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ABSTRACT. This paper is motivated by an open question in p-adic Fourier theory, that seems
to be more difficult than it appears at first glance. Let L be a finite extension of Q, with
ring of integers oz, and let C, denote the completion of an algebraic closure of Q,. In their
work on p-adic Fourier theory, Schneider and Teitelbaum defined and studied the character
variety X. This character variety is a rigid analytic curve over L that parameterizes the set
of locally L-analytic characters A : (or,+) — (C,’, X). One of the main results of Schneider
and Teitelbaum is that over Cp, the curve X becomes isomorphic to the open unit disk. Let
A (%) denote the ring of bounded-by-one functions on X. If p € or[or] is a measure on oy,
then XA — p(X) gives rise to an element of Ar(X). The resulting map orfor] — Ar(X) is
injective. The question is: do we have Ar(X) = or[oL]?

In this paper, we prove various results that were obtained while studying this question. In
particular, we give several criteria for a positive answer to the above question. We also recall
and prove the “Katz isomorphism” that describes the dual of a certain space of continuous
functions on or. An important part of our paper is devoted to providing a proof of this
theorem which was stated in 1977 by Katz. We then show how it applies to the question.
Besides p-adic Fourier theory, the above question is related to the theory of formal groups,
the theory of integer valued polynomials on oy, p-adic Hodge theory, and Iwasawa theory.
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1. INTRODUCTION

1.1. Motivation. Let L be a finite extension of QQ, and let C, denote the completion of
an algebraic closure of @,. In their work on p-adic Fourier theory [STO01], Schneider and
Teitelbaum defined and studied the character variety X. This character variety is a rigid
analytic curve over L that parameterizes the set of locally L-analytic characters A : (o1, +) —
(C;, x). One of the main results of Schneider and Teitelbaum is that over Cp, the curve X
becomes isomorphic to the open unit disk.

The ring Or(X) of holomorphic functions on X is a Priifer domain, with an action of o,
coming from the natural action of o7, on the set of locally L-analytic characters. One can then
localize and complete Or(X) in order to obtain the Robba ring Z1(X), and define (¢, o} )-
modules over that ring and some of its subrings. These objects are defined and studied in
Berger—Schneider—Xie [BSX20], with the hope that they will be useful for a generalization of
the p-adic local Langlands correspondence from GL2(Q)) to GLa(L).

In this paper, we instead consider a natural subring of O (%), the ring A (X) of functions
whose norms are bounded above by 1. If u € or[or] is a measure on or, then A\ — u(\) gives
rise to such a function. The resulting map or[or] — Ar(X) is injective. We do not know of
any example of an element of Ay (X) that is not in the image of the above map.

Question 1.1.1. Do we have AL(X) = or[or]?
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This question seems to be more difficult than it appears at first glance, and so far we have
not been able to answer it (except of course for L = Q). The results of this paper were
obtained while we were studying this problem. A related question is raised in remark 2.5 of
[Col16]. We now give more details about the character variety X, and then explain our main
results.

1.2. The character variety. Let 5 denote the open unit disk, seen as a rigid analytic
variety. This space naturally parameterizes the set of locally Q,-analytic characters A\ :
(Zp,+) — (C, x). Indeed, if K is a closed subfield of C, and z € myx = B(K), then
the map A, : a = (14 2)® is a K-valued locally Qp-analytic character on Z,, and every such
character arises in this way. Note that X\, (0) = log(1 + 2). If d = [L : Q,], then o, ~ Zg and
hence B¢ parameterizes the set of locally Q,-analytic characters \ : (or,, +) — (C;, x). Such
a character is locally L-analytic if and only if \'(0) is L-linear. In coordinates z = (21, ..., zq),
there exists ag,...,aq € L such that the character corresponding to z is locally L-analytic
if and only if log(1 + z;) = a4 - log(1 + 21) for all i = 2,...,d. These d — 1 Cauchy-Riemann
equations cut out the character variety X inside 8¢. Schneider and Teitelbaum showed [STO1]
that X is a smooth rigid analytic group curve over L.

The ring of Qp-analytic distributions D@~ (oy,, L) on oy, is isomorphic to the ring of
power series in d variables that converge on the open unit polydisk. Every distribution p €
DY —an(o; L) gives rise to an element of O (X) via the map A + p(A). This gives rise to a
surjective (but not injective if L # Q,) map D%~ (oy, L) — O (X), whose restriction to
orfor] is injective and has image contained in Az (X).

1.3. Schneider and Teitelbaum’s uniformization. We now explain why over C,, the
curve X becomes isomorphic to the open unit disk. Let G, = Gal(@p /L). Choose a uniformizer
7 of o7, and let G denote the Lubin—Tate formal group attached to w. This gives us a Lubin—
Tate character xr : G — o] and, once we have chosen a coordinate Z on G, a formal
addition law X @ Y € or[X,Y], endomorphisms [a](Z) € or[Z] for all a € or, and a
logarithm log;(Z) € L[Z].

By the work of Tate on p-divisible groups, there is a non-trivial homomorphism G — G,
defined over oc,. Concretely, there exists a power series G(Z) € oc,[Z] (a generator of
Hom,, (G, Gm)) such that G(X @Y) = G(X) - G(Y). If z € mg,, then the map A; : a —
G([a](2)) is a locally L-analytic character on or, and every such character arises in this way.
This explains the main idea behind the proof of the statement that over C,, the curve X
becomes isomorphic to the open unit disk.

In particular, Oc,(X) is isomorphic to the ring of power series » ;- a; 2" with a; € C, that
converge on the open unit disk. Let yqyc denote the cyclotomic character, and let 7 : G, — of
denote the character 7 = xeye * X5 '- The Galois group G, acts on Oc,(X) by the formula
9> 0@ Z") =3 509(ai)[T(g)"1](Z2)". This action is called the twisted Galois action, and
we write G, * to recall the twist. It follows from the Ax-Sen-Tate theorem that (CEL =L
and then, by unravelling the definitions, that Op(X) = Oc,(X)“%*. At the level of bounded
functions, this tells us that Az (X) = oc, [Z]“F*. The natural map or[or] — AL(X) sends,
for instance, the Dirac measure d, with a € or, to G([a](Z)) € AL(X).

1.4. The operators ¢, ¢,. The monoid (or, X) acts on oy, by multiplication, and hence
on the set of locally L-analytic characters, on X, and on the ring Oc,(X). If a € o, then
this action is given by f(Z) — f([a](Z)). Let q denote the cardinality of the residue field kg,
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of or, and let ¢, denote the action of 7 on Oc,(X). The ring Oc,(X) is a free ©4(Oc,(X))-
module of rank ¢. Let ¢, : Oc,(X) — Oc,(X) be the map defined by ¢4(v4(f(Z))) =
1/q - Trocp(x)/wq(ocp(x))(f(Z)). The action of oy and the operator 1, commute with the
twisted action of G, and therefore preserve Op(X). If we consider the image of the map
D@=an(o; L) — OL(X), we have a - &, = g and 14(0) = 0 if b € o] and ¥,(6) =
Sp/r if b € mor. In particular, op[or]¥*=° coincides with or[o}], those measures that are
supported in o} . We use later on the fact (lemma that Ar(X) = orfor] if and only
if AL(X)%=0 = or[of]. Note that if L # Qp, then 1q(Ac, (X)) is not contained in Ac, (X)
as Trocp (X)/9q(Oc, x)(f(2)) is divisible by 7, but not always by ¢. Our first result is the
following.

Theorem 1.4.1. We have A (X) = orJor] if and only if ¢q (AL (X)) C AL(%).
This is proved at the end of

1.5. The polynomials P,. Recall that G(Z) is a generator of Hom, (G, Gm) and that
T = Xeye " Xn - In fact, we have G(Z) = exp(2 - logip(Z2)) = 1+ Q- Z + O(Z?), where Q
is a certain special element of mc, such that g(Q2) = 7(g) - Q. In particular, for all n > 0,
there exists a polynomial P,(Y) € L[Y] such that G(Z) = >~ Pu(Q) - Z™. For n > 0,
the polynomial P,(Y") is of degree n, and its leading coefficient is 1/n!. For example, assume
that the coordinate Z is chosen in a way that log;r(Z) = > 5 qu/wk. Then we have (see
Proposition for more details) -

Yot +ng

no+qni+-+qing=n

If a € o, then G([a](Z)) = > ,>0 Pn(2) - [al(Z)" = > ,~0 Pn(af2) - Z™. This implies for
instance that P,(af) € oc, for all a € or. For n > 0 and ¢ > n, let 0,,,(Y) € L[Y] denote
the polynomials such that [a](Z)" = ) .-, 0ni(a)Z" for all a € or. The 0,;(Y) are all
elements of Int, the or-submodule of L[Y] of integer valued polynomials on or. The fact
that Y oo Pa(Q) - [a](2)" = 3,50 Pa(af)) - Z™ implies that P, (af)) = 37, 0in(a)P;(Q). If
p € DW= (op L), then its image in O (X) is therefore f,(Z) = 3,50 Z™> g 1(0in) Pi(£2).
Let Pol denote the or-span of the o, ;(Y') inside L[Y], so that Pol C Int. The following gives a
relation between our question and the theory of integer valued polynomials (|dS16], [dST09]):

Theorem 1.5.1. If A (X) = or[or], then Pol = Int.

The proof can be found at the end of The converse statement is not true, but “Pol =
Int” is equivalent to U[Z]* = or[or], where U is the or-submodule of oc, generated by
{Pn(2) }n>0. We have not been able to prove that Pol = Int, although we can show that Pol
is p-adically dense in Int. Some numerical evidence indicates that Pol = Int seems to hold:
the details can be found in the Appendix by D. Crisan and J. Yang at the end of our paper.

We now explain how to compute the valuation of P, (2) for certain n. The elements z € mc,
such that G(z) = 1 correspond to those locally L-analytic characters A, such that A,(1) = 1.
Being locally L-analytic, they are necessarily trivial on an open subgroup of oy, and corre-
spond to certain torsion points of G. We know the valuations of these torsion points, and this
way we can determine the Newton polygon of G(Z) — 1. Using this idea, we can prove the
following. Let e be the ramification index of L/Q,. If m > 0, let ky, = [(m — 1)/e], so that
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m = eky, + 7 with 1 < r < e. For m > 0, let ,, = ¢"/p*=*! (so that 29 = 1 and 21 = ¢/p).
Write m = en + r and let
e 1 e T 1

— and Yy, = — — .
p-1 q-1 prp—=1) p*tt (g—1)prH
Theorem 1.5.2. For all m > 0, we have val;(P;,, () = ym.

For example, if L = Q,2, then val,(P,:(2)) = 1/p¥=1(q —1) for all k > 0.

Yo =

1.6. Galois-continuous functions and the Katz map. Following Katz [Kat77], we let
Cgal(oL, oc,) denote the or-module of Galois-continuous functions, namely those continuous
functions f : o — oc, such that g(f(a)) = f(7(g) - a) for all @ € op and g € G. If
P(T) € L[T), then a — P(a-Q) is such a function. Let K be a closed subfield of C,
containing L. The dual Katz map is the map K* : Hom,, (C&,, (o, oc,), 0kx) — ok [Z] given by
= Y s0 1(Pa) - Z™. Let ox [Z]o ™ denote the set of f(Z) € ox[Z] such that 7 (f(Z)) €
ok [Z] for all n > 1. Our main technical result is the following

Theorem 1.6.1. Suppose that L = Q2.
(1) The map K* : Hom,, (Cgal(oL,.o(cp), ok ) — ok [Z] is injective.
(2) Tts image is equal to o [Z]%a 0t

An important part of our paper is devoted to providing a proof of this theorem, which is
completed at the end of We note that Theorem was stated by Katz at [Kat77, p.

60], but he did not give a proof. The remarks contained in the last paragraph of [Kat77, §IV]
seem to indicate that his proof is different to ours.

The hardest part of the theorem is the claim concerning the image of K*. Note that when
L = Q2, the dual of the p-divisible group attached to G has dimension 1. Using this and
Theorem for L = Q,2, we can prove (see Proposition that every element of
0o = o%éi” can be written as >, -, Ay - P(Q2) where A\, € or, and A\, — 0. This important
ingredient of the proof of Theorem | is not known to be available if L # Q2.

1.7. Applications of the Katz isomorphism. Throughout this section, we assume that
L =Qp and 7 = p, so that K* : Hom,, (C%,, (oL, 0c, ), 0k ) — ok [Z]¥+™ is an isomorphism.
Let Lo = (Clzje” and 0o = o%éi”. Since m = p, Lo is also the completion of L(G[p*]).

Theorem m gives us an isomorphism K : Hom,, (C&,, (0}, oc,), 0x) — ox[Z]¥*=°, and
we have a natural isomorphism C%al(oz,o(cp) — 000- Applying this to K = L, we get the
following result (Theorem [5.1.4), where of, = Hom,, (0, 01):

Theorem 1.7.1. The map K* gives rise to an isomorphism o7, ~ or,[Z]¥4=0.

Let ' = Gal(L(G[p>])/L) and Fg: = Gal(Qp(p=)/Qp). In the cyclotomic setting,
Perrin-Riou showed [PR90, Lemma 1.5] that Z,[Z]%»=0 is a free Z, [I'g, ]-module of rank 1.
She also raised the question of what happens in the present setting. Using Theorem [1.7.1} we
show in Corollary that or[Z]¥+=0 is in fact not a free o [T'¥T]-module of rank 1.

