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Abstract. The paper is a part of the project which aims to construct a functor from
a broadest possible category of algebras, seen as “coordinate algebras” to a category
of “geometric structures”, where the latter should be defined and analysed in terms of
geometric stability theory. The introduction contains a brief survey of some completed
steps of the project. Then we concentrate on the case of the rings of integers of number
fields. According to Grothendieck one should think of Z as a coordinate algebras of
Spec(Z), the spectrum. However, it is still not clear what geometry this object carries.
A.Connes and C.Consani published recently an important paper which introduces a
much more complex structure called the arithmetic site which includes Spec(Z).

Our approach produces a structure with distinctive geometric features which, in
the big picture, is not inconsistent with Connes-Consani’s.

The current version is quite basic. We describe a category of certain objects
representing integral extensions of Z and establish its tight connection with the space
of elementary theories of pseudo-finite fields. From model-theoretic point of view this
category is a multisorted structure which we prove to be superstable with pregeometry
of trivial type. It comes as some surprise that a structure like this can code a rich
mathematics of pseudo-finite fields.

1. Introduction and the general framework

1.1. Introduction. The idea that the integers Z, as an object of number-theoretic
studies, could be better understood by associating a geometric object to it is an ac-
cepted point of view. Following A.Grothendieck one views Z as a potential “coordinate
algebra” of a geometric object which one can refer to as Spec(Z). Conventionally, one
thinks of Spec(Z) as a set of prime ideals of ring Z but it is not clear what structure,
that is what relations and operations this set naturally acquires. In [10] Yu.Manin sets
a sort of test question on what Spec(Z)× Spec(Z) is. Manin also speculates in [10] on
what dim Spec(Z) could be (pointing to three possible answers arising in discussions,
1, 3 and ∞).

A.Connes and C.Consani in a series of papers that go back to the 1990’s developed a
rich and interesting theory around this problem and more recently (see [1]) introduced
and studied a relevant structure which they called the arithmetic site. Their construc-
tion builds the arithmetic site, following Grothendieck’s prescriptions, as a topos in
which “points” correspond to representations of the monoid N× of positive integers.
The conventional Spec(Z) can be seen embedded in the arithmetic site.

Our work does not aim to counterpose the existing approaches but rather is a test
for a quite general proposal for establishing duality between the broad category of
“co-ordinate algebras”, Algebras , and a category of “spectra”, Spectra; the first one
containing among others the rings of integers OK . The object of the second category is
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not easy to define in such a general context but model theory can suggest an answer.
The answer is based on the notion of a Zariski geometry (Zariski structure) and has
been first tested and studied in [13] by the second author for the category of quantum
algebras at roots of unity which includes many non-commutative algebras as well as all
commutative affine algebras (without nilpotent elements).

1.2. Syntax and semantics. The ideology of our approach is that objects R of the
category Algebras encode a syntactic information and the respective object MR ∈ Spectra
is an adequate semantic, geometric realisation of this information. To give a meaning
to what geometric means in this context we suggest to use model-theoretic notion of
Zariski structure, [15], and it generalisations. One might note here that the role that
we assign to the notion of Zariski structures is in many ways equivalent (but possibly
more narrow) to the role played by the Grothendieck topos.

A Noetherian topological structure in a language L is a (possibly multisorted)
L-structure M with topologies τn on sorts of Mn, all n. The closed subsets of τn are
subsets definable by quantifier-free positive L-formulas in n variables.

The topologies are assumed to be Noetherian.
Boolean combinations of closed sets are called constructible. The topologies τn for

different n are linked by the condition: the projection of a closed subset of Mn+1 into
Mn is constructible.

A Noetherian Zariski structure M in a language L is a topological structure in
a language L such that the expansion of M to the language L(M) (adding a name to
every point p ∈M) is a Noetherian topological structure and:

To any constructible L(M)-subset S is assigned dimS, a non-negative integer num-
ber, the dimension of S.

Dimension satisfies the following axioms. For L(M)- definable closed subsets S1, S2, S
and point p ∈M :

1. dim{p} = 0, dim(S1 ∪ S2) = max{dimS1, dimS2}.
2. If S1 ( S and dimS1 = dimS then there is S2 ( S such that S = S1 ∪ S2.
3. Assuming S ⊆Mn+1 is irreducible, pr : Mn+1 →Mn, a projection,

dimS = dim prS + min{dim pr−1(p) ∩ S : p ∈ prS}
and there is a relatively open subset U ⊆ prS such that

u ∈ U ⇒ dim pr−1(u) ∩ S = min{dim pr−1(p) ∩ S : p ∈ prS}.
We further define M to be a Zariski geometry if there is a 1-dimensional sort A

in M which
(i) co-ordinatises any other sort X in M, that is there are relatively open subsets

X0 ⊆ X, Y ⊆ AdimX and finite-to-finite correspondence R ⊂ X0×Y given by positive
formula;

(ii)A satisfies the presmoothnes condition: for every n, any closed irreducible S1, S2 ⊂ An

and an irreducible component S1,2 of the intersection S1 ∩ S2,

dimS1,2 ≥ dimS1 + dimS2 − n.

1.3. The functor. The functor R 7→ MR, when R is e.g. a semisimple finitely gen-
erated k-algebra finite over its centre, is defined as follows. We introduce a language
LR for 3 -sorted structures with sorts F, E and M. Elements of R become names of
operator acting on E. The sort F has a field structure on it which we set to be isomor-
phic to k̄, the algebraic closure of k. The language also has the name pr for a surjective
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map E → M such that the fibres pr−1(q) of the map have structure of vector spaces
with respect to a “+” in LR and the multiplication · by elements of F. Moreover the
fibres are invariant under the operators a ∈ R so that pr−1(q) are R-modules. We then
require that

(1) for each q ∈M the R-module pr−1(q) is irreducible;
(2) q1 = q2 if and only if pr−1(q1) ∼= pr−1(q2) as R-modules;
(3) any isomorphism type of irreducible R-modules is represented by some q ∈M.
It is proven in [13] that so defined MR is a Noetherian Zariski geometry. More

precisely, [13] discussed only the case k = k̄ but the argument goes through for the
general case.

Note that the functor R 7→ MR is invertible since we can get back MR → R by
reconstructing R as the algebra of Zariski-continuous (so, definable) operators on the
vector bundle.

1.4. The spectrum. As suggested above (and in [13]) one should take the spectrum
of R, Spec(R), to be the multisorted structure M. Of course, then the answer to the
question “what is Spec(R) × Spec(R)?” is: “the multisorted Zariski structure MR ×
MR”.

One can note that when R is an affine k-algebra, the vector fibration is equivalent
to a trivial line bundle over the algebraic variety M defined over k with the coordinate
algebra k[M ] = R. In this case MR is nicely bi-interpretable with the one-sorted
structure induced on the sort M, which is just an algebraic variety over k and the
conventional spectrum of R. The closed points of the affine k-scheme R are exactly the
LR-definable points of MR.

This above construction works only for semisimple case. The more general case
considered in [13] required a more general condition (1) in the construction of MR :

(1’) for each q ∈ M the R-module pr−1(q) is maximal indecomposable (into direct
sum).

With this generalisation the construction covers the general case of quantum algebras
at roots of unity (see the definition in [13]).

