) with the eigenvalue
x.

For any given W the ternary relation Eig(W; v, x,m) is definable in Ṽ
by 5.3.1.

Let m ∈ V be such that µ is an U-eigenvalue and ν is a V-eigenvalue in
the module Mm. 〈µ`, ν`〉 determines the isomorphism type of Mm (see 5.3.2),
in fact m = 〈µ`, ν`〉.

Consider the definable set

Eig(U) = {v ∈ Ṽ : ∃µ,mEig(U; v, µ,m)}.
By our assumption and elimination of imaginaries in ACF this is in a defin-
able bijection with an algebraic subset S of Kn, some n, defined over some
finite C ′. We may assume that C ′ = C. Moreover the relations and functions
induced from Ṽ on Eig(U) are algebraic relations definable in K over C.

Consider µ and ν as variables running in K and let K̃ = K{µ, ν} be
the field of Puiseux series in variables µ, ν. Since S(K̃) as a structure is an
elementary extension of Eig(U) there is a tuple, say eµ, in S(K̃) which is an
U-eigenvector with the eigenvalue µ.

By definition the coordinates of eµ are Laurent series in the variables µ
1
k

and ν
1
k , for some positive integer k. Let K be the subfield of K̃ consisting of

all Laurent series in variables µ
1
k , ν

1
k , for the k above. Fix δ ∈ K such that

δk = ε.

The maps

ξ : t(µ
1
k , ν

1
k ) 7→ t(δµ

1
k , ν

1
k ) and ζ : t(µ

1
k , ν

1
k ) 7→ t(µ

1
k , δν

1
k ),

for t(µ
1
k , ν

1
k ) Laurent series in the corresponding variables, obviously are

automorphisms of K over K. In particular ξ maps µ to εµ and leaves ν fixed,
and ζ maps ν to εν and leaves µ fixed. Also note that the two automorphisms
commute and both are of order `k.
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Since U is K-definable, ξm(eµ) is a U-eigenvector with the eigenvalue
εmµ, for any integer m.

By the properties of A-modules Veµ is an U-eigenvector with the eigen-
value εµ, so there is α ∈ K̃

Veµ = αξ(eµ). (5.18)

But α is definable in terms of eµ, ξ(eµ) and C, so by elimination of quantifiers
α is a rational function of the coordinates of the elements, hence α ∈ K.

Since V is definable over K, we have for every automorphism γ of K,

γ(Ve) = Vγ(e).

So, (5.18) implies

Vξieµ = ξi(α)ξi+1(eµ), i = 0, 1, 2, . . .

and, since
Vk`eµ = νk`eµ,

applying V to both sides of (5.18) k`− 1 times we get

k`−1∏
i=0

ξi(α) = νk`. (5.19)

Now remember that

α = a0(ν
1
k ) · µ d

k · (1 + a1(ν
1
k )µ

1
k + a2(ν

1
k )µ

2
k + . . . )

where a0(ν
1
k ), a1(ν

1
k ), a2(ν

1
k ) . . . are Laurent series in ν

1
k and d an integer.

Substituting this into (5.19) we get

νk` = a0(ν
1
k )k`δ

k`(k`−1)
2 µd` · (1 + a′1(ν

1
k )µ

1
k + a′2(ν

1
k )µ

2
k + . . . )

It follows that d = 0 and a0(ν
1
k ) = a0 · ν, for some constant a0 ∈ K. That is

α = a0 · ν · (1 + a1(ν
1
k )µ

1
k + a2(ν

1
k )µ

2
k + . . . ) (5.20)

Now we use the fact that ζ(eµ) is an U eigenvector with the same eigen-
value µ, so by the same argument as above there is β ∈ K such that

ζ(eµ) = βeµ. (5.21)
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So,
ζ i+1(eµ) = ζ i(β)ζ i(eµ)

and taking into account that ζk` = 1 we get

k`−1∏
i=0

ζ i(β) = 1.

Again we analyse β as a Laurent series and represent it in the form

β = b0(µ
1
k ) · ν d

k · (1 + b1(µ
1
k )ν

1
k + b2(µ

1
k )ν

2
k + . . . )

where b0(µ
1
k ), b1(µ

1
k ), b2(µ

1
k ) . . . are Laurent series of µ

1
k and d is an integer.

By an argument similar to the above using (5.22) we get

β = b0 · (1 + b1(µ
1
k )ν

1
k + b2(µ

1
k )ν

2
k + . . . ) (5.22)

for some b0 ∈ K.
Finally we use the fact that ξ and ζ commute. Applying ζ to (5.18) we

get
Vζ(eµ) = ζ(α)ζξ(eµ) = ζ(α)ξζ(eµ) = ξ(β)ζ(α)ξ(eµ).

On the other hand
Vζ(eµ) = βVeµ = βαξ(eµ).

That is
α

ζ(α)
=
ξ(β)

β
.

Substituting (5.20) and (5.22) and dividing on both sides we get the equality

ε−1(1 + a′1(ν
1
k )µ

1
k + a′2(ν

1
k )µ

2
k + . . . ) = 1 + b′1(µ

1
k )ν

1
k + b′2(µ

1
k )ν

2
k + . . .

Compairing the constant terms on both sides we get the contradiction. This
proves the proposition in the case n = 2.

To end the proof we just notice that the structure Ṽ(T 2
ε ) is definable in

any of the other Ṽ(T nε ), maybe with a different root of unity. This follows
from the fact that the A-modules in all cases have similar description.¤

Corollary 5.3.8 The structure V(Uε(sl2)) (Example 5.3.2.3) is not definable
in an algebraically closed field.
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Indeed, consider

V0 = {(a, b, c, d) ∈ V : b 6= 0, c = 0} and Ṽ0 = π−1(V0)

with the relations induced from Ṽ.
Set U := K, V = F and consider the reduct of the structure Ṽ0 which

ignores the operators E and C. This structure is isomorphic to Ṽ(T 2
ε2) and

is definable in V(Uε(sl2)), so the latter is not definable in an algebraically
closed field.¤

5.3.3 Definable sets and Zariski properties

Canonical formulas

Given variables v1,1, . . . , v1,r1 , . . . , vs,1 . . . , vs,rs of the sort Ṽ, m1, . . . ,ms of
the sort V and variables x = {x1, . . . , xp} of the sort K, denote A0(e,m, t)
the formula

∧
i≤s, j≤N

E(ei,mi) & PA({tikn`}k≤d, `,n≤N ;mi) = 0 &
∧

k≤d,j≤N,i≤s
Ukei(j) =

∑

`≤N
tikj`ei(`).

Denote A(e,m, t, z, v) the formula

A0(e,m, t) &
∧

i≤s; j≤ri
vij =

∑

`≤N
zij`ei(`).

The formula of the form

∃ e1, . . . es∃ m1, . . . ,ms

∃ {tikjl : k ≤ d, i ≤ s, j, ` ≤ N}⊆K
∃ {zijl : i ≤ s, j ≤ ri, ` ≤ N}⊆K :

A(e,m, t, z, v)& R(m, t, x, z),

where R is a boolean combination of Zariski closed predicates in the algebraic
variety Vs × Kq over C, q = |t| + |x| + |z| (constructible predicate over
C) will be called a core ∃-formula with kernel R(m, t, x, z) over C.
The enumeration of variables vij will be referred to as the partitioning
enumeration.
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We also refer to this formula as ∃eR.

Comments (i) A core formula is determined by its kernel once the parti-
tion of variables (by enumeration) is fixed. The partition sets that π(ei(j)) =
π(ei(k)), for every i, j, k, and fixes the components of the subformulaA(e,m, t, z, v).

(ii) The relation A0(e,m, t) defines the functions

e 7→ (m, t),

that is given a canonical basis {ei(1), . . . , ei(N)} in Mmi
we can uniquely

determine mi and tikj`.
For the same reason A(e,m, t, z, v) defines the functions

(e, v) 7→ (m, t, z).

Lemma 5.3.9 Let

a = 〈a1,1, . . . , a1,r1 , . . . , as,1 . . . , as,rs〉 ∈ Ṽ × · · · × Ṽ, b = 〈b1, . . . , bn〉 ∈ Kn.

The complete type tp(a, b) of the tuple over C is determined by its subtype
ctp(a, b) over C consisting of core ∃-formulas.

Proof. We are going to prove that, given a′, b′ satisfying the same core type
ctp(a, b) there is an automorphism of any ℵ0-saturated model, α : (a, b) 7→
(a′, b′).

We assume that the enumeration of variables has been arranged so that
π(aij) = π(akn) if and only if i = k. Denote mi = π(aij).

Let ei be bases of modules π−1(mi), i = 1, . . . , s, j = 1, . . . , N, such that |=
A0(e,m, t) for some t = {tikj`} (see the notation in 5.3.3 and the assumption
5.3.1.3), in particular ei ∈ Emi

. By the assumption the correspondent systems
span Mmi

, so there exist cij` such that

∧
i≤s; j≤ri

aij =
∑

`≤N
cij`ei(`),

and let p = {Pi : i ∈ N} be the complete algebraic type of (m, t, b, c).
The type ctp(a, b) contains core formulas with kernels Pi, i = 1, 2, . . .

By assumptions and saturatedness we can find e′ m′, t′ and c′ satisfying
the correspondent relations for (a′, b′). In particular, the algebraic types of
(m, t, b, c) and (m′, t′, b′, c′) over C coincide and e′i ∈ Em′i . It follows that
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there is an automorphism α : K → K over C such that α : (m, t, b, c) 7→
(m′, t′, b′, c′).

Extend α to π−1(m1) ∪ . . . ∪ π−1(ms) by setting

α(
∑
j

zjei(j)) =
∑
j

α(zj)e
′
i(j) (5.23)

for any z1, . . . , zN ∈ K and i ∈ {1, . . . , s}. In particular α(aij) = a′ij and,
since α(Γmi

) = Γm′i , also α(Emi
) = Em′i .

Now, for each m ∈ V \ {m1, . . . ,ms} we construct the extension of α,
α+
m : π−1(m) → π−1(m′), for m′ = α(m), as in 5.3.4. Use 5.3.1.3 to choose
tijk satisfying PA for m and find bases e ∈ Em and e′ ∈ Em′ with the
Ui’s represented by the matrices {tijk : k, j = 1, . . . , N} in π−1(m) and by
{α(tijk) : k, j = 1, . . . , N} in π−1(m′). It follows that the map

α+
m :

∑
zje(j) 7→

∑
α(zj)e

′(j), z1, . . . , zN ∈ K

is an isomorphism of the A-modules

α+
m : π−1(m) → π−1(m′).

Hence, the union

α+ =
⋃
m∈V

α+
m

is an automorphism of Ṽ.¤

By the compactness theorem we immediately get from the lemma.

Corollary 5.3.10 Every formula in Ṽ with parameters in C⊆K is equiva-
lent to the disjunction of a finite collection of core formulas.

Theorem 5.3.11 For any algebra A satisfying the assumptions 5.3.1(1-4)
the structure Ṽ is a Zariski geometry, satisfying the presmoothness condition
provided the affine algebraic variety V is smooth.

Proof. Take sets defined by positive core formulas to be Zariski closed.
Analysis of these allows one to check the axioms of a Zariski structure. See
[13] for the detailed proof.¤
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Chapter 6

Analytic Zariski Geometries

The notion of an analytic Zariski structure was introduced in [PZ] by the
author and N.Peatfield in a form slightly different from the one presented
here. Analytic Zariski generalises the previously known notion of a Zariski
structure of chapters 3-5 mainly by dropping the requirement of Noetherian-
ity and weakening the assumptions on the projections of closed sets. Yet this
is not just a technical generalisation. It opens the doors for two completely
new classes of examples:

(i) structures which are constructed in terms of complex analytic functions
and relations;

(ii) “new stable structures” introduced by the Hrushovski construction
(see section B.2.2) which in many cases exhibit properties similar to those of
class (i).

It is also an attempt to treat the two classes of structures in a uniform way
revealing a common broad idea of what mathematicians mean by analytic.
Indeed, the word “analytic” is used to describe different things in the complex
and in the real context, as well as in the p-adic setting. More subtle but
similar phenomena are encountered in the context of noncommutative and
quantum geometry. We believe that the model-theoretic analysis undertaken
in this chapter and in several related papers is a step in this direction.

6.1 The definition and basic properties

We introduce analytic-Zariski structures as (non-Noetherian) topological struc-
tures with good dimension notion for all definable subsets, that is (DP), (FC)

163
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and (AF) hold in the same form as in section 3.1.2 but for wider family of
sets. We change the semi-projectivity condition (SP) to a more general form
consistent with its previous use. We also generalise (DU) and (EU) and add
an important assumption (AS), the analytic stratification of closed sets.

The logician may notice that the logic formalism here shifts from the
first-order context to that of infinitary languages, maybe even to abstract
elementary classes, although we do not elaborate on this.

6.1.1 Closed and projective sets

We assume our structure M to be a topological structure (of section 2.1).
Further on we assume that M has a good dimension notion.

To any nonempty projective S a non-negative integer called the dimen-
sion of S, dimS, is attached.

We assume (DP) and (SI) and strengthen, formally, (DU) to (CU):

(CU) (countable unions) If S =
⋃
i∈N Si, all projective, then dimS =

maxi∈N dimSi;

We replace (SP) by the weaker property:

(WP) (weak properness).
Given irreducible S ⊆cl U ⊆op Mn and F ⊆cl V ⊆op Mn+k with the

projection pr : Mn+k → Mn such that prF ⊆ S, dim prF = dimS, there
exists D ⊆op S such that D⊆prF.

Obviously, Noetherian Zariski structures satisfy (WP).

Exercise 6.1.1 Show that (CU) in the presence of (DCC) implies both (DU)
and (EU) of section 3.1.2.

We further postulate (AF) and (FC).
The following helps to understand the dimension of projective sets.

Lemma 6.1.2 Let P = prS ⊆ Mn, for S irreducible constructible, and
U ⊆op M

n with P ∩ U 6= ∅. Then

dimP ∩ U = dimP.
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Proof. We can write P∩U = prS ′ = P ′, where S ′ = S∩pr −1U constructible
irreducible, dimS ′ = dimS by (SI). By (FC), there is V ⊆op M

n such that
for all c ∈ V ∩ P,

dim pr −1(c) ∩ S = min
a∈P

dim pr −1(a) ∩ S = dimS − dimP.

Note that pr −1U ∩ pr −1V ∩ S 6= ∅, since S ir irreducible. Taking s ∈
pr −1U ∩ pr −1V ∩ S and c = pr s we get, using (FC) for S ′,

dim pr −1(c) ∩ S = min
a∈P ′

dim pr −1(a) ∩ S = dimS − dimP ′.

So, dimP ′ = dimP. ¤

Another useful general fact is easy to prove using (AF).

Exercise 6.1.3 Given an irreducible F ⊆cl U ⊆op M
k, dimF > 0, there is

i ≤ k such that for pri : (x1, . . . , xk) 7→ xi,

dim priF > 0.

6.1.2 Analytic subsets

Definition 6.1.4 A subset S, S ⊆cl U ⊆op M
n, is called analytic in U if

for every a ∈ S there is an open Va ⊆op U such that S ∩ Va is the union of
finitely many relatively closed irreducible subsets.

We postulate the following properties

(INT) (Intersections) If S1, S2 ⊆an U are irreducible then S1∩S2 is analytic
in U ;

(CMP) (Components) If S ⊆an U and a ∈ S then there is Sa ⊆an U, a finite
union of irreducible analytic subsets of U, and some S ′a⊆anU such that
a ∈ Sa \ S ′a and S = Sa ∪ S ′a;

Each of the irreducible subsets of Sa above is called an irreducible
component of S (containing a)
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(CC) (Countability of the number of components) Any S ⊆an U is a
union of at most countably many irreducible components.

Remark 6.1.5 It is immediate that an irreducible analytic subset is strongly
irreducible. Also it is easy to see that in a Noetherian Zariski structure
closed subsets of open sets are analytic. So the property (SI) postulated for
Noetherian Zariski structures holds in fact in analytic Zariski ones, although
in a more careful formulation.

Exercise 6.1.6 For S analytic and a ∈ prS, the fibre S(a,M) is analytic.

Lemma 6.1.7 If S ⊆an U is irreducible, V open, then S∩V is an irreducible
analytic subset of V and, if non-empty, dimS ∩ V = dimS.

Proof. Immediate by (SI).¤

Exercise 6.1.8 (i) ∅, any singleton and U are analytic in U ;

(ii) If S1, S2 ⊆an U then S1 ∪ S2 is analytic in U ;

(iii) If S1 ⊆an U1 and S2 ⊆an U2, then S1 × S2 is analytic in U1 × U2;

(iv) If S ⊆an U and V ⊆U is open then S ∩ V ⊆an V ;

(v) If S1, S2 ⊆an U then S1 ∩ S2 is analytic in U.

Definition 6.1.9 Given a subset S ⊆cl U ⊆op Mn we define the notion of
the analytic rank of S in U, arkU(S), which is a natural number satisfying

1. arkU(S) = 0 iff S = ∅;

2. arkU(S) ≤ k + 1 iff there is a set S ′ ⊆cl S such that arkU(S ′) ≤ k and
with the set S0 = S \ S ′ being analytic in U \ S ′.

Obviously, any nonempty analytic subset of U has analytic rank 1.
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Example 6.1.10 In [8] we have discussed the following notion of gener-
alised analytic subsets of [P1(C)]n and, more generally, of [P1(K)]n for K
algebraically closed complete valued field.

Let F ⊆C2 be a graph of an entire analytic function and F̄ its closure in
[P1(C)]2. It follows from Picar’s Theorem that
F̄ = F ∪ {∞} ×P1(C), in particular F̄ has analytic rank 2.

Generalised analytic sets are defined as the subsets of [P1(C)]n for all n,
obtained from classical (algebraic) Zariski closed subsets of [P1(C)]n and F̄
by applying the positive operations: Cartesian products, finite intersections,
unions and projections.

It has been proven in [8] (by a simple induction on the number of opera-
tion) that any generalised analytic set is of finite analytic rank.

The next assumptions guarantees that the class of analytic subsets ex-
plicitly determines the class of closed subsets in M.

(AS) [Analytic stratification] For any S ⊆cl U ⊆op Mn, arkUS is
defined and finite.

We also are going to consider the property

(PS) [Presmoothness] If S1, S2 ⊆an U ⊆op M
n both S1, S2 irreducible,

then for any irreducible component S0 of S1 ∩ S2

dimS0 ≥ dimS1 + dimS2 − dimU.

Definition 6.1.11 A topological structure M with good dimension satisfy-
ing axioms (INT)-(AS) will be called an analytic Zariski structure. We
also assume throuout that M is irreducible. An analytic Zariski structure
will be called presmooth if it has the presmoothness property (PS).

6.2 Compact analytic Zariski structures

We consider in this section the case of a compact M. Our aim is to prove
the following theorem stressing the fact that the notion of analytic Zariski
generalises the one considered in Chapter 3.
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Theorem 6.2.1 Let M = (M, C) be a compact analytic Zariski structure
and C0 be the subfamily of C consisting of subsets analytic in Mn, all n.
Then (M, C0) is a Noetherian Zariski structure.

This is an abstract analogue of Theorems 3.4.3 and 3.4.7 about complex
and rigid analytic manifolds (including the Chow Theorem). The proofs are
from [35].

Proof of the Theorem. Comparing the definitions, in order to prove the
theorem we need only to check the descending chain condition (DCC) for C0

and the fact that C0 is closed under projections (Proper Mapping Theorem).
This is proved in Lemmata below.¤

Lemma 6.2.2 Analytic subsets of Mn have only finitely many irreducible
components.