We can also apply the isomorphism Homy,, (000, 0k) =~ 0x[Z]¥4=" to K = Lu, and we
get Homy, (00, 000) = 000[Z]%=Y. The natural action of G, on the left is the twisted Galois
action on the right. Since Az(X) = oc,[Z]9* = 0a[Z]9%*, we get the following result
(Theorem [5.1.6)):

Theorem 1.7.2. We have Endg;LL(ooo) ~ Ap(X)¥a=0,
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Recall that or[o;] C AL(X)¥e=0. If a € o}, then d, € op[o;] acts on oo by an element
g € Gy, such that 7(g) = a. Since AL (X) = or[Jor] if and only if AL(X)¥=0 = oL[0}], we get
the following criterion (Theorem [5.1.8)):

Theorem 1.7.3. We have Ar(X) = orfor] if and only if every continuous L-linear and
G r-equivariant map f : Loo — Lo comes from the Iwasawa algebra L ®,, or, [[F%T]].

In the cyclotomic case, Tate’s normalized trace maps T, : Q)7 — Qp(ppn) are examples

of continuous @Q,-linear and G, -equivariant maps f : Q)¢ — Q¢ that do not come from
the Iwasawa algebra L ®,, or, [F&Cﬂ. The lack of normalized trace maps in the Lubin-Tate
setting is a source of many complications. In his PhD thesis, Fourquaux considered continuous
L-linear and G-equivariant maps f : Loo — L. We generalize some of Fourquaux’s results:
we prove in Proposition that if f # 0 is such a map, then there exists n > 0 such that
f(Lso) contains a basis of the L,-vector space Ly[log ], where L,, = L(G[p"]). In particular,
f necessarily has a very large image, so there can be no analogue of the equivariant trace
maps Tj,.

The Katz isomorphism also allows us to prove several results about the span of the polyno-
mials P, in C&,,(or, Cp). Recall that by [ST0I, Theorem 4.7], every Galois-continuous locally
analytic function on or can be expanded as an overconvergent series in the P,. One may
then wonder about the existence of such an expansion for Galois-continuous functions. Let
C(L) denote the set of sequences {\, }n>0 with A, € L and \,, — 0. The Katz isomorphism,
and computations involving 1), imply the following (Proposition Corollary and

Corollary [5.3.9):
o0

Theorem 1.7.4. The map C°(L) — C,,(or, Cp), given by {A\p}nz0 — |a = > Ay - Py(af)
n=0
is injective, has dense image, but is not surjective.
The same methods imply the following precise estimates for those elements of C?}al(oL, Cp)
that are given by a polynomial function a — Q(af2) with Q(7T") € L[T]. See prop and
coro .s.12)

Theorem 1.7.5. Assume that Z is a coordinate on G such that [p|(Z) = Z9 4+ pZ. Let
Q(T) € L[T] be a polynomial such that Q(af2) € oc, for all a € or, and write Q(T') =
S0ER N - Pa(T).

(1) We have \, € p~%oy, if n < ¢~.

(2) There exists such a polynomial @ for which Ajx_; = pk.

1.8. Other criteria. The following two criteria for our main question may be of interest.

Let 0 : Cp[Z] — C,[Z] denote the invariant derivative & = log{,p(Z)~!-d/dZ. It does not
commute with the twisted action of Gz, but D = Q=1 -9 does. We get a map D : Oc,(X) —
Oc, (%) that does not preserve Ac, (X) if L # Q, since val,(Q2~') < 0. Note that D(3,) = a-dq4
if a € op, so that D does preserve or[or]. We have the following result.

Theorem 1.8.1. If L = Q,2, then Ar(X) = op[or] if and only if DI (AL(X)) C AL(X).

This Theorem follows from Theorem [I.4.1] and the following result, which is inspired by
computations of Katz: assume that L = Q2 and that 7 = p. Let A = QI /p(g—1)! € o(ép.
It f(Z) € oc,[Z], then pipy(f) — A - DI7(f) € oc,[Z].

Here is another result concerning our main question. It says that if the answer is yes for a
finite extension K /L, then the answer is also yes for L.
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Theorem 1.8.2. If K/L is finite and if Ax(Xk) = ox[ox], then Ar(Xr) = or]or]-

1.9. Acknowledgements. This paper grew out of a project started with Peter Schneider.
The authors are very grateful to him for numerous discussions, interesting insights (in partic-
ular, considering the Katz isomorphism), and several invitations to Miinster. Several results
in this paper were obtained in collaboration with him. L.B. also thanks Pierre Colmez for
some discussions about the main problem of this paper.

2. THE CHARACTER VARIETY

2.1. Notation. Let Q, C L C C, be a field of finite degree d over Q,, oy, the ring of integers
of L, m € oy, a fixed prime element, k;, = oy /7oy, the residue field, ¢ := |kz| and e the absolute
ramification index of L. We always use the absolute value | | on C, which is normalized by
Ip| = p~t. We let G, := Gal(L/L) denote the absolute Galois group of L. Throughout our
coefficient field K is a complete intermediate extension L C K C C,,.

2.2. The p-adic Fourier transform. We are interested in the character variety X of the
L-analytic commutative group (or,+). We refer to [STO0I) §2] for a precise definition, but
recall that X is a rigid analytic variety defined over L, whose set of K-points (for K a field
extension of L complete with respect to a non-archimedean absolute value extending the
one on L) is the group X(K) of K-valued characters x : (or,+) — (K, x) that are also
L-analytic functions:

X(K):={feCl™(op,K): f(a+b)= f(a)f(b) forall a,beor}.
Here CF=21 (0, K) is the space of locally L-analytic K-valued functions on or.

Let DY=# (o1, K) be the K-algebra of locally L-analytic distributions on oy, defined in
[ST02l §2]. One of the main results of p-adic Fourier Theory — [ST0I, Theorem 2.3] — tells
us that there is a canonical isomorphism

F:DF ™ (op, K) = O(X x1 K)
called the p-adic Fourier Transform. This isomorphism is determined by
FN(x) =Ax) forall XeDL73(op K),x € ¥(K).

Since X is a rigid L-analytic variety, we have at our disposal the subalgebra O°(X) of O(X)
consisting of globally-defined, rigid analytic functions on X that are power-bounded — see
[BGR&4, §1.2.5].

Definition 2.2.1. Write A(X) := O°(X).

The functorial definition of the character variety does not shed much light on its internal
structure. It turns out that the base change X x K is isomorphic to the rigid analytic open
unit disc over K, provided the field K is large enough. This isomorphism is obtained with the
help of Lubin-Tate formal groups and their associated p-divisible groups.

2.3. Lubin-Tate formal groups. Let Z be an indeterminate and let

Fr = (nZ + Z%0L[Z]) N (Z9+ moL[Z])
be the set of possible Frobenius power series. Recall [Lan90, Theorem 8.1.1}[3 that for every
Frobenius power series ¢(Z) € F, there is a unique formal group law F, ;) = Z1 +g Z2 €

INote that what Lang calls a formal group should really be called a formal group law.
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or[Z1, Zo] such that p(Z) is an endomorphism of F, ;. Since we have fixed a coordinate Z
on the power series ring or[Z], this formal group law defines a formal groupﬂ (G,®) on the
underlying formal affine scheme Spf oy [Z]. This formal group is called a Lubin-Tate formal
group. Up to isomorphism of formal groups, it does not depend on the choice of the Frobenius
power series ¢(Z), however it does depend on the choice of 7. The base change of G to the
completion L™ of the maximal unramified extension L™ of L does not even depend on the
choice of .

The Lubin-Tate formal group G is in fact a formal or-module. This means that there is a
ring homomorphism oy, — End(G), a +— [a](Z) € o1[Z], such that [a](Z) = aZ mod Z?0.[Z]
for all a € or. In other words, the formal group G admits an action of oy, by endomorphisms
of formal groups, in such a way that the differential of this action at the identity element 1
of G agrees with the natural oy-action on the cotangent space of G at 1. The action of m € oy,
is given by the power series [7](Z) = p(Z).

2.4. A review of p-divisible groups. In his seminal paper [Tat67], Tate introduced p-
divisible groups and considered their relation to formal groups. Here we review some of his
fundamental theorems.

Let R be a commutative base ring and let I' = (Spf A, %) is a commutative formal group
over R where A = R[X1,---,Xy4] is a power series ring in d variables over R. Then we can
associate with I' the p-divisible group I'(p) = (I'(p)n, in) over R where I'(p),, := I'[p"] is the
subgroup of elements of T" killed by p™. More precisely, let ¥ : A — A be the continuous R-
algebra homomorphism which corresponds to multiplication by p on I' and let J,, be the ideal
AYP™(Xq) + -+ AY™(Xg) of A; then A/J, is a Hopf algebra over R free of finite rank over
R, and T'(p),, = Spec(A/J,) is the corresponding commutative finite flat group scheme over
R. The closed immersions i, : I'(p),, — ['(p)n+1 are obtained from the R-algebra surjections

A/Jn+1 - A/Jn

Theorem 2.4.1 (§2.2, Proposition 1 [Tat67]). Let R be a complete Noetherian ring whose
residue field k is of characteristic p > 0. Then I' — I'(p) is an equivalence between the category
of divisible commutative formal groups over R and the category of connected p-divisible groups
over R.

Recall that the formal group I' is said to be divisible if A/J; is finitely generated as an
R-module, and a p-divisble group (I'y,,4,) is said to be connected if every finite flat group
scheme I',, is a connected scheme.

Remark 2.4.2. Inspecting the proof of [Tat67, Proposition 1], we see that the fact that the
functor I" — TI'(p) is fully faithful holds in greater generality: if R is any commutative ring
and G, H are divisible formal groups defined over R such that O(G) and O(H) are power
series rings in finitely many variables over R, then the natural map

Homp_fy,(G, H) — Homy_aiv(G(p), H(p))
is a bijection.

Now we specialise to the case where R is our complete discrete valuation ring or. The Tate
module associated to a p-divisible group I' = (I'y,, 4,,) is by definition

T(I) == im T (L)

2a group object in the category of formal schemes over Spfor,
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where L is the algebraic closure of L, ', (L) = Hom,, _41,(O(T',), L) is the set of L-points of
I';,, and the connecting maps in the inverse limit are induced by the multiplication-by-p-maps
Jn : Tny1 — Ty By functoriality, the Tate module T'(I") carries a natural action of the absolute
Galois group G, = Gal(L/L), making T(T') into a continuous Z,-linear representation of G,
of rank equal to the height h of I'. Remarkably, it turns out that this Galois representation
completely determines the p-divisible group I'. More precisely, we have the following

Theorem 2.4.3 (§4.2, Corollary 1 [Tat67]). The functor I' — T'(T") is a fully faithful embed-
ding of the category of p-divisible groups over oy, into the category of finite rank Z,-linear
continuous representations of G,.

2.5. Cartier duality for p-divisible groups. The category of commutative finite flat group
R-schemes admits a duality called Cartier duality: if G is a commutative finite flat group
scheme over R, then its Cartier dual is defined by GV = Spec(O(G)*) where O(G)* =
Hompg(O(G), R) is the R-linear dual of the coordinate ring O(G). The group structure on G
is obtained by dualising the multiplication map on O(G) and the scheme structure on GV is
obtained by dualising the comultiplication map on O(G) encoding the group structure on G.

Tate shows in [Tat67, §2.3] that Cartier duality extends naturally to a duality T’ — TV
on the category of p-divisible groups. He also shows that in [Tat67, §4] when R = or, the
Tate-module functor to Galois representations converts Cartier duality into what is now called
Tate duality on Galois representations, namely V — Hom(V,Zy,(1)). In other words, there is
a natural isomorphism of continuous G -representations on finite rank Z,-modules

T(DY) = Homg, (T(T), Z,(1))

~

where Z,(1) := T(G,(p)) is the Tate module associated to the formal multiplicative group
Gy, the formal completion at the identity of the group scheme G, := Specor [T, T~!].

2.6. The character 7: G, — o and the period Q. We return to the Lubin-Tate formal
group G as in §2.3| which is easily seen to be divisible. Because G is a formal or-module,
the functoriality of T'(—) implies that the Tate module T'(G(p)) of the p-divisible group G(p)
associated with G is actually an oz-module. It is a fundamental fact due to Lubin and Tate
— see [LT65, Theorem 2] — that T(G(p)) is a free or-module of rank one. Since oy, is
itself a free Z,-module of rank d = [L : Qp], it follows that the underlying Z,-module of
T(G(p)") = Homg, (T(G(p)), Zyp) is free of rank d as a Z,-module as well. Since it is also an
or-module by the functoriality of Homg, (—, Z,), we see that T'(G(p)") is also a free or-module
of rank 1.

On the way to his proof of Theorem [2.4.3| Tate explains how to compute T(G(p)"): using
Cartier duality, on [Tat67, p. 177 he obtains a natural isomorphism of abelian groups

(1) T(g(p)v) = Homp—div/ocp (g(p) Xop, OC,) @m(p) Xor, OCp)'
On the other hand, applying Remark with R = oc,, we see that the natural map
(2) Homfgp/ocp (G %o, OCp7Gm Xop, OCp) - Homp—div/ocp (G(p) Xop, O(CpaGm(p) Xop, O(Cp)

is a bijection. As a consequence, we see that Homg,, /ocp(g Xoy 0C,, Gm %o, 0c,) is free of
rank 1 as an or-module.