However, the class of quantum algebras at roots of unity does not include some
important classes, e.g. affine (commutative) schemes of finite type with nilpotent
elements (non-reduced schemes). This, key to algebraic geometry case has been studied
by Alfonso Guido Ruiz in [6]. It turns out, as expected, that the construction similar
to the one indicated in (1’) gives a correct functor, an extension of the previous functor
to the larger categories. Again, so defined MR is a Noetherian Zariski geometry.

1.5. Towards the general case. The same approach is expected to work in principle
when R is an algebra in a very general case, e.g. a C∗-algebra or ∗-algebra (without
assumption of it being a Banach algebra) or, on the opposite, R being just a ring
or monoid. Of course, generalising in any of the directions one needs to generalise
respectively the notion of Zariski structure, with a reasonable level of model-theoretic
stability.

The case corresponding to the ∗-algebra R generated by operators P and Q satisfying
the canonical commutation relation

QP − PQ = i~
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is treated in [4], [14] and in an ongoing work. The construction of MR for this case
extends the method described above, in particular, replacing R by a category of non-
commutative quantum algebras at roots of unity approximating R in a certain sense.
Correspondingly, MR becomes a category of Noetherian Zariski structures with dis-
tinguished “real parts”, equivalently a multisorted (with infinitely many sorts) Zariski
structure. The crucial part of this construction, an additional sort, the space of states
S with a homomorphism (called “limit”)

lim : MR → S

which projects the structure on MR onto S. The induced structure on S is shown to be
the well-known symplectic phase space of quantum mechanics with the action of time
evolution operators for quadratic Hamiltonians.

It should be noted that this particular “geometric structure” MR is complex enough
to encode non-trivial number-theoretic relations, in the form of special Gauss quadratic
sums. And in the limit form (on the sort S) the sums are represented by oscillating
Gaussian (quadratic) integrals. A work in progress develops calculations around higher
order Gauss sums and oscillating integrals.

1.6. On rings of integers. The constructions and results presented in the short sur-
vey above provides us with a suggestion for the treatment of the spectrum of Z and,
more generally, spectra of rings of integers OK , or more precisely the multiplicative
structure on OK .

There are several serious reasons for avoiding the full ring structure in this context.
First, the representation theory of rings naturally reduces to the representations on k-
vector spaces and there is no natural good choice for the field k under the circumstances
(a popular suggestion is to take k to be a “field of characteristic 1” which essentially
amounts to the same suggestion of working with the monoid structure of OK).

Another reason is that as long as we are interested in distribution of prime numbers
and other aspects of multiplicative number theory, the additive structure on OK may
be irrelevant.

Finally, since we make use of the whole category of “algebras” OK (similar to 1.5
above) morphisms between objects for different K should be definable in our structure
in some geometric way. This, we believe, would not be compatible with preserving the
additive structure of the K.

1.7. Our structure. We construct a multi-sorted structure M which as a whole is
to be seen as a geometric structure corresponding to the category of rings of integers
OK , for number fields K. This type of “geometric” structure is closest to MR reviewed
in subsection 1.5. However, the current version is minimalist; the potential of richer
versions is discussed in the final “Concluding remarks and further direction” section of
the paper.

For eachK is given a 2-sorted substructure (AK , SpK) with surjection pr : AK → SpK
which can be read as a set of “points” SpK with a structure over each point p given
on the fibre pr−1(p). (Note that we deliberately have chosen the notation SpK to dis-
tinguish from the more common Spec(OK). In fact, the latter will be determined, in
accordance with 1.4, as SpK along with the fibration given by pr.)
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Each element m ∈ OK defines an action on the fibre. We define a certain “Zariski”
topology on the sorts of the structure and their cartesian products. We then can
identify the set of all the m ∈ OK with the set of operators

m : AK → AK , pr−1(p)→ pr−1(p).

The structure on fibres of the projection, pr−1(p) can be obtained as the reducts of
structure of a one-dimensional vector space over Fp = OK/p, which ignores the additive
structure of the vector space and is essentially a representations of the monoid OK .

Objects (AK , SpK), which we call arithmetic planes over respective number fields,
are linked together into a category by morphisms

πK,L : AK → AL for K ⊇ L,

which on each fibre pr−1(p) shadows the norm map Fp → Fq, for p ⊇ q, prime ideals
of respective rings.

This defines the multisorted structure, the object of our model-theoretic analysis.
Before stating results of this analysis we must note that it is not difficult to see that
this structure is definable in the ring of finite adeles, well undersood object of model
theory, in particular studied recently in much detail by J.Derakhshan and A.Macintyre,
see [5] and their forthcoming papers. These studies of the rings of adeles shed some
light at our structure but do not explain the limits of expressive power of our language.

Our main theorem states that the theory of the structure is superstable and allows
elimination of quantifiers to certain family of core formulas of geometric flavour. This is
not very surprising given that the structure is defined in terms of very simple relations,
and indeed the only definable subsets on each spectral sort SpK are certain unary
predicates. However, the language of the structure has quite a considerable expressive
power: we prove that to any point v ∈ SpK in a model of the theory one can associate
a pseudo-finite field Fv so that

tp(v) = tp(w) if and only if Fv ≡ Fw, v, w ∈ SpK

where the elementary equivalence is in the language of fields extended by the names of
its algebraic elements.

The quantifier-elimination theorem allows to define a natural topology on the multi-
sorted structure and determine the dimensions (which we take to be just the U -ranks)
of closed, and more generally definable, subsets. In particular,

U(SpK) = 1, U(AK) = 2, U(pr−1(p)) = 1

for any number field K and any p ∈ SpK . If we take the dimension to be the Morley
rank then the first two values are equal to∞ and MR(pr−1(p)) is finite (so our analysis
explains two of the three versions of dimension of Spec(Z) suggested by Yu.Manin in
[10]).

Another interesting result is that a large subalgebra of the boolean algebra of de-
finable subsets on a sort SpK can be given a probabilistic measure, which is just the
natural or analytic density in the sense of number theory. We don’t know if this measure
is well-defined on all definable subsets.

We note that the topology is not Noetherian and that in the standard model the
arithmetic planes AK and the spectral line SpK are not compact. However, we find that
there are compact models and determine the minimal compact model. This model has
finitely many non-standard (infinite) primes in each SpK , more precisely, the number
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is equal to degK/Q, and these primes w are characterised by the property that any
polynomial over Z splits into linear factors in Fw.

Acknowledgement. We would like to express our gratitude to the referee whose
thorough analysis accompanied by constructive criticism made us to essentially revise
the first version of the paper.

We are also grateful to J.A. Cruz Morales who read the paper and made many useful
comments.

2. A bundle over the spectrum of OK

All fields K below are number fields and rings are OK , the integers of the fields.
We generally assume that the fields belong to a collection R closed under intersections
such that for any K,L ∈ R an embedding L ⊂ K is Galois. By default we assume
that the minimal object in R is Q but in general it could be any number field.

The spectrum of a ring OK , Spec(OK), is the collection of all prime ideals of OK .
Equivalently, for Dedekind rings, the collection of maximal ideals maxSpec(OK), to-
gether with the zero ideal. We denote for brevity

SpK := maxSpec(OK),

equivalently, the collections of irreducible representations of OK . This will be our main
universe, a geometric space (of closed points), which agrees with the notion of universe
for a Zariski geometry, see [15]. Note that when we introduce a “Zariski” topology on
SpK this universe as a whole is assumed to be closed, which in scheme-theoretic terms
amounts to take the zero ideal into account.