Proof. Suppose S ⊆an Mn has infinitely many components. Then by
(CMP), for any a ∈ S, we have a closed subset S ′a ⊆ S which does not
contain a and contains all but finitely many components of S.

Obviously, the family {S ′a : a ∈ S} is filtering. Thus by compactness
there must be a common point for all members of the family. Contradiction.
¤

Lemma 6.2.3 C0 satisfies (DCC).

Proof. By finiteness dimension stabilises in any descending C0-chain. By
Lemma 6.2.2 the chain stabilises.¤

Lemma 6.2.4 For any S ∈ C0 we have prS ∈ C0.

Proof. We may assume that S is irreducible. Then prS is closed in Mm by
compactness and can not be represented as a nontrivial union R1∪R2 of two
closed subsets (consider inverse images of R1 and R2 in S). By definition,
prS is analytic in Mm. ¤
This finishes the proof of the theorem.¤

Now we concentrate on the proof of the Proper Mapping Theorem.



6.2. COMPACT ANALYTIC ZARISKI STRUCTURES 169

Lemma 6.2.5 Let V ⊆Mn be an open subset and

{T b : b ∈ B}

a definable family of analytic subsets T b ⊆an V. Then

T ∗ =
⋂

b∈B
T b ⊆an V.

Proof. Suppose a ∈ T ∗. Then since finite intersections are analytic again,
for any b1, . . . , bk ∈ B there are finitely many irreducible components of
T b1 ∩ · · · ∩ T bk which contains a. Let (T b1 ∩ · · · ∩ T bk)a be the union of the
components and choose b1, . . . , bk, depending on a, so that the number of the
components and the dimension of each of them are minimal possible. Then

(T b1 ∩ · · · ∩ T bk)a = (T b1 ∩ · · · ∩ T bk)a ∩ T ∗.

We can now find, by (CMP), a subset (T b1 ∩ · · · ∩ T bk)′a, closed in V , which
does not contain a and such that

(T b1 ∩ · · · ∩ T bk)a ∪ (T b1 ∩ · · · ∩ T bk)′a = (T b1 ∩ · · · ∩ T bk).

Let

Va = V \ (T b1 ∩ · · · ∩ T bk)′a.
Then

T ∗ ∩ Va = (T b1 ∩ · · · ∩ T bk)a ∩ Va,
that is T ∗ in the neighbourhood is equal to a finite union of irreducible sets.

If a 6∈ T ∗ then there is b ∈ B such that a 6∈ T b. Putting Va = V \ T b we
have a ∈ Va and clearly T ∗ ⊆ T b so that T ∗ ∩ Va = ∅, the empty union of
sets irreducible in Va.¤

Lemma 6.2.6 If S ⊆cl W (op M
n and C ⊆W is such that C is closed in

Mn, then C ∩ S is closed in Mn.

Proof. Say S = Sc∩W where Sc ⊆cl M
n. Then C∩S = C∩Sc∩W = C∩Sc

is closed in Mn.¤
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Lemma 6.2.7 Let S ⊆an W ⊆op M
n and C ⊆ S be such that C ⊆cl M

n.
Then there are S1, . . . , Sk such that each Si is closed and irreducible in W
and S ′ ⊆an U such that S =

⋃k
i=1 Si ∪ S ′ and C ∩ S ′ = ∅.

Proof. First note that for any a ∈ C we have a ∈ S, so by the analyticity of
S there is Sa, a finite union of sets irreducible in W , and S ′a ⊆an W such that
S = Sa ∪ S ′a and a 6∈ S ′a. Consider

⋂{S ′a|a ∈ S}. For any a ∈ C, a 6∈ S ′a and
so a 6∈ ⋂{S ′a|a ∈ S}. Thus C∩⋂{S ′a|a ∈ S} = ∅ i.e.

⋂{(C∩S ′a)|a ∈ S} = ∅.
Now since C ⊆ S and C ⊆cl M

n we have that C ∩ S ′a ⊆cl M
n, and then by

compactness we have that there must be an empty finite sub-intersection. Say
a1, . . . ak ∈ S are such that

⋂k
i=1(C ∩S ′ak

) = ∅ so that, writing S ′ =
⋂k
i=1 S

′
ak

,
we get C ∩ S ′ = ∅. Also, writing Si and S ′i for Sai

and S ′ai
respectively we

note S \ Si ⊆ S ′i and so:

S =
k⋃
i=1

Si ∪ (S \
k⋃
i=1

Si) =
k⋃
i=1

Si ∪
k⋂
i=1

(S \ Si)⊆

⊆
k⋃
i=1

Si ∪
k⋂
i=1

S ′i =
k⋃
i=1

Si ∪ S ′⊆S

And so we get equality throughout. Since each Si is a finite union of sets
irreducible in W this gives the result.¤

Let S ⊆an W ⊆op M
n and pr : Mn → Mm be the standard projection

map, with pr (W ) = U, pr (S)⊆U ⊆op⊆Mm. We say that the projection is
proper on S if for any irreducible component Si of S we have that the prSi
is closed in U and for any a ∈ prS we have that the fibre pr −1(a) ∩ S is
compact in Mn.

Theorem 6.2.8 (Proper mapping theorem) Given S ⊆an W ⊆op Mn

and pr : Mn → Mm a standard projection such that prS ⊆ U ⊆op Mm,
suppose pr is proper on S. Then prS is analytic in U .

Proof. Say a ∈ pr (S) and note that by properness Sa = pr −1(a)∩S ⊆cl M
n.

Also Sa ⊆ S and so by the Lemma there are sets, S1, . . . , Sk, irreducible in
W and S ′ ⊆an W such that Sa∩S ′ = ∅ and S =

⋃k
i=1 Si∪S ′. Now Sa∩S ′ =

pr −1(a)∩ S ′ = ∅ and so a 6∈ pr (S ′). So putting Ua = U \ pr (S ′) ⊆op M
m we

get a ∈ Ua. By properness each pr (Si) is closed in U , and since each Si is
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irreducible, each pr (Si) is also irreducible. For if it weren’t then there would
be some C ( pr (Si) with dim(C) = dim(pr (Si)). Then by (AF) we would
have:

dimSi = dim prSi + min
a∈prSi

(dim(pr −1(a) ∩ Si))
≤ dimC + min

a∈C
(dim(pr −1(a) ∩ Si))

≤ dim((C ×Mn−m) ∩ Si),
and since (C ×Mn−m) ∩ Si ( Si, this contradicts the irreducibility of Si.
Thus

pr (S) ∩ Ua = pr (
k⋃
i=1

Si ∪ S ′) ∩ (U \ pr (S ′))

= (
k⋃
i=1

pr (Si) ∪ pr (S ′)) ∩ (U \ pr (S ′))

=
k⋃
i=1

(pr (Si) ∩ Ua)

Which is a finite set of irreducibles, since closed projection of a strongly ir-
reducible set is strongly irreducible. Thus prS is analytic at a. ¤

6.3 Non-elementary model theory of analytic

Zariski structures

In contrast with the theory of Noetherian Zariski structures the model theory
of analytic Zariski structures is essentially non-elementary (non first-order).
This manifests itself, first of all, in the fact that we have to treat arbitrary
infinite intersections of closed sets which presumes at least some use of L∞,ω-
language rather than the first order one. Some of the properties, like (CC),
need even more powerful language, with the quantifier “there is uncountably
many v such that ...”

We are going to prove here a theorem which in effect states a non-
elementary quantifier elimination to the level of existential formulas, assum-
ing that our analytic Zariski structure M is of dimension 1. Presmoothness
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is not needed. This can be seen as an analogue of Theorem 3.2.1. Another
related result states that M is ω-stable in the sense of abstract elementary
classes, this is an analogue of Theorem 3.2.8. The reader can also see the
relevance of Hrushovski’s predimension arguments in this context (see sec-
tion B.2.2)).

Definition 6.3.1 Let M0 be a nonempty subset of M and C0 a subfamily of
C. We will say that (M0, C0) is a core substructure if

1. for each {〈x1, . . . , xn〉} ∈ C0 (a singleton), x1, . . . , xn ∈M0;

2. C0 satisfies (L1)-(L6) (section 2.1), and (L7) with a ∈Mk
0 ;

3. C0 satisfies (WP), (AF), (FC) and (AS);

4. for any C0-constructible S ⊆an U ⊆op M
n, every irreducible component

Si of S is C0-constructible;

5. for any nonempty C0-constructible U⊆M, U ∩M0 6= ∅.

Exercise 6.3.2 Given any countable N⊆M and C⊆C there exist countable
M0⊇N and C0⊇C such that (M0, C0) is a submodel.

We fix below a core substructure (M0, C0) with M0 and C0 countable.

Definition 6.3.3 For finite X⊆M we define the C0-predimension

δ(X) = min{dimS : ~X ∈ S, S ⊆an U ⊆op M
n, S is C0-constructible}

and dimension
∂(X) = min{δ(XY ) : Y ⊆M}.

For X⊆M finite, we say that X is self-sufficient and write X ≤ M, if
∂(X) = δ(X).

For infinite A⊆M we say A ≤M if for any finite X⊆A there is a finite
X⊆X ′⊆A such that X ′ ≤M.

We work now under assumption that dimM = 1.
Note that we then have

0 ≤ δ(Xy) ≤ δ(X) + 1, for any y ∈M,

since ~Xy ∈ S ×M.
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Proposition 6.3.4 Let P = prS, for some C0-constructible S ⊆an U ⊆op

Mn+k, pr : Mn+k →Mn. Then

dimP = max{∂(x) : x ∈ P (M)}. (6.1)

Moreover, this formula is true when S ⊆cl U ⊆op M
n+k.

Proof. We use induction on dimS.
We first note that by induction on arkUS, if (6.1) holds for all analytic

S of dimension less or equal to k then it holds for all closed S of dimension
less or equal to k.

The statement is obvious for dimS = 0 and so we assume that dimS > 0
and for all analytic S ′ of lower dimension the statement is true.

By (CU) and (CMP) we may assume that S is irreducible. Then by (AF)

dimP = dimS − dimS(c,M) (6.2)

for any c ∈ P (M) ∩ V (M) (such that S(c,M) is of minimal dimension) for
some open C0-constructible V.

Claim 1. It is enough to prove the statement of the proposition for the
projective set P ∩ V ′, for some C0-open V ′ ⊆op M

n.
Indeed,

P ∩ V ′ = pr(S ∩ pr −1V ′), S ∩ pr −1V ′ ⊆cl pr −1V ′ ∩ U ⊆op M
n+k.

And P \V ′ = pr(S∩T ), T = pr −1(Mn \V ′) ∈ C0. So, P \V ′ is the projection
of a proper analytic subset, of lower dimension. By induction, for x ∈ P \V ′,
∂(x) ≤ dimP \ V ′ ≤ dimP and hence, using 6.1.2,

dimP ∩ V ′ = max{∂(x) : x ∈ P ∩ V ′} ⇒ dimP = max{∂(x) : x ∈ P}.

Claim 2. The statement of the proposition holds if dimS(c,M) = 0 in
(6.2).

Proof. Given x ∈ P choose a tuple y ∈ Mk such that S(x_y) holds.
Then δ(x_y) ≤ dimS. So we have ∂(x) ≤ δ(x_y) ≤ dimS = dimP.

It remains to notice that there exists x ∈ P such that ∂(x) ≥ dimP.
Consider the C0-type

x ∈ P &{x /∈ R : dimR ∩ P < dimP and R is projective}.
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This is realised in M, since otherwise P =
⋃
R(P ∩R) which would contradict

(CU) because (M0, C0) is countable.
For such an x let y be a tuple inM such that δ(x_y) = ∂(x). By definition

there exist S ′ ⊆an U
′ ⊆op M

m such that dimS ′ = δ(x_y). Let P ′ = prS ′, the
projection intoMn. By our choice of x, dimP ′ ≥ dimP. But dimS ′ ≥ dimP ′.
Hence, ∂(x) ≥ dimP. Claim proved.

Claim 3. There is a C0-constructible R ⊆an S such that all the fibers
R(c,M) of the projection map R → prR are 0-dimensional and dim prR =
dimP.

Proof. We have by construction S(c,M)⊆Mk. Assuming dimS(c,M) >
0 on every open subset we show that there is a b ∈ M0 such that (up to the
order of coordinates) dimS(c,M) ∩ {b} ×Mk−1 < dimS(c,M), for all c ∈
P ∩V ′ 6= ∅, for some open V ′⊆V and dim prS(c,M)∩{b}×Mk−1 = dimP.
By induction on dimS this will prove the claim.

To find such a b choose a ∈ P ∩V and note that by 6.1.3, up to the order
of coordinates, dim pr1S(a,M) > 0, where pr1 : Mk → M is the projection
on the first coordinate.

Consider the projection prMn,1 : Mn+k → Mn+1 and the set prMn,1S. By
(AF) we have

dim prMn,1S = dimP + dim pr1S(a,M) = dimP + 1.

Using (AF) again for the projection pr1 : Mn+1 → M with the fibers
Mn × {b}, we get, for all b in some open subset of M,

1 ≥ dim pr1prMn,1S = dim prMn,1S − dim[prMn,1S] ∩ [Mn × {b}] =

= dimP + 1− dim[prMn,1S] ∩ [Mn × {b}].
Hence dim[prMn,1S] ∩ [Mn × {b}] ≥ dimP, for all such b, which means that
the projection of the set Sb = S ∩ (Mn×{b}×Mk−1) on Mn is of dimension
dimP, which finishes the proof if b ∈ M0. But dimSb = dimS − 1 for all
b ∈M ∩V ′, some C0-open V ′, so for any b ∈M0∩V ′. The latter is not empty
since (M0, C0) is a submodel. This proves the claim.

Claim 4. Given R satisfying Claim 3,

P \ prR⊆prS ′, for some S ′ ⊆cl S, dimS ′ < dimS.
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Proof. Consider the cartesian power

Mn+2k = {x_y_z : x ∈Mn, y ∈Mk, z ∈Mk}

and its C0-constructible subset

R&S := {x_y_z : x_z ∈ R & x_y ∈ S}.

Clearly R&S ⊆an W ⊆op M
n+2k, for an appropriate C0-constructible W.

Now notice that the fibers of the projection prxy : x_y_z 7→ x_y over
prxyR&S are 0-dimensional and so, for some irreducible component (R&S)0

of the analytic set R&S, dim prxy(R&S)0 = dimS. Since prxyR&S⊆S and
S irreducible, we get by (WP) D⊆prxyR&S for some D ⊆op S. Clearly

prR = pr prxyR&S⊇prD

and S ′ = S \D satisfies the requirement of the claim.

Now we complete the proof of the proposition: By Claims 2 and 3

dimP = max
x∈prR

∂(x).

By induction on dimS, using Claim 4, for all x ∈ P \ prR,

∂(x) ≤ dim prS ′ ≤ dimP.

The statement of the proposition follows. ¤

Recall the standard model-theoretic definition.

Definition 6.3.5 A L∞,ω(C0)-formula is constructed from the basic relations
and constants corresponding to sets and singletons of C0 using the following
rules:

(i) for any collection of L∞,ω(C0)-formulas ψα(x1, . . . , xn) (the only free
variables), α ∈ I, the formulas

∧
α

ψα(x1, . . . , xn) and
∨
α

ψα(x1, . . . , xn)

are L∞,ω(C0)-formulas;
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(ii) for any L∞,ω(C0)-formula ψα(x1, . . . , xn),

¬ψα(x1, . . . , xn), ∃xn ψα(x1, . . . , xn) and ∀xn ψα(x1, . . . , xn)

are L∞,ω(C0)-formulas.

Given 〈a1, . . . , an〉 ∈ Mn, an L∞,ω(C0)-type is the set of all L∞,ω(C0)-
formulas in variables x1, . . . , xn which hold in M for xi = ai.

Definition 6.3.6 For a ∈Mn, the projective type of a over M is

{P (x) : a ∈ P, P is a projective set over C0}∪

∪{¬P (x) : a /∈ P, P is a projective set over C0}.

Lemma 6.3.7 Suppose X ≤ M, X ′ ≤ M and the (first-order) quantifier-
free C0-type of X is equal to that of X ′. Then the L∞,ω(C0)-types of X and
X ′ are equal.

Proof. We are going to construct a back-and-forth system for X and X ′

(see A.4.23.
Let SX ⊆an V ⊆op M

n, SX irreducible, all C0-constructible, and such that
X ∈ SX(M) and dimSX = δ(X).

Claim 1. The quantifier-free C0-type of X (and X ′) is determined by
formulas equivalent to SX ∩ V ′, for V ′ open such that X ∈ V ′(M).

Proof. Use the stratification of closed sets (AS) to choose C0-constructible
S ⊆cl U ⊆op M

n such that X ∈ S and arkUS is minimal. Obviously then
arkUS = 0, that is S ⊆an U ⊆op M

n. Now S can be decomposed into irre-
ducible components, so we may choose S to be irreducible. Among all such
S choose one which is of minimal possible dimension. Obviously dimS =
dimSX , that is we may assume that S = SX . Now clearly any constructible
set S ′ ⊆cl U

′ ⊆op M
n containing X must satisfy dimS ′ ∩ SX ≥ dimSX , and

this condition is also sufficient for X ∈ S ′.

Let y be an element of M. We want to find a finite Y containing y and
an Y ′ such that the quantifier-free type of XY is equal to that of X ′Y ′ and
both are self-sufficient in M. This, of course, extends the partial isomorphism
X → X ′ to XY → X ′Y ′ and will prove the lemma.
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We choose Y to be a minimal set containing y and such that δ(XY ) is
also minimal, that is

1 + δ(X) ≥ δ(Xy) ≥ δ(XY ) = ∂(XY )

and XY ≤M.
We have two cases: δ(XY ) = ∂(X) + 1 and δ(XY ) = ∂(X). In the

first case Y = {y}. By Claim 1 the quantifier-free C0-type rXy of Xy is
determined by the formulas of the form (SX ×M) \ T, T ⊆ clM

n+1, T ∈ C0,
dimT < dim(SX ×M).

Consider

rXy(X
′,M) = {z ∈M : X ′z ∈ (SX ×M) \ T, dimT < dimSX , all T}.

We claim that rXy(X
′,M) 6= ∅. Indeed, otherwise M is the union of

countably many sets of the form T (X ′,M). But the fibers T (X ′,M) of T
are of dimension 0 (since otherwise dimT = dimSX + 1, contradicting the
definition of the T ). This is impossible, by (CU).

Now we choose y′ ∈ rXy(X ′,M) and this is as required.
In the second case, by definition, there is an irreducible R ⊆an U ⊆op

Mn+k, n = |X|, k = |Y |, such that XY ∈ R(M) and dimR = δ(XY ) =
∂(X). We may assume U⊆V ×Mk.

Let P = prR, the projection into Mn. Then dimP ≤ dimR. But also
dimP ≥ ∂(X), by 6.3.4. Hence, dimR = dimP. On the other hand, P ⊆SX
and dimSX = δ(X) = dimP. By axiom (WP) we have SX ∩V ′⊆P for some
C0-constructible open V ′.

Hence X ′ ∈ SX ∩ V ′ ⊆ P (M), for P the projection of an irreducible
analytic set R in the C0-type of XY. By Claim 1 the quantifier-free C0-type
of XY is of the form

rXY = {R \ T : T ⊆cl R, dimT < dimR}.
Consider

rXY (X ′,M) = {Z ∈Mk : X ′Z ∈ R \ T, T ⊆cl R, dimT < dimR}.
We claim again that rXY (X ′,M) 6= ∅.
Otherwise the set R(X ′,M) = {X ′Z : R(X ′Z)} is the union of countably

many subsets of the form T (X ′,M). But dimT (X ′,M) < dimR(X ′,M) as
above, by (AF).