Definition 2.6.1.
(1) We fix a generator t, for T(G(p)¥) as an or-module.
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~

(2) We let Fy be the generator for the or-module Homfgp/OCp (G %o 0c,, Gm X0, 0OC,),
which corresponds to /) along the isomorphism

T(g(p)v) = Homfgp/o(cp (g Xor, 0C,)» Gm Xor, O(CI’)
obtained by combining and .
(3) Welet 7: G, — of be the character afforded by the free rank 1 or-module T'(G(p)"):
o(tl) =7(o)t

o , forall oeGp.
The morphism of formal groups Fy : G X,, oc, — @m X0z, OC, is an element of
Fy (Z) € O(G %o, oc,) = oc,[Z].
Then 1+ Fy (Z) is “grouplike” in the topological Hopf algebra oc,[Z]: it satisfies the relation
1+ Fy (Z1 +g Z2) = (L + Fy (Z1))(1 + Fyy (22)).

When we further base change the formal group G x,, oc, to Cp, it becomes isomorphic to
the additive formal group. It follows from this that log Fys (Z) is necessarily “primitive” in
the topological Hopf algebra C,[Z]: it satisfies the relation

log(1 + Fy (Z1 +g Z2)) =log(1 + Fy (Z1)) + log(1 + Fy (Z2)).

Since the logarithm logrp(Z) of the formal group G spans the space of primitive elements in
C,[~Z], it follows that there exists a unique element Q € C,, such that

1+ Fy (Z) = exp(Qlogpr(2)).
Definition 2.6.2. The element € is called the period of the dual p-divisible group G(p)".
Let I, C G, denote the inertia subgroup.
Lemma 2.6.3. If L # Q,, then the character 7 : I, — o] has an open image.

Proof. Let xr be the character describing the G-action on the Tate module 7" of G. By local
class field theory we know that on Iy, Normp, g, oxr = Xcyc, the cyclotomic character. From
Definition m@), we have 7 = X! - Xcye. Hence 7 : I, — o} is the composition of the
surjective map xr : I, = o] and of the map given by x — HU:L—@W o£1d o(x).

On the Lie algebra L of of, the derivative of the above map is given by U = Tr, /0, — 1d.
We prove that U : L — L is injective, hence surjective, which implies the lemma. If U(z) = 0,
then z = (U + Id)z = Trpq,(z) € Qp and hence U(z) = ([L : Qp] — 1)z so that z =0. [

For future use, we record here the more precise result due to B. Xie which gives a sufficient
criterion for 7 to be surjective.

Lemma 2.6.4. If d — 1 and (p — 1)p are coprime, then 7 : I, — o is surjective.
Proof. Since 7 =y !- Xeye and Xeyc = Normyp, g, oxx, we have

7(9) = Xx(9)”" Normp g, (x(g)) for any g € I1.

Note also that the restriction to I, of the totally ramified surjective character x. — o] is
still surjective. Let now u € o} be any fixed element.

We first show that there is an a € Z; such that adl = Normy, g, (u). Let v := Normyp, g, (u)
and let ¥ denote its image in F,’. By our assumption the polynomial Z%1 — § is separable
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over I, and has a root in IF)’. Hence Hensel’s lemma implies that the polynomial Za=1 _y
has a root a € Z;.
Choosing now a g € I, such that y.(g) = au™! we deduce that

7(g9) = (au™H 7! NormL/Qp(au_l) =ua"ta? NormL/@p(u_l) =u. O

2.7. The Amice-Katz transform. With the period €2 € C, in hand, now we recall some
constructions from p-adic Fourier Theory [ST01]. For each a € or,, define

Ay =1+ Fat{)(Z) = exp(af2logp(Z)) € CP[[Z]]X

The map (or,+) — (C,[Z]*, x) which sends a € of, to A, is a group homomorphism. The
fundamental property of these power series is that their coefficients all lie in oc,,:

A, €oc, [Z]* forall acor.

This follows from the fact that for each a € or, Fuy : G %o, oc, — @m Xop, OC, is a homo-
morphism of formal groups defined over oc,; see also [ST01, Lemma 4.2(5)].
Definition 2.7.1.

1) Let Lo be the closure in C, of the subfield L(£2) of C, generated by L and ).
P P

(2) Let L, :== Lo N L.

(3) Let 000 := Lo Noc,,-

(4) Let or :== Ly Noc,.

Lemma 2.7.2. We have L, = (Clge” and 0y, = o%éi”.

Proof. From the relation appearing in Definition [2.6.1)(3), we deduce
o(Q)=7(0)Q forall oeGyL.

This immediately implies that L, C Cl;e”. Let H := Gal(L/L,), a closed subgroup of G,
and let g € H. Then g extends to a unique continuous L,-linear automorphism g of C,. Now
L is the closure of L; in C,, so g fixes 1 € L. Hence 7(g) = 1 by the above relation.

Hence H < ker 7 which implies that (Cl;e” < (Cf . But ZH is dense in Cf by the Ax-Sen-Tate

theorem, [BCO9, Proposition 2.1.2], and " = L. by infinite Galois theory. Hence L, is dense
in Cf , SO Cf is contained in the closure of L; in Cp, namely L.,. Hence (CI;Q” < Lo

The second statement follows from the first by intersecting Lo, = (Cge” with oc, . 0

It is clear from the definition of A, that in fact
A, € o[ Z]* forall a€op.

Definition 2.7.3. We write orJor] for the completed group ring of the abelian group oy,
with coefficients in o7,. The Amice-Katz transform is the unique extension to a continuous
or-algebra homomorphism

w:opfor] = O(G X0, 000) = 000[Z]

of the group homomorphism o7, — oc,[Z]* which sends a € or, to A, € 05 [Z]*.
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2.8. The Schneider-Teitelbaum uniformisation. At this point, rigid analytic geometry
enters the picture. Let B be the rigid L,,-analytic open disc of radius one, with local coor-
dinate Z. By definition, B is the colimit of the rigid Lo-analytic closed discs B(r) of radius
r <1, asr € |LX| approaches 1 from below:

B = colim,«1 B(r), B(r) = Sp Lo(Z/7)

where 7 is any choice of an element of LZ such that |7| = r. Choosing, for convenience, any
strictly increasing sequence r1 < 1o < r3 < --- of real numbers in |L| N (0,1) approaching
1 from below, we have a descending chain of L..-algebras, each one containing o [Z]:

Loo(Z/1) 2 Loo(Z/i2) 2 Loo(Z/i3) 2 -+ 2 (] Loo{Z/in) = O(B) 2 0x[Z] @0, L.
n=1

With this notation in place, it follows from one of Schneider-Teitelbaum’s main results, [ST0L,
Theorem 3.6], that the or-algebra homomorphism p : or[or] = 0s0[Z] extends to a continu-
ous isomorphism of L-Fréchet algebras

firig : DY (01, Log) — O(B)

which makes the following diagram commutative:

orlor] ®o, L

| l

DL=a(o; L) —— O(B)

Hrig

The vertical arrow on the left is the natural restriction map or[or] ®,, L into D*~(op,, L),
witnessing the fact that every locally L-analytic function on oy, is continuous, and hence
that every continuous distribution on oy, restricts to a locally L-analytic distribution on or;
see [ST02] for more details. The vertical arrow on the right is the inclusion 0 [Z] ®,, L C
O(B) from the above discussion. Combining the isomorphism 4, with the Fourier transform
F:DEF (o, Loo) — O(X X1, Lo ), we obtain an isomorphism of L..-Fréchet algebras

R

pirig © F 1 O(X X, Log) — O(B).

Since X X1 Lo, and B are both Stein rigid analytic varieties over Lo, this isomorphism
determines, and is completely determined by, an isomorphism

K= Sp(urigo}_):Bi%xLLoo.

This is a version of [ST0I, Theorem 3.6]: the base-change of the character variety X to Lo
is isomorphic to the rigid L..-analytic open disc of radius one, so k can be viewed as giving
a uniformisation of X X Lo, by B. Schneider and Teitelbaum also show that the morphism
k is given on C,-points by the following rule: for each z € B(C,) we can evaluate the power
series A, € 0s[Z] at Z = z to obtain an element A,(z) € oép, and the locally L-analytic

character x(z) : o, = C, is given by

k(z)(a) = Aq(z) forall a€op.
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2.9. Ar(X) and the twisted G-action on C,[Z]. It is natural to enquire, in the light of
the Schneider-Teitelbaum isomorphism

kB — X %7 Loy

how far the character variety X is itself from being isomorphic to an open rigid L-analytic
unit disc. For general reasons, X X 1, L, carries a natural action of the Galois group Gy, acting
on the second factor, giving an isomorphism of L-Fréchet algebras

O(%) = O(% X1, Loo) L.
Definition 2.9.1. The twisted Gr-action on O(B) is given as follows:
ox F(Z):= (“F)([r(0)"Y(Z)) forall F(Z)ec O(B),ocCy.
Here F' — °F is the ”coefficient-wise” Gp-action on C,[Z] D O(B), given explicitly by

(> apZ") = > oan)Z" for all 0 € Gf.
n=0 n=0

Schneider and Teitelbaum showed that this twisted G r-action on O(B) in fact comes from
the following twisted Gr-action on the set of C,-points B(C,):

oxz=r "(ook(z)) forall zeB(C,),0¢€Gy.
From the proof of [ST01], Corollary 3.8], we can also deduce the following
Proposition 2.9.2. The algebra isomorphism £* = pujg 0 F : O(X X1 Loo) = O(B) is

equivariant with respect to the natural Gp-action on the source, and the twisted Gp-action
on the target.

Corollary 2.9.3. The map i restricts to give an isomorphism of oy -algebras
(Mrig Of)o . OO(%) i Om[[Z]]Gb*.
Proof. Applying the functor O° to the isomorphism of rigid L..-analytic varieties k : B —
X X[, Loo, we see that pig o F restricts to an ox.-algebra isomorphism
O(X x1, Lso)® — O(B)°.
It is well known that O(B)° = 0[Z] and that Az (X) = O(X)° = (O(X x1, Ls)°)%L. The
result follows by passing to G'p-invariants and applying Proposition [2.9.2 U

Consequently, the image of the Amice-Katz transform p : orfor] — 0s[Z] lands in the
subring of twisted G -invariants. Our main goal in this paper is to study the following

Question 2.9.4. Is the Amice-Katz transform p : or[or] — 000[Z]%%* an isomorphism?

2.10. Some properties of A7 (X). Recall that Az (X) is the ring (’)gl(f{) = 000[Z]%%*. From
[BSX20] we know (through the LT-isomorphism) that Ay (X) is an integral domain and that
the norm || ||x = || |1 on AL(X) is multiplicative.

Lemma 2.10.1. If L # Q, and if K is a finite extension of L, then k[Z]%%* = k.

Proof. If g € I, then g acts trivially on k, so that the G, . action of g € I on k[Z] is given
by g3 50 @nZ™ = > 50 an([T(9)"1]Z)". The character 7 : I — o} has an open image by
lemma This image therefore contains X=(Ipr) where M C Lo is some finite extension of
L, and k[Z]1%* = k[ Z]™ where Iy acts on k[Z] via g1 > 50 anZ"™ = >, 50 anl[Xx(9)]Z)".
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We know from the theory of the field of norms that k[Z] with that action of I); embeds into
Et ~ @(_)q oc, in an Iys-equivariant way. Let P := C[M. We have (E*)/M ~ @(_)q op=Fk

since P/Q, is finitely ramified. Hence k[Z]/™ = k and k[Z]!%* = k. The lemma then follows
from the fact that on k, the twisted Gp-action coincides with the usual Gp-action, so that
7GK,*

k =kg. O

We have a surjective map Ar(X) — k given by f — f(Xtiv) mod mz. Its kernel m(X) :=
{f €AL(X): f(xuiv) € mz} is a maximal ideal of Az (X), with residue field k. Lemma [2.10.1
above implies that m(X) = Om,, (%)Grx,

Lemma 2.10.2. The ring Az (X) is a local ring.

Proof. We have to show that m(X) is the unique maximal ideal, i.e., that f is a unit in
Ar(X) if and only if f(xtriv) € o . The direct implication is obvious. We therefore assume
that f(xuiv) € o] . The image F(Z) € oc,[Z] of f under the LT-isomorphism then satisfies
F(0) € of and hence is a unit in oc,[Z]. We deduce that f is a unit in Oc,(X). Since the
twisted Gr-action must fix with f also its inverse we obtain that f is a unit in Or(X) and
hence in O% (X) by [BSX20] Cor. 1.24. The multiplicativity of the norm || ||x finally implies
that 1= ||fllx = [/~ 0

The or-algebra A (X) carries two natural topologies. One is the p-adic topology which is
induced by the norm || ||x. The other is the topology induced by the Frechet topology of
Or(X). We will call the latter the weak topology on Ar(X).

Remark 2.10.3. The weak topology on Ar(X) is coarser than the p-adic topology.