The maximal (that is non-zero prime) ideals we call points of SpK and often just say
points of the spectrum.

However, we want to consider the OK as monoids and to every point p of SpK we
put in correspondence an irreducible OK-module dFpe which we consider as a monoid-
module, that is we ignore the additive structure on dFpe but do distinguish the zero
element 0 ∈ dFpe.

Since K acts on dFpe as OK/p and p is maximal, OK/p ∼= Fq, a finite Galois field,
q = q(p) = `n for some prime ` which depend on K and p. So, choosing a non-zero
ap ∈ dFpe we can identify dFpe with Fq.ap, where the action of F∗q on dF∗pe = dFpe \ {0}
is free.

The characteristic property of dFpe is that

Ann(dFpe) = p,

the annihilator of dFpe (in fact, of any non-zero point in dFpe) is equal to the ideal in
OK generated by p.

2.1. The arithmetic plane over K. We define the 2-sorted (standard) universe
(AK , SpK) with the projection

pr : AK \ {0} → SpK

where

AK :=
⋃
p

dFpe and pr(x) = p↔ x ∈ dFpe.

see the picture for K = Q, OK = Z below.
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We think about AK as an arithmetic plane over K and SpK the horizontal axis
of the plane.

Thus, the dF∗pe are fibres of the projection. Note that for each standard fibre
OK · ap = dFpe, but this is not first-order expressible uniformly in p.

We call the structure described above Rep(OK), the representations of the monoid
OK .

We summarise: the language LK of Rep(OK) has two sorts, AK and SpK , names for
unary operations m : x 7→ mx for elements m ∈ K, and the map pr : AK → SpK .

Remark. We can equivalently represent Rep(OK) in a one-sorted way, with just a
sort AK with equivalence relation E instead of pr, such that the equivalence classes are
exactly the dFpe.

2.2. Topology. To every ideal m ⊂ OK we associate the ∅-definable subset
Sm = {x ∈ AK : An(x) ⊇ m}, equal to

⋃
p|mdFpe. Since every m is finitely generated,

the latter is a union of finitely many orbits.
We call such sets and finite union of those closed in AK .
Along with this topology on AK we define a topology on SpK with the basis of closed

sets of the form pr(Sm).
We will refer to as the conventional Zariski topology on AK and SpK .
It is not hard to prove the following statement which will be superseded by Theo-

rem 4.14.

Proposition. The complete first-order theory of Rep(OK) has an explicit axioma-
tisation T (K). The theory admits elimination of quantifiers. This theory is ω-stable of
finite Morley rank. The sort SpK is strongly minimal and of trivial type. The sort AK
is of Morley rank 2 and the fibres of pr are either finite or strongly minimal.

3. The Multi-Sorted Structure of Representations

3.1. The language. In this section we present a construction of a multi-sorted struc-
ture with sorts of the form AK , SpK where K runs through a family R of (by default
all) number fields.

The language LR of the multisorted representation structure Rep(R) will be
the union of the languages LK , K ∈ R, extended by maps πK,L : AK → AL, for
K,L ∈ R, OL ⊆ OK .
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3.2. Notation. Let q, p ⊂ OK and q, p ⊂ OL are prime ideals of the corresponding
rings OL ⊆ OK such that q ⊃ q and p ⊃ p. Throughout this paper we use notations
for q, p ⊂ OK and q, p ⊂ OL such that

(1) q ⊇ q, p ⊃ p

that is always “q lies over q and p lies over p in OK”.

We will also use notation for definable maps

πSp
K,L : SpK → SpL

defined by
πSp
K,L(q) = q ⇔ dFqe ⊆ π−1K,L(dFqe).

Recall that the ring homomorphism

resq : OK → OK/q =: Fq

can be seen as a residue map (or place) for a valuation of K with the value ring equal
to OK and the valuation ideal equal to q. Here Fq

∼= Fqm for some positive integer m,
which depends on K. We define

|q| := qm.

Note that if K : L is Galois, acting by a Galois automorphism on K we move q
to some q

′ ⊂ OK . In this sense q′ runs through all prime ideals of OK which are
Galois-conjugated to q, while Fq

′ ∼= Fqm with the same m.
We will often refer to resq as a naming homomorphism as it associates elements

γ ∈ OK (which we see as “names”) with elements in dFqe.

3.3. Orbits. For each prime ideal q we associate a unique orbit dFqe on which OK

acts, for each γ ∈ OK \ q and x ∈ dFqe
x 7→ γ · x ∈ dFqe

and γ · x = 0 (a common zero) iff γ ∈ q. By definition we assume

γ1 · x = γ2 · x iff γ1 − γ2 ∈ q

and we assume that the action is transitive. Thus, by definition, for any γ ∈ OK and
a ∈ dFqe,

(2) γ · a = γ̄q · a
where γ̄q ∈ Fq, the element with the name γ.

3.4. Corollary. For q, q′ ∈ SpK

q = q′ iff for any γ1, γ2 ∈ OK ∀x ∈ dFqe ∀x′ ∈ dFq′e γ1 · x = γ2 · x↔ γ1 · x′ = γ2 · x′.
Note also that, given q′′ ∈ SpK , a ∈ dFq′′e we can represent any element b ∈ dFq′′e

as
b = γ̄q′′ · a, for some γ̄q′′ ∈ Fq′′ .

We will also write accordingly

dFq′′e = Fq′′ · aq
where q′′ 7→ aq′′ is a cross-section SpK → AK .
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3.5. Morphisms between sorts. Let NormK,L : Fq → Fq be the norm map. Define,
the morphisms

πK,L : AK → AL

by its action on each orbit

πK,L : dFqe → dFqe,
for each prime q over q, which is defined once the sections aq ∈ dFqe and aq ∈ dFqe are
given: for η ∈ Fq

πK,L(η · aq) := NormK,L(η) · aq.
Note that this definition applies to all primes q′ in OK over q and morphisms

πK,L : dFq′e → dFqe.

3.6. Remark. It is crucial for the definition of morphisms πK,L that we treat the OK

as monoids (not rings), that is there is no additive structure on the fibres dFqe.

Naming homomorphisms:

OK

Fq
Fq′ Fq′′

resq

resq′
resq′′

Fq

NormK,L

NormK,L

NormK,L

3.7. Lemma. The action of OK on dFqe induces via πK,L an action of OK on dFqe.
This action extends the action of OL on dFqe.
This action does not depend on the sections aq and aq.
Proof. Given γ ∈ OK and b ∈ dFqe define

(3) γ ·q b := NormK,L(γ̄q) · b.
This is clearly an action since norm is multiplicative. We will write it without the

subscript q when the latter is clear from the context.
For γ ∈ OL we have γ̄q ∈ Fq and γ̄q = γ̄q since q ∩OL = q. Hence NormK,L(γ̄q) = γ̄q

for such γ and so this is its usual action. Clearly, it does not depend on the choice of
sections.

Now we show that the πK,L preserve the action by OK , that is

(4) πK,L(γ · aq) = γ · πK,L(aq) = γ · aq.