Again, an Y ′ ∈ rXY (X ′,M) is as required.¤
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Corollary 6.3.8 There is countably many L∞,ω(C0)-types of tuples X ≤M.

Indeed, any such type is determined uniquely by the choice of a C0-constructible
SX ⊆an U ⊆op M

n such that dimSX = ∂(X).

Lemma 6.3.9 Suppose, for finite X,X ′ ⊆M, the projective C0-types of X
and X ′ coincide. Then the L∞,ω(C0)-types of the tuples are equal.

Proof. Choose finite Y such that ∂(X) = δ(XY ). Then XY ≤ M. Let
XY ∈ S ⊆an U ⊆op M

n be C0-constructible and such that dimS is minimal
possible, that is dimS = δ(XY ). We may assume that S is irreducible.
Notice that for every proper closed C0-constructible T ⊆cl U, XY /∈ T by
dimension considerations.

By assumptions of the lemma X ′Y ′ ∈ S, for some Y ′ in M. We also have
X ′Y ′ /∈ T, for any T as above, since otherwise a projective formula would
imply that XY ′′ ∈ T for some Y ′′, contradicting that ∂(X) > dimT.

We also have δ(X ′Y ′) = dimS. But for no finite Z ′ it is possible that
δ(X ′Z ′) < dimS, for then again a projective formula will imply that δ(XZ) <
dimS, for some Z.

It follows that X ′Y ′ ≤ M and the quantifier-free types of XY and X ′Y ′

coincide, hence the L∞,ω(C0)-types are equal, by 6.3.7.¤

Definition 6.3.10 Set, for finite X⊆M,

clC0(X) = {y ∈M : ∂(Xy) = ∂(X)}.

We fix C0 and omit the subscript below.

Lemma 6.3.11 b ∈ cl(A), for ~A ∈Mn, if and only if b ∈ P ( ~A,M) for some

projective P ⊆Mn+1 such that P ( ~A,M) is at most countable. In particular,
cl(A) is countable for any finite A.

Proof. Let d = ∂(A) = δ(AV ), and δ(AV ) is minimal for all possible finite
V ⊆M. So by definition d = dimS0, some analytic irreducible S0 such that
~AV ∈ S0 and S0 of minimal dimension. This corresponds to a C0-definable

relation S0(x, v), where x, v strings of variables of length n,m

First assume that b belongs to a countable P ( ~A,M). By definition

P (x, y) ≡ ∃wS(x, y, w),
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for some analytic S⊆Mn+1+k, x, y, w strings of variables of length n, 1 and
k and the fiber S( ~A, b,Mk) is nonempty. We also assume that P and S
are of minimal dimension, answering this description. By (FC), (AS) and

minimality we may choose S so that dimS( ~A, b,Mk) is minimal among all

the fibres S( ~A′, b′,Mk).
Consider the analytic set S] ⊆an U ⊆op M

n+m+1+k given by S0(x, v) &S(x, y, w).
By (AF), considering the projection of the set on (x, v)-coordinates,

dimS] ≤ dimS0 + dimS( ~A,M,Mk),

since S( ~A,M,Mk) is a fiber of the projection. Now we note that by count-

ability dimS( ~A,M,Mk) = dimS( ~A, b,Mk), so

dimS] ≤ dimS0 + dimS( ~A, b,Mk).

Now the projection prwS
] along w (corresponding to ∃wS]) has fibers of the

form S( ~X, y,Mk), so by (AF)

dim prwS
] ≤ dimS0 = d.

Projecting further along v we get dim prvprwS
] ≤ d, but ~Ab ∈ prvprwS

] so
by Proposition 6.3.4 ∂( ~Ab) ≤ d. The inverse inequality holds by definition,
so the equality holds. This proves that b ∈ cl(A).

Now, for the converse, we assume that b ∈ cl(A). So, ∂( ~Ab) = ∂( ~A) = d.

By definition there is a projective set P containing ~Ab, defined by the formula
∃wS(x, y, w) for some analytic S, dimS = d. Now ~A belongs to the projective
set pryP (defined by the formula ∃y∃wS(x, y, w)) so by Proposition 6.3.4
d ≤ dim pryP, but dim pryP ≤ dimP ≤ dimS = d. Hence all the dimensions
are equal and so, the dimension of the generic fiber is 0, but as above We may
assume without loss of generality that all fibers are of minimal dimension, so

dimS( ~A,M,Mk) = 0.

Hence, b belongs to a 0-dimensional set ∃wS( ~A, y, w), which is projective
and countable. ¤

Lemma 6.3.12 (i)
cl(∅) = cl(M0) = M0.
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(ii) Given finite X⊆M, y, z ∈M,

z ∈ cl(X, y) \ cl(X) ⇒ y ∈ cl(X, z).

(iii)
cl(cl(X)) = cl(X).

Proof. (i) Clearly M0⊆cl(∅), by definition.
We need to show the converse, that is if ∂(y) = 0, for y ∈ M, then

y ∈ M0. By definition ∂(y) = ∂(∅) = min{δ(Y ) : y ∈ Y ⊂ M} = 0. So,

y ∈ Y, ~Y ∈ S ⊆an U ⊆op M
n, dimS = 0. The irreducible components of S

are points (singletons), so {~Y } is one and must be in C0, since (M0, C0) is a
core substructure. By 6.3.1.1, y ∈M0.

(ii) Assuming the left-hand side ∂(Xyz) = ∂(Xy) > ∂(X), ∂(Xz) >
∂(X). By the definition of ∂ then,

∂(Xy) = ∂(X) + 1 = ∂(Xz),

so ∂(Xzy) = ∂(Xz), y ∈ cl(Xz).
(iii) Immediate by 6.3.11. ¤

Summarising the above we get.

Theorem 6.3.13 (i) Every L∞,ω(C0)-type realised in M is equivalent to a
projective type, that is a type consisting of existential (first-order) formulas
and the negations of existential formulas.

(ii) There are only countably many L∞,ω(C0)-types realised in M.
(iii) (M, cl) is a pregeometry satisfying the countable closure property in

the sense of sections B.1.1 and B.2.2.

Proof. (i) Immediate from 6.3.9.
(ii) By 6.3.8 there are only countably many types of finite tuples Z ≤M.

Let N ⊆ M0 be a countable subset of M such that any finite Z ≤ M is
L∞,ω(C0)-equivalent to some tuple in N. Every finite tuple X ⊂ M can be
extended to XY ≤M, so there is a L∞,ω(C0)-monomorphism XY → N. This
monomorphism identifies the L∞,ω(C0)-type of X with one of a tuple in N,
hence there are no more than countably many such types.

(iii) By 6.3.12. ¤
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Note the connection of (i) to the property of Hrushovski’s construction
discussed in section B.2.2 (EC). Indeed, if M where saturated (i) would im-
ply that every formula is equivalent to a Boolean combination of existential
formulas. This is weaker than the quantifier-elimination statement proved
in 3.2.1 for Noetherian Zariski structures but reflects adequately the more
complex nature of the notion of analytic Zariski.

(ii) effectively states the non-elementary ω-stability of the class M of
submodels of M treated as an abstract elementary class (see [19],[25] for the
general theory). The analogous statement for Noetherian Zariski structures
is Theorem 3.2.8. In addition to this we showed in [12] that the class M
is quasiminimal ω-homogeneous and, provided the class also satisfies the as-
sumption of excellence, M can be canonically extended so that in every un-
ountable cardinality κ there is a unique, up to isomorphism, analytic Zariski
C0-structure M′ extending M. This would be an analogue of Theorem 3.5.25
for Noetherian Zariski structures, if excellence ofM were known. It is tempt-
ing to conjecture that it holds for any analytic Zariski M, for large enough
C0. This is true for all known examples, see some of these in section 6.5.
A proper discussion of the assumption of excellence requires more model-
theoretic work and we skip it here. The paper [9] contains an analysis of this
condition for a particular class of analytic Zariski structures – universal cov-
ers of semi-Abelian varieties. We have shown that in this class the condition
is equivalent to certain arithmetic conjectures in the theory of semi-Abelian
varieties. See more discussion of this in section 6.5.

(iii) is an important model-theoretic property. The closure operator cl
is an analogue of algebraic closure (algebraic dependence) in Algebraic Ge-
ometry. The notion of the predimension δ and the related (combinatorial)
dimension ∂ is a prominent ingredient in Hrushovski’s construction (B.2.2
and also B.1.1) and can be seen as relating the more complex theory of
analytic dimension to the theory of dimension in algebraic geometry.

6.4 Specialisations in analytic Zariski struc-

tures

We work here in the natural language of topological structures given by (L)
and ∗M Â M will be an elementary extension in this language. We study
universal specialisations (definition 2.2.12) π : ∗M → M over an analytic
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Zariski structure M. Recall that for a ∈ Mn the notation Va stands for an
infinitesimal neighborhood of a, a ∈ Va ⊂ ∗Mn.

Exercise 6.4.1 3.5.13 and 3.5.14 are valid in the present context.

Lemma 6.4.2 Let P ⊆U ⊆op M
n be a projective subset with dimP < dimU.

Then, for every a ∈ P there is an α ∈ Va ∩ U(∗M) \ S(∗M).

Proof. By Lemma 2.2.21 we just need to show that ¬P (y) & U(y) is con-
sistent with Nbda(y). Suppose, towards a contradiction, it is not. Then

∗M ² ∀y (¬P (y) & U(y) → Q(y, c′)) ,

for some closed relation Q and c′ in ∗M such that a /∈ Q(M, c), for c = π(c′).
Then, for every b ∈ U(M) \ P (M), Q(b, c′) holds. Applying π we get
M ² Q(b, c). This proves that U \ P ⊆ Q(M, c) ∩ U. Calculating dimen-
sions we conclude that dimQ(M, c)∩U = dimU. But U is irreducible (since
Mn is), so U⊆Q(M, c). This contradicts the assumption that a /∈ Q(M, c).¤

Exercise 6.4.3 Let S ⊆ anU ⊆ opM
n be an analytic subset. Show that for

any a ∈ S, if dimS = 0 then

Va ∩ S(∗M) = {a}.

In the general case Va intersects only finitely many irreducible components of
S.

Definition 6.4.4 Given a′ ∈ Va we define an analytic locus of a′ to be S,
an analytic subset S ⊆an U ⊆op M

n such that a ∈ S, a′ ∈ S(∗M) and S is of
minimal possible dimension.

Lemma 6.4.5 We can choose an analytic locus to be irreducible.

Proof. Without loss of generality S has infinite number of irreducible com-
ponents. We have

S(M) = ∪i∈NSi(M)
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More generally consider

Sk(M) =
⋃

i≥k
Si(M),

which are analytic subsets of U by (CMP). We want to show that a′ ∈ Si(∗M)
for some i. Otherwise a′ ∈ Sk(∗M) for all k ∈ N. By definitions

a ∈
⋂

k∈N
Sk(M) = ∅.

The contradiction proving the lemma.¤
We prove a version of 3.6.2.

Proposition 6.4.6 Let D ⊆an U ⊆ opM
m be an irreducible set in a strongly

presmooth M and F ⊆an D × V be an irreducible covering of D descrete at
a ∈ D, V ⊆ opM

k. Then, for every a′ ∈ Va ∩D(∗M) there exists b′ ∈ Vb, such
that 〈a′, b′〉 ∈ F.
Proof. Consider the type over ∗M ,

p(y) = {F (a′, y)} ∪ Nbdb(y).

Claim. p is consistent.
Proof of Claim. For a closed Q(z, y) and c′ ∈ ∗Mn such that π(c′) = c
and ¬Q(c, b) holds we want to find b′ such that F (a′, b′) & ¬Q(c′, b′). Let
L ⊆an T ⊆op D ×Mn be an analytic locus of 〈a′, c′〉. Let

W = (T ×Mk) ∩ {〈x, z, y〉 : ¬Q(z, y)}.

This is an open subset of the irreducible set T ×Mk, in particular,

dimW = dimT + dimMk = dimD + dimMn + dimMk.

Now, consider an irreducible component S of

{〈x, z, y〉 ∈ W : F (x, y)&L(x, z)}

containing 〈a, c, b〉. By presmoothness,

dimS ≥ dim(F ×Mn) + dim(L×Mk)− dim(D ×Mn+k) = dimL
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(observe that dimF = dimD by (AF)). Also, for pr : 〈x, y, z〉 7→ 〈x, z〉,
dim prS = dimS and so dim prS = dimL. Hence by (WP) L = prS ∪ L0,
for some proper subset L0 ⊆cl L. But L is irreducible, so dimL0 < dimL.
We claim that 〈a′, c′〉 /∈ L0(

∗M). Indeed, it is immediate in case L0 is ana-
lytic, by the choice of L. But we may assume it is analytic since by axiom
(AS) L0 = L0

0 ∪ L′0, for some L′ ⊆an U and L0
0 ⊆an U \ L′0. Hence 〈a′, c′〉 ∈

prS(∗M). This means that there is b′ ∈ ∗M such that 〈a′, c′〉 ∈ W (∗M) and
F (a′, b′)&L(a′, c′) holds. This proves the Claim. By 2.2.21 the Proposition
follows.¤

Corollary 6.4.7 Assuming that M is strongly presmooth and D analytic,
any function f : D →M with closed irreducible graph is strongly continuous.

6.5 Examples

6.5.1 Covers of algebraic varieties

We consider the universal cover of C× as a topological structure and show
that this is analytic Zariski.

This is a structure with the universe V identified with the set of complex
numbers C and we are going to use the additive structure on it. We also
consider the usual exponentiation map

exp : V → C×

and want to take into our language and topology the usual Zariski topology
(of algebraic varieties) on (C×)n as well as exp as a continuous map.

A model-theoretic analysis of this structure was carried out in [11], [31],
[9] and in the DPhil thesis [29] of Lucy Smith. The latter work used [11]
to provide the description of the topology C on V and proves that (V, C) is
analytic Zariski. (It then addresses the issue of possible compacifications of
the structure).

Note that the whole analysis below up to Corollary 6.5.9 uses only the
first order theory of the structure (V, C), so one can wonder what changes if
we replace C and exp with its abstract analogues. The answer to this ques-
tion is known in the form of the categoricity theorem proved in [11] and [57]
(see some corrections in [31]): if ex : U → K× is a group homomorphism,
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U a divisible torsion-free group, K an algebraically closed field of character-
istic 0 and cardinality continuum and ker(ex) is cyclic, then the structure
is isomorphic to the structure (V, C) on the complex numbers. More gener-
ally, any two covers of 1-tori over algebraically closed fields of characteristic
0 of the same uncountable cardinality and with cyclic kernels are isomorphic.

We follow [29] pp.17-25 with modifications and omission of some technical
details.

The base of the PQF-topology (positive quantifier-free) on V and its
cartesian powers V n is, in short, the family of subsets of V n defined by PQF-
formulae.

Definition 6.5.1 A PQF-closed set is defined as a finite union of sets of the
form

L ∩m · lnW (6.3)

where W ⊆ (C×)n an algebraic subvariety and L is a Q-linear subspace
of V n, that is defined by equations of the form m1x1 + . . . + mnxn = a,
mi ∈ Z, a ∈ V.

Slightly rephrasing the quantifier-elimination statement proved in [9] Corol-
lary 2 of section 3, we have

Lemma 6.5.2 (i) Projection of a PQF-closed set is PQF-constructible, that
is a boolean combination of PQF-closed sets.

(ii) The image of a constructible set under exponentiation is a Zariski-
constructible (algebraic) subset of (C×)n. The image of the set of the form
(6.3) is Zariski closed.

The PQFω-topology is given by closed basic sets of the form

∪a∈I(S + a)

where S is of the form (6.3) and I a subset of (ker exp)n.
We define C to be the family of all PQFω-closed sets.

Corollary 6.5.3 C satisfies (L).

We assign dimension to a closed set of the form (6.3)

dimL ∩m · lnW := dim exp (L ∩m · lnW ) .
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using the fact that the object on the right hand side is an algebraic variety.
We extend this to an arbitrary closed set assuming (CU), that is that the di-
mension of a countable union is the maximum dimension of its members.This
immediately gives (DP). Using 6.5.2 we also get (WP).

For a variety W ⊆(C×)n consider the system of its roots

W
1
m = {〈x1, . . . , xn〉 ∈ (C×)n : 〈xm1 , . . . , xmn 〉 ∈ W}.

Let dW (m) be the number of irreducible components of W
1
m . We say that the

sequence W
1
m , m ∈ N, stops branching if the sequence dW (m) is eventually

constant.
Obviously, in case W is a singleton, W = {〈w1, . . . , wn〉} ⊆ (C×)n, the

sequence W
1
m does not stop branching as dW (m) = mn. This is the simplest

case when W is contained in a coset of a torus, namely given by the equations∧
i xi = 1. Similarly, if W is contained in a coset of an irreducible torus given

by k independent equations of the form

xli11 · . . . · xlinn = 1

then dW (m) = mk so does not stop branching.

Fact ([11], Theorem 2, case n = 1 and its Corollary) The sequence W
1
m stops

branching if and only if W is not contained in a coset of a proper subtorus
of (C×)k.

Lemma 6.5.4 Any irreducible closed subset of V n is of the form (6.3), for
W not contained in a coset of a proper torus, m ∈ Z.

In case W is contained in a coset of a proper torus T, note that T = expL,
for some L a Q-linear subspace of V n. Also there is an obvious Q-linear
isomorphism σL : L→ V k, k = dimL, which induces a biregular isomorphism
σT : T → (C×)k. Now σT (W )⊆(C×)k is not contained in a coset of a proper

torus and so σT (W )
1
m stops branching.

Note that L is defined up to the shift by a ∈ (ker exp)n.

Proposition 6.5.5 Let W ⊆ (C×)n be an irreducible subvariety, T = expL

the minimal coset of a torus containing W and m is the level where σT (W
1
m )

stops branching. Let σT (W
1
m
i ) be an irreducible component of σT (W

1
m ). Then

L ∩mσ−1
T σT (W

1
m
i ) (6.4)



6.5. EXAMPLES 187

is an irreducible component of lnW. Moreover, any irreducible component of
lnW has this form for some choice of L, expL = T.

Remark 6.5.6 (i) The irreducible components of the form (6.4) for distinct
choices of L do not intersect.

(ii) There are finitely many irreducible components of the form (6.4) for
a fixed L and W.

Remark 6.5.7 Proposition 6.5.5 eventually provides a description of the
irreducible decomposition for any set of the form (6.3), so for any closed
set. Indeed, the irreducible components of the set L ∩m · lnW are among
irreducible components of lnX, for the algebraic variety X = exp(L ∩ m ·
lnW ).

Corollary 6.5.8 Any closed subset of V n is analytic in V n.

It is easy now to check that (SI), (INT), (CMP), (CC), (AS) and (PS) are
satisfied.

Corollary 6.5.9 The structure (V, C) is analytic Zariski one-dimensional
and presmooth.

An inquisitive reader will notice that the analysis above treats only formal
notion of analyticity on the cover C of C× but does not address the classical
one. In particular, is the formal analytic decomposition as described by 6.5.5
the same as the actual complex analytic one? In a private communication
F.Campana answered this question in positive, using a cohomological argu-
ment. M.Gavrilovich proved this and much more general statement in his
thesis (see [32], III.1.2) by a similar argument.

Now we look into yet another version of a cover structure which is proven
to be analytic Zariski, a cover of the one-dimensional algebraic torus
over an algebraically closed field of a positive characteristic.