Proof. Let X = J,;»; X, be a Stein covering by affinoid subdomains X,, (cf. [BSX20] §1.3).
The Frechet topology of O (%) is the projective limit of the Banach topologies on the affinoid
algebras Op(X,,). Since X is reduced these Banach topologies are defined by the respective
supremum norm (cf. [BGR84] Thm. 6.2.4/1). Therefore the Banach topology on Op(%,)
induces on its unit ball with respect to the supremum norm the p-adic topology. It follows
that the natural maps Ar(X) — Or(X,) are continuous for the p-adic topology on the source
and the Banach topology on the target. Therefore the inclusion Az (X) C O (X) is continuous
for the p-adic topology on the source and the Frechet topology on the target. O

Lemma 2.10.4. A7 (X) is p-adically separated and complete.

Proof. We show that, for any reduced rigid analytic variety %) over L, the ring (’)%1(2)) of
holomorphic functions bounded by 1 is p-adically separated and complete. Let 9 = U,;c; Ds
be an admissible covering by affinoid subdomains. Since ) is assumed to be reduced, the
supremum seminorm on each Or,(%);) is a norm and defines its affinoid Banach topology (cf.
[BSX20] §1.3). Hence || ||y is a norm on O (9)) and defines the p-adic topology on Ofl(@). In

particular, the p-adic topology on Ofl(iy) is separated. Now let (f,,), be a Cauchy sequence
for || |ly in OEI(QJ). It restricts to a Cauchy sequence in O%l(ﬁji) for each 7 € I which
converges to a function g; € O%l@ji). Obviously the g; glue to a function g € O%l(@).
We have to show that the sequence (f,), converges to g with respect to || ||g. Let € > 0 be
arbitrary. First we find an integer N > 0 such that || f,,, — fu|ly) < € for all m,n > N. Secondly,
for any i € I, we have ||g — fiu|lg, < € for all sufficiently large (depending on i) m. It follows

that [lg — fully, < max(|lg — fmlly,; [ fm = fully,) < max(|lg— fmlly,, |fm — fally) < € for any
n > N and any i € I. Hence ||g — fy|ly < € for any n > N. O
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Proposition 2.10.5. A7 (X) is compact in the weak topology.

Proof. According to [Emel7] Prop. 6.4.5 the space X is strictly quasi-Stein. This means
that a Stein covering X = (J,,»; X, can be chosen such that the inclusion maps X, C
X,+1 are relatively compact. By loc. cit. Prop. 2.1.16 this implies that the restriction maps
Or(Xn4+1) — Or(%,), which we simply view as inclusions, are compact maps between Ba-
nach spaces. Working over a locally compact field we deduce (cf. [Sch02] Remark 16.3 and
[PGS10] Cor. 6.1.14) that the closure C,, of O%l(%nﬂ) in Or(%,,) is compact. We, of course,
have Ap(X) C O%l(:{n+1) C Cy. Therefore, if L, C Or(X,) is any open lattice, then the
or-modules Ar(X)/AL(X)NL, C C,/CnN L, are finite. It is straightforward to see that then
ArL(X)/AL(X) N L must be finite for any open lattice L C O (X). On the other hand Ar(X)
is weakly closed in Op(X) and hence is weakly complete. It follows (cf. [Sch02] Cor. 7.6) that
A (X) with its weak topology is the projective limit of the finite groups Ar(X)/AL(X)N L
and hence is compact. ]

Lemma 2.10.6.

(1) Any open neighbourhood of zero for the weak topology on A (X) contains a power of
the maximal ideal m(X).

(2) If the ideal m(X) is finitely generated then the weak topology on A (X) coincides with
the m(X)-topology.

Proof. We have m(X) = 7 AL(X) + n, where n denotes the ideal of all functions in Az (X)
which vanish in yt;v. We consider the divisor A on X which maps v to 1 and all other
points to zero. For any integer m > 1 we have the ideal I,,o C Or(X) corresponding to the
divisor mA. As a consequence of [BSX20] Prop. 1.4 these ideals are closed in O (X) and
satisfy (,, Im = {0}. Hence the ideals I,,, N A7 (X) are closed in Ar(X) with zero intersection.
Let now U C A (X) be any fixed open neighbourhood of zero for the weak topology. Suppose
that I, N Ar(X) € U for any m > 1. We then may pick, for any m > 1, a function f,, €
(Im, N AL(X)) \ U. According to Prop. the weak topology on Ar(X) is compact. Hence
the sequence (f)m has a convergent subsequence with a limit f € Ap(X). On the one
hand we have f,, € I, N Ap(X) for any n > m. Since I, N Ap(X) is closed it follows that
f € L,NAL(X) for any m > 1. Therefore f = 0. But on the other hand all the f,,, and hence
f lie in the closed complement of the open subset U. This is a contradiction. We conclude
that n™ C I, N Ag(X) C U for any sufficiently large m. As a consequence of Remark
we also have m"AL(X) C U for any sufficiently large m. Hence m(X)?™ C 7' AL (X)+n™ C U
for large m. This proves (1).

We have to show that the ideals m(X)™ are open for the weak topology. Under our assump-
tion all ideals m(X)™, for m > 1, are finitely generated. Hence all m(X)™*!/m(X)™ are finite
dimensional k-vector spaces. We see that each quotient Ar(X)/m(X)™, for m > 1, is a finite
or-module. Hence it suffices to show that the ideal m(X)™ is closed for the weak topology. Let
fi,..., fr be generators of m(X)™. Then m(X)™ is the image of the map AL(X)" — AL(X)

sending (h1,...,h,) to Y. h;f;, which is a continuous map between compact spaces by Prop.
2.10.50 This proves (2). O

Remark 2.10.7. Any f € m(X) satisfies || f||x, < 1 for any n.

Proof. 1f || f||x,, = 1 then the maximum modulus principle for the affinoid X,, implies that
there is a point z € X,, such that |f(z)| = 1. By considering f as an element of oc,[T], we
see that f(0) is a unit so that f is not in m(X). O
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Next we consider the injective map
A(OL) = OL[[OLH — AL(:{) s

which we treat as an inclusion. More explicitly, let a1, ...aq be a basis of o7, as a Z,-module.
Then the image of the above map is the ring of formal power series or,[0a, — d0, - - -, da,; — d0]
inside Ar(X). We immediately conclude from Lemma [2.10.1] that

m(%) N OL[[OL]] = <7TL75a1 —dg, .. .,5ad — (50) C OL[[OL]] .
Lemma 2.10.8. O71(X) Norfor] = mror[oL]-

Proof. We have mrorfor] € P := O7*(X) Nogfor]. It follows that P := P/mpor]or] is a
“canonical” prime ideal in the formal power series ring ko ]: in particular, it is invariant for
the o] action on the mod-p Iwasawa algebra kfor]. It certainly is not the unique maximal
ideal. In this situation, [Ard12, Corollary 8.1(b)] implies that P must be the zero ideal,
provided we can show that the open subgroup 1+ por, C oz acts rationally irreducibly on oy,

We have to show that every non-trivial 1 + poy-stable subgroup of oy, is open in oy. But
such a subgroup contains (1 + por)a — a = paor, for some 0 # a € oy, and is therefore open

in or,. ]
Corollary 2.10.9. The restriction of the norm || - || on Az(X) to or[or] coincides with the
m-adic norm on ofJor]: for any = € o [or]\7" o [or] we have

]l = [
Proof. Since ||7"y|| = |7"|||y|| for any y € or[or], we may assume that n = 0. But now since
x ¢ morJor], Lemma [2.10.8| tells us that ||z| = 1. O

Corollary 2.10.10. The or-module Az (X)/or[or] is torsionfree.

Proof. Suppose that f € Ar(X) is such that 7" f € op[or] for some n > 0. Choose n least
possible and suppose for a contradiction that n > 1. Then 7" f € opfor]\mor[oL], else
otherwise we would be able to deduce that 7" ' f € o [or]. Hence ||7"f| = 1 by Corollary

2.10.9) which implies that |7|™" = || f|| < 1. Hence n = 0. O
Corollary 2.10.11. We have A (X) N (L ®,, orfor]) = or[oL].

3. THE KATZ ISOMORPHISM

3.1. The ,-operator. We denote by @ the formal group law of G. Furthermore let G;
denote the group of m-torsion points of G. Its cardinality is ¢. It coincides with the set of zeros
of the Frobenius power series [7](Z) = ¢(Z).

We fix a m-adically complete and flat or-algebra .S in what follows and define an injective
S-algebra endomorphism ¢ : S[Z] — S[Z] by setting

o(F)(Z):=F([r](2)) forall F(Z)e S[Z].

Lemma 3.1.1.

(1) For any F' € S[Z] there is a unique Fy € S[Z] and a unique polynomial F; € S[Z] of
degree < ¢ such that F' = ¢(Z)Fy + Fi.
(2) {F € S[Z] : F(¢) = 0 for any ¢ € G1} = o(2)S[Z].
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Proof. (1). This is a form of Weierstrass division. Since ¢(Z) = Z9 mod mor[Z], the proof of
[Bou98| VII.3.8 Prop. 5] goes through by replacing the maximal ideal of S in the argument
with the ideal 7S.

(2). Since ¢(Z) vanishes on Gi, the inclusion D is clear. If F' € S[Z] vanishes on G; then
using (1) we may assume that F' € S[Z] with deg F' < ¢. But then F' = 0, which gives the
other inclusion. O

Using the above lemma the proof of [Col79, Lemma 3] remains valid for S and gives
o(S[Z) ={F € S[Z] : F(Z) = F(C® Z) for any ¢ € G1}.

Since the map ¢ is injective, Lemma [3.1.1)(2) implies the existence of a unique S-linear endo-
morphism ¢, of S[Z] such that

e(Wca(F)(Z2) = > F((®Z) forany F € S[Z]
¢eq
Definition 3.1.2. Let S[Z], := S[Z] ®,, L. The 14-operator is defined by

Yq = ;iﬁcm : S[Z]L — S[Z]¢.

Note that 1co) (respectively, ¢,) preserves S'[Z] (respectively, S'[Z] 1) for any intermediate
m-adically complete and flat o7-subalgebra S’ of S. These operators satisfy the following useful
Projection Formula.

Lemma 3.1.3. For any F,G € S[Z] we have ¢4(F(G)) = 1¢(F)G

Proof. We may instead establish the analogous formula for 1c.. Note that [7](( & Z) =
[7](¢) @ [7](Z) = [7](Z) for any ( € Gy, since [7]({) = ¢(¢) = 0. Therefore

P(Wca(Fe(G) = > (Fe(G) (o Z) = ZF Ce Z2)G([r](C e Z))

CeGt

_ZFg@Z ZFC@Z

—@(d}cm( Ne(G) = (ﬂ)col( )G)

The result follows because ¢ is injective. g
Corollary 3.1.4. We have the fundamental equation ¢4 o ¢ = 15[z, -

Proof. Note that ¢(¢co(1)) = ¢1, so ¢(1)4(1)) = 1 and hence 14(1) = 1. Now set F' =1 in
Lemma [3.1.3] O

Next, we remind the reader what the operators ¢ and 1, do to the special power series
A, = exp(aQlogrr(Z)) from
Lemma 3.1.5. Let a € oy,
(1) ¢(Aa) = Arq.
(2) ¢q(Aa) = 5a67T0LAa/7r-

Proof. (1) More generally, whenever a,b € or, we have
Au([b](2)) = exp(aQ2logyr([b](Z2))) = exp(ablogyr(Z)) = Aa(Z).
Hence p(Ay) = Au([7](Z)) = Arq as claimed.
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2) Using the fact that logrr is a formal homomorphism from G to the formal additive
LT
group we compute

p(tca(Ba) = D> A Z) =) exp(alogi (¢ @ 2))
¢egy ¢

= Z exp (aQ(logpr(¢) + logrr(2)))

= (> AlQ)A

Cebt

Under the Schneider-Teitelbaum isomorphism k, the group G; corresponds to the group of
characters x of the finite group or,/mror, and, if ¢ corresponds to x, then A,(¢) = eva(x) =
x(@), where @ := a + wor,. Hence

(Yol (A <Z x(@ )

By column orthogonality of characters of the finite group or, /7y, we have }_, x(a) = ¢d;5 =

@Oacmo,, - Hence qp(1q(Ag)) = qdaero, Do = qéaeﬂoLgp(Aa/ﬂ), using part (1). Since ¢ is injec-
tive, we deduce that 14(As) = daemo, Aq/r as required. O

Write m := (7, Z) and A := S[Z].
Lemma 3.1.6. The operators ¢ and 9co on A are m-adically continuous.

Proof. Since ¢(Z) € (Z), we see that p(m™) C (m,p(Z))" C m™ for all n > 0. This implies
the m-adic continuity of .

Suppose first that G; is contained in S. Then the S-linear maps A — A sending F'(Z) to
F(Z +¢ () are continuous with respect to m-adic topology for each ¢ € Gi; hence ¢ o 1col
is also m-adically continuous in this case. Let L; = L(G;), a finite extension of L and let
S1:=or, ®o, S. Since oy, is a free or-module of finite rank, S is still a m-adically complete
and flat or-algebra, so letting A; = S1[Z], we see that ¢ o 1cg : A1 — A; is mA;-adically
continuous. It follows that ¢ oo : A — A is also m-adically continuous.