10 L. SHAHEEN AND B.ZILBER

Indeed, by definition γ · aq = NormK,L(γ̄q) · aq, πK,L(γ̄q · aq) = NormK,L(γ̄q) · aq and
γ · aq = γ̄q · aq. The equality follows. �

3.8. Remark. The definition of the action can equivalently be written as

γ ·q b := NormK,L(resq(γ)) · b.

3.9. Corollary. The actions ·q and ·q′ on dFqe by OK coincide if and only if q′ = q.
Indeed, to see that the actions differ when q′ 6= q consider a γ ∈ q′ \ q. Then by

definition for any b ∈ dFqe, γ ·q′ b = 0 and γ ·q b 6= 0.

3.10. Remark. Note also that NormK,L can be alternatively defined as the map

NormK,L(x) = x
|q|−1
|q|−1 .

It follows that for a non-zero y ∈ dFqe

(5) |π−1K,L(y) ∩ dFqe| =
|q| − 1

|q| − 1
.

Now note that one can determine, for y ∈ AL, the number |π−1K,L(y)| once one knows
that y ∈ dFqe and one knows all the q′ which lie over q in OK .

3.11. Special predicates on SpL. We consider the πK,L-multiplicities of primes
p ∈ SpL.

Define for positive integers N the binary relation PN
K,L ⊂ OK ×OL by the first order

formula:

PN
K,L(q, q) ≡ ∃y ∈ dFqe |π−1K,L(y) ∩ dFqe| ≤ N.

Note that by the definition of πK,L it follows that PN
K,L(q, q) implies q ⊆ q.

3.12. Lemma. Let L ⊆ K, q ∈ SpL, q ∈ SpK , and assume that PN
K,L(q, q) holds. Then

(i) N ≥ |q||Fq:Fq |−1
|q|−1 .

(ii) In particular, there exists N such that PN
K,L(q, q) holds for infinitely many q ∈ SpL

with some extension q ⊆ q ∈ SpK if and only if |Fq : Fq| = 1 for all but finitely many
of pairs q, q.

(iii) If there exists N such that PN
K,L(q, q) holds for infinitely many q ∈ SpL with

some extension q ⊆ q ∈ SpK then P 1
K,L(q, q) holds for all but finitely many pairs q, q

satisfying PN
K,L(q, q).

Proof. (i) This quantative estimate is a direct consequence of (5).
(ii) |q| is unbounded when q runs in an infinite subset of SpL.
(iii) |Fq : Fq| = 1 is equivalent to the statement that πK,L induces a bijection
dFqe → dFqe. �

3.13. Remark. The case |Fq : Fq| = 1 corresponds to the fact that Fq
∼= Fq for the

prime q ∈ SpK over the prime q ∈ SpL. In case when K is Galois over L this means that
the minimal polynomial of α over L splits into linear factors modulo q. Then, except
for finitely many such q (over which q ramifies) there are exactly |K : L| distinct prime
ideals q over q.
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3.14. Define

ΠK,L := {q ∈ SpL : ∃q ∈ SpK q ⊆ q & Fq
∼= Fq}

ΨK,L := {q ∈ SpL : ∀q ∈ SpK q ⊆ q → Fq
∼= Fq}

By 3.12 both are first order definable (using P 1
K,L(q, q)).

Note that q ∈ ΨK,L if and only if every extension q of q to OK splits completely.

We will show later (see 4.10 and 4.12) that ΨK,L can be expressed essentially in
terms of ΠK,L.

3.15. Lemma. Suppose K and K ′ are Galois conjugated extensions of L. Then

ΠK,L = ΠK′,L.

Proof. Let g : K → K ′ be an isomorphism over L. Suppose q ∈ ΠK,L and so for
some q ∈ SpK over q, OK/q ∼= OL/q. Then OK′/q

′ = g(OK)/g(q) ∼= OL/q Hence
q ∈ ΠK′,L. �

3.16. Galois action on the spectra. Let α1, . . . , αk be the generators of the ring
OK over OL and σ ∈ Gal(K : L). Let ασ1 , . . . , α

σ
k be the result of application of σ to

the generators.
Consider the formula with free variables q, q′ in sort SpK :

(6)

∃x, x′ ∈ AK : pr(x) = q& pr(x′) = q′ & πK,L(x) = πK,L(x′) &
k∧
l=1

πK,L(αlx) = πK,L(ασl x
′)

Lemma.1 Given q ∈ SpK such that πSp
K,L(q) ∈ ΨK,L the formula (6) holds for

q′ ∈ SpK if and only if q′ = qσ.
Proof. Suppose (6) does hold. Then q := πSp

K,L(q) = πSp
K,L(q′).2

Under our assumptions NormFq,Fq : Fq → Fq is an isomorphism and definition (3)
implies that for any α ∈ OK ,

πK,L(α · x) = ᾱq · y, for y := πK,L(x),

where ᾱq = resq(α) ∈ Fq.
Since πK,L(αx) = πK,L(ασx′), we get that

ᾱq = ᾱσq′

for all α ∈ OK . In particular,

α ∈ ker(resq)⇔ ασ ∈ ker(resq′).

But ker(resq) = q and ker(resq′) = q′, that is q′ = qσ. �

1We should be able to write down a formula which defines an action of σ on AK (not just SpK)
without the restriction to ψK,L.

2In particular, we can write the formula (6) so that all the variables are relativised to cl(p).
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4. The quantifier elimination theorem

In this section we discuss the relationship between the spectra of rings of integers on
the one hand side, and the space of (elementary) theories of pseudo finite fields. The
latter is of course well understood due to the work of J. Ax and was studied in other
contexts by [8] and [7]. The main distinction in our study is that we work in a different
language.

4.1. The space of finite fields. The multisorted structure PF , a space of finite
fields, consists of sorts PFK , AFK for number fields K, with a surjective map

pr : AFK → PFK .

As was noted in subsection 3.2 a unital homomorphism res : OK → Fq can be seen
as assigning names in OK to elements in Fq. We will consider elements of OK as extra
constant symbols and Fq a structure in the language of rings with names in OK .
We denote the language Lrings(K).

The fibre pr−1(q) over a point q ∈ PFK , has a structure given by the language
Lrings(K) that can be identified with a finite field Fq (later, in 4.4, a pseudofinite field)
with names in OK .

We assume that for finite Fq,

(7) Fq
∼= Fq′ ⇔ q = q′

We also assume that,

(8) for every prime q ⊂ OK there is Q ∈ PFK such that Fq = FQ := OK/q.

There are maps

NmK/L : AFK → AFL, jK/L : AFL → AFK for OK ⊇ OL

between sorts, defined fibrewise as

(9) NormK/L : Fq → Fq, jK/L : Fq → Fq for Fq ⊇ Fq.

where jK/L is the canonical embedding.

Note that

(10) NmK/L is surjective

since every prime q ⊂ OL can be lifted to a prime q ⊂ OK .
We also assume that

(11) Fq = Fq(ᾱ), for α such that K = L(α)

where ᾱ = resq(α).

4.2. Remarks. (i) Note that Fq is determined by (11) uniquely, up to the naming, and
we have one-to-one correspondence between extensions of Fq in the language Lrings(K)
and the residue maps resq.