Let (V,+) be a divisible torsion free abelian group and K an algebraically
closed field of a positive characteristic p. We assume that V and K are both
of the same uncountable cardinality. Under these assumptions it is easy to
construct a surjective homomorphism

ex : V → K×.
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The kernel of such a homomorphism must be a subgroup which is p-divisible
but not q-divisible for each q coprime with p. One can easily construct ex so
that

ker ex ∼= Z[
1

p
],

the additive group (which is also a ring) of rationals of the form m
pn , m, n ∈ Z,

n ≥ 0. In fact in this case it is convenient to view V and ker ex as Z[1
p
]-

modules.

In this new situation Lemma 6.5.2 is still true, with obvious alterations,
and we can use the definition 6.5.1 to introduce a topology and the family C
as above. The above Fact (right before 6.5.1) for K× is proved in [31]. Hence
the corresponding versions of 6.5.5 - 6.5.9 follow.

6.5.2 Hard examples

These are structures which, on the one hand, have been discovered and
studied with the use of Hrushovski’s model-theoretic construction (see sec-
tion B.2.2), and, on the other, conjecturally coincide with classical structures
playing a central role in mathematics. Some of the Zariski topology on these
structures can be guessed, but it is still not a definitive description of a
natural topology.

Pseudo-exponentiation

Recall the field with pseudo-exponentiation Kex = (K,+, ·, ex) of subsec-
tion B.2.3. Theorem B.2.1 states that there is a unique, up to isomorphism,
field with pseudo-exponentiation Kex = (K,+, ·, ex) satisfying certain ax-
ioms, of any given uncountable cardinality.

For the purposes of our discussion here we fix one, Kex, of cardinality
continuum.

Note also that categoricity implies stability, in the same sense as in The-
orem 6.3.13(ii) and Theorem B.2.2 confirms the property of analytic Zariski
structures proved in 6.3.13(i). And 6.3.13(iii) as well as quasi-minimality and
excellence are proven properties of Kex.

Now recall the main conjecture discussed in B.2.3:

Kex
∼= Cexp.
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In connection with the above we introduce the natural Zariski topol-
ogy on Cexp. A subset S⊆Cn will be in Cexp if S is a Boolean combination
of projective subsets of Cexp and S is closed in the classical metric topology
on Cn.

We hope that assuming the main conjecture it is possible to characterise
(syntactically) the subsets in Cexp, that is define the natural Zariski topology
on Kex without referring to the metric topology on C.

Finally we conjecture (in conjunction with the main conjecture): Cexp is
analytic Zariski with regards to the natural Zariski topology.

The apparent candidate for the notion of analytic subsets on the abstract
field Kex with pseudo-exponentiation is the family of sets defined by systems
of polynomial-exponential equations, that is equations of the form

p(x1, . . . , xn, e
x1 , . . . , exn , ee

x1 , . . . , ee
xn
, . . .) = 0,

for p a polynomial over C. But this obviously is not enough. Indeed, the
function

g(y1, y2) :=

{ ex(y1)−ex(y2)
y1−y2 if y1 6= y2,

ex(y1) otherwise

must be Zariski continuous (cf. 2.2.32), but its graph, although defined
by a quantifier-free formula, is not the zero set of a system of exponential
polynomials.

In accordance with 2.2.32, the above formula introduces the notion of the
derivative of the pseudo-exponentiation ex in Kex. The abstract axiomatisa-
tion of Kex can not distinguish between ex and ecx (provided c is chosen so
that both satisfy Schanuel’s conjecture). Interestingly, if an abstract pseudo-
exponentiation ex has a derivative ex′, then ex′(x) = c · ex(x), for some
constant c. Indeed, the graph of the function z = g(y1, y2) is the closure of

the graph of the function z = ex(y1)−ex(y2)
y1−y2 . The latter, and hence the former,

is invariant under the transformation of variables

y1 7→ y1 + t, y2 7→ y2 + t, z 7→ z · ex(t).

Hence the frontier, which is the graph of z = ex′(y1) = ex′(y2), is invariant
under the transformation. This means that

ex′(y + t) = ex′(y) · ex(t).

It follows that
ex′(t) = c · ex(t), for c = ex′(0).
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Similarly to pseudo-exponentiation one can consider the meromorphic
Weierstrass function C→ C,

pΩ(z) =
∑
ω∈Ω

1

(x− ω)2

over a given lattice Ω. The model theory of a “pseudo-Weierstrass function”
is less developed (see [27]), in particular, the analogue of Theorem B.2.1 is
not known, but expected.

An interesting structure definable in Kex (and similarly in Cexp) is the
field with raising to powers, we denote it KP . Here P is a subfield of
K (usually finitely generated). For x, y ∈ K and a ∈ P we can express the
relation of raising to power a ∈ P in terms of ex :

(y = xa) ≡ ∃v ∈ K ex v = x & ex av = y.

Obviously this is not a function but rather a “multi-valued function”.

Of course, the theory of KP depends on Schanuel’s conjecture, or rather
its consequence for raising to powers in P. An instance of this conjecture,
corresponding to the case when P is generated by one “generic” element, has
been proven by A.Wilkie (unpublished).

There is an important advantage of considering KP rather than Kex : it
is easier analysable, in particular its first order theory, unlike that of Kex,
does not interpret arithmetic. Moreover, the following is known.

Theorem 6.5.10 The first order theory of KP of characteristic zero is su-
perstable and has elimination of quantifiers to the level of Boolean combina-
tion of projective sets. Assuming Schanuel’s conjecture for raising to powers
P ⊆C, the theory CP coinsides with that of KP .

This is proved in a series of papers [55], [54], [10]. The analogue of
Theorem B.2.1 is quite straightforward from the known facts.

Nevertheless, the problem of identifying the abstract KP as an analytic
Zariski structure is open for all cases when P 6= Q.
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Other versions of two-sorted structures related to pseudo-exponentiation
are the algebraically closed fields with “real curves”. These are structures of
the form (K,+, ·, G), where (K,+, ·) is an algebraically closed field and G a
unary predicate for a subset of distinguished points.

Several variations of the structure have been studied; we present these in
a slightly different versions than in the original papers of B.Poizat [43].

(1)G is a divisible subgroup of the multiplicative groupK× ofK, obtained
by Hrushovski’s construction with the only condition that the predimension
of points in G is half of the predimension of K. Following B.Poizat [43] G is
called the green points subgroup.

(2) G is a subgroup of K× of the form G0 ·Γ, for G0 divisible, Γ an infinite
cyclic subgroup. G is obtained by the same modification of Hrushovski’s
construction as in section B.2.3, with the condition that the predimension
of points in G is half of the predimension of K. We call this G the emerald
points subgroup.

Theorem 6.5.11 (essentially B.Poizat) The first-order theories of the fields
with green and emerald points are superstable and have elimination of quan-
tifiers to the level of Boolean combination of projective sets.

The model theoretic dimension of the definable subgroup G

U -rank(G) = ω, U -rank(K) = ω · 2

in both structures.

In [56] it is shown that assuming the Schanuel conjecture we can alter-
natively obtain the field with green points by interpreting K as the complex
numbers and G as G0 ·Γ, where G0 is the “spiral” exp(1+ i)R := {exp t : t ∈
(1+ i)R} on the complex plane C and Γ = exp aQ, for some a ∈ C\ (1+ i)R.

The case of emerald points has a similar complex-real representation
(forthcoming paper by J.D. Caycedo Casallas and the author), with the same
G0 but Γ = aZ.

The “analytic Zariski status” of the both examples at present is not quite
clear even conjecturally but some nice properties of these as topological
structures have been established. The case of emerald points is especially
interesting as we can connect this structure to one of the central objects
of noncommutative geometry, the quantum torus T 2

θ which may be defined
graphically as the quotient-space R/L, where L is the subgroup Z+ θZ of R.
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Indeed, for a = 2πiθ the following is definable in the structure with emerald
points:

C×/G ∼= C/((1 + i)R+ 2πiZ+ 2πiθZ) ∼= R/(2πiZ+ 2πiθZ).

If we also combine the structure of emerald points with that of raising
to powers we get a quantum torus “with real multiplication”. Here “real
multiplication” is an endomorphism of the quantum torus in analogy with
complex multiplication on an elliptic curve. One can check that analogously
to the elliptic case C/((1+i)R+2πiZ+2πiθZ) has an endomorphism induced
by the multiplication x 7→ rx on C, r /∈ Z, if and only if θ is a real quadratic
irrational.



Appendix A

Basic Model Theory facts and
definitions

A.1 Languages and structures

The crucial feature of model theoretic approach to mathematics is the atten-
tion paid to the formalism in which one considers particular mathematical
structures. We start by reminding the standard terminology and notation.

Language: alphabet, terms, formulas.
The alphabet of a language L consists of, by definition, the following

symbols:
(i) relation symbols Pi, (i ∈ I), and constant symbols ck, (k ∈ K) with

some index sets I,K. Further, to each i ∈ I is assigned a positive integer ρi,
respectively, called the arity of the relation symbol Pi.

The symbols in (i) are called non-logical symbols and also primitives
and their choice determines L. In addition any language has the following
symbols:

(ii) l - the equality symbol;
(iii) v1, . . . , vn, . . . - the variables;
(iv) ∧, ∨, ¬ - the connectives;
(v) ∀ and ∃ - the quantifiers;
(vi) (, ), , - parentheses and comma.

Remark A.1.1 Usually an alphabet would also contain function (operation)
symbols. But this can be always replaced by a relation symbol. To say
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f(x̄) = y we may use the expression F (x̄, y), where F is a relation symbol of
a corresponding arity. A language which does not use function symbols, like
ours, is called a relational language.

Words of the alphabet of L constructed in a specific way are called L-
formulas:

Atomic L-formulas are the words of the form
P (τ1, . . . , τρ) for P a relation L-symbol (including l) of arity ρ and

τ1, . . . , τρ are variables or constant symbols.

We sometimes refer to an atomic formula ϕ of the form P (τ1, . . . , τρ)
as ϕ(vi1 , . . . , vin) to mark the fact that all the variables occurring among
τ1, . . . , τρ are in vi1 , . . . , vin .

An L-formula is defined by the following recursive definition:
(i) any atomic L-formula is an L-formula;
(ii) if ϕ is an L-formula then so is ¬ϕ;
(iii) if ϕ, ψ are L-formulas then so is (ϕ ∧ ψ);
(iv) if ϕ is an L-formula then so is ∃vϕ for any variable v;
(v) nothing else is an L-formula.

We define the complexity of an L-formula ϕ to be just the number
of occurrences of ∧, ¬ and ∃ in ϕ. It is obvious from the definition that an
atomic formula is of complexity 0 and that any formula of complexity l > 0 is
obtained by an application of (ii),(iii) or (iv) to formulas of lower complexity.

For an atomic formula ϕ(vi1 , . . . , vin) the distinguished variables are said
to be free in ϕ. The variables which are free in ϕ and ψ in (ii) and (iii) are,
by definition, also free in ¬ϕ and (ϕ ∧ ψ). The variable v in (iv) is called
bounded in ∃vϕ and the list of free variables for this formula is given by
the free variables of ϕ except v.

An L-formula with no free variables is called also an L-sentence.

We define a language L to be the set of all L-formulas. Thus |L| is the
cardinality of the set.

To give a meaning or interpretation of symbols of a language L one
introduces a notion of an L-structure. An L-structure A consists of
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(i) a non-empty set A, called a domain or universe of the L-structure;

(ii) an assignment of an element cA ∈ A to any constant symbol c of L.

Thus an L-structure is an object of the form

A =
〈
A; {PAi }i∈I ; {cAk }k∈K

〉
.

{PAi }i∈I and {cAk }k∈K are called the interpretations of the predicate
and constant symbols correspondingly.

We write A = Dom (A).

If A and B are both L-structures we say that A is isomorphic to B,
written A ∼= B, if there is a bijection π : Dom (A) → Dom (B) which
preserves corresponding relation and constant symbols, i.e. for any i ∈ I
and k ∈ K :

(i) ā ∈ PAi iff π(ā) ∈ PBi ;

(ii) π(cAk ) = cBk .
The map π is then called an isomorphism. If π is only assumed being

injective but still satisfies (i)-(ii), then it is called an embedding and can
be written as

π : A → B or A⊆πB.

Assigning truth values to L-formulas in an L-structure.

Suppose A is an L-structure with domain A, ϕ(v1, . . . , vn) an L-formula
with free variables v1, . . . , vn and ā = 〈a1, . . . , an〉 ∈ An. Given these data
we assign a truth value true, written A ² ϕ(ā), or false, A 2 ϕ(ā), by the
following rules:

(i) A ² P (a1, . . . , an) iff 〈a1, . . . , an〉 ∈ PAi ;

(ii) A ² ϕ1(ā) ∧ ϕ2(ā) iff A ² ϕ1(ā) and A ² ϕ2(ā);

(iii) A ² ¬ϕ(ā) iff A 2 ϕ(ā);

(iv) A ² ∃vnϕ(a1, . . . , an−1, vn) iff there is an an ∈ A such that
A ² ϕ(a1, . . . , an);

(v) and (vi) For ∨ and ∀ analogously to (ii) and (iv).
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Given an L-structure A and an L-formula ϕ(v1, . . . , vn) we can define the
set

ϕ(A) = {ā ∈ An : A ² ϕ(ā)}.
Sets of this form are called definable.

Since any subset of An can be viewed as an n-ary relation, ϕ(v̄) determines
also an L-definable relation. If some ϕ(A) coincides with a graph of a
function f : An−1 → A, we say then that f is an L-definable function.

Exercise A.1.2 (i) An embedding π : A → B of L-structures preserves
atomic L-formulas, i.e. for any atomic ϕ(v1, . . . , vn) for any ā ∈ An

(∗) A ² ϕ(ā) iff B ² ϕ(π(ā)).

(ii) An isomorphism π : A → B between L-structures preserves any L-
formula ϕ(v1, . . . , vn) (n ≥ 0), i.e. for any ā ∈ An

(∗) A ² ϕ(ā) iff B ² ϕ(π(ā)).

Corollary A.1.3 For definable subsets (relations)

π(ϕ(A)) = ϕ(B),

in particular, when π : A → A is an automorphism,

π(ϕ(A)) = ϕ(A).

The latter is very useful in checking non-definability of some subsets or
relations.

Exercise A.1.4 The multiplication is not definable in 〈R,+〉.
Agreement about notations. The proposition above about the properties
of isomorphic structures says that there is no harm in identifying elements
of A with its images under an isomorphism. Correspondingly, when speak-
ing about embedding π : A → B we identify A = DomA with its image
π(A)⊆B = DomB element-wise. And so, by default, A⊆B assumes A⊆B.

Given two L-structures A and B we say that A is elementarily equiv-
alent to B, written A ≡ B, if for any L-sentence ϕ

A ² ϕ iff B ² ϕ.
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A.2 The Compactness Theorem

Let Σ be a set of L-sentences. We write A ² Σ if, for any σ ∈ Σ, A ² σ.

An L-sentence σ is said to be a logical consequence of a finite Σ,
written Σ ² σ, if A ² Σ implies A ² σ for every L-structure A. For Σ infi-
nite, Σ ² σ means that there is a finite Σ0 ⊂ Σ such that Σ0 ² σ.

σ is called logically valid, written ² σ, if A ² σ for every L-structure
A.

A set Σ of L-sentences is said to be satisfiable if there is an L-structure
A such that A ² Σ. A is then called a model of Σ.

Σ is said to be finitely satisfiable (f.s.) if any finite subset of Σ is
satisfiable.

Σ is said to be complete if, for any L-sentence σ, σ ∈ Σ or ¬σ ∈ Σ.

We would need sometimes expand or reduce our language.

Let L be a language with non-logical symbols {Pi}i∈I∪{ck}k∈K and L′⊆L
with non-logical symbols {Pi}i∈I′ ∪ {ck}k∈K′ (I ′⊆I, K ′⊆K). Let

A = 〈A; {PAi }i∈I ; {cAk }k∈K〉
and

A′ = 〈A; {PAi }i∈I′ ; {cAk }k∈K′〉.
Under these conditions we call A′ the L′-reduct of A and, correspondingly,
A is an L-expansion of A′.

Remark A.2.1 Obviously, under the notations above for an L′-formula
ϕ(v1, . . . , vn) and a1, . . . , an ∈ A

A′ ² ϕ(a1, . . . , an) iff A ² ϕ(a1, . . . , an).

Theorem A.2.2 (Compactness Theorem) Any finitely satisfiable set of
L-sentences Σ is satisfiable. Moreover, Σ has a model of cardinality less or
equal to |L|, the cardinality of the language.
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This is usually proven by the method called Henkin’s Construction, produc-
ing a model of Σ, elements of which are constructed from constant symbols
of an expansion L] of L. The relation between these elements are described
by atomic L]-sentences which can be derived from Σ], a completion of Σ. Of
course, Σ] is not determined by Σ, but is found by applying the Zorn Lemma.
So, in general, this is not an effective construction.

An embedding of L structures π : A → B is called elementary if π
preserves any L-formula ϕ(v1, . . . , vn), i.e. for any a1, . . . , an ∈ DomA

A ² ϕ(a1, . . . , an) iff B ² ϕ(π(a1), . . . , π(an)). (A.1)

We write the fact of elementary embedding as

A 4 B.
It is often convenient to consider partial elementary embeddings π, that is
defined on D⊆DomA only. In this case the definition requires that (A.1)
holds for a1, . . . , an ∈ D only.

In this case we say π is an elementary monomorphism D → B.

We usually identify A = DomA with the subset π(A) of B = DomB.
Then π(a) = a for all a ∈ A and so A 4 B usually mean

A ² ϕ(a1, . . . , an) iff B ² ϕ(a1, . . . , an).

For an L-structure A let LA = L ∪ {ca : a ∈ A} be the expansion of the
language, A+ the natural expansion of A to LA assigning to ca the element
a. The diagram of A is

Diag(A) = {σ : σ an atomic LA-sentence or negation of
an atomic LA-sentence, such that A+ ² σ}.

The complete diagram of A is defined as

CDiag(A) = {σ : σ LA-sentence such that A+ |= σ}.
Theorem A.2.3 (Method of Diagrams) For an L structure B,

(i) there is an expansion B+ to the language LA such that B+ |= Diag(A)
if and only if A ⊆ B.

(ii) there is an expansion B+ to the language LA such that B+ |=
CDiag(A) if and only if A 4 B.



A.2. THE COMPACTNESS THEOREM 199

Proof. Indeed, by definitions and Lemma A.1.2, a → cB
+

a is an embedding
if and only if B+ |= Diag(A).

The elementary embedding case is straightforward by definition.¤

Corollary A.2.4 Given an L-structure A and a set of L-sentences T,
(i) the set T ∪Diag(A) is finitely satisfiable if and only if there is a model

B of T such that A⊆B.
(ii) the set T ∪ CDiag(A) is finitely satisfiable if and only if there is a

model B of T such that A 4 B.

Theorem A.2.5 (Upward Lowenheim-Skolem Theorem) For any in-
finite L-structure A and a cardinal κ ≥ max{|L|, ||A||} there is an L-structure
B of cardinality κ such that A 4 B.

Proof. Let M be a set of cardinality κ. Consider an extension LA,M of
language L obtained by adding to LA constant symbols ci for each i ∈ M.
Consider now the set of LA,M -sentences

Σ = CDiag(A) ∪ {¬ci l cj : i 6= j ∈M}.

It is easy to see that Σ is finitely satisfiable.
It follows from the compactness theorem that Σ has a model of cardi-

nality |LA,M |, which is equal to κ. Let B∗ be such a model. The L-reduct B
of B∗, by the method of diagrams, satisfies the requirement of the theorem. ¤

Corollary A.2.6 Let Σ be a set of L-sentences which has an infinite model.
Then for any cardinal κ ≥ |L| there is a model of Σ of cardinality κ.