Let n > 0 be given. Since ¢(Z) = Z¢ mod wA, we have m?" = (r, Z)?" C (m, Z9)" =
(m,0(Z))" = Ap(m™). Therefore m4" N p(A) C Ap(m™) N p(A) = p(m™) where this last
equation follows from the fact that ¢(A) admits a direct complement in A as a ¢(A)-module.
However since ¢ o 9 is continuous, picer(m™) C mi™ for some m > 0. Hence

@Yool (m™) € mi™ N p(A) C p(m").
The m-adic continuity of ¥co now follows from the injectivity of ¢. O

Lemma 3.1.7. We have ¢"(a,) — 0 in the m-adic topology on A, for any sequence of
elements (a,) contained in ZA.

Proof. Since p(Z) € G we see that ¢(Z) € Zm. Assume inductively that ¢"(Z) € Zm"; then
" Z) € p(Zm") C p(Z)m™ C Zm"™ ! completing the induction. Write a,, = Zb,, for some
by, € A; then " (ay,) = ¢"(Z)p(by) € Zm™ C m™ ! for all n > 0, so ¢"(a,) — 0. O

Proposition 3.1.8. If f € AL(X) is such that ¢ (u(f)As) € AL(X) for all a € o, and n > 0,
then f € OL[[OL]].
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Proof. We will show that |f(1417m0, )| < 1foralla € o, and n > 0. By [ST01, Lemma 4.6(4)],
we have

f(1a+7r"0L) = (f(s—a)(Lr"OL)-
The orthogonality of columns in the character table of the finite group oz /7™or, implies that

]-7T"0L = qln Z Ky.

[x"](2)=0
Hence by ibid., (f6—q)(1rne,) = qin > f(2)A_q(z). We now observe that
[x"](2)=0
1 n
0 > FE)A () = vy (u(f)A-a)(0).
[x"](2)=0

Since 9y (1(f)A—a) € AL(X) by assumption, we have |f(141qn0,)] < 1 for all a € of, and
n > 0, as claimed. Therefore f € oy [or]. O

Corollary 3.1.9. If Ris asub or,[or]-algebra of Ar(X) such that ¢(R) C R, then R = or[oL].
We can now prove Theorem [I.4.1] from the introduction.
Theorem 3.1.10. We have Ar(X) = or[or] if and only if ¢,(AL(X)) C AL(X).

Proof. The forward implication is clear in view of Lemma [3.1.5(1). The reverse implication
follows from Corollary applied with R = Ar(X). O

3.2. The covariant bialgebra of G. Katz [Kat&81), §1] talks about the “algebra Diff(G) of all
G-invariant or-linear differential operators from O(G) into itself”. Because we are not aware
of any place in the literature which adequately deals with invariant differential operators on
formal groups, we will instead use the covariant bialgebra of G which will turn out to be
isomorphic to Katz’s Diff(G).

Definition 3.2.1.

(1) Let Zy +¢g Z2 € or[Z1, Z2] denote the formal group law defining the formal group G.
(2) Let U(G) denote the set of all or-linear maps from O(G) = or[Z] to or, that vanish
on some power of the augmentation ideal Zo[Z]. In other words,

U(9) = lim Hom,, (0(G)/2"0(G), or).
(3) For each f,g € U(G), define the product f - g by the formula
(f - 9(F(2)) = (f&9)(F(Z1 +¢ Z2)) forall F(Z) € o[Z].

(4) With this product, U(G) is the covariant bialgebra of G, defined at [Haz12, 36.1.8].
(5) For each m > 0, let u,, € U(G) be the unique or-linear map that satisfies

U (Z") = Oy, forall n >0.
(6) Let (—,—) : U(G) x O(G) — or, be the evaluation pairing:
(f, F) = f(F).

This covariant bialgebra is also known as the hyperalgebra or the distribution algebra of G.
We will now explain the link with Katz’s work, using his notation.

Lemma 3.2.2.
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(1) {uy : n >0} is an or-module basis for U(G).
(2) Let i > 0 and write (Z1 +g Z2)" = > A(n,m;i)Z0Zi for some A(n,m;i) € of.

n,m>0

n+m>1
Then for all n,m > 0 we have
n+m
Up, * Uy = Z A(n, m; k)ug.
k=0

(3) Let s be a variable. The map L[s] — U(G) ®,, L which sends s to u; ® 1 is an
isomorphism of positively filtered L-algebras.

Proof. (1) This is clear because Z"op[Z] = o Z™ & Z" o [Z] for any n > 0.
(2) We compute that for every n,m,i > 0 we have

(U, - U ) (Z°) = (un@um ) ((Z1 +g Z2)") = (un@um) g Ma, ;1) 2825 | = X(n,m;1).
a,b>0
a+b>1i

n+m .
Because > A(n,m;k)uy also sends Z* to A(n,m;4), it must be equal to w, - Up,.
k=0
(3) From (2) we see that the or-submodule U(G),, of U(G) generated by {u; : 0 <i < n}
defines an algebra filtration on U(G):

U(g)n : U(g)m - U(g)n+m for all n,m > 0.

The associated graded ring is the free or-module with basis {gru, : n > 0}. Since Z; +¢ Z3 =
Z1 + Zy mod (Z1,Z2)?, we see that A(n,m;n +m) = ("Zm) for any n,m > 0. Hence from
(2) we see that the multiplication in gr U(G) is given by

n—+m
(grun) : (grum) = < n > gr Un4m-

The same formulas hold in gr(U(G) ®,, L). Induction on n shows that (gru;)” = n!gru, for
all n > 0. Since L has characteristic zero, we see that gr(U(G) ®,, L) is generated by gru; as
an L-algebra. The result follows. O

We will henceforth identify U(G)®,, L with the polynomial ring L[s]. Recall the polynomials
P,(Y) € L[Y] from [ST01) Definition 4.1], which are defined by the following formal expansion:

exp(Y logpr(2)) = Z Pn(Y)Z™.
m=0

Lemma 3.2.3. For every n > 0, we have u, = P,(u1) inside U(G) ®,, L.

Proof. The structure constants of Katz’s algebra Diff(G) are the same as the ones in U(G)
by [Kat81, (1.2)] and Lemma [3.2.2|2). So the oj-linear map that sends D(n) € Diff(G) to
u, € U(G) is an op-algebra isomorphism. Comparing [Kat81 Corollary 1.8] with [STO0IL,
Definition 4.1] shows that D(n) = P,(D(1)) in Diff(G) ®,, L for all n > 0. The result follows
by applying the algebra isomorphism Diff (G) — U(G) established above. O
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Of course in the context of affine group schemes, this isomorphism between the algebra of
left-invariant differential operators on the group scheme and the distribution algebra of the
group scheme is the well known ‘Invariance Theorem’, [DG80), Chapter 11, §4, Theorem 6.6].

Next, we consider the action of the monoid o7 on the formal group G. The covariant
bialgebra construction is functorial in G: if ¢ : G — H is a morphism of formal groups, then
U(e) : U(G) — U(H) is the morphism of or-bialgebras which is the transpose to the op-
algebra homomorphism ¢* : O(H) — O(G) induced by ¢. Using the evaluation pairing, we
have the following formula which defines this action:

(3) {U()(f), F) = (f,¢"(F)) forall feU(G),Fec0O(9).
Definition 3.2.4. Let a € oy,.

(1) Let [a] : G — G be the action of a on G.

(2) Write a - f :=U([a])(f) for all f € U(G).

The or-algebra endomorphism U([a]) of U(G) extends to an L-algebra endomorphism
U(la]) ® 1 of U(G) ®,, L = L[s]. What does this action do to the generator s of L[s]?

Lemma 3.2.5. We have a-s = as for all a € of,.
Proof. We know that [a](Z) = aZ mod Z?0.[Z]. Hence
(U(la])(u1), Z") = (u1, [a](Z)") = adp1 = (aur, Z™) forall n >0
using Definition (5) Hence a - 41 = auy and so a - s = as. O

Corollary 3.2.6. For each j > > 0 and a € oy, there exists 0;;(a) € of, such that

J J
a-uj = Pj(as) = Zaij(a)Pi(s) = Zaij(a)ui.
=0 =0

Proof. 1t follows from Lemmathat the L-algebra endomorphisms of L[s] given by s — as
preserve the or-subalgebra U(G) C L[s|. Hence a - u; = Pj(as) lies in U(G) for all a € o, and
all j > 0. But U(G) has {u; : i > 0} as an oz-module basis by Lemma [3.2.2(a), so P;(as)
must be an or-linear combination of these u;’s. On the other hand, P;(s) is a polynomial of
degree j in s, therefore so is Pj(as); because deg P; = i for each 4 it follows that Pj(as) is an
L-linear combination of Py(s),--- , Pj(s) only. O

We now introduce a coefficient ring S, which we assume to be a m-adically complete of-
algebra. For every S-module M, let M* := Homg (M, S) be the S-module of S-linear func-
tionals on M. We will need to work with a larger class of S-linear functionals on S[Z] than
those arising from U(G), namely the continuous ones.

Definition 3.2.7. We say that A € S[Z]* is continuous if it is continuous with respect to
the (7, Z)-adic topology on S[Z], and the w-adic topology on S. Let S[Z]%, denote the set
of these continuous S-linear functionals on S[Z].

Explicitly A € S[Z]* is continuous if and only if for all n > 0 there exists m > 0 such that
A(m, Z)™) C o™ S.
Consider now the base change U(Gs) := U(G) ®,, S, and its m-adic completion

—

U(Gs) = ImU(G) @0y, (5/7"5).
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Since {um, : m > 0} is an or-module basis for U(G) by Lemma (1)7 we see that U/(\QS)
has the following description:

(4) U(Gs) = {Z:Oamum: ameS,TT}iillwamzo},
Here we equip S with the 7-adic topology.

Lemma 3.2.8.
(1) The pairing (—, =) : U(G) X or[Z] — or, extends to an S-bilinear pairing

(=, =) : U(Gs) x S[7] = .

(2) For each u € U/(\(]s) the S-linear map (u,—) : S[Z] — S is continuous.
(3) The map U(gs) — S[[Z]]Cts, u > (u,—), is an S-linear bijection.
(4) The map S[Z] — U(gg) F +— (—,F), is an S-linear bijection.

Proof. (1) Let u = E AUy, € U(gg) F = Z F,Z"™ € S[Z] and define (u, F') = io: amFm
0 —

n=0 m=
This series converges in S because a,, — 0 as m — oo and because S is assumed to be

m-adically complete.

(2) Let n > 0 and write u = Z amty, With a,, — 0. Then for some r» > 0, a,, € ©"S for
all m > r. Hence (u, —) sends the 1deal (r" Z") of S[Z] into ©"S. Since (m, Z)"t" C (x™, Z"),
we conclude that (u, —) is (7, Z)-adically continuous.

(3) The injectivity of u — (u, —) follows by evaluating on each Z". Now let A € S[Z]%

and define a,, := A\(Z™) € S for each m > 0. Since A is (7, Z)-adically continuous, for each

n > 0 we can find some r > 0 such that A\((m, Z)") C «™S. Then a,, € «"S for all m > r
o —

which implies that a,, — 0 as m — oco. Hence u := > amuy is an element of U(Gs) and

m=0

(u, —) — A vanishes on S[Z] by construction. Since this difference is continuous and since S[Z]
is dense in S[Z] with respect to the (m, Z)-adic topology, we conclude that A = (u, —).

(4) Again, the injectivity of F' +— (—, F)) follows from (u,, F) = F,,. Given an S-linear

map A : U(Gg) = S, let F:= > Aup)Z™. Then (up, F') = A(uyy,) for all m > 0. Since the
n=0
U, span U(Gg) as an S-module, A = (—, F). O
As an immediate consequence of Lemma [3.2.8] we have the following

Corollary 3.2.9.
(1) For every continuous S-linear a : S[Z] — S[Z] there exists a unique S-linear map
U(Gs) — U(Gs) such that

(a*u, F) = (u,aF) forall wue [ﬁg\g),F e S[Z].

(2) For every S-linear f3 : (@ — U/(\gs) there exists a unique S-linear map
B* : S[Z] — S[Z] such that

(u, BF) = (8*u, F) for all ue U(Gs), F € S[Z].
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We also extend this S-linear pairing to an Sy, := S ®,, L-linear pairing

(= =) U(Gs), x S[Z]L — St

which we will use without further mention.
—_— %

Lemma 3.2.10. The restriction map U(Gg) — HomoL(f]\, S) is an S-linear isomorphism.

Proof. Let A : U(Gg) — S be an S-linear map whose restriction to U is zero. Then in particular

AMtp) = 0 for all m > 0, so A vanishes on all finite sums of the form > anu,, € U/(\gs)
m=0

with a,, € S. These sums are m-adically dense in U(Gg) in view of , so for any = € U(Gg),
o0

Azx) € [ #™S. Since we're assuming that S is w-adically complete, this intersection is zero,
n=0

so A = 0 and the restriction map in question is injective.
Suppose now A : U — S is an og-linear map. Using the description of U(Gg) given in ,

—

we extend it to an S-linear map X : U(Gg) — S by setting for every zero-sequence (a,) in S

A (Z amum> = Z amA(U,).
m=0 m=0

Since lim a,, = 0in S, the series on the right hand side converges in S because S is assumed
m—0o0

to be m-adically complete. So, A is a well-defined S-linear map extending . g

3.3. Gal-continuous functions. Let C°(or,C,) be the C,-Banach space of all continuous
Cp-valued functions on oy, equipped with the supremum norm. The unit ball of this C,-
Banach space is the oc,-submodule C%or, oc,) of continuous oc,-valued functions.
Definition 3.3.1. A function f € C%(or,C,) is said to be Gal-continuous if

o(f(a)) = f(ar(o)) forall a€op,0€Gy.