(ii) The assumptions (7)–(11) are first-order axiom schemes of spaces of pseudofinite
fields. The axioms (7) and (8) are written for each finite q separately.
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4.3. Lemma. There exists a bijection

i : AK → AFK , SpK → PFK , for all K

between the (standard) multisorted representation structure (AK , SpK) (section 3) and
the space of finite pseudofinite fields (AFK ,PFK) such that

(12) i ◦ pr = pr ◦ i, NmK/L ◦ i = i ◦ πK,L

and for any γ ∈ OK , x ∈ AK

(13) i(γ · x) = respr(x)(γ) · i(x).

Proof. For each L ⊂ K choose the sections SpL → AL, q 7→ aq. Then

x = γ̄ · aq ⇒ i(x) := γ̄, for x ∈ AL, γ ∈ OK , γ̄ := resq(γ) ∈ Fq

determines the map with required properties. �

4.4. Corollary (The space of pseudofinite fields). Given an ultrapower (∗AK ,
∗SpK)

(over an ultrafilter D) of the standard (AK , SpK) there exists a space of pseudofinite
fields (∗AFK , ∗PFK) and a bijection

i : ∗AK → ∗AFK , ∗SpK → ∗PFK , all K

with the same properties (12) and (13) as above. More precisely, (∗AFK , ∗PFK) can
be constructed as the ultrapower of (AFK ,PFK) over the same ultrafilter.

4.5. Algebraic closure. We call a substructureM of the multisorted structure (AF ′K ,PF ′K)
algebraically closed if

(i) all the finite primes and the fibres over them belong to M ;
(ii) for any q ∈ SpL ∩M we have pr−1(q) ⊂M,
(iii) and for any K ⊇ L every q ∈ SpK such that q ⊆ q belongs to M.

The same definition works for a substructure of the multisorted structure (∗AK ,
∗SpK).

Given arbitrary X in a multisorted structure, we will write cl(X) for the minimal
algebraically closed substructure containing X.

Example. The algebraic closure of a point x ∈ AK is equal to the closure of the
prime q ∈ SpK , such that q = pr(x). In its turn cl(q) contains, for every L ⊆ K, the

point q = πSp
K,L(q). But, at the same time, by definition q ∈ cl(q). Summarising, one

gets cl(x) = cl(q) by starting from qQ ∈ SpQ, the unique prime in Z under q, and then
adjoining all primes q over qQ, for all L, along with pr−1(q).

Remark. Suppose cl(X)∩cl(Y ) = ∅, for X, Y ⊂ (∗AFK , ∗PFK). Since the language
does not contain predicates and functions linking cl(X) and cl(Y ), for any disjoint
embeddings eX and eY , (∗AFK , ∗PFK) → (AF ′K ,PF ′K), of cl(X) and cl(Y ), the
union eX ∪ eY is an embedding.
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4.6. Lemma. In (∗AK ,
∗SpK), for any point a, the substructure on the set cl(a) is

ω-stable of finite Morley rank on each sort.
Moreover, any formula ϕ(v1, . . . , vn) relativised to cl(a) is equivalent to an ∃-formula.

Proof. As described in the Example in 4.5, the infinite definable subsets consist
of OK-monoid-modules (orbits) Fq with monoid homomorphism πK,L : dFqe → dFqe
between those. This is ω-stable of finite Morley rank.

The second statement is equivalent to the fact that the theory of cl(a) is model-
complete. To prove the latter consider the structures in two embedded models, cl(a) ⊆ cl(a)′.
It is clear from the description in 4.5 that cl(a) and cl(a)′ have the same primes q in
all sorts. Hence the embedding reduces to the family of embeddings dFqe ⊆ dF′qe. The
Tarski-Vaught test verifies that this is an elementary embedding, cl(a) � cl(a)′. �

4.7. Lemma. In (∗AFK , ∗PFK), for any point a, the substructure on the set cl(a) is
supersimple of finite rank on each sort.

Proof. As described in the Example in 4.5, the infinite definable subsets consist of
fields Fq and its definable subfields Fq. Each of these is a finite extension of FqQ, the
minimal field in cl(a), and so interpretable in FqQ. The latter is supersimple of finite
rank. �

4.8. Lemma. Assume the continuum hypothesis, let D of 4.4 be a non-principal good
ultrafilter on a countable set of indices and let (AF ′K ,PF ′K) be any saturated space of
pseudofinite fields of cardinality ℵ1. Then for any algebraically closed M ⊂ (∗AFK , ∗PFK)
and algebraically closed M ′ ⊂ (AF ′K ,PF ′K) such that SpL ∩M is countable for any
L, and M ∼=e M

′ there is an extension of the isomorphism e to an isomorphism

(∗AFK , ∗PFK) ∼= (AF ′K ,PF ′K).

Proof. Note that by our assumptions (∗AFK , ∗PFK) is also a saturated space of
pseudofinite fields of cardinality ℵ1. So we need to construct an isomorphism between
any two of those.

It is enough to show that for every a ∈ ∗AFK \M there is an a′ ∈ AF ′K \M ′ such
that e can be extended to an isomorphism M ∪ cl(a)→M ′ ∪ cl(a′).

By assumptions a ∈ Fq for some pseudofinite field Fq, for q = q(a) ∈ SpK , some
number field K. The type tp(a,Fq) of Fq and x in the language Lrings(K) determines,
by axioms (7)–(9) and 4.5 the type tp(a, cl(a)).

On the other hand, since Fq and all the other fields in cl(a) are pseudofinite, each
formula in tp(a,Fq) is realised by some pair with a finite field Fqn in place of Fq. It
implies that the same collection of formulas is a type in (AF ′K ,PF ′K), and so has a
realisation a′,Fq′ . Hence, also

tp(a, cl(a)) = tp(a′, cl(a′)).

Since both cl(x) and cl(x′) can be seen as sort-by-sort definable substructures of sat-
urated structures, we have an isomorphism cl(a) → cl(a′), a 7→ a′. By the Remark in
4.5 we obtain an isomorphism M ∪ cl(a)→M ′ ∪ cl(a′) extending e. �

4.9. Corollary. Any two spaces of pseudofinite fields are elementarily equivalent. The
type of the “flag” 〈a, q〉, a ∈ Fq, over an algebraically closed M, q /∈ M, is determined
by the elementary theory of the pair in the language Lrings(K). The complete invariant
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of the theory of Fq is the size of Fq, if Fq is finite, or, otherwise, the subfield Fq ∩ Q̃,
with names from OK .

For the last part of the statement see [2].

4.10. Lemma. In the structure (∗AK ,
∗ SpK) let q be an infinite prime and Fq a

pseudo-finite field containing K as the named subfield. Let M ⊃ K, then the following
are equivalent.

(i) Fq contains some Galois conjugate M ′ ⊇ K of M as a named field;
(ii) for some Galois conjugate M ′ ⊇ K of M and prime m′ of OM ′ lying above q,

Fq
∼= Fm′ .

Proof. Write ∗OM ′ for the ultrapower of OM ′ . This will by definition contain m′ as an
ultraproduct of prime ideals.

(ii)⇒ (i), since resm′(
∗OM ′) = ∗OM ′/m

′ = Fm′
∼= Fq and resm′ is injective on M ′.

(i) ⇒ (ii) Suppose OM ′ has a basis b1, · · · bn as an OK-module. Then b1, · · · , bn is
also a basis for ∗OM ′ over ∗OK .