Theorem A.2.7 (Tarski–Vaught test) Suppose A ⊆ B are L-structures
with domains A ⊆ B. Then A 4 B if and only if the following condition
holds:

for all L-formulas ϕ(v1, . . . , vn) and all a1, . . . , an−1 ∈ A, b ∈ B such that
B ² ϕ(a1, . . . , an−1, b) there is a ∈ A with B ² ϕ(a1, . . . , an−1, a)

Definition A.2.8 Let

A0⊆A1⊆ . . .⊆Ai⊆ . . . (A.2)
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be a sequence of L-structures, i ∈ N, forming a chain with respect to embed-
dings. Denote A∗ =

⋃
nAn the L-structure with:

the domain A∗ =
⋃
nAn,

predicates PA
∗

=
⋃
n P

An , for each predicate symbol P of L
and cA

∗
= cA0 , for each constant symbol from L.

By definition An⊆A∗, for each n.

Exercise A.2.9 Use the induction on complexity of formulas and the Tarski–
Vaught test to prove that, if in (A.2) for each n, An 4 An+1 that is, the
chain is elementary, then An 4 A∗, for each n.

A class C of L-structures is called axiomatizable if there is a set Σ of
L-sentences such that

A ∈ C iff A ² Σ.

We also write equivalently
C = Mod (Σ).

Σ is then called a set of axioms for C.
The theory of C, Th(C), is the set of L-sentences which hold in any

structure of the class C. Obviously, Σ⊆Th(C). One can also say that Σ is a
set of axioms for Th(C).

A formula of the form ∃v1 . . . ∃vmθ, where θ is a quantifier-free formula,
is called an existential formula (or an ∃-formula). The negation of an
existential formula is called a universal (∀-formula) formula.

Exercise A.2.10 Let φ1, . . . , φn be existential formulas. Prove that
(i) (φ1∨ · · · ∨φn) and (φ1∧ · · · ∧φn) are logically equivalent to existential

formulas;
(ii) (¬φ1 ∧ · · · ∧ ¬φn) and (¬φ1 ∨ · · · ∨ ¬φn) are logically equivalent to

universal formulas.

Exercise A.2.11 Suppose A⊆B and a1, . . . , an ∈ A.
(i) If A |= ϕ(a1, . . . , an), for an existential formula ϕ(v1, . . . , vn), then

B |= ϕ(a1, . . . , an).
(ii) If B |= ψ(a1, . . . , an), for an universal formula ψ(v1, . . . , vn), then

A |= ψ(a1, . . . , an).
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An axiomatizable class C is said to be ∀-axiomatizable (∃-axiomatizable)
if Σ can be chosen to consists of universal (existential) sentences only.

An L-formula is said to be positive if it is equivalent to a formula which
does not contain the negation ¬. A positively axiomatizable class is a
class axiomatizable by a set of positive axioms. Given a set of L-sentences
Σ, we denote Σ+ the subset of Σ consisting of positive sentences.

Exercise A.2.12 Let C be a positively axiomatizable class. Prove that if
A,B are L-structures, A ∈ C and there is a surjective homomorphism h :
A → B, then B ∈ C. That is C is closed under homomorphisms.

The following is one of the typical preservation theorems proved in the
1950th. The proof (see [52]) is quite intricate but uses no more than the
Compactness Theorem.

Theorem A.2.13 (R.Lyndon) Let C be an axiomatizable class. Then C
is positively axiomatizable if and only if it is closed under homomorphisms.

A.3 Existentially closed structures

Definition A.3.1 Let C be a class of L-structures and A ∈ C. We say that
A is existentially closed in C if for every quantifier-free L-formula ψ(v̄, w̄),
for any ā in A and any B⊇A, B ∈ C,

B ² ∃v̄ψ(v̄, ā) ⇒ A ² ∃v̄ψ(v̄, ā).

Exercise A.3.2 Algebraically closed fields are exactly the existentially closed
objects in the class of all fields.

Theorem A.3.3 Let T be a theory such that every model A of T is existen-
tially closed in the class of models of T. Then

A⊆B ⇒ A 4 B

for any two models A and B of T.
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Proof. Given A⊆B, models of T, first note that there is A′ < A such that
A⊆ B ⊆A′. Indeed, by A.2.4 it suffices to show that CDiag(A) ∪ Diag(B)
is finitely satisfiable. This amounts to checking that for any quantifier free
ψ(v̄, ā) with ā in A, the set CDiag(A) ∪ {∃v̄ψ(v̄, ā)} is satisfiable. But A+

is the model of the set by the assumption of the theorem.
Now we can go on repeating this construction to produce the chain

A0⊆B0⊆A1⊆B1⊆ . . .

such that

A = A0 4 A1 4 A2 4 . . .

and

B = B0 4 B1 4 B2 4 . . .

Consider

A∗ =
⋃
i

Ai =
⋃
i

Bi = B∗.

Then by the Exercise A.2.9 A ≺ A∗ Â B which implies A 4 B.¤

Definition A.3.4 A theory T satisfying the conclusion of the above Theo-
rem A.3.3 is said to be model complete.

Note that if T is model complete then the assumption of Theorem A.3.3
is satisfied, that is any model is existentially closed.

Theorem A.3.5 Any formula ϕ(v̄) in a model complete theory T is equiv-
alent to an ∃-formula ψ(v̄).

Note that model completeness of a theory is of a geometric significance
similarly to quantifier elimination. It says that in such a theory one doesn’t
have to deal with sets more complex than projective ones, that is definable
by ∃-formulas. A projection of an arbitrary Boolean combination of such
sets is just another projective set.

The condition on the existence of existentially closed models in a class
C is very simple. Call a class C inductive if the union of any ascending
(transfinite) chain of structures of C again belongs to C.
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Exercise A.3.6 Any A of an inductive class C can be embedded into an
existentially closed B ∈ C.

More recently it has been realised (by S.Shelah and E.Hrushovski first
of all) that it is useful to consider existential closedness in classes C with a
restricted notion of embeddings, write it A ≤ B, of structures. The above
statement A.3.6 still holds for classes (C,≤). The subclasses of existentially
closed structures might be quite complicated but under some natural condi-
tions have good properties, in particular the property that definable sets are
just Boolean combinations of projective ones. See section B.2.2 for a further
discussion of the notion.

A.4 Complete and categorical theories

We continue our discussion of axiomatizable classes, but now our interest is
mainly in those which are axiomatised by a complete set of axioms.

Definition A.4.1 A theory T is said to be categorical in power (cardi-
nality) κ (κ-categorical) if there is a model A of T of cardinality κ and any
model of T of this cardinality is isomorphic to A.

Note that the absolute categoricity of T, requiring that there is just a
unique, up to isomorphism, model of T, is not very useful in the first-order
context. Indeed, by the Löwenheim–Skolem Theorem, the unique model can
only be finite.

Theorem A.4.2 (R.Vaught) Let κ ≥ |L| and T be a κ-categorical L-
theory without finite models. Then T is complete.

Proof. Let σ be an L-sentence and A the unique, up to isomorphism, model
of T of cardinality κ. The either σ or ¬σ holds in A, let it be σ. Then
T ∪ {¬σ} does not have a model of cardinality κ, which by the Löwenheim-
Skolem theorems means T ∪{¬σ} does not have an infinite model, which by
our assumption means it is not satisfiable. It follows that T ² σ. ¤

So, categoricity in powers is a stronger form of completeness.
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Example A.4.3 Let K be a field and LK be the language with alphabet
{+, λk, 0}k∈K where + is a symbol of a binary function and λk symbols of
unary functions, 0 constant symbol. Define the theory of K-vector spaces
by the following well-known axioms:

∀v1∀v2∀v3 (v1 + v2) + v3 l v1 + (v2 + v3);
∀v1∀v2 v1 + v2 l v2 + v1;
∀v v + 0 l v;
∀v1∃v2 v1 + v2 l 0;
∀v1∀v2 λk(v1 + v2) l λk(v1) + λk(v2) an axiom for each k ∈ K;
∀v λ1(v) l v;
∀v λ0(v) l 0;
∀v λk1(λk2(v)) l λk1·k2(v) an axiom for each k1, k2 ∈ K;
∀v λk1(v) + λk2(v) l λk1+k2(v) an axiom for each k1, k2 ∈ K.

Let A be a model of the theory of K-vector spaces (that is a K-vector
space) of cardinality κ > |LK | = max{ℵ0, cardK}. Then the cardinality of A
is equal to the dimension of the vector space. It follows that, if B is another
model of VK of the same cardinality, then A ∼= B. Thus we have checked the
validity of the following statement.

Theorem A.4.4 The theory of K-vector spaces is κ-categorical for any κ >
cardK.

Example A.4.5 Let L be the language with one binary symbol < and DLO
be the theory of dense linear order with no end elements:

∀v1∀v2 (v1 < v2 → ¬ v2 < v1);
∀v1∀v2 (v1 < v2 ∨ v1 l v2 ∨ v2 < v1)
∀v1∀v2∀v3 (v1 < v2 ∧ v2 < v3) → v1 < v3;
∀v1∀v2 (v1 < v2 → ∃v3 (v1 < v3 ∧ v3 < v2));
∀v1∃v2∃v3 v1 < v2 ∧ v3 < v1.

Theorem A.4.6 (G.Cantor) Any two countable models of DLO are iso-
morphic. In other words DLO is ℵ0-categorical.

To prove that any two countable models of DLO are isomorphic we enumerate
the two ordered sets and then apply the famous back-and-forth construction
of a bijection preserving the orders. More details on the method of proof are
in A.4.21.
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Exercise A.4.7 Show that DLO is not κ-categorical for any κ > ℵ0.

Example A.4.8 The theory of algebraically closed fields of charac-
teristic p, ACFp, for p a prime number or 0, is given by the following axioms
in the language of fields Lfields with binary operations +, · and constant sym-
bols 0 and 1 :

Axioms of fields:
∀v1∀v2∀v3

(v1 + v2) + v3 l v1 + (v2 + v3)
(v1 · v2) · v3 l v1 · (v2 · v3)
v1 + v2 l v2 + v1

v1 · v2 l v2 · v1

(v1 + v2) · v3 l v1 · v3 + v2 · v3

v1 + 0 l v1

v1 · 1 l v1.

∀v1∃v2 v1 + v2 l 0
∀v1(¬v1 l 0 → ∃v2 v1 · v2 l 1).

Axiom stating that the field is of characteristic p > 0,

1 + · · ·+ 1︸ ︷︷ ︸
p

l 0.

To state that the field is of characteristic 0 one has to write down the
infinite list of axioms, one for each positive integer n :

¬ 1 + · · ·+ 1︸ ︷︷ ︸
n

l 0.

Solvability of polynomial equations axioms, one for each positive integer
n :

∀v1 . . . ∀vn∃v vn + v1 · vn−1 + · · ·+ vi · vi + · · ·+ vn l 0.

Remark A.4.9 It is easy to see that any quantifier-free formula in the lan-
guage Lfields can be replaced by an equivalent quantifier-free formula in the
language of LZar (see Example 1.2.3) and conversely. Moreover, positive for-
mulas correspond to positive formulas. So the two languages are essentially
equivalent.
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Recall that a transcendence basis of a field K is a maximal alge-
braically independent subset of K. The transcendence degree of a field
K is the cardinality of a basis of the field.

Steinitz Theorem If B1 is a basis of K1 and B2 a basis of K2, algebraically
closed fields of same characteristic, and π : B1 → B2 a bijection, then π can
be extended to an isomorphism between the fields.

In other words the isomorphism type of an algebraically closed field of
a given characteristic is determined by its transcendence degree. Also, the
transcendence degree of a field K is equal to the cardinality of the field
modulo ℵ0. In other words, for uncountable fields tr.d.K = cardK.

It follows that, if K1 and K2 are two models of ACFp of an uncountable
cardinality κ, then K1

∼= K2. Thus

Theorem A.4.10 ACFp is categorical in any uncountable power κ.

(More detail on this see in alater subsection).
It is also useful to consider the following simple examples.

Example A.4.11 (Free G-module) Let G be a group and LG the language
with unary function symbols g, each g ∈ G, only. The axioms of the theory
TG say that

(i) the functions g corresponding to each function symbol are invertible;
(ii) the composition g1g2 is equal to g if and only if the equality holds in

the group;
(iii) g(x) = x for an element x if and only if g = e, the identity of the

group.
Any model of TG is the union of non-intersecting free orbits of G, so the

theory is categorical in all infinite cardinalities κ greater than cardG.

Note, that when G is the trivial group, G = {e}, TG is in fact the trivial
theory in the trivial language containing only the equality.

A.4.1 Types in complete theories

Fix a language L. Henceforth T denotes a complete L-theory having an in-
finite model, say A. By the Lowenheim-Skolem downward Theorem we may
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assume A is of cardinality equal to that of L. Also, by definition, T = Th(A).

Definition A.4.12 An n-type p (in T ) is a set of formulas with n free
variables v̄ = (v1, . . . , vn), such that

(i) for all ϕ ∈ p, T |= ∃v̄ϕ(v̄);

(ii) if ϕ, ψ ∈ p, then (ϕ ∧ ψ) ∈ p.

Type p is called complete if also the following is satisfied:

(iii) for any ϕ ∈ Fn either ϕ ∈ p or ¬ϕ ∈ p.
Suppose ā ∈ An. Then we define the L-type of ā in A.

tpA(ā) = {ϕ ∈ Fn : A |= ϕ(ā)}.

Clearly, tpA(ā) is a complete n-type.

When A ⊆ B then tpA(a) and tpB(a) may be different. But it follows
immediately from definitions that

A 4 B implies tpA(a) = tpB(a).

We say that an n-type p is realised in A if there is ā ∈ An such that
p⊆tpA(ā).

If there is no such ā in A we say that p is omitted in A.

Exercise A.4.13 Given a set P = {pα : α < κ} of n-types p, a model A
of T and a cardinal κ ≥ |A|, there is B < A of cardinality κ such that all
types from P are realised in B.

Corollary A.4.14 For any n-type there is p′ ⊇ p which is a complete n-type.

Indeed, put p′ = tpB(ā) for ā in B realising p.

Remark A.4.15 If π : A → B is an isomorphism, ā ∈ An, b̄ ∈ Bn, and
π : ā 7→ b̄ then tpA(ā) = tpB(b̄).
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The statement that a given theory T in a language L allows quanti-
fier elimination means that for every L-formula ψ(v1, . . . , vn) with n free
variables there is a quantifier-free L-formula ϕ(v1, . . . , vn) such that

T |= ψ ↔ ϕ.

Below qftp(a/A) stands for the quantifier-free type (consisting of quantifier-
free formulas only) of a over A.

We are going to demonstrate in this subsection a method of proving
quantifier elimination. This method applies a basic algebraic analysis of
models of a given theory, and as a byproduct also produces useful algebraic
information.

Theorem A.4.16 (A.Tarski) ACFp is complete and allows quantifier elim-
ination in the language LZar.

Proof. The completeness of ACFp follows from categoricity (Theorem A.4.10).
It remains to prove quantifier elimination. We first prove the following state-
ment, in fact closely following the standard proof of the Steinitz Theorem.

Lemma A.4.17 Let K be an algebraically closed field and k0 its prime sub-
field. For any A⊆K, any two n-tuples b̄ and c̄, qftp(b̄/A) = qftp(c̄/A) if
and only if b̄ is conjugated with c̄ by an automorphism over A if and only
if tp(b̄/A) = tp(c̄/A).

Proof. First consider n = 1. Denote k0(A) the subfield generated by A and
k0(A)(x) the field of rational functions over it. If b is transcendental over
k0(A) then so is c and

k0(Ab) ∼= k0(A)(x) ∼= k0(Ac) over A.

If f(x) is the minimal polynomial of b over k0(A), then so is f(x) with respect
to c and

k0(Ab) ∼= k0(A)[x]/{f(x)} ∼= k0(Ac) over A.

If b̄ = 〈b1 . . . , bn〉 and qftp(b̄/A) = qftp(c̄/A) then qftp(b1/A) = qftp(c1/A)
thus by induction there is an isomorphism

α : k0(Ab1) → k0(Ac1).
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Let 〈b′2 . . . , b′n〉 be the image of 〈b2 . . . , bn〉 under α. Then

qftp(〈c1, b′2 . . . , b′n〉/A) = qftp(b̄/A) = qftp(c̄/A),

hence
〈b′2 . . . , b′n〉 conjugated with 〈c2, . . . , cn〉 over Ac1.

Finally b̄ is conjugated with c̄ over A.¤

End of Proof of Theorem A.4.16
Let ϕ(x̄) be any formula in the language LZar and

Φ(x̄) = {ψ(x̄) qfree : K |= ϕ(x̄) → ψ(x̄)}.
If Φ&¬ϕ is consistent then in the universal domain ∗F Â F there is a reali-
sation b̄ of the type. qftp(b̄) must be consistent with ϕ, for otherwise ¬ξ(x̄)
is in Φ for some ξ ∈ qftp(b̄). Then there exists c̄ realizing qftp(b̄)&ϕ. A
contradiction.

Thus |= Φ → ϕ and so Φ is equivalent to its finite part and Φ ≡ ϕ.¤

Quantifier elimination is the powerful tool and essentially the condition
for a successful application of Model Theory in concrete fields of mathematics.
It also has a distinctive geometric significance when it takes place in a natural
language. In particular, the quantifier elimination for ACFp is a crucial tool
in algebraic geometry - it effectively says that the image of a quasi-projective
variety under a morphism is quasi-projective (Chevalley, Seidenberg, Tarski).

Exercise A.4.18 Prove quantifier elimination theorems for

• The theory VK of vector spaces.

• The theory DLO of dense linear orders without endpoints.

A.4.2 Spaces of types and saturated models

Let T be a complete theory of a countable language L.
We denote Sn(T ) the set of all complete n-types in T, the (Stone) space

of n-types of T. There is a standard Stone topology on Sn(T ), the basis
of open sets of which is given by sets of the form

Uψ = {p ∈ Sn(T ) : ψ ∈ p}
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for each L-formula ψ with n free variables v1, . . . , vn.
It is easy to see that the Stone space is compact in the topology.

Definition A.4.19 Given an infinite cardinal κ, a structure A is called κ-
saturated if, for any cardinal λ < κ, for any expansion AC of A by constant
symbols C = {ci : i ≤ λ} every 1-type in Th(AC) is realised in AC .

We say just saturated instead of κ-saturated when κ = cardA.
A model A of T is called κ-universal if, for any model B of T of cardi-

nality not bigger than κ, there is an elementary embedding π : B → A.

Theorem A.4.20 Let T be a complete theory.
(i) Any κ-saturated model of T is κ-universal.
(ii) Any two saturated models of T of the same cardinality are isomorphic.
(iii) For every κ ≥ ℵ0 there exists a κ-saturated model of T.

Proof. For (i) and (ii) we use a standard inductive construction.
(i) Let A be a κ-saturated model and B a model of T of cardinality λ ≤ κ.

This means that we can present the domain B of B as

B = {bi : 0 ≤ i ≤ λ}.
We will construct by induction on α < λ the sequence {ai ∈ A : 0 ≤ i <
α}⊆A with the property

A |= ψ(ai1 , . . . , ain) iff B |= ψ(bi1 , . . . , bin)

for any formula ψ in n free variables and any i1, . . . , in < α.
For a0 we take any element which satisfies the type tpB(b0). On the in-

ductive step we need to construct bα. We first expand the language by adding
new constant symbols C = {ci : 0 ≤ i < α}, and interpret these symbols in
A and B as {ai : 0 ≤ i < α} and {bi : 0 ≤ i ≤ α} correspondingly. By the
induction hypothesis the expansions AC and BC are elementarily equivalent.
Consider the type tpBC

(bα) in the expanded language (that is tp(bα/C)) . By
saturatedness this type is realised in A, say by an element a, and we take a
to be aα. This satisfies the required property.