We write C := CQ,,,(or, C,) for the set of all Gal-continuous C,-valued functions.
Evidently C := C?;a1(0L7 oc,) =CnN C%or, oc,) forms an or-lattice in C.
Lemma 3.3.2. Let f € C. Then im f C Ly, and im f C o4 if f € C.

Proof. By Definition we have im f C (Cl;e” forall f € C, and im f C o%é‘;” for all f € C.
But (Clpfe” = Ly and O(Ci”— = 0x by Lemma [2.7.2 ]

Lemma 3.3.3. For each u € U, the function a — K(u)(a) == (v, A,) on or, is Gal-continuous.

Proof. By definition, KC(u) is the composition of p,, : o, — 05[Z]* with the restriction of
the linear functional (u, —) : 000[Z] — 0co t0 050[Z]*. This linear functional is continuous
by Lemma (3), so to establish the continuity of K(u) it remains to show that p,, is
continuous. Since fi),, is a group homomorphism, it is enough to show that it is continuous at
the identity element 0 of or,. Let n > 0 and consider the basic open neighbourhood 1+ (m, Z)"
of 1 € 05[Z]*. Since ¢"(Z) — 0 as n — 00 in 0x[Z] by Lemma we can find m > 0
such that ¢™(Z) € (r, Z)™. Hence for any a € oy, using Lemma we calculate

Apmg — ADg = 9" (Au — 1) € 9" (Zox[Z]) € "™ (Z)ox[Z] C (7, Z)".

Hence p,, is continuous as required.
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Now let o € G; since A, € 05[Z] is invariant for the x-action of G, on 0 [Z], we know
that 0(Ay) = Au([7(0)](Z)) = Aur(s) for any a € or. Since u € U, we have for any a € of,

o(K(u)(a)) = o({u, Aa)) = (u,0(Aa)) = (U, Dar(e)) = K(u)(ar(0)).
Hence K(u) is indeed Gal-continuous. O
Definition 3.3.4. R
(1) Define the Katz map K : U — C as follows:
K(u)(a) = (u,A;) forany weU,ac€ o
(2) Define K; : U— 0s0 by K1 = evy oK.
(3) Define 9¢ : C' — C by the rule

Yo(f)(a) = baero, f(a/m) for all a € of.

The operator ¢¢ : C — C is by definition the restriction of ¥¢ to C.
(4) Define p¢c : C' — C by the rule

vc(f)(a) = f(ra) forall a€of.
The operator ¢¢ : C — C is by definition the restriction of ¢ to C.

Now we recall the coefficient ring S that was introduced before Definition Applying
the S-linear duality functor
(—)* := Homy,, (—, 5)
to the Katz map IC: U—cC gives us the dual Katz map
K*:C* — U*
defined on the space of S-valued Galois measures C* = Hom,, (C,S). We identify U* =

Hom,, (U, S) with S[Z] using Lemma and Lemma [3.2.8(4); then K* : C* — S[Z] is

given explicitly by
(5) (U, K*(A)) = AM(Pn(—))) forall XeC*,m >0.

After Lemma [3.1.6|and Corollary applied with S = or, we have at our disposal the dual
or-linear endomorphisms ¢, and ¢* of U.

Lemma 3.3.5. We have K¢* = ¢ocK and K¢, = qyck.
Proof. Let u € ﬁL and a € or. Then using Lemma we have

K(pea(w))(a) = (g (u), Ad) = (1, %col(Ad)) = (1, qg(Aa))
= Q<ua 6a€7roL A(z/7r> = qéaeﬂ'oL ’C(U) (CL/T(') = qyc (}C(u))(a)
which gives the second equation. The first equation is proved in a similar manner. O

Corollary 3.3.6. We have K*pp = oK* and K*9; = 1 K",

Proof. We apply the S-linear duality functor (—)* = Hom,, (—,S) to the equations from
Lemma [3.3.5] Using Lemma [3.2.8] we see that
K¢z = (ecK)" = (Ke™)" = o™ K" = oK~
and similarly,
aK* e = (qveK)" = (Ktogo)™ = YoaK™ = qigK™.
Now divide both sides by g. ]
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Lemma 3.3.7. We have ¢, 0 KT = 0.

Proof. Corollary gives Yo Kf = Y K*evi = K*Yjevi = (evi¢ek)*. But evie(f)
Ye(f)(1) =0 for any f € C by Definition m(?)), because di¢cro, = 0.

|

Proposition 3.3.8. Suppose K is injective and 7 is surjective. Then ¢ ker Ky C wéol(ﬁ).

Proof. In this proof we may assume S = oy,. Suppose that evy ofC(u) = 0 for some u € U. Then
K(u) is zero on of because 7 is surjective and because K(u) is Gal-continuous by Lemma

Hence K(u) = vepcK(u). But gepcK(u) = qeKe*(u) = Kipé,9*(u) by Lemma SO
K(qu — &% (u)) = 0. Since K is injective by assumption, qu = ¢, (¢*(u)) € Y&, (U). O

Proposition 3.3.9. Suppose that 7 : G, — o] and K; : U — 0o are surjective, and that
K:U—Cis injective. Then

K3 :of, — S[Z]¥=°
is an S-linear bijection.

Proof. The image of K* : o, — S[Z] is contained in S[Z]¥*=° by Lemma If C5(0) =0

~ ~

for some ¢ € o, then £o K1 = 0s0 (K1(U)) = 0. But K£1(U) = 00 by assumption, so ¢ = 0.
Hence K7 is injective and it remains to prove it is also surjective.

Take some F € S[Z]%=° and let £ := (—, F) € U(Gg) = U* be the S-valued o-linear
functional on U given by Lemma |3.2.10[and Lemma [3.2.8(4). Then since ool (F) = qe(F) =
0,

0 = (u, Yoa(F)) = (e (), F) = (peg(w)) forall ueD.
So, ¢ vanishes on ¢ ;(U) and hence also on gker K; by Proposition Since oy, has no
g-torsion, we see that £ is zero on ker 1. Hence £ descends to an S-valued op-linear functional
on U/ ker K1. But this quotient is isomorphic to o by assumption. So, we get a well-defined
or-linear form ¢ : 0o, — S such that £(K1(u)) = £(u) for all u € U. Then

(u, KI(0)) = UKy (u)) = b(u) = (u, F) forall uwelU
which implies that F' = K% (¢) by Lemma [3.2.8(4). Hence K} is surjective. O
We make the following tentative

Conjecture 3.3.10. K : U — 0o 1s surjective and I : U= Cis injective whenever 7 is
surjective.

3.4. The largest 1),-stable or-submodule of o;[Z]. For brevity, we will write
A:= S[Z]

in this subsection. The ,-operator is only defined on A, and it does not preserve A, in
general.

Definition 3.4.1. Let A%+ be the largest S-submodule of A stable under .
Remark 3.4.2. We have AV« = {F ¢ A: Yy (F) € A for all n > 0}.
Lemma 3.4.3. The image of K* : C* — A is contained in A%a it

Proof. Let A € C*. By Corollary Yy (K*(A)) = K*((1¢)"(A)) lies in A for all n > 0. Now
use Remark 3.4.2 ]
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Clearly, A¥s=Y is contained in A¥s™; moreover this last is ¢-stable in view of Remark
3-4.2] and the fact that 1, 0 ¢ = 14 by Corollary [3.1.4] Therefore

— Ye=0 Wi
S+nZ::0<p (Aq )gAq t

Our next result makes this relation more precise; first we need some more notation.

Definition 3.4.4. We have the following truncation operators:

(1) s:C—C, given by s(f) = f — f(0)1, and
(2) t: A— A, given by t(a) = a — a(0)1.

It will be helpful to observe that ty = ¢t as S-linear endomorphisms of A.
Proposition 3.4.5. There is a well-defined op-linear bijection

oo o
1® Z Ot op B H AYa=0 —, g¥qint,
n=0 n=0

Proof. Given any (an), € [[02, A¥*=Y, Lemma implies that ¢"(t(an)) — 0 as n — oo,
because t(a,) € ZA for all n > 0. Hence

(2, (@n)n) = 2+ Y ¢"(t(an))

oo .
is a well-defined S-linear map v : S@® [ A¥+=° — A. Now A%« i5 a ¢-stable S-submodule of

n=0
A since 1,(1) = 1. Because a,, € A¥=Y this implies that ¢"(t(a,)) = tp"(a,) € t(A¥st) C
AYaint for any n > 0. Since o) : A — A is continuous by Lemma and since A¥aint —
{a € A: ¢, (a) € ¢"A for all n > 0} by Remark we see that A¥a™t is a closed
S-submodule of A with respect to the (m, Z)-adic topology on A = S[Z]. Hence the image of
7 is contained in A%s ™ and it remains to show that + is bijective.

Suppose that v(z, (an)n) = 0 so that z = — > ¢"(t(ay)). Since ZA is closed in A, this infi-
n=0

nite sum lies in ZA. Since SNZA = 0, we conclude that z = 0. Hence ag = — > ¢"(t(an)) €
n=1
©(A). But ag € A¥=0 by definition, and
AY=0 N p(A) =0

because 1,09 = 14 by Corollary Hence ap = 0. Proceeding inductively on n, we quickly
deduce that a, = 0 for all n > 0 in a similar manner. Hence v is injective.
Now let a € A¥a ™™ then by definition, wg(a) € A for all n > 0, so we can define

an = () — U (a) € A,
Since 14 0 ¢ = 14 by Corollary we see that a, € AY4=0 for all n > 0. Since tp = ¢t,

m

D e (tan)) =t (Z " (P (a) — W?“(@)) = t(a — "™ Y (a))
n=0

n=0
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for any m > 0. Since to" 1 (a) = "™ (1" (a)) = 0 as m — oo by Lemma

~v(a(0), (an)n) = a(0) + t(a) — hino <pm+1(t¢;"+l(a)) = q.
Hence ~ is surjective. O

Lemma 3.4.6. For each n > 0, there is a commutative diagram

% evjrn % S* %
0% C C
Ki i llc* K* l
A¥a=0 A¥q-int Atg-int

Proof. To see that the square on the left commutes, we use Corollary

KT = " K ev] = K*piev] = K (evi pe)* = K evin .
Hence in view of Lemma [3.2.8(4), it remains to show that

(U, K* (8" (X)) = (um, t(KT(A))) forall m >0,\eC".
Since t kills the constant term of a power series in A, we have

(Um, t(a)) = Om>1{um,a) forall ae€ A.

Now K(um)(0) = Pp(0) = 00 by [STOL, Lemma 4.2] and K(ug) = K(1) =1, so
(um, £ (s*(N))) = As(K(um)) = A (um) = K(um)(0)1) = 6mz1 A(K(um)) = (um, t(L*(A)))-
The result follows. 0

(o]
Let ¢p(0c0) := {(xn)n € [] 000 : lim z, = 0}.
n=0 n—oo

Lemma 3.4.7. Suppose that 7 is surjective. Then the map
n:C— or ® co(00)
given by n(f) = (f(0), (f(z™) — f(0)),) is an or-linear bijection.

Proof. Recall that any f € C takes values in 0o, by Lemma [3.3.2] Since 7™ — 0 as n — oo in

or, and since f is continuous, f(7™) — f(0) — 0 as n — 00 in 0. Thus 7 is well-defined.
Suppose n(f) = 0 for some f € C. Then f(0) = 0 and f(7") = 0 for all n > 0. Hence

f(@"7(o)) = o(f(7™)) = 0 for all 0 € G, so f also vanishes on 7"7(Gp) for each n > 0.

oo
Since 7 is surjective, f vanishes on |J 70 U{0} = or, so f = 0. Hence 7 is injective.

To show 7 is surjective, let (z,(zn)n) € or @ cp(0s) and define f : o5 — 0o by setting
f(0) =z and f(7"7(0)) := 2+ 0(2y) for all n > 0 and all o € G1. This makes sense because
7 is surjective, and if 7(0) = 7(0”) for some 0,0’ € G, then 0710’ € ker T fixes 0, by Lemma
50 0'(2p) = o(0710'(2,)) = o(zy) for any n > 0. It is easy to see that f : o, — 0 is
Gal-continuous and that n(f) = (2, (zn)r). Hence n is surjective. O

Lemma [3.4.7| allows us to give an explicit description of the space of Galois measures C*.
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Corollary 3.4.8. Suppose 7 is surjective. Then

o
n*:oL@Ho&%C*
n=0
is an or-linear bijection.

Proof. The functor (—)* = Hom,, (—,.S) from or-modules to S-modules commutes with finite
oo

direct sums and sends ¢(00) to [] 0f,. Now apply this functor to the isomorphism 7 : C =
n=0

or, @ cp(0x) from Lemma O

Theorem 3.4.9. Suppose that 7 is surjective and that K7 : 0%, — A%a=0 is an isomorphism.
Then KC* : C* — A%« is an isomorphism as well.