Now if (i) holds, let m′ be a prime of ∗OM lying above q, the residue fields ∗OM/m
′ = Fm′

would be a finite extension of ∗OK/q = Fq generated by the named elements resm′(b1), · · · , resm′(bn)
which are in Fq by assumption. Then Fm′ = ∗OM/m

′ = ∗OK/q = Fq.
�

4.11. Corollary. Let N be an algebraically closed substructure of the multisorted rep-
resentations structure (∗AK ,

∗SpK), and q, q′ ∈ SpK . Then

(14) tp(q/N) = tp(q′/N)⇔ Fq ≡Lrings(K) Fq′

and, for q infinite,

(15) tp(q/N) = tp(q′/N)⇔ for all M ⊃ K : q ∈ ΠM,K ↔ q′ ∈ ΠM,K

Proof. (14) follows from 4.4, 4.8 and 4.9.
In order to prove (15) invoke Kiefe’s criterium (see [2], 4.7): Fq ≡ Fq′ in the language

Lrings(K) if and only if for every irreducible polynomial f(x) over K,

Fq � ∃x f(x) = 0⇔ Fq′ � ∃x f(x) = 0,

where coefficients of f(x) are interpreted in Fq and Fq′ as names of elements in the
pseudofinite fields.

Note that the assumption that q ∈ SpK is infinite (i.e. non-standard) implies that
charFq = 0 and the naming homomorphism K → Fq is an embedding. It follows that
f(x) remains irreducible as a polynomial over Kq = K, the image of K in Fq.

Let M ⊃ K be a field generated by a root of f(x) over K. Now

Fq � ∃x f(x) = 0⇔
∨

M ′∼=KM

Fq ⊇M ′

where on the right we consider images of conjugates of M in Fq. But this condition by
4.10 and 3.15 is equivalent to q ∈ ΠM,K . �
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4.12. Remark. (i) Suppose M/K is Galois. Then for all but finitely many q ∈ SpK ,

q ∈ ΨM,K ⇔ q ∈ ΠM,K .

Indeed, let as above M be generated by a root of an irreducible f(x) of order n over
K. Then M contains all the roots of f and so for an infinite prime q

Fq � ∃x f(x) = 0⇔ Fq ⊇M ⇔ Fq � ∃x1, . . . , xn

(
n∧
i=1

f(xi) = 0 &
∧
i 6=j

xi 6= xj

)
.

The condition on the right means that f(x) splits completely over q, that is q ∈ ΨM,K .
The condition on the left means that q ∈ ΠM,K . This holds for all nonstandard primes
q, hence does hold for all but finitely many standard primes.

(ii) The condition that M/K is Galois is not essential. Let M̂ be the minimal Galois
extension of K containing M . Then for all but finitely many q ∈ SpK ,

q ∈ ΨM,K ⇔ q ∈ ΨM̂,K ⇔ q ∈ ΠM̂,K .

Indeed, under the assumtion we have an infinite q ∈ SpK such that q ∈ ΨM,K . But
then by definition of ΨM,K we will have that the minimal polynomial f(x) for M splits

completely (see 3.14). Then Fq contains all roots of f(x), so all conjugates of M so M̂.

Thus q ∈ ΨM̂,K . Conversely, if q ∈ ΨM̂,K then Fq contains M̂, so contains all conjugates
of M and so f(x) splits completely in Fq, q ∈ ΨM,K .

4.13. Corollary (to 4.11). The theory of the multisorted representations structure
is superstable. The U-rank of a non-principal 1-type of sort SpK is 1, the U-rank of a
1-type of AK containing the formula pr(v) = q over q ∈ SpK is 0 or 1 depending on
whether q is finite or infinite prime. If the type contains no such formula, it is generic
and its U-rank is 2.

Indeed, by (15) for any N the set of 1-types over N of sorts SpK is at most of
cardinality continuum. Moreover, each 0-definable non-principal type has a unique
non-algebraic extension over N.

A type of sort AK by 4.8 is determined by a type of sort SpK and the type relative to
the ω-stable substructure cl(a). If a 1-type contains a formula pr(v) = q for a parameter
q, then it is a type of an element of the fibre dFqe, which is either finite, if q is finite,
or strongly minimal, so of U -rank 1. The unique complete 1-type which negates all
formulas pr(v) = q is of U -rank 2. �

4.14. Theorem. The theory of the multisorted representations structure has QE in
the language extended by boolean combination of the unary predicates:

• v ∈ SpK ,
• v = q, for q ∈ SpK , finite,
• v ∈ ΠK,L

and

• existential formulas ϕ(v1, w1, . . . , vn, wn, qQ) where the vi are of sorts ALi
and wi

of SpLi
and v1, w1 . . . , vn, wn are relativised to cl(qQ), qQ ∈ SpQ, L1, . . . , Ln ∈ R.

Proof. By 4.6 and 4.11(15) a complete n-type in the theory is determined by
formulas listed in the formulation of the theorem. By the compactness theorem any
formula is equivalent to a boolean combination of those. �
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5. The topology and compactification

We extend the conventional topology of 2.2 on SpL by declaring closed in SpL
subsets of the form ΠK,L, singletons and their finite unions, for all extension K of L.

We accordingly extend the topology on AL by declaring closed in A

• the graph of pr restricted to AL × SpL, L ∈ R;
• the graph of πK,L, for K,L ∈ R;
• subsets of SpL of the form ΠK,L, L ∈ R;
• subsets of AL1 × SpL1

. . .×ALn × SpLn
defined by positive existential formulas

ϕ(v1, w1, . . . , vn, wn, qQ) relativised to cl(qQ), qQ ∈ SpQ, L1, . . . , Ln ∈ R.
along with cartesian products, finite intersections and unions of those.

5.1. Lemma. In the multisorted structure the maps pr and πK,L are continuous.
Proof. The continuity of pr is just by definition.
In order to prove the continuity of πK,L we need to prove that π−1K,L(S) is closed for

every closed S ⊂ AL. Since this is obvious for finite S, we need to consider only the
closed subsets S of the form ΠM,L.

Claim.
π−1K,L(ΠM,L) = ΠKM,K

where KM is the composite of fields.
Proof. Let q ∈ ΠM,L, M = L[α]. Then we have KM = K[α] and for some a ∈ L,

(16) α− a ∈ q.
Then

(17) α− a ∈ q for every prime OK ⊃ q ⊇ q

which implies q ∈ ΠKM,K . This proves

q ∈ ΠM,L ⇒ q ∈ ΠKM,K for every prime OK ⊃ q ⊇ q.

Now we prove the converse. Suppose

q ∈ ΠKM,K for every prime q ⊇ q.

This is equivalent to say that Fq′ = Fq for q′ ∈ KM and q′ lie above q and so to (17).
But ⋂

q⊇q

q = q

and hence we proved (16) and q ∈ ΠM,L. This finishes the proof of the claim and of
the lemma. �

5.2. The Chebotarev density theorem and its corollaries. Recall that the den-
sity of a subset S ⊂ SpL is defined as

dnS = lim
n→∞

#{q ∈ S : |q| ≤ n}
#{q ∈ SpL : |q| ≤ n}

.

The Chebotarev density theorem ([11], 4.4.3) states that a subset S ⊂ SpL defined by
the pattern of splitting of fK , the minimal polynomial for K over L, modulo q has a den-
sity. Moreover, it determines the density in terms of the structure of G = Gal(K̂ : L),

where K̂ is the minimal Galois extension of L containing K. More precisely, let σ ∈ G
and C = σG a conjugacy class.
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Then Chebotarev Density Theorem states that

dn{q ∈ SpL : σq ∈ C} =
|C|
|G|

,

where σq are the Frobenius elements defined up to conjugacy.