Finally, set π : B → A as π : bi 7→ ai, and we are done by construction.
(ii) We use the above method in combination with the back-and-forth

procedure. Let

A = {ai : 0 ≤ i ≤ κ}, B = {bi : 0 ≤ i ≤ κ}
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be the domains of saturated models A and B of cardinality κ, with ordinal
orderings. We construct by induction on α < κ the subsets Aα ⊂ A and
Bα ⊂ B with orderings

Aα = {aj : j < α}, Bα = {bj : j < α}

satisfying the conditions:

tp(aj1 , . . . , ajm) = tp(bj1 , . . . , bjm) (A.3)

for any finite sequences 0 ≤ j1 < . . . < jm < α;

if δ + 2n < α, δ limit , n ∈ ω, then aδ+n ∈ Aα (A.4)

if δ + 2n+ 1 < α, δ limit , n ∈ ω, then bδ+n ∈ Bα (A.5)

Clearly, (A.3) implies that aj 7→ bj is an elementary monomorphism Aα →
Bα. When we reach α = κ, this together with (A.4) and (A.5) will give us
an isomorphism A ∼= B.

For α = 1, take a0 := a0 and choose b0 to be the first element among the
bi satifying the type tp(a0).

Now assume that Aα and Bα have been constructed. We introduce con-
stant symbols cj naming the aj in A and bj in B. Denote Cα = {cj : j < α}.

If α is of the form δ+2n and aδ+n /∈ Aα, we choose aα := aδ+n. If already
aδ+n ∈ Aα, we skip the step. Then we choose bα to be the first element among
the bi satifying the type tp(aα/Cα). Such a bi does exist since cardCα < κ
and B is κ-saturated.

If α is of the form δ+2n+1 and bδ+n /∈ Bα, we choose bα := bδ+n. Then we
choose aα to be the first element among the ai satifying the type tp(bα/Cα).

In each case (A.3)-(A.5) are satisfied for α + 1.
On limit steps λ of the construction we take

Aλ =
⋃

α<λ

Aα, Bλ =
⋃

α<λ

Bα.

This has the desired properties.
(iii) We use here another standard process.
Claim. Given a model A of T there is an elementary extension A′ < A

such that any 1-type in Th(A) over any C⊆A, with cardC < κ, is realised
in A′.
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Indeed, by Lemma A.4.13 we can realise any set of types in some elemen-
tary extension of A. This proves the claim.

Denote A as A(0) and then construct, using the Claim, an elementary
chain of models

A(0) 4 A(1) 4 · · · 4 A(α) . . .

of length µ for a regular µ ≥ κ (in particular µ = κ+ suffices in any case) such
that A(α+1) realises all 1-types over subsets of A(α) of cardinality less than κ.
Then the union A∗ =

⋃
α<µA(α) of the elementary chain, by Exercise A.2.9,

is an elementary extension of A and indeed of each A(α). By the choice of µ,
for any subset C of the domain A∗ of cardinality < κ, one can find λ < µ
such that C⊆⋃

α<λA
(α)⊆A(λ). It follows that A∗ is a κ-saturated model of

T. This proves (iii).¤

Remark A.4.21 The back-and-forth method used in the proof of (ii) above
is a universal tool in model theory, apparently first used by G.Cantor in his
construction of the isomorphism between countable dense orders. In fact
Cantor’s theorem is a special case of A.4.20(ii) since a dense linear order is
ω-saturated.

It follows from A.4.20(ii) that if T1 and T2 are complete theories in the
same language both having saturated models of the same cardinality, then
T1 = T2 iff A1

∼= A2. This is a powerful criterion of elementary equiva-
lence in case when the existence of saturated models can be established. In
general a saturated model may not exist without assuming some form of
generalised continuum hypothesis, but there are ways, using set-theoretic
analysis, around this problem.

In fact there is a way, less algebraic but quite universal, to apply a back-
and-forth procedure to establish elementary equivalence.

Definition A.4.22 A back-and-forth system between L-structures A and B
is a nonempty set I of isomorphisms of substructures of A and substructures
of B such that

a ∈ Dom f0 and a′ ∈ Range f0, for some f0 ∈ I, and
(forth) for every f ∈ I and a ∈ A there is a g ∈ I such that f ⊆ g and

a ∈ Dom g;
(back) For every f ∈ I and b ∈ B there is a g ∈ I such that f ⊆ g and

b ∈ Range g.
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It is easy to prove the following.

Theorem (Ehrenfeucht-Fraisse criterion for saturated models) Given ℵ0-
saturated structures A and B,

A ≡ B if and only if there is a back-and-forth system between the two
structures.

In fact the existence of a back-and-forth system between A and B implies
more than an elementary equivalence, that is an equivalence for a first-order
language. Recall that a L∞,ω-language is the language which allows taking
conjunctions and disjunctions of any family of L∞,ω-formulas with a given
finite number of free variables, as well as applying negation and usual quan-
tifiers.

Fact(C.Karp, see [28]) Two L-structures A and B are L∞,ω-equivalent iff
there is a back-and-forth system between the two structures.

Remark A.4.23 Note that this criterion can also be used to establish that
the type of a tuple a in a structure A is equal to that of b in M. Just consider
the extension whith constants c naming a in one case and b in the other.
Then consider A as M with c naming a and B as M with c naming b.

Now we return to discuss saturatedness.

Exercise A.4.24 Prove that an algebraically closed field of infinite transcen-
dence degree is saturated.

Saturated structures play an important role in Model Theory. The reader
familiar with Algebraic Geometry could compare it with the role played by
a universal domain in the sense of A.Weil, that is a field of infinite transcen-
dence degree. In fact it is convenient in a concrete context to fix a κ-saturated
model ∗M of a given complete theory T, with a κ ’large enough’ (to all intents
and purposes). Such a model is often called the universal domain for T. In
model-theoretic slang one more often referes to ∗M as the monster model.

Definition A.4.25 Given C ⊆ A, for A |= T, we denote Sn(C, T ) the set
of all complete n-types of the theory Th(AC). This does not depend on the
choice of the model A of T.

A theory T is said to be κ-stable, for κ ≥ ℵ0, if card (Sn(C, T )) ≤ κ, for
any C of cardinality less or equal to κ.

T is said to be stable if it is κ-stable for some infinite κ.
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Theorem A.4.26 Assume T is κ-stable. Then T has a saturated model of
cardinality κ.

Proof. For κ regular one can prove the theorem by the construction in (iii)
of Theorem A.4.20. We can choose all A(α) to be of cardinality κ and also
µ = κ.

For singular cardinals, that is when cf(κ) < κ, the proof is more subtle,
we skip it here.¤

ℵ0-stability is traditionally referred to as ω-stability. This is perhaps the
most interesting case of κ-stability since this is the property of all countable
theories categorical in uncountable cardinalities (see the next subsection).

Suppose now that T is an ω-stable theory and A a countable subset of
the moster model.

Recall the following topological notions.

Definition A.4.27 For a topological spaceX the Cantor-Bendixson Deriva-
tive d(X) is the subset of all the limit points in X.

Define by induction
d0(X) = X
dα+1(X) = d(dα(X))
dλ(X) =

⋂
α<λ d

α(X) for λ limit.

For compact X, dα(X) is also compact. The ordinal α where the process
is stabilised, dα(X) = dα+1(X), is called the Cantor-Bendixson rank of
X. Then dα(X) is empty or perfect (the perfect kernel), i.e. without isolated
points.

In our situation by cardinality arguments in the Stone topology the topo-
logical space Sn(A) must have Cantor-Bendixson rank less than ω1 and the
perfect kernel empty.

Definition A.4.28 For an A-definable formula (set) ψ define CB(ψ) to be
the Cantor-Bendixson rank of the Stone space

Sψn (A) = {p ∈ Sn(A) : ψ ∈ P}.

Define for a complete type p ∈ Sn(A)

CB(p) = max{CB(ψ) : ψ ∈ p}.
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By definition for any ψ there is only finite number of types of CB-rank equal
to that of ψ and so there is a maximum for numbers m such that U has
m disjoint A-definable subsets of the same CB-rank. We call ψ (Morley)-
irreducible if m = 1. It follows from the definitions that for any ψ over A the
definition of CB(ψ) can be given by induction as follows:

CB(ψ) ≥ 1 iff ψ(∗M) 6= ∅
CB(ψ) ≥ α iff for any β < α there are infinitely many disjoint A-

definable subsets of ψ(∗M) of CB-rank greater or equal to β.

Definition A.4.29 In an ω-stable theory Morley rank of a definable subset
U⊆ ∗Mn is defined as

rk (U) = CB(U)− 1

or equivalently by induction
rk (U) ≥ 0 iff U 6= ∅
rk (U) ≥ α iff for any β < α there are infinitely many disjoint A-

definable subsets of U of Morley rank greater or equal to β.

A.4.3 Categoricity in uncountable powers

The basis for the theory of categoricity in uncountable powers is the following
theorem.

Theorem A.4.30 (Ehrenfeucht-Mostowski) If a countable theory T has
infinite models than for any infinite cardinal κ there is a model M of T such
that for any A⊆M the number of complete n-types over A realised in M is
of cardinality cardA+ ℵ0.

Proof. See [16] or [52].¤

Theorem A.4.31 If a countable theory T is categorical in some uncountable
cardinality κ then T is ω-stable.

Proof. Consider a countable subset A of the universal domain ∗M. Assume
towards a contradiction that Sn(A) is uncountable, for some n. In ∗M all the
types of Sn(A) are realised so there is a subset D⊆ ∗M of cardinality ℵ1 such
that the set SDn (A) of complete n-type over A realised in D is of cardinality
ℵ1. We may assume also A ⊂ D.
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Let M be the unique model of T of cardinality κ. By the Lowenheim-
Skolem Theorem there is a model of T of cardinality κ with D elementarily
embedded in it. By categoricity we can take this model to be M. We simply
say A⊆D⊆M.

On the other hand, by Ehrenfeucht-Mostowski, we know that the unique
model of cardinality κ realises at most cardA + ℵ0 complete types over A.
This contradicts the fact that SDn (A) is uncountable.¤

Remark A.4.32 Given an ℵ0-saturated infinite model M of a ω-stable the-
ory T there exists a definable set U in M of Morley rank greater than 0. If
rkU > 1 then by definition there must be a definable subset U ′ of U with
0 < rkU ′ < rkU. By this argument we can always find a definable U of rank
1 and irreducible. The structure on U induced from M is by definition a
strongly minimal structure. So strongly minimal structures are ubiqui-
tous in models of ω-stable theories. In the more special case of uncountably
categorical theories any strongly minimal substructure U of a model M con-
trols M in a very strong way, in particular the micro-geometry of U effects
the macro-geometry of M (see section B.1.3 below).

The basic result of categoricity theory is the following, see [16] and [52]
for a proof.

Theorem A.4.33 (M.Morley) If a countable theory T is κ-categorical for
some uncountable κ, then T is categorical in all uncountable cardinals.

We also state the following fundamental fact.

Theorem A.4.34 In an uncountably categorical theory T of countable lan-
guage, Morley rank of any definable set is finite and satisfies the following

• rkS = 0 iff S is finite

• rk (S1 ∪ S2) = max{rkS1, rkS2}

• For the projection pr : Mn →Mk

rkS ≤ rk pr (S) + max
t∈pr (S)

rk pr −1(t) ∩ S.
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• Suppose rk pr −1(t) ∩ S is the same for all t ∈ pr (S). Then

rkS = rk pr (S) + rk pr −1(t) ∩ S.

Proof. See [3] or [5]. We also give a proof of this theorem in the special
case when T is the theory of a strongly minimal structure below, B.1.26. ¤
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Appendix B

Elements of Geometric
Stability Theory

B.1 Algebraic closure in abstract structures

Definition B.1.1

acl(A) = {b ∈M : there are a ∈ An, m ∈ N and ϕ(u, v) such that

M |= ϕ(a, b)&∃≤mvϕ(a, v)}.

Exercise B.1.2 The following properties of acl hold in any structure:

A⊆B implies A⊆acl(A) ⊆ acl(B) (B.1)

acl(acl(A)) = acl(A). (B.2)

Remark For any field K and A ⊆ K, acl(A) contains the field-theoretic
algebraic closure of A in K.

Lemma B.1.3 Any elementary monomorphism α between A,A′⊆M can be
extended to acl(A) → acl(A′).

Proof. Enumerate acl(A) and go by transfinite induction extending α to
A ∪ {ai : i < γ} finding for aγ corresponding element a′γ ∈ acl(A′) as a
realisation of type

α(tp(aγ/(A ∪ {ai : i < γ})

219
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obtained by replacing elements of acl(A) by corresponding elements of acl(A′)
in tp(aγ/(A∪{ai : i < γ}). Both types are principal and algebraic since aγ is
algebraic over A ∪ {ai : i < γ}. Notice that after exhausting the process on
acl(A) the other part, acl(A′), will be exhausted too, since going back from
acl(A′) to acl(A) we would find elements in acl(A). ¤

Minimal structures

Definition B.1.4 A structure M is said to be minimal if any subset of M
definable using parameters is either finite or a complement of a finite one.

We shall assume everywhere that the language of M is countable.

Lemma B.1.5 In minimal structures the following exchange principle
holds:

For any A⊆M, b, c ∈M : b ∈ acl(A, c) \ acl(A) → c ∈ acl(A, b) (B.3)

Proof. Suppose b ∈ acl(A, c) \ acl(A). Then for some ϕ(x, y) over A and
some m

M |= ϕ(b, c)&∃≤mϕ(x, c). (B.4)

W.l.o.g. we assume

M |= ϕ(x, y) → ∃≤mϕ(x, y). (B.5)

Suppose, towards a contradiction, that ϕ(b,M) is infinite. Then
card (¬ϕ(b,M)) ≤ k for some k, i.e. M |= ∃≤ky¬ϕ(b, y) and

B = {b′ ∈M : M |= ∃≤ky¬ϕ(b′, y)}

is infinite, since b /∈ acl(A). Choose distinct b1, . . . , bm+1 ∈ B. Then

ϕ(b1,M) ∩ · · · ∩ ϕ(bm+1,M)

is infinite and thus contains a point c′. It contradicts (B.5).¤
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B.1.1 Pregeometry and geometry of a minimal struc-
ture.

Definition B.1.6 An [abstract] pregeometry is a set M with an operator

cl : 2M → 2M

of finite character, i.e. for any A⊆M : cl(A) = {cl(A′) : A′⊆A finite} and
satisfying the conditions (1)-(3) above.

A pregeometry is said to be a geometry if

for any a⊆M cl({a}) = {a} (B.6)

Getting a geometry from a pregeometry.

Lemma B.1.7 The relation ∼ on M \ cl(∅) defined as

x ∼ y iff cl(x) = cl(y)

is an equivalence relation.

Proof. Follows from the exchange principle.¤

Define for a pregeometry M the set

M̂ = (M \ cl(∅))/ ∼
Then any point in M̂ is of the form â = cl(a) \ cl(∅) for a corresponding
a ∈M \ cl(∅). For a subset Â = {â : a ∈ A}⊆M̂ define

cl(Â) = {b̂ : b ∈ cl(A)}.
The operator cl on M̂ satisfies then (1)-(4) and thus M̂ is a geometry.

A pregeometry M with a fixed D⊆M gives rise to another pregeometry
MD the localisation of M with respect to D: the set of MD is just M
and clD(A) = cl(D ∪ A).

Subspaces of a pregeometry are subset of the form cl(A). Pregeometry
is said to be locally finite if cl(A) is finite whenever A is.
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Example B.1.8 Vector spaces over division rings are pregeometries if we
let

cl(A) = span(A).

Projective space associated with a vector space M is defined exactly as the
geometry M̂.
Affine space associated with a vector space M is defined on the same set
M by the new closure-operator:

claff(A) = A+ span(A− A)

where A− A = {a1 − a2 : a1, a2 ∈ A}.
Exercise B.1.9 Show that an affine space is a geometry and its localisation
with respect to any point is isomorphic to the initial vector space pregeometry.

Definition B.1.10 A set A is said to be independent if cl(A) 6= cl(A′) for
any proper subset A′ ⊂ A.

A maximal independent subset of a set A is said to be a basis of A.

Lemma B.1.11 Any two bases B and C of a set A are of the same cardi-
nality.

Proof. First consider the case when, say B, is finite and consists of n
elements b1, . . . bn. There is a c ∈ C such that

c ∈ cl(b1, . . . bn) \ cl(b1, . . . bn−1)

for otherwise B is not independent. By the exchange principle {c, b1, . . . bn−1}
is a basis of A. In the localisation Mc the sets {b1, . . . bn−1} and C \ {c} are
bases of A. By induction on n the statement follows.

Consider now the case when both B and C are infinite. It follows from
the finite character of cl that for any b ∈ B there is a minimal finite Cb ⊂ C
such that b ∈ cl(Cb). Thus there is a mapping of B into Pfin(C), the set of all
finite subsets of C. The mapping is finite-to-one, since by the above proved
the set

{d ∈ B : Cd = Cb}
is an independent subset of cl(Cb) and by the above proved its size is not
bigger than the size of Cb.

It follows cardB ≤ cardC. By the symmetry cardB = cardC. ¤
Now we can give the following definition.
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Definition B.1.12 For any subset A of a pregeometry we define the (com-
binatorial) dimension cdimA to be the cardinality of a basis of A. If also
B⊆A then cdim (A/B) is the dimension of A in the pregeometry MB.

Remark B.1.13 There are many notions of a dimension in mathematics,
including the notion dimV of the dimension of an algebraic variety V, and
stability theory treats and compares them in a systematic way.

Lemma B.1.14 (The addition formula)

cdim (A/B) + cdim (B) = cdim (A).

Proof. One can construct a basis of A by adjoining to a basis of B a basis
of A in MB.¤

Example B.1.15 The transcendence degree of a subset A of an algebraically
closed field F is just cdimA, which is well defined since F is a minimal
structure (with cl = acl).) Since any field is a subfield of an algebraically
closed one, the definition is applicable for subsets of any field.

Lemma B.1.16 For X, Y ⊆M subspaces of a pregometry

cdim (X ∪ Y ) ≤ cdimX + cdimY − cdim (X ∩ Y ).

Proof. Let Z be a basis of X ∩ Y . Let Z ∪ X0 and Z ∪ Y0 be bases of
X and Y, correspondingly. Then cl(X0 ∪ Z ∪ Y0) = cl(X ∪ Y ) and thus
cdim (X ∪ Y ) ≤ |X0 ∪ Z|+ |Z ∪ Y0| − |Z|. ¤

Definition B.1.17 A subset A of a structure M is said to be indiscernible
over B if tp(ā/B) = tp(ā′/B) for any two n-tuples of distinct elements of A
for any finite n.

Proposition B.1.18 Let M be a minimal structure, A,B⊆M and A inde-
pendent over B (in the pregeometry of M.) Then A is indiscernible over B.
Moreover, the n-type tp(ā/B) for ā ∈ An does not depend on B.
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Proof. Consider ā = 〈a1, . . . an〉, ā′ = 〈a′1, . . . , a′n〉 all with distinct coordi-
nates from A. In case the size n = 1 tp(a/B) is just the set of those formulas
ϕ(x) over B which have ϕ(M) infinite. The same characterises tp(a′/B).
Thus the types are equal.