Proof. Using Corollary and Proposition [3.4.5] we can build the following diagram:

oo ,,7*
Sa [] ok c*
n=0
16 ]O_O[ Iql C*
n=0
OO .
So ] A%qa=0 — AYq-int
n=0 19> ot
n=0

Note that we can write n = evy @(evn 0s),. Lemma implies that
K*(evym 0s)" = K*s" evin = tp"K] = ¢"tK] for any n > 0.
Using P, (0) = 6,0 again together with , we also have

K" (1,(0)n) = K*(evi(1) = Y evg(1)(Pu(—2)) 2™ = ) Pu(0)2™ = 1.
m=0 m=0

Therefore the diagram is commutative. Now n* is an isomorphism by Corollary [3.4.8] and
bottom map is an isomorphism by Proposition Since K7 is an isomorphism by assump-
tion, the vertical map on the left is an isomorphism as well. Hence * is also an isomorphism
by the commutativity of the diagram. ]

Corollary 3.4.10. Let S be any w-adically complete oz-algebra. The dual Katz map
K*:C* — S[z]¥™
is an isomorphism if 7 : G, — o} and K; : U — 0o are surjective, and K : U—Cis injective.

Proof. Apply Theorem together with Proposition [3.3.9 O

3.5. The Newton polygon of A;(Z) — 1. In this section, we obtain some estimates on
vr(Pr(€2)), k > 1. Recall that d and e and f denote the degree and ramification and inertia
indices of L/Q,, respectively.

Lemma 3.5.1. If £ > 0 and 1 < r < e, then we have an isomorphism of abelian groups

OL/7T€k+TOL o~ (Z/ka)f(e—r) ® (Z/pk—HZ)fr.
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Proof. Note that por, = m€or, C 7”0y, since e > r by assumption, so oy, /7" oy, is an elementary
abelian p-group of order |or,/7"or| = p/”. Hence, using the elementary divisors theorem, we
can find vy, -+ ,vq € or, such that

s d
o, =Zyv1 ® - ®Zpvg and 7op = @vai D @ Zippvi
i=1 i=s+1
for some integer s with 1 < s < d. We deduce that fr = d —s, so s = f(e — r). Since
7wkt o = pFrTor, the result now follows easily. O

ek+r

Lemma 3.5.2. In oy /7 or,, the image of 1 has order p*t1.

Proof. This can be proved directly as p* -1 € 7 - 0F £ 0 in of, /7 *70p. O

Definition 3.5.3. Let m > 0.
(1) Let ky, = [(m —1)/e], so that m = ek, + r with 1 <r <e.
(2) Define z,, := ¢™/pFmT1.
(3) Define

-1
e 1 e 1 q
= — and = - - :
Yo p—1 q—1 nd. Ym p—1 ;pkj+1 pkm+1(g —1)
For example, 29 = 1 and 1 = ¢/p. Note that if m = en +r with 1 <r <e, then
- e r 1
Yentr = pr(p—1) prtl o (qg—1)pntl

Theorem 3.5.4. The vertices of the Newton polygon of Aj(Z) — 1 (using the valuation vy,
and excluding the point (0,400)) are the points (%, Ym) for m > 0.

Proof. Via the Schneider-Teitelbaum isomorphism, the zeroes of the power series
(o]
A(Z)—1= Pu(Q)Z™ € og,[Z]
m=1

are the z € mc, such that «, is an L-analytic character satisfying .(1) = 1. These characters
are torsion EL and correspond to some of the torsion points of the Lubin-Tate group G. There
are precisely ¢™ points in G[7™], and the common valuation of each point z € G[7™]\ G[r 1]
is vr(2) = 1/¢™ (g —1).

If we write m = ek + r as above, then in view of Lemma [3.5.1] and Lemma there are
Ty = q™/pFmt1 elements 2 € G[n™] such that (1) = 1.

Let ((z),,9y0,))°_, be the vertices of the Newton polygon, so that the first vertex is
(x,90) = (1,v2(Q)) = (20,90). The slope of the line segment between (z/, ;,y,, ;) and
(x!  yl.) is minus the common valuation of the elements of z € G[r™] \ G[7™ 1] satisfying
k(z) = 1, that is 1/¢™ 1(q — 1). Hence 2/, = x,,, for all m > 0. Using the definitions of z,,
and ¥y,,, we have the formula

Y = Yo — —2 0 Im T Imol
" ¢" (g —1) " tg—1)
which implies that y/, = y,, for all m > 0. O

3Suppose that (1) = 1. Then x(a) = 1 for all a € Z,. Hence x'(1) = 0. Since & is locally L-analytic, «’ is
L-linear, and hence " = 0 so that x is locally constant, and hence torsion.
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Remark 3.5.5. As m — 400, ymym — 0, consistent with the fact that ||A1(Z) — 1| = 1.

Corollary 3.5.6. We have the following formulas for v, (Px(2)).
(1) For all m > 0, we have v (P, () = ym.-
(2) For all n > 0, we have vg(Pjnw-1) = 1/p" - vz ().

Proof. Ttem (1) follows immediately from Theorem Item (2) follows from item (1) with
m = en. Indeed, z¢, = ¢*"/p" = p™@1) and

o= e e _e-l 4 _1_<6_1> O

T op-1 p p? prt ot pig—=1) pr \p—1 q¢-1)

Remark 3.5.7. If L/Q, is unramified, then item (2) of Corollary [3.5.6 gives all the valuations
of the Py (f2) that can be computed using the Newton polygon. For n > 0, we get

1 q/p—1
ptp—1) g¢-1°
Corollary 3.5.8. Suppose that L = Q2 and m = p. Then we have

Valp(Ppn(dA)) =1/p" v (Q) =

1
val,(Px(Q))) = ——— forall k>1,
p( p"( ) pkil(q —1) =
and if £ > 1 and pk_1 <m< pk, then
1 pk —-m 1 m — pk_l

) 2 D Y - A D -

3.6. Verifying Conjecture [3.3.10] in a special case.

Definition 3.6.1. Fix m > 1.

(1) Let G, = G[#™] be the finite flat or-group scheme of 7"-torsion points in the Lubin-
Tate formal group G.

(2) Let G, be the Cartier dual of G,,.

(3) Let U(m) := O(G,,) = Hom,, (o1[Z1/ (¢ (Z)), 01).

(4) Let G’ := colim G/, be the dual p-divisible group to the p-divisible group defined by
the formal group G.

Recall that by Cartier duality — see [Tat67, p. 177] — the period 2 € C,, corresponds to
a choice of generator ¢ € T,G' = TG’ as an or-module. We recall how this correspondence

works. First, the element
(e}

AL =) Pu()Z" € oc,[Z]

n=0
gives a compatible system of group-like elements (A1(m))5_; € [[ O(Gn), where Aq(m) is
m=1

the image of Ay in O(Gp, %o, oc,) = oc,[Z]/{¢™(Z)) under the natural surjective homomor-
phism of oc,-algebras oc,[Z] — O(Gm X0, oc,). Since O(Gn X0, oc,) can be identified with
Hom,. (O(Gy, %o, 0c,) 0c, ), A1(m) can be viewed as an oc,-linear map U(m) ®,, oc, — oc,
which is in fact an oc,-algebra homomorphism because Aj(m) is group-like. This map is de-
termined by its restriction to U(m); this restriction is an or-algebra homomorphism ¢/, :
U(m) — oc, and is therefore an element of G, (C,). Finally, the multiplication-by-7-maps

t1(Cp) = G1,(Cp) in the inverse system defining the Tate module TG" are induced by
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the inclusions of or-algebras U(m) — U(m + 1), so t;n+1|U

oo
generator ¢’ € TG’ is given by t’ = (t/,)5%°_, € ] G..(Cp).
m=1

m=1

(m) = t,, for all m > 1, and the

Lemma 3.6.2. Let m > 1. The restriction of Ky to U(m) C U is equal to t,.

Proof. Recall that we have identified U with op[Z]%, using Lemma [3.2.8(3). Let u € U(m)

cts

and let @ € U be the corresponding og-linear map o [Z] — or, which kills (¢™(Z)). Then
ty (1) = Ax(m)(u) = (@, Ay) = K(@)(1) = Kq()
and the result follows. O

For each m > 1, let L,, be the finite Galois extension of L contained in Lo, = (Cl;e” defined
by Gal(Leo/Lm) = 711 + 7™oyp).

Lemma 3.6.3. Let m > 1. Then ¢, (U(m)) C o,

Proof. Let 0 € Gal(Loo/Ly,) so that 7(c) € 1 + n™or. Then by definition of the character

T, o acts trivially on G/, (C,). In other words, o(t],(u)) = t,,(u) for all w € U(m) and hence
tr(U(m)) C LG Eee/Em) _ 1 But U(m) is a finitely generated or-module so ¢, (U(m)) is
n

integral over oy, and is therefore contained in oy, .
Definition 3.6.4. For cach m > 1, let U(m);, := im(U(m) — U /= U).

We will identify Uy := U/xU with U/xU via the natural map U/xU — U/xU and we
regard U(m)j as being naturally embedded into U(m + 1).

Proposition 3.6.5. Suppose that ¢, (U(m)) = or,, for all m > 1. Then K; : U — 0s is
surjective.

Proof. Consider o, := LNos. Since o, is m-adically dense in 04, to prove that Kl(ﬁ ) contains
0so, it is enough to prove that it contains o,. Fix m > 1. By Lemma the restriction of
K1 :U = oc, to U(m) is equal to t,. Hence by assumption or,, = t;,,(U(m)) = K1(U(m)),

~

so or = |J or,, is also contained in ICq (U). O
m>1
~  qrT1 ~
Lemma 3.6.6. For each m > 1, we have U(m) +nU = > opu, +wU.
r=0

Proof. Let w € U(m) and let @ : or[Z] — or be the corresponding or-linear form which

g1

vanishes on (p™(Z)). Consider v := @& — 5. @(Z")u, € U. For each r < ¢™, u, sends
r=0

(@™(Z)) into mor, because p™(Z) = Z9" mod mor[Z]. Since @ kills (¢™(Z)), we see that v

also sends (¢™(Z)) into mor. By construction, v is zero on 1, Z,--- , Z9"~1. Since

(6) oLl ®orZ - @02 ' & (y"™(2)) = o[Z],

we conclude that v (or,[Z]) C 7oz, and hence v = mw for some og-linear form w : or,[Z] — or.
Since v : op[Z] — or, is continuous for the weak topology on or[Z], so is w. Hence w € U

gm—1 ~
and hence & € > opu, + wU. This shows that C holds.
r=0
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For the reverse containment, it is enough to show that u, € U(m) + 7U for cach r =

0,...,¢™ — 1. Using (6)), define an or-linear form w, : or[Z] — o, which is zero on (™ (Z))
and which sends Z* to ¢;, for each 0 <1 < ¢™. Since u, sends (¢™(Z)) into 7oy, the same is
true of u, — w,. Since u, —w, is zeroon 1, Z,--- , Z9"~1 by construction, we see that u, — w,

sends all of o7,[Z] into wor. Hence u, — w, = v, for some or-linear form v, : or,[Z] — ofr.
Since u, — w, is continuous for the weak topology on or[Z], so is v,. Because w, is zero on

(©"™(Z)), it lies in U(m) and hence u, = w, + v, € U(m) + 7U. O
Proposition 3.6.7. If L = Q,z, then ¢, (U(m)) = or,, for all m > 1.

Proof. Fix m > 1. By Lemma for each 0 < r < ¢™ we can find w, € U(m) such that
wy — up € TU. Set r 1= p?™~1 = pgm~1 < ¢™. Note that K1(u,) = K(u,)(1) = (up, A1) =
P.(Q2). Since L = Q,2, Corollary applied with &k = 2m — 1 tells us that

1 1
— - =[Ln:L ' <1
p*"2(g—1) ¢"Hg—1) o 1
Now 7oy, = poy, since L = Q,2, so K1 (u, —w;,) € Ky (ﬂ'ﬁ) C poc, since K takes values in oc, .
Hence val, (K1 (ur) — K1(w,)) > 1 and val,(Ki(w,)) = val,(K1(uy)) = [Ly, : L] 71, Therefore
K1(w,) is a uniformiser in L,, and the result follows. O

val, (K1 (ur)) = valy(Pr(2))

Now we start to explore the injectivity of K : U—cC.
Lemma 3.6.8. For each m > 1, we have U(m) N 7U = 7U(m).

Proof. Let g = wh € U(m) for some h € U. Then w(h, F) = (wh, F) = 0 for any F € (¢"™(Z)).
Hence (h, F') = 0 for all such F as well, so h € U(m) and g € 7U(m). O

Corollary 3.6.9. The map O(G), X,, k) = U(m)/nU(m) — U(m)y, is an isomorphism.

Since G’ forms a p-divisible group, we have a closed immersion G,, — G, ; for each
m > 1. The comorphism of this map O(G,,,) = O(G,,) is the dual of the or-Hopf algebra
map O(Gp) — O(Gpy1) induced by ¢ : O(G) — O(G). Using Corollary we obtain
connecting maps ¢y : U(m + 1) — U(m)y.