5.3. Proposition. Let L ⊂ K ⊂M and M/L minimal Galois extension containg K.
Then dn(ΠM,L) is well-defined and

dn(ΠK,L) ≥ 1

|M : L|
.

Proof. Let q ∈ SpL, m ∈ SpM such that m ⊃ q. Consider the Frobenius element
Frobq ∈ G = Gal(M : L), that is such that its action on Fm = resq(M) fixes exactly Fq
inside Fm. Now resm(K) = Fr, the image of K in Fm, is fixed by the action of Frob`q,
where ` = |Fr : Fq|.

Set C ⊆ G to be the conjugacy class which contains Frob`q. Clearly |C| ≥ 1 and q is
such that the Chebotarev formula above now counts the density of those q ∈ SpL for
which there is (every) m ∈ SpM , m ⊃ q, Frob`q = Frobq. That is Fr = Fq, equivalently
Fq ∼= Fq. These are exactly the q in ΠK,L. �

An immediate corollary to 5.3 is that ΠK,L and ΨK,L are infinite. Also ΨK,L has
well-defined density,

dn(ΨK,L) =
1

|K̂ : L|
,

where K̂ is the minimal Galois extension of L containing K. See 4.12.

5.4. Lemma. For any two Galois extensions K1 and K2 of L and any infinite prime
q ∈ SpL,

q ∈ ΨK1,L ∩ΨK2,L ⇔ q ∈ ΨK,L

for K = K1K2, the composite of the two fields and so any intersection of the ΨKi,L has
a well-defined positive density.

Proof. Indeed, K1 and K2 are subfields of Fq if and only if K is. 2

5.5. Proposition. An intersection of finite family of special subsets ΠK,L (arbitrary
K : L) of SpL is nonempty: ⋂

i∈I

ΠKi,L 6= ∅.

Proof. First note that by definition⋂
i∈I

ΠKi,L ⊇
⋂
i∈I

ΨKi,L.

By 5.4 and 4.12, for infinite q ∈ SpL

q ∈
⋂
i∈I

ΨK̂i,L
⇔ q ∈ ΨK,L ⇔ q ∈ ΠK,L,

for K the composite of all the K̂i. Hence
⋂
i∈I ΨK̂i,L

is infinite and non-empty. 2

We note also the following.
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5.6. Theorem. For any extensions Ki of L, i = 1, . . . , k, any boolean combination of
subsets ΨKi,L of SpL has a well-defined density.

Proof. First we note that by 4.12(ii) we may assume that Ki/L are Galois.
Secondly, note that it is enough to prove the theorem for the intersection⋂

i∈{i1,...im}

ΨKi,L ∩
⋂

j∈{im+1,...ik}

¬ΨKj ,L

for any permutation {i1, . . . , ik} of {1, . . . , k}.
Also, as shown in 5.4

⋂
i∈{i1,...im}ΨKi,L can be replaced by some ΨK,L.

Now we prove,

Claim. The density of the set of the form⋃
l∈{1,...m}

ΨKl,L

is well-defined.
We prove this by induction on m. Assuming it is true for m note that by definition

dn

 ⋃
l∈{1,...m+1}

ΨKl,L

 = dn

 ⋃
l∈{1,...m}

ΨKl,L

+dn ΨKm+1,L−dn

(
⋃

l∈{1,...m}

ΨKl,L) ∩ΨKm+1,L


provided the three summands on the right are well-defined. The first two are well-
defined by the induction hypothesis. The same is true for the last one since ⋃

l∈{1,...m}

ΨKl,L

 ∩ΨKm+1,L =
⋃

l∈{1,...m}

(
ΨKl,L ∩ΨKm+1,L

)
.

This proves the claim.

Now it remains to see that

dn

ΨK,L ∩
⋂

j∈{1,...m}

¬ΨKj ,L

 = dnΨK,L − dn
⋃

j∈{1,...m}

ΨK,L ∩ΨKj ,L.

The last term is well-defined by the claim. This finishes the proof of the theorem. �

Remark. The density is a measure on the boolean algebra generated by all the
ΨK,L for a given L.

Question. Is density well-defined on the boolean algebra generated by all the ΠK,L,
for a given L?

5.7. Compact models. Note that the sorts SpL and AL are not compact since the
intersection

⋂
i∈I ΠKi,L, for an infinite I and distinct Ki, i ∈ I, is empty (no prime ideal

in OL belongs to such an intersection) but the intersection of any finite subfamily of
the sets is non-empty by 5.5.

However, there are plenty of models which are compact in the special topology; all
we need to do is to realise the maximal positive types

(18)
⋂
K⊃L

ΠK,L

in each sort SpL (these are types by 5.5).
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These contain positive types of the form

(19)
⋂
K⊃L

ΨK,L

Any realisation of such type will be called a splitting infinite prime (or just a
splitting prime) in SpL.

We call a multisorted structure M of representations a minimal compact model
if

(i) M is an elementary extension of the standard multisorted structure of repre-
sentations;

(ii) any sort SpL(M) in the structure is compact;
(iii) for any other M′ satisfying (i) and (ii), for each sort AL there is an embedding

AL(M) ⊂ AL(M′).

5.8. Theorem. A minimal compact model M exists and is unique.
(a) For each Galois extension L of Q a minimal M contains exactly degL infinite

primes in SpL.
(b) All the infinite primes in SpK(M) are splitting primes and all the infinite primes

containing q ∈ SpL(M) for K : L Galois are conjugated by the definable action of the
Galois group Gal(K : L) defined by formula (6).

(c) The residue field Fq over such an infinite prime q is characterised as a pseudo-
finite field containing Qalg with a naming homomorphism

resq : OL → Qalg ⊂ Fq
The first order theory of such Fq is determined uniquely by the latter inclusion.

(d) The fibres over infinite q have the form

dFqe(M) = Qalg · aq
for a non-zero element aq of the fibre.

Proof. We use the analysis in 3.13 for finite primes in ΠK,L and extend the conclu-
sions to infinite primes satisfying the same first-order condition. The Tarski-Vaught
test along with the statement of theorem 4.14 allows to conclude that the structure
with properties (a)-(c) is an elementary submodel of a saturated model (∗AK ,

∗SpK),
K ∈ R, described in section 4.

It remains to establish properties (a)-(d).

(a)-(b). In our case the splitting occurs that is Fq = Fq and NormK,L is the identity
map. The |K : L| distinct prime ideals qi ∈ SpK , (i = 1, . . . , |K : L|) lying over q give
rise to |K : L| naming homomorphisms

resqi : OK → Fq, ker(resqi) = qi

which are pairwise non-isomorphic over resq : OL → Fq.
Hence we have |K : L| different ways of naming elements of Fq when we pass from

level L to level K. This proves that over infinite splitting pQ ∈ SpQ there are exactly
degL splitting q in SpL.

The distinct prime ideals qi extending q ∈ SpL in OK are conjugated under the
action of Gal(K : L), which is first-order definable by (6), so extends to the infinite
splitting primes, and this proves the second statement.
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(c) follows from (14) and the characterisation of the elementary types of pseudo-finite
fields F of characteristic 0 by their subfield of algebraic numbers (see [2]).