For n > 1 suppose, as an inductive hypothesis, the tuples have the same
type over B. Then for an+1 ∈ A \ {a1, . . . an} and any formula ϕ(x̄, y) over B

|= ϕ(ā, an+1) iff ϕ(ā,M) is infinite .

By the equality of types the latter is equivalent to ϕ(ā′,M) is infinite which
gives |= ϕ(ā′, a′n+1) for any a′n+1 ∈ A distinct from the coordinates of ā′.¤

Lemma B.1.19 Any minimal structure in a countable language is homoge-
neous.

Proof. Suppose B,B′ ⊆M are of cardinality less than cardM and there
is an elementary monomorphism α : B → B′. It follows cdimB = cdimB′.
From the assumptions on cardinalities it follows also that cdimB < cardM.
Thus from the addition formula cdimM/B = cdimM/B′. Let A ⊇ B and
A′⊇B′ be extensions to bases of M over B and B′, correspondingly. Since

card (A \B) = card (A′ \B′)

there is a bijection β : A → A′ extending α. The description of types of
n-tuples in bases above shows that β is an elementary monomorphism. Now
Lemma B.1.3 finishes the proof.¤

B.1.2 Dimension notion in strongly minimal structures

Theorem B.1.20 Minimal structures of infinite dimension are saturated.

Proof. Notice that in this case cdimM = cardM. Let ϕ(x) be a formula
over A, cardA < cardM. Either ϕ(M) is finite, or M \ cl(A)⊆ϕ(M). Thus
for any consistent set of such formulas

⋂
i

ϕi(M)

either contains the nonempty set M \ cl(A) or is a nonempty subset of some
finite ϕi(M).¤
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Corollary B.1.21 Any structure which is elemenentarily equivalent to a
minimal one of infinite dimension is minimal too. It also satisfies the finite
cover property (f.c.p.): for any ϕ(x, ȳ) there is a natural number m such
that cardϕ(M, ā) > m implies ϕ(M, ā) is infinite.

Definition B.1.22 A minimal structure is said to be strongly minimal if
it is elementarily equivalent to a minimal structure of infinite dimension.

Rank notion for sets definable in strongly minimal structures.

We assume below M is strongly minimal of infinite dimension.

Definition B.1.23 Let A ⊆ M be finite, M saturated minimal. For an
A-definable subset S⊆Mn put the Morley rank to be

rkS = max
〈s1,...sn〉∈S

cdim ({s1, . . . sn}/A)

Lemma B.1.24 rkϕ(M) has the same value in every saturated structure
elementary equivalent to a given strongly minimal one and does not depend
on A.

Proof. Immediate from the saturatedness of M.¤

Definition B.1.25 For an arbitrary strongly minimal structureM, rkϕ(M)
is defined as the rank in saturated elementary extensions of M.

Lemma B.1.26 (Basic Rank Properties) For any strongly minimal struc-
ture M,

(i) rkMn = n;
(ii) rkS = 0 iff S is finite
(iii) rk (S1 ∪ S2) = max{rkS1, rkS2}
(iv) For the projection pr : Mn →Mk

rkS ≤ rk pr (S) + max
t∈pr (S)

rk pr −1(t) ∩ S.

(v) Suppose rk pr −1(t) ∩ S is the same for all t ∈ pr (S). Then

rkS = rk pr (S) + rk pr −1(t) ∩ S.
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Proof. (i)-(iii) are immediate from the definition.
(iv) Let 〈s1, . . . sn〉 ∈ S be of maximal dimension in S. Then

rkS = cdim ({s1, . . . sn}/A) = cdim ({s1, . . . sn}/{s1, . . . sk} ∪ A)+

cdim ({s1, . . . sk}/A) ≤ rk pr −1(〈s1, . . . sk〉) ∩ S + rk prS.

(v) If one chooses first a tuple 〈s1, . . . sk〉 ∈ prS of maximal possible di-
mension and then extends it to 〈s1, . . . sn〉 ∈ S of maximal possible dimension
over {s1, . . . sk} ∪ A, then

cdim ({s1, . . . sn}/{s1, . . . sk} ∪ A) = rk pr −1(〈s1, . . . sk〉),

cdim ({s1, . . . sk}/A) = rk prS

and thus

rkS ≥ rk prS + rk pr −1(〈s1, . . . sk〉).
¤

Lemma B.1.27 For any definable S⊆Mn there is an upper bound on m ∈ N
such that S can be partitioned into k disjoint subsets

S = S1 ∪ · · · ∪ Sm
each of rank equal to rkS.

Proof. We use induction on n. For n = 1 the statement follows from the
definitions.

For arbitrary n let rkS = k. This means there is a point 〈s1, . . . sn〉 ∈ S
of dimension k and thus some {si1 , . . . sik} are independent. Let us consider
the case 〈i1, . . . ik〉 = 〈1, . . . k〉.

Then sj ∈ cl{s1, . . . sk} for all j = 1, . . . , n}, thus for some natural number
l = li1,...ik

|= ∃=l〈x1, . . . xn〉 ∈ S : 〈x1, . . . xk〉 = 〈s1, . . . sk〉.
Denote the formula ψ(〈s1, . . . sk〉) and notice that ψ(M)⊆Mk is of rank k.
Let

S0 = {〈s1, . . . sn〉 ∈ S : ψ(〈s1, . . . sk〉)}
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By formulas above rkS0 = rkψ(M) = rkS. Suppose

S0 = S0
1 ∪ · · · ∪ S0

m

is a partition and all the summands are A′-definable of rank k. Then neces-
sarily for any j ≤ m there is 〈sj,1, . . . sj,n〉 ∈ S0

j with the first k coordinates
independent over A′. By indiscernibility we can choose 〈sj,1, . . . sj,n〉 ∈ S0

j so,
that

〈sj,1, . . . sj,k〉 = 〈s1,1, . . . s1,n〉
for all j. It follows immediately that m ≤ l.

Taking into account all possibilities for 〈i1, . . . ik〉 we get

m ≤
∑

{i1,...ik}
li1,...ik .

¤

Definition B.1.28 The exact upper bound for an equirank partition of S
is called the Morley degree of S and denoted Mdeg(S).
A definable set of Morley degree 1 is called (Morley) irreducible.

Definition B.1.29 For a type p(x̄) definable over A the Morley rank of type
is defined as

rk (p) = min{rkϕ(x̄) : ϕ ∈ p}.
For a point s̄ ∈ Mn and a subset A⊆M the Morley rank of the point over
A is defined as

rk (s̄/A) = rk (tp(s̄/A)).

A point s̄ ∈ S⊆Mn for an irreducible subset S defined over A is said to be
generic over A if

rk (s̄/A) = rkS.

Lemma B.1.30 For an irreducible S over A there is a unique complete type
p over A containing S. More exactly,

p = tp(s/A)

for s generic in S. In particular, any two generic points have the same type
over A.
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Proof.
p = {ϕ(x̄) over A : rk (ϕ(M) ∩ S) = rkS}.

The rest follows from definitions. ¤

Lemma B.1.31 (The addition formula for tuples)

rk (b̄c̄/A) = rk (b̄/Ac̄) + rk (c̄/A)

Here Ac̄ = A ∪ |c̄|, |c̄| is the set of the coordinates of c̄.

Proof. Follows from the addition formula for dimensions taking into ac-
count that rk (b̄/A) = cdim (|b̄|/A), which follows immediately from the
definitions.¤

Definition B.1.32 Two points b̄ ∈ Mk and c̄ ∈ Mn are said to be inde-
pendent over A if

rk (b̄/Ac̄) = rk (b̄/A).

Lemma B.1.33 The independence relation is symmetric

Proof. rk (b̄c̄/A) = rk (b̄/Ac̄) + rk (c̄/A) = rk (c̄/Ab̄) + rk (b̄/A) by the addi-
tion formula. Then if rk (b̄/Ac̄) = rk (b̄/A) so rk (c̄/Ab̄) + rk (c̄/A).¤

Lemma B.1.34 (Definability of Morley Rank) For any formula ϕ(x̄, ȳ)
with length(x̄) = k, length(ȳ) = n, and any m the set

{ā ∈Mk : rkϕ(ā,M) ≥ m}
is definable.

Proof. By induction on n. For n = 1 rkϕ(a,M) ≥ 0 iff ϕ(a,M) 6= ∅, and
rkϕ(a,M) ≥ 1 iff ϕ(a,M) is infinite iff cardϕ(a,M) ≥ nϕ by f.c.p.

For arbitrary n
rkϕ(a, y1, . . . , yn) ≥ m iff {b ∈ M : rkϕ(a, b, y2, . . . , yn) ≥ m − 1} is

infinite or
{b ∈M : rkϕ(a, b, y2, . . . , yn) ≥ m} 6= ∅
by the addition formula for ranks. The both conditions on the right hand

side are definable by induction hypothesis.¤
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Sets definable in M.

We shall consider Morley rank for sets definable in strongly minimal M. Re-
call that any such set is of the form U = S/E, where S⊆Mn is a definable
subset and E⊆S2⊆M2n is a definable subset which is an equivalence rela-
tion. We consider only U such that E is equirank, i.e. rkE(s,M) is of the
same value for all s ∈ S.

Definition B.1.35

rkU = rkS − rkE(s,M) for s ∈ S.

Lemma B.1.36 The definition is invariant under definable bijections, i.e.
if there is a bijection

f : S1/E1 → S2/E2

and f is a definable function, then rkS1/E1 = rkS2/E2.

Proof. By definition f = F/E, where F ⊆S1 × S2, E = E1 × E2 and the
following hold

for any s1, s
′
1 ∈ S1, s2, s

′
2 ∈ S2

F (s1, s2)&F (s′1, s
′
2) → (E1(s1, s

′
1) ↔ E2(s2, s

′
2)),

pr S1
F = S1 and pr S2

F = S2.

From the addition formula, projecting on S1, we get

rkF = rkS1 + rkE2(s2,M)

and projecting on S2

rkF = rkS2 + rkE1(s1,M).

It follows
rkS1 − rkE1(s1,M) = rkS2 − rkE2(s2,M).

¤

Proposition B.1.37 Basic Rank Properties (i)-(v) hold for definable sets,
as well as Lemma B.1.27 and the definability of rank.
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Proof. By appropriately using the same arguments as in the proofs of the
statements mentioned.¤

Proposition B.1.38 (Finite Equivalence Relation Theorem) For any
A-definable set S of rank k there is an A-definable subset S0 ⊆ S and an
equivalence relation E on S0 such that S0 @A S, S0/E is finite and each
equivalence class is of rank k and irreducible.

We omit the proof of the theorem, which can be found elsewhere.

B.1.3 Macro- and micro-geometries on a strongly min-
imal structure

The geometry defined on a strongly minimalM defined in B.1.1 would be nat-
ural to call the micro-geometry on M as opposed to the macro-geometry
that is induced byM under certain conditions, as constructed in the following
Proposition.

Proposition B.1.39 Suppose there are a1, a2, b1, b2, c ∈ M every four of
which are independent, c ∈ cl(a1, a2, b1, b2) and

cl(a1, a2, c) ∩ cl(b1, b2, c) = cl(c).

Then an incidence system (S, P, I) is definable in M with properties:

rk (S) = 2, Mdeg(S) = 1 rk (L) ≥ 2

rk (Ip) = 1 for all p ∈ P
if p1, p2 ∈ P, p1 6= p2 then Ip1 ∩ Ip2 is finite or empty .

Proof. Put S0 = M ×M, P0 = M ×M ×M, and let I0 ⊆ S0 × P0 be an
∅-definable relation such that

〈b1, b2〉I0〈a1, a2, c〉
〈x1, x2〉I0〈y1, y2, z〉 → z ∈ cl(x1, x2, y1, y2).

A relation witnessing the dependence between a1, a2, b1, b2, c has these
properties.
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Denote p0 = 〈a1, a2, c〉. Then I0p0 is an p0-definable set of Morley rank
1. By the Finite Equivalence Relation Theorem using p0 one can define an
equivalence relation Ep0 on I0p0 with finitely many classes, and, say, m of
them of rank 1 irreducible.

Denote

I1 = {〈s, p〉 ∈ I0 : Ep is an equivalence relation with exactly m infinite

classes and s is in one of them}.
Define the binary relation E on I1 :

〈s, p〉E〈s′, p′〉 iff p = p′ & sEps
′.

Define
P1 = I1/E

and for q ∈ P1, s ∈ S0 write sI2q iff q = 〈s, p〉 for some p ∈ P0.
By definitions there is a canonical mapping

α : P1 → P0,

corresponding to the projection I1 → P0, which is exactly m-to-one mapping.
Also,

for all q ∈ P1 rk (I2q) = 1.

By definitions, for q0 corresponding to p0 via α I2q0 is irreducible.
Define

P2 = {q ∈ P1 : ∀q′ ∈ P1rk (I2q ∩ I2q′) = 1 → I2q @ I2q
′}.

It follows from the above remark that q0 ∈ P2 and for all q ∈ P2, rk (I2q) = 1.
Define an equivalence relation on P2

qFq′ iff I2q @A I2q
′.

We are now in the situation of Claim 2 of the proof of the preceding
Theorem. It follows that

qF @ sI2

whenever s is generic in I2q over q and s is generic in S0.
Define

P3 = P2/F
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and for p̄ ∈ P3, s ∈ S0

sI3p̄ iff p̄ @ I2s.

From the above proved s0I3p̄0 holds, where p̄0 is obtained throughout the
construction from p0, s0. Also, by the construction p̄0 ∈ cl(p0).

Since s0 ∈ I3p̄0 it follows rk (I3p̄0) ≥ 1. On the other hand, if s ∈ I3p̄0

is of maximal rank over p̄0 and q ∈ p0F is of maximal rank over s, p̄0 then
by definition sI2p holds and q and s are independent over p̄0. It follows
rk (s/p̄0) = rk (s/p̄0, q) ≤ 1. Thus

rk (I3p̄0) = 1.

Let

P = {p̄ ∈ P3 : rk (I3p̄0) = 1}, S = {s ∈ S0 : ∃p̄ ∈ P sI3p̄},
I = I3 ∩ (S × P ).

Now we need to show that for distinct p̄1, p̄2 from P Ip̄1 ∩ Ip̄2 is finite.
So, suppose s is a point in the intersection. Choose 〈q1, q2〉 ∈ p1F × p2F of
maximal rank over s, p̄1, p̄2. Then s ∈ I2q1 ∩ I2q2 and s is independent with
q1, q2 over p̄1, p̄2. Then

rk (s/p̄1, p̄2) = rk (s/p̄1, p̄2, q1, q2) < 1

since ¬q1Fq2.
To finish the proof we need to show that rk (P ) ≥ 2 which would follow

from rk (p̄0/∅) ≥ 2.
Suppose towards the contradiction rk (p̄0/∅) ≤ 1. Then, since rk (s0/p̄0) =

1 < rk (s0/∅), we have rk (p̄0/s0) < rk (p̄0/∅), i.e. p̄0 ∈ cl(s0) = cl(b1, b2).
Then, from the assumptions of the proposition c /∈ cl(p̄0).

On the other hand p̄0 ∈ cl(p0) = cl(a1, a2, c). It follows b1 /∈ cl(p0),
b2 /∈ cl(p0). Therefore there exists c′ ∈M such that

tp(cc′/p̄0) = tp(b1b2/p̄0) = tp(s0/p̄0.

Thus rk (cc′/p̄0) = 1 and so

c′ ∈ cl(p̄0, c)⊆cl(a1, a2, c) ∩ cl(b1, b2, c).

Hence cl(c′) = cl(c), contradicting cl(b1) 6= cl(b2). ¤
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Definition B.1.40 It is said, with a slight deviation from the standard ter-
minology, that a pseudo-plane is definable in M if there is a two-sorted
structure (S, P, I) definable in MA, some A, with properties stated in the
Proposition.

Definition B.1.41 An [abstract] projective geometry is a set of ’points’
and ’lines’ satisfying:

(i) through any two points there is a line;
(ii) there are at least three points on every line;
(iii) two distinct lines intersect in at most one point;
(iv) for any distinct points a, b, c, d : if lines (a, b) and (c, d) intersect then

lines (a, c) and (b, d) do.
The geometry M is said to be locally projective if for generic c ∈ M,

the geometry M̂c is isomorphic to a projective geometry over a division ring.

Any 3 points a, b, c of a projective geometry which do not lie on a common
line generate a projective plane as the set of points

S(a, b, c) =
⋃
{(a, z) : z ∈ (b, c)}.

By (iv) the plane generated by any non-collinear a′, b′, c′ ∈ S(a, b, c) coincides
with S(a, b, c). The n-subspaces of a projective geometry are defined by
induction as

S(a1, . . . , an+1) =
⋃
{(an+1, z) : z ∈ (a1, . . . , an)}

for a1, . . . , an+1 not in a (n−1)-subspace. Again by axiom (iv) the definition
is invariant on the choice of the points in the subspace.

Theorem B.1.42 Any projective geometry of dimension greater than two
(generated by no less than 4 points) is isomorphic to a projective geometry
over a division ring.

Proof. See [2].¤

Theorem B.1.43 (Weak Trichotomy Theorem) For any strongly min-
imal M either

(0) a pseudo-plane is definable in M
or one of the following hold:
(i) the geometry of M is trivial, i.e. for any X⊆M̂, cl(X) = (X) in M̂ ;
(ii) the geometry of M is locally projective.
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Proof. Assume no pseudo-plane is definable in M and c is a fixed generic
element in M.

Claim 1. For any x, y ∈M and Z⊆M finite

x ∈ cl(y, c, Z) implies ∃z ∈ cl(c, Z) : x ∈ cl(y, z, c).

We may assume that Z is independent over c and proceed by induction on
#Z. For #Z = 1 there is nothing to prove.

Suppose Z = {z1, z2}∪̇Z ′, x ∈ cl(y, c, Z), y /∈ cl(c, Z). Then by the
Proposition in MZ′ either

(i) some quadruple from x, y, z1, z2, c is dependent
or
(ii) ∃z ∈M \ cl(c)

cl(z1, z2, c) ∪ cl(x, y, c)⊇cl(z, c).

In case (i) only x ∈ cl(y, z1, z2) is possible. Which means inM x ∈ cl(y, z1, {z2Z
′}).

Since #{z2, Z
′} < #Z by induction hypothesis there is z ∈ cl(z1, z2, Z

′) :
x ∈ cl(y, z1, z). If then cdim (y, z1, z, c) = 3, we have x ∈ cl(y, z1, c). or
x ∈ cl(y, z, c) and we get the desired. Otherwise, there is a point z′1 ∈
cl(z1, z, c) \ (cl(z1, z) ∪ cl(c, z1) ∪ cl(c, z)). Assuming x /∈ cl(y, z) we have
then that in {x, y, z, z′1, c} any four points are independent. Again, using the
Proposition there must exist z′ ∈M \ cl(c) such that

cl(z, z′1, c) ∩ cl(x, y, c)⊇cl(z′, c).

Clearly z′ ∈ cl(c, Z) ∩ cl(x, y, c), so x ∈ cl(y, z′, c) and we are done.
In case (ii) z ∈ cl(c, Z) and x ∈ clZ′(y, z, c), i.e. x ∈ cl(y, c{z, Z ′}). By

the induction hypothesis there is z′ ∈ cl(c, z, Z ′) such that x ∈ cl(y, z′, c).
Claim proved.

Claim 2. If cl(x, y, c) = cl(x, c) = cl(y, c) for some x, y independent over
c then the geometry M̂ is degenerate, i.e.

cl(x0, . . . , xn) = cl(x0) ∪ · · · ∪ cl(xn)

for any x0, . . . , xn ∈M.
Indeed, under the assumption, cl(x0, x1, x2) = cl(x0, x1) ∪ cl(x0, x2) for

any independent triple. We show first that the claim is true for n = 1.
Assume towards a contradiction y ∈ cl(x1, x2) \ (cl(x1) ∪ cl(x2)). Choose
x0 /∈ cl(x1, x2). Then

y ∈ cl(x0, x1, x2) = cl(x0, x1) ∪ cl(x0, x2).
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But if y ∈ cl(x0, xi) for i = 1 or i = 2 then x0 ∈ cl(y, xi) = cl(x1, x2), the
contradiction.

Now we proceed by induction on n. Suppose y ∈ cl(x0, . . . , xn). Then
by Claim 1 there is x ∈ cl(x0, . . . , xn−1) such that y ∈ cl(xn, x, x0). From
what is proved already y ∈ cl(x, x0)∪ cl(xn, x0). Hence y ∈ cl(x0, . . . , xn−1)∪
cl(x0, xn) = cl(x0, . . . , xn−1) ∪ cl(xn) ∪ cl(xn) = cl(x0) ∪ · · · ∪ cl(xn).

This finishes the proof of the claim and of the Theorem.¤

It is more common in model-theoretic literature to call a pregeometry
locally modular if it is either trivial or locally projective. The negation
of the condition, corresponding to the pseudo-plane case of the theorem, is
referred to as the non-locally modular case or the non-linear case.

Theorem B.1.44 The geometry of a minimal locally finite structure is ei-
ther trivial or isomorphic to an affine or a projective geometry over a finite
field.

Scheme of Proof. First notice that the structure is saturated so strongly
minimal. Then we can use a result by Doyen and Hubaut which states that
any finite locally projective geometry of dimension ≥ 4 and equal number
of points on all lines is either affine or projective. Thus by the Trichotomy
Theorem we need to prove only that there is no pseudo-plane in M. It is
done by developing a combinatorial-geometric analysis of the pseudo-plane,
assuming it exists. The main tool of the analysis is the notion of the ’degree
of a line’ which is very similar to the degree of an algebraic curve. See [7] for
the proof.¤

Corollary B.1.45 Any locally finite geometry satisfying homogeneity as-
sumption:any bijection between bases can be extended to an automorphism
is either trivial or isomorphic to an affine or a projective geometry over a
finite field.

Proof. In an appropriate language such a geometry can be represented as a
minimal locally finite structure.¤
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B.2 Geometric Stability Theory and

the Trichotomy Conjecture

B.2.1 Trichotomy conjecture

As we have observed in section A.4 the following are basic examples of un-
countably categorical structures in a countable language:

(1) Trivial structures (the language allows equality only);

(2) Abelian divisible torsion-free groups; Abelian groups of prime expo-
nent (the language allows +,=); Vector spaces over a (countable) division
ring

(3) Algebraically closed fields in language (+, ·,=) .

Also, any structure definable in one of the above is uncountably categor-
ical in the language which witnesses the interpretation.

The structures definable in algebraically closed fields, for example, are
effectively objects of algebraic geometry.

As a matter of fact the main logical problem after answering the question
of J.Los was what properties of M make it κ-categorical for uncountable κ?

The answer is now reasonably clear: The key factor is that we can mea-
sure definable sets by a rank-function (dimension) and the whole construction
is highly homogeneous.

This gave rise to (Geometric) Stability Theory, studying structures with
good dimensional and geometric properties (see [37] and [47]).

When applied to fields, the stability theoretic approach in many respects
is very close to Algebraic Geometry.

Recall that the combinatorial dimension notions (definition B.1.12) for
finite X ⊂ M in examples above are correspondingly:

(1a) Trivial structures: size of X;
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(2a) Abelian divisible torsion-free groups; Abelian groups of prime expo-
nent; Vector spaces over a division ring: linear dimension lin.d.X of the
linear space spanned by X;

(3a) Algebraically closed fields: transcendence degree tr.d.(X).

Dually, one can classically define another type of dimension using the
initial one:

dimV = max{tr.d.(x̄) | x̄ ∈ V }
for V ⊆ Mn, an algebraic variety. The latter type of dimension notion in
model-theoretic terms is just the Morley rank.

The example of the theory ACF is also a good illustration of the signif-
icance of homogeneity of the structures. Indeed, the transcendence degree
makes good sense in any field, and there is quite a reasonable dimension
theory for algebraic varieties over a field. But the dimension theory in arbi-
trary fields fails if we want to consider it for wider classes of definable sub-
sets, e.g. the images of varieties under algebraic mappings. In algebraically
closed fields any definable subset is a boolean combination of varieties, by
elimination of quantifiers, which eventually is the consequence of the fact
that algebraically closed fields are existentially closed in the class of fields
(see A.3). The latter effectively means high homogeneity, as an existentially
closed structure absorbs any amalgam with another member of the class.

One of the achievements of stability theory is the establishing of a hierar-
chy of types of structures, levels of stability and a finer classification, which
roughly speaking correspond to the level of ’analysability’ (see [48]).

The next natural question to ask is whether there are ’very good’ stable
structures which are not reducible to (1) - (3) above?

The initial hope of the present author was that the following might hold:

The Trichotomy Conjecture (1983, [6]).
The geometry of a strongly minimal structure M is either (i) trivial or

(ii) locally projective (see B.1.41), or (iii) is isomorphic to a geometry of an
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algebraically closed field.

In particular, if neither (i) nor (ii) is the case, then (iv) there is an
algebraically closed field K definable in M and the only structure induced on
K from M is definable in the field structure itself (the purity of the field).

The ground for the conjecture was the Weak Trichotomy Theorem B.1.43
and more importantly the general belief that logically perfect structures could
not be overlooked in the natural progression of mathematics. Allowing some
philosophical licence here, this was also a belief in a strong logical predeter-
mination of basic mathematical structures.

Although the Trichotomy Conjecture proved to be false in general (Hrushovski
[17] and see also the next subsection) it turned out to be true in many im-
portant classes. The class of Zariski geometries is the main class for which
this has been proved.

Another situation where the Trichotomy Principle holds (adapted to the
nonstable context) is the class o-minimal structures (see [36]).

As was mentioned above Hrushovski found a counterexample to the Tri-
chotomy Conjecture in general. In fact Hrushovski introduced a new con-
struction which has become a source of a great variety of counterexamples.

B.2.2 Hrushovski’s construction of new stable struc-
tures

Suppose we have a, usually elementary, class of structures H with a good
(combinatorial) dimension notion d(X) for finite subsets of the structures.
We want to introduce a new function or relation on M ∈ H so that the new
structure gets a good dimension notion.

The main principle which produces the desirable effect is that of the free
fusion. That is, the new function f should be related to the old L-structure
in as a free way as possible. At the same time we want the structure to
be homogeneous. Hrushovski found an effective way of writing down the
condition: the number of explicit dependencies in X in the new structure
must not be greater than the size (the cardinality) of X.

The explicit L-dependencies on X can be counted as L-codimension,
size(X) − d(X). The explicit dependencies coming with a new relation or
function are the ones given by simplest ’equations’, basic formulas.

So, for example, if we want a new unary function f on a field, the condi-
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tion should be

tr.d.(X ∪ f(X))− size(X) ≥ 0, (B.7)

since in the set Y = X ∪ f(X) the number of explicit field dependencies is
size(Y )− tr.d.(Y ), and the number of explicit dependencies in terms of f is
size(X).

If we want, e.g., to put a new ternary relation R on a field, then the
condition would be

tr.d.(X)− r(x) ≥ 0, (B.8)

where r(X) is the number of triples in X satisfying R.
The very first of Hrushovski’s examples [17] introduces just a new struc-

ture of a ternary relation, which effectively means putting new relation on
the trivial structure. So then we have

size(X)− r(X) ≥ 0. (B.9)

If we similarly introduce an automorphism σ on the field (difference fields,
[53]), then we have to count

tr.d.(X ∪ σ(X))− tr.d.(X) ≥ 0, (B.10)

and the inequality here always holds, so is not really a restriction in this
case.

Similarly for differential fields with the differentiation operator D (see
[30]), where again we trivially have

tr.d.(X ∪D(X))− tr.d.(X) ≥ 0. (B.11)

The left hand side in each of the inequalities (B.7) - (B.11), denote it
δ(X), is a counting function, which is called predimension, as it satisfies
some of the basic properties of a (combinatorial) dimension notion.

At this point we have carried out the first step of Hrushovski’s construc-
tion, that is:

(Dim) we introduced the class Hδ of structures with a new function or
relation, and the extra condition

(GS) δ(X) ≥ 0 for all finite X.



240 APPENDIX B. GEOMETRIC STABILITY THEORY

(GS) here stands for ’Generalised Schanuel’, the reason for which will be
given below. The condition (GS) allows us to introduce another counting
function with respect to a given structure M ∈ Hδ

∂M(X) = min{δ(Y ) : X⊆Y ⊆finM}.
Now the appropriate notion of embedding in Hδ is that of a strong

embedding, written as M ≤ L. Which means that for every finite X ⊆M,
∂M(X) = ∂L(X).

The next step in Hrushovski’s construction will be marked (EC):
Using the inductiveness of the class construct an existentially closed struc-

ture in (Hδ,≤).
If the class has the amalgamation property, then the existentially closed

(e.c.) structures are sufficiently homogeneous. Also for M existentially closed
in the class ∂M(X) becomes a (combinatorial) dimension notion.

So, if also the subclass of existentially closed structures is axiomatizable,
one can rather easily check that the existentially closed structures are ω-
stable. This is the case for examples (B.7) - (B.9) and (B.11) above.

Another consequence of first-order axiomatisability of the class of e.c.-
structures, by Theorem 1.1.67, is model completeness in an expansion of the
language where ≤ is the same as 4 . In the original language this results
in the theory of M to have elimination of quantifiers to the level of Boolean
combinations of ∃-formulas, equivalently, every definable subset in Mn is a
Boolean combination of projective sets.

In more general situations the class of e.c. structures may be unstable,
but still with a reasonably good model-theoretic properties.

Notice that though condition (GS) is trivial in examples (B.10) - (B.11),
the derived dimension notion ∂ is non-trivial. In both examples ∂(x) > 0 iff
the corresponding rank of x is infinite (which is the SU-rank in algebraically
closed difference fields and the Morley rank, in differentially closed fields).

The dimension notion ∂ for finite subsets, similarly to the example (3a),
gives rise to a dual dimension notion for definable subsets S ⊆ Mn over a
finite set of parameters C :

dimS = max{∂({x1, . . . , xn}/C) : 〈x1, . . . , xn〉 ∈ S}.
There is one more stage in Hrushovski construction (called the collapse):

picking up a substructure Mµ ⊂ M which approximates M in some special
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way and has the property of finiteness of rank notion. We are not going to
discuss this step of the construction in this book.

The infinite dimensional structures emerging after step (EC) in natural
classes we call natural Hrushovski structures.

It follows immediately from the construction, that the class of natural
Hrushovski structures is singled out in H by three properties: the generalised
Schanuel property (GS), the property of existentially closedness (EC) and the
property (ID), stating the existence of n-dimensional subsets for all n.

It takes a bit more model theoretic analysis, as is done in [17], to prove
that in examples (B.7)-(B.9), and in many others, (GS), (EC) and (ID) form
a complete set of first order axioms.

In 2000 the present author extended the use of Hrushovski’s construction
to non-elementary (non first order) languages in connection to the issues
discussed below. It turned out that in this context one more property of
structures in question is relevant. This is the Countable Closure Prop-
erty,

(CCP) dimS = 0 ⇒ cardS(M) ≤ ℵ0.

This property is typically definable in the language with the quantifier
“there exist uncountably many v such that ...”.

Once Hrushovski found the counterexamples, the main question that has
arisen is whether those seemingly pathological structures demonstrate the
failure of the principle in general or there is a classical context that the
counterexamples fit in.

Fortunately, there are good grounds to pursue the latter point of view.

We start with one more example of Hrushovski construction.

B.2.3 Pseudo-exponentiation

We want to put a new function ex on a field K of characteristic zero, so that
ex is a homomorphism from the additive into the multiplicative groups of
the field:

(EXP) ex(x1 + x2) = ex(x1) · ex(x2).
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Then the corresponding predimension on new structures Kex = (K,+, ·, ex)
must be

δ(X) = tr.d.(X ∪ ex(X))− lin.d.(X) ≥ 0, (GS)

where lin.d.(X) is the linear dimension of the Q-span of X.
Equivalently this (GS) can be stated as:

assuming that x1, . . . , xn are Q-linearly independent,

tr.d.(x1, . . . , xn, exx1, . . . , exxn) ≥ n.

This is known in the case K is the field of complex numbers and ex = exp
as the Schanuel conjecture (see [49]).

Start now with the class H(ex) consisting of structures Kex satisfying
the “Schanuel conjecture” (GS) and the additional property that the kernel
ker = {x ∈ K : ex(x) = 1} is a cyclic subgroup of the additive group of the
field K, which we call the standard kernel. This class is non-empty and
can be described as a subclass of an elementary class defined by omitting
countably many types.

We prove in [58].

Theorem B.2.1 In every uncountable cardinality κ there is a unique field
Kex with pseudo-exponentiation satisfying the Schanuel condition (GS), exis-
tential closedness condition (EC) and the countable closure property (CCP).
In other words, Kex is κ-categorically axiomatisable by axioms ACF0, EXP,
EC, GS and CCP.

The theorem is proved using Shelah’s stability and categoricity theory for
nonelementary classes and some nontrivial arithmetic of fields. Note that the
existential closedness condition, typically for structures obtained by Hrushovski’s
construction, entails the following.

Theorem B.2.2 Two tuples in Kex are conjugated by an automorphism of
the structure iff their projective types coincide.

By the obvious analogy with the structure Cexp = (C,+, ·, exp) on the
complex numbers we conjecture that Cexp is isomorphic to the unique struc-
ture Kex of cardinality 2ℵ0 . Note that this is a very ambitious conjecture as
it includes Schanuel’s conjecture. Moreover, the property (EC) not known
for Cexp becomes a new conjecture, essentially stating that any system of
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exponential-polynomial equations has a solution as long as this fact does not
contradict Schanuel’s conjecture in a certain direct way. A related result is
the main theorem of [22].

Based on the analysis of pseudo-exponentiation and other similar exam-
ples produced by Hrushovski’s construction one starts to hope that though
the Trichotomy Conjecture in full generality is false some more general clas-
sification principle, supposedly referring to analytic prototypes (such as the
structure Cexp), still could be true.
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L-formula, 194
L-sentence, 194
L-structure, 194
ℵ0-saturated, 19
∀-axiomatizable, 201
κ-saturated, 19
κ-stable theory, 213
n-type, 207
cdim , 59

L′-reduct, 197
L∞,ω(C0)-type, 176

A-formula, 200
abstract elementary class, 172
addition formula, 223
addition formula (AF), 38
admissible sequence, 142
affine space, 222
alphabet of a language, 193
ample (AMP), 87
analytic locus, 182
analytic rank ark, 166
analytic stratification (AS), 167
analytic subsets, 165
arity, 193
atomic compact, 25
atomic formula, 194
axiomatizable class, 200

back-and-forth system, 212
band function, 132
basic relations, 14
basis of a pregeometry, 222
bounded variables, 194
branch of a curve, 88

canonical basis, 147
Cantor-Bendixson Derivative, 214
Cantor-Bendixson rank, 214
categorical in power (cardinality), 203
closed sets (relations), 21
collapse, 240
combinatorial dimension (cdim ), 223
compactness theorem, 19
complete set of sentences, 197
complete topological structure, 23
complete type, 207
complexity of a formula, 194
composition, 98
constructible set, 23
core ∃-formula, 159
core substructure (of analytic Zariski

structure), 172
countable closure property, 241
covering, 58

definable function, 15
definable relation, 196
definable set, 15, 196
degree of curves, 118
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derivative of a function, 33
descending chain condition (DCC), 23
differentiable function, 34
dimension, 37
dimension (combinatorial), 59, 223
dimension of unions, 38
discrete covering, 58
domain (universe) of the structure, 195

E-formula, 200
e-irreducible , 83
elementarily equivalent, 15, 196
elementary chain, 200
elementary embedding, 17, 198
elementary extension, 17
elementary monomorphism, 198
embedding, 195
eq-fold, 83
essential uncountability (EU), 39
exchange principle, 220
existential formula, 200
existentially closed, 201

faithful family, 87
family of closed subsets, 73
family of curves, 86
family through a point, 87
fibre condition (FC’), 42
fibre condition (FC), 38
finite cover property (f.c.p.), 225
finite covering, 58
finitely satisfiable (f.s.), 197
formula over C, 18
free variables, 194

generic, 38
generic over a set, 227
geometry (combintorial), 221
good dimension, 37

group of jets, 101

Hausdorff distance, 139
Hausdorff limit, 140
Hrushovski construction, 239

implicit function theorem, 76
incidence relation, 87
independent over a set, 228
independent set, 222
index of intersection, 73
indiscernible set, 223
inductive class, 202
infinitesimal neighbourhood, 30
interpretation of language, 194
irreducible closed set, 23
irreducible component, 24
isomorphism, 195

language, 14, 193
local dimension, 55
local function, 75, 88
local property, 64
localisation of a pregeometry, 221
locally modular, 235
locally projective geometry, 233
locus, 59
logical consequence, 197
Los, 236
Lowenheim-Skolem Theorem, 199

macro-geometry, 230
manifold, 86
method of diagram, 198
micro-geometry, 230
minimal structure, 220
model, 197
model complete, 202
monster model, 213
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Morley degree, 227
Morley irreducible, 215, 227
Morley rank, 215, 225
Morley’s theorem, 216
morphism, 83
multiplicity, 70

Noetherian, 23
non-linear geometry, 235
non-logical symbols, 193

orbifold, 49, 84

parameters, 18
partial field structure, 110
partial group structure, 101
partitioning enumeration, 159
positive formula, 201
positively axiomatizable, 201
pre-group of jets, 101
pre-manifold, 83
predimension, 172, 239
pregeometry, 221
preserve relations, 195
presmooth (with), 54
presmoothness (PS), 39
primitives, 193
primitives of a language, 14
projection proper on S, 170
projective geometry, 233
projective set, 23, 202
projective space, 222
proper mapping theorem, 170
properness of projection, 23
pseudo-plane, 233

quantifier elimination, 16, 208
quantum algebra at roots of unity, 146

quasi-compact (compact) topological
structure, 23

real oriented, 135
regular point of a covering, 58
relational language, 194

saturated over M, 19
saturated structure, 210
Schanuel conjecture, 242
semi-definable functions, 132
semi-properness (SP), 39
sentence, 15
simply tangent, 74, 116
smooth, 78
smoothness theorem, 78
specialisation, 24
stable theory, 213
standard kernel, 242
standard-part map, 25
Steinitz Theorem, 206
Stone space, 209
strong embedding, 240
strong irreducibility (SI), 38
strongly continuous function, 32
strongly minimal structure, 216
strongly minimal structure (set), 225
strongly presmooth (sPS), 54
subspace of a pregeometry, 221
sum of branches, 108

tangent branches, 89
theory of a class, 200
topological sort, 79
topological structure, 21
torus, 53
transcendence basis of a field, 206
trichotomy conjecture, 237
trivial geometry, 233
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trivial structure, 236
truth values, 195
type of a, 207
type omitted, 207
type over C, 18
type realised, 207

universal domain, 213
universal formula, 200
universal specialisation, 27
universal structure, 210
unramified covering, 70

weak properness of projections (WP),
164

weak trichotomy, 233
weakly complete topology, 114

Z-group, 103
Z-meromorphic function, 122
Zariski geometry, 54
Zariski geometry (1-dimensional), 44
Zariski set, 82