(d) The only condition on the infinite fibres in AK is that the action by K is defined
and is free. This is satisfied if we set the fibre of the form (d). 2

5.9. The minimal complete model. We call N a minimal complete model if:

(i) N is an elementary extension of the standard multisorted structure of represen-
tations;

(ii) any sort SpL(N) in the structure realises all the 1-types over 0;
(iii) for any other N′ satisfying (i) and (ii), for each sort AL there is an embedding

AL(N) ⊂ AL(N′).

5.10. Theorem. A minimal complete model exists and is unique.
(a) For each Galois extension L of Q a minimal M contains at most degL infinite

primes in SpL. The primes q over q, for K/L Galois, are conjugated under the action
of Galois group Gal(K : L).

(b) An infinite prime q ∈ SpL(N) is uniquely characterised by the field

Eq = Qalg ∩ Fq
and the naming homomorphism

resq : OL → Eq.

(c) The fibres over infinite q have the form

dFqe(N) = Eq · aq
for a non-zero element aq of the fibre.

Proof. Same arguments as in 5.8.2

5.11. Formal geometry. We leave out the problem of identifying a model which
can be seen as a generalised Zariski geometry. It is clear that neither of the models we
discussed above is an analytic (or Noetherian) Zariski geometry in the sense of [15].

6. The universal cover

6.1. The coarse cover. Let OR =
⋃
{OK : OK ∈ R}. Most of the time we will deal

with the case of R containing all integral extensions of OM , some number field M.
The systems of morphisms πK,L and πSp

K,L, K ⊃ L, determine a projective system.
Define AR and SpR as the projective limits of AK and SpK respectively, OK ∈ R.
By definition we will have maps

πR,K : AR → AK , and πSp
R,K : SpR → SpK

satisfying

πR,K ◦ πK,L = πR,L, and πSp
R,K ◦ π

Sp
K,L = πSp

R,L.

Also the following (non-first-order) condition is satisfied:

(20) ∀x1, x2 ∈ AR x1 = x2 ↔
∧
K

πR,K(x1) = πR,K(x2)
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The definition assigns to each point q̃ ∈ SpR an orbit dFq̃e which, according to 3.2,
can be represented as dFq̃e = Fq̃.aq̃ for some aq̃ ∈ dFq̃e, where by definition

Fq̃ =
⋃
{Fq : πR,K(dFq̃e) = Fq.aπR,K(q̃)},

the union of the tower of named fields below q̃. The naming means that Fq̃ is given
along with a naming homomorphism

resq̃ : OR → Fq̃.
Clearly,

AR :=
⋃
{dFq̃e : q̃ ∈ SpR}.

The topology on AR and SpR is defined as the projective limit of topologies on the
AK and SpK , that is a subset S ⊆ SpR is defined to be closed if πR,K(S) is closed for
all large enough K.

In particular, the fibre (πSp)−1R,K(q) ⊂ SpR is closed for any K and q ∈ SpK .

6.2. The fibre of AR over a finite prime. In case when q̃ lies over a standard
prime q, that is πSp

R,1(q̃) = q ∈ Z, and
⋃
R = Qalg we have Fq̃ = Falgq . However, for

the same q we will have as many points q̃ over q as there are naming homomorphisms
OR → Fq̃. Note that the naming homomorphisms in this case are just residue maps of
p-adic valuation on Qalg. In other words, setwise

(πSp
R,1)

−1(q) = {q-adic valuations on Qalg} ∼= {resq : OR → Falgq }.

Let GQ := Gal(Q̃ : Q). Then, it follows from the general theory of valuations that,
for any two homomorphisms resq and res′q : OR → Fq̃, there is a σ ∈ GQ such that
res′q = resq ◦ σ. In other words GQ acts transitively on the fibre and

(πSp
R,1)

−1(q) = q̃ · GQ.
Note that

ker(resq ◦ σ) = σ−1{ker(resq)}
and so the subgroup of GQ fixing q̃ is equal to the stabiliser D

(
q̃
)

of the prime ideal
q̃ := ker(resq̃) of OR, known as the decomposition group of q̃. The decomposition
group D(q̃) acts on OR/q̃ = Fq̃ ∼= Falgq inducing all the automorphisms of Falgq , which
determines a canonical surjective homomorphism D(q̃)→ GFq̃

onto the absolute Galois
group of Fq̃.

6.3. Question. Is the action of σ ∈ GQ on (πSp
R,1)

−1(q) over a finite prime continuous?

6.4. The fibre of AR over the infinite splitting prime. In this case q̃ lies over an
infinite splitting prime q (which is unique up to its first-order type) and OR contains
all integral extensions, we have that OR ⊂ Qalg is the ring of all integral algebraic
numbers, πR,1 is an isomorphism and Fq̃ = Fq, a pseudo-finite field which contains Qalg

and the latter is equal to the subfield of named elements of Fq (see 5.8).
Again we will have as many points q̃ over q as there are naming homomorphisms

σ : OR → Qalg ⊂ Fq. Note that the naming homomorphisms in this case can be
identified with automorphisms of the field Qalg. In other words, GQ acts freely and

transitively on (πSp
R,1)

−1q

(πSp
R,1)

−1(q) = q̃ · GQ.
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6.5. Proposition. The action of a σ ∈ GQ on the fibre (πSp
R,1)

−1(q) over the infinite
splitting prime is continuous.

Proof. The action on each layer SpK is definable by formula (6) which also defines
a continuous map according to our definition of topology. 2

Concluding remarks and further directions

As was noted in the introduction this version of the structure is the most basic one.
We would like to indicate several direction in which the construction and the analysis
may develop.

First remark concerns the similarity with the basic ingredients of Arakelov’s geom-
etry. The minimal compact model of the arithmetic plane over K (see 5.8) is quite
similar to Arakelov’s plane over the projective line. The limit fibres in our case corre-
sponds to Qalg, whereas in Arakelov’s setting it is C or R, depending on the number
field, and K embeds in the limit fibres (it is worth noting that in our structure the
number of embedding morphisms is deg(K : Q) just as Arakelov’s theory predicts).
One way of closing this gap is to consider Z and the general rings OK for Galois ex-
tension as “∗-algebras”, that is with the involution ∗, complex conjugation induced by
an embedding K ⊂ C. In particular, Z consists of self-adjoint operators. Respectively,
we replace in the limit fibres Qalg by its completion C or by its self-adjoint part R.

The other connection is with the work of A.Connes and C.Consani [1]. Our current
understanding is that to come to their arithmetic site from our arithmetic plane we
need to extend our notion of representations of Z from Z/p, for prime p, to the more
general Z/n, for arbitrary n > 1. The points of the arithmetic site then can be seen as
the limits of such representations.

Finally, the model theorist reader would have already noted that the geometry of
our structure is of trivial type in the sense of model theoretic trichotomy (the one
by Connes and Consani is non-trivial locally modular type). This raises the question
if such a geometry can contain any really interesting mathematical information. To
turn this doubt around we note that geometries of trivial and locally modular types
may allow much stronger counting functions than the non-locally ones. In [16] the
first author introduced polynomial invariants of definable subsets in totally categorical
theories and in [9] it was proved that the same polynomial invariants in the context
of certain combinatorial geometries of trivial type are equivalent to classical graph
polynomials of very general kind.
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