Lemma 3.6.10. The comorphisms ¢} : U(m + 1), — U(m), are surjective for all m > 1.
Proof. By Corollary U(m)y, is isomorphic to O(G),, x,, k) = Homy(O(Gm X, k), k) as
a k-vector space. Since ¢(Z) = Z? mod mor[Z], we have O(Gy, X0, k) = k[Z]/(Z9") and
the k-algebra homomorphism ¢y, : k[Z]/(Z9™) — k[Z]/(Z9™+1)) which sends Z to Z9 is
injective. Hence the dual map

¢ - Homy (k[ 2] /(27+Y), k) — Homy (K[Z]/(2°™), k)

is surjective and the result follows. ([l

Next we consider an ideal I of Uy, and we set I(m) := I NU(m) for all m > 1. We assume
that I is ¢*-stable, in the sense that ¢*(I) C I.

Proposition 3.6.11. Suppose that I is a p*-stable ideal of Uy such that 1&1 L;((?:I))’“ is finite

U(m)

T(m) is also finite dimensional over k.

dimensional over k. Then Uy /I = colim
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Proof. Let m > 1 and consider the short exact sequence
0— I(m)— U(m)r — U(m)i/I(m)— 0.

Since [ is p*-stable by assumption, we get a short exact sequence of towers of finite-dimensional
k-vector spaces. Passing to the inverse limit therefore gives an exact sequence
U(m)r
I(m)
By assumption, the term on the right is a finite dimensional k-vector space. We see from
Lemma 3.6.10] that the connecting maps U(m + 1);/I(m + 1) — U(m)i/I(m) induced by
" are surjective. Therefore, for large m, all of these maps are necessarily isomorphisms, and
therefore there exists mg > 1 such that
U 1 U

(m+ 1 _ . Ulm
I(m+1) I(m)
Now the definition of I(m) shows that the natural connecting maps in the opposite direc-
tion U(m)i/I(m) — U(m + 1)i/I(m + 1) is injective for any m > 1. They are therefore
isomorphisms whenever m > mg. The result follows. O

0 — I(00) :=lim I(m) — JmU(m);, — lim — 0.

dim for all m > my.

Proposition 3.6.12. Let J = ker K and let I := (J +xU)/xU be its image in Ug. Then I is
a @*-stable ideal in Uy such that dim Uy /I = oco.

Proof. Since Ky* = ¢cK by Lemma we see that J is a ¢*-stable ideal in U. Hence its
image I in Uy, is also ¢*-stable.

Suppose that h € U and r > 1 are such that 7" € J. Then K(x"h) = 0 in C, so K(h) = 0
as well. So JN7"U = 7"J for all r > 1. Now consider the short exact sequence

0—J—U—=KU)— 0.

Equip both U and K(U) with the m-adic filtrations. Then the above shows that the subspace
filtration on J induced by the m-adic filtration on U coincides with the m-adic filtration on J.
Therefore we get a short exact sequence of gr or-modules

0—grJ—grlU — grkK(U) — 0.

So, if dimUy/I < oo, then gr (7/ grJ = (Ug/I)[grmn] is a finitely generated module over
gror, so gr K(U) is a finitely generated gr or-module. The w-adic filtration on C is separated,
hence the m-adic filtration on KC(U) is also separated. Therefore IC(U) is a finitely generated
or-module by [Lv096, Chapter I, Theorem 5.7]. Hence K(U[1/7]) is a finite dimensional
L-vector space. But this contradicts [ST01, Theorem 4.7]: the space of locally L-analytic Gal-
continuous functions is not finite dimensional over L since it contains the subspace of locally
constant Gal-continuous functions, which is infinite dimensional over L. O

Corollary 3.6.13. Suppose that d := [L : Q] = 2. Then K : U — Cis injective.

Proof. By Proposition I = (ker K+nU )/ 7Uis a p*-stable ideal in U}, of infinite codien-
sion in Uy,. Hence I(c0) := lim(I NU(m)y) is an ideal of infinite codimension in lim U(m)x by
Proposition[3.6.11] By [Hop19, Example 2.5.3], the Dieudonné module M (Gy) associated with
the Lubin-Tate formal group Gy, = G x,,, k over the perfect field k has basis {v, V7, - -, Via-lyl
over W(k) and satisfies V¢ = p. Hence the Verschiebung operator V on M (Gy,) is topologi-
cally nilpotent. Therefore the Cartier dual G;, is connected. Hence Hm U (m)r =2 O(G" x,, k)
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is isomorphic to k[X7,- -+, X4_1] by [Tat67, Propositions 1 and 3]. Since d = 2, we conclude
that I(oco) = 0. Hence I(m) = 0 for all m > 1 and hence I = 0. So ker £ = 0 as well. O

Theorem 3.6.14. Suppose that L = Q2. Then
Ki:of, — op[Z2]¥~°
is an or-linear bijection.
Proof. Since d = 2, we know that 7 is surjective by Lemma Then K : U — C is injective

by Corollary [3.6.13[and K; : U— 0o 18 surjective by Proposition and Propositionm
Now apply Proposition [3.3.9] O

We can now prove Theorem from the Introduction. In fact, we prove the following
more general version, from which Theorem follows as a special case by setting S = og.
Theorem 3.6.15. Let L = Q2 and let S be a m-adically complete or-algebra.

(1) The map K* : Hom,, (C&, (oL, 0c,), S) — S[Z] is injective.
(2) Its image is equal to S[Z]¥ant,
Proof. Since d = 2, we know that 7 is surjective by Lemma [2.6.4] By Theorem [3.6.14] the
map K} : 0%, — or,[Z]%+=° is an isomorphism. Now apply Theorem O
4. INTEGER-VALUED POLYNOMIALS

4.1. The algebraic dual of O°(Xg). Pick a basis {v1,--- ,v4} for of, as a Z,-module with
v1 = 1. We view oy, as a p-valued group with p-valuation w given by

d
w (Z Am) =1+ @lgdvalp(Ai).

i=1
Let r be a real number in the range 1/p < r < 1. Recall from [ST02, §4] that D% ~2"(o;, K)
carries a norm || - ||, given by

(7) 1> dab?|l; = sup |da|r.

aeNd aeNd
where b; := §,, — 1 € D@3 (o; K) fori = 1,--- ,d, b* = byt b € D®%—an(o;  K) and
la] = Tao = a1 + --- + aq for all a € N%.
Definition 4.1.1. Let 1/p <r < 1.
(1) Let Dg”fan(oL, K) denote the completion of D% ~2%(or, K) with respect to || - ||.
(2) Let Xo(r)x = Sp D2 (o, K).
(3) Let X(r)g = Xx N Xo(r)x = SpDE~(or, K), where D~ (0, K) is the factor
algebra of D "™ (or, K) by the ideal generated by the elements
U2 —V2U1, U3 —U3UL, - U4 — VUL
where u; := log(1 + b;) € D@~ (o;, K).
As r approaches 1 from below, the K-affinoid varieties X(r) g form an increasing family of
K-affinoid subvarieties of Xx: whenever 1/p < r <1’ <1 we have
(8) 1€X(1/p)xk C--CX(r)x CX()gC---Cxx= ) Xk
1/p<r<1
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Here 1 € X is the trivial character: the ideal generated by b1, - - - , by.

Lemma 4.1.2. The completed local ring (’)/35;1 of X at 1 is isomorphic to a power series
ring in one variable b := b; over K:

O = K[o].

Proof. We have O(Xo(1/p)k) = K(b1/p,--- ,ba/p) = K{u1/p,--- ,uq/p). Quotienting out by
the ideal generated by the elements u; — v;u; shows that O(Xo(1/p)k) = K(u1/p) = K(b/p).
So Xo(1/p)x is isomorphic to the closed disc of radius |p| = 1/p with local coordinate b; it is

well known that the completed local ring at b = 0 of such a disc is K[b]. The result follows
since 1 € X(1/p)k implies that Ox, 1 = Ox(1/p) K[b]. O

val:

Applying the functor O° to the increasing chain of rigid K-varieties and using Lemma
yields a decreasing chain of ox-algebras

9) K[b] >0°(X(1/p)K) D -+ D O°(X(r)k) D O°(X(r")k) D -+ D O°(XK) D ok[or]-
Definition 4.1.3. Let A be an ox-subalgebra of K [b] and let m > 0. The m-th infinitesimal
neighbourhood of 1 in A is the image A,, of A in K[b]/b™ 1K [b]:
A A+ 0™ HLKb] c K[b] .

" b 1K [b] b LK [b]
Remark 4.1.4. This construction respects inclusions and compatible with variation in m.

More precisely, whenever A C B are two ox-subalgebras of K[b], for every n > m there is a
commutative diagram of ox-algebras

A, —— B,

L

Am Bm
with injective horizontal arrows and surjective vertical arrows.

Definition 4.1.5. Let A be an ox-subalgebra of K[b] and let A}, := Hom,, (Am, oK) for
each m > 0. The algebraic dual of A is

A* = colim A* .
o) m>0 m

Lemma 4.1.6. Let oxJor] € A C B be two og-subalgebras of K[b] and let n > m > 0.

(1) In the commutative square

Ay <— B}

]

A =— By,
all arrows are injective.
(2) The map B — A% is injective.

Proof. (1) The vertical maps A}, — A} are injective because A,, — A, is surjective. Let
C be the cokernel of the map A,, — B,. Since A,, contains ox[or], which is an ox-lattice
in K[b],, we see that C is a torsion og-module. The dual functor (—)* is left exact, so we
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have the exact sequence 0 - C* — B, — A;. Since C is torsion, C* = 0 which shows the
injectivity of the horizontal arrows in our diagram.
(2) This follows by taking the colimit over all of the horizontal maps in part (1) above. O

Thus we see that the connecting maps appearing in the colimit in Definition [4.1.5] are
injective. Applying the contravariant algebraic dual functor (—)%, to the chain @ and using
Lemma [4.1.6{2) gives us a chain of algebraic duals

O°(X(1/p)Kk)5e C -+ C O°(X(r)K)3 C O°(X(r)K)5 C -+ C O°(Xk)% S ox[or]%

We can now calculate the largest one of these, namely the algebraic dual of the Iwasawa
algebra ox[or], but first we must introduce integer-valued polynomials. Recall the following
notion from [Bha97].

Definition 4.1.7. A w-ordering for oy, is a subset {«ag, a1, g, ...} of or, such that

k—1 k—1
(10) Ur (H(ak - ai)> = irelgvﬂ (H(s - ai)> forall k>1.

i=0 i=0
Starting from an arbitrary element ag € op, it is possible to construct a mw-ordering
{ag,a1,...} of or by induction on k, choosing at each stage «j to minimise the expres-
sion appearing on the right hand side of . In particular, m-orderings always exist, but are
far from unique.
Definition 4.1.8. Let{«g, a1,...} be a m-ordering for or.
(1) Define the Lagrange polynomials as follows: fo(X) :=1 and
(X — Oé())(X — 041) ce (X — Oék_l)
(ar, — ao)(ag, — 1) - (g — ag—1)
(2) Suppose that R is an or-algebra which embeds into Ry, := R ®,, L. Then we define
the ring of R-valued polynomials on oy, as follows:
Int(or, R) := {g(X) € R.[X] : g(or) C R}

(3) For each m > 0, let Int(or, R),, denote the R-submodule of Int(oy,, R) consisting of
all R-valued polynomials on oy, of degree at most m.

fe(X) = € L[X] foreach k>1.

The following result, closely related to de Shalit’s work on Mahler bases [dS16], explains
why we are interested in these Lagrange polynomials.

Lemma 4.1.9. {fo, f1, f2,...} is an R-module basis for Int(or, R).

Proof. Tt follows directly from Definition that v (fr(s)) > 0 for all s € or, and all k£ > 0.
Hence fi(or) C or, C R for all kK > 0 which implies that

(11) Rfo+Rfi + Rfs+---+ Rfy+--- C  Int(or, R).

If g € Rp[X] has degree n and leading coefficient A, then g — Aoy, — ag) - ( — Ap—1) fn
has degree strictly less than n. This implies that {fo, f1, f2,...} generates Ry [X] as an Rp-
module. Now let g € Int(or, R) and write g = Ao fo + - - - + A\p fn for some Ao, -, A\, € R, as
above. Setting X = o shows that Ao = g(ag) € R since g € Int(or, R). Assume inductively
that Ag,...,A—1 € R for some 1 < ¢ < n. Setting X = o4 shows that

At = g(ow) — Mofolow) = A filay) — - = M1 fii (o)
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and this lies in R because g(a¢) € R and f;j(a;) € R for all 4. This completes the induction
and shows that we have equality in (11)). Taking g = 0 in the above argument also shows that
the sum on the left hand side of ([11)) is direct. O

Using Lemma [4.1.9] we obtain the following

Corollary 4.1.10.
(1) The multiplication map

Int(or, 01,) ®,, ox — Int(or, 0k)

is an isomorphism, which sends Int(or,, or,)m ®,, 0k onto Int(or,, 0k )m for any m > 0.
(2) The Lagrange polynomials {fo(Y), -, fm(Y)} associated with a choice of m-ordering
for oy, form an ox-module basis for Int(or, 0x )m.

Proposition 4.1.11. The evaluation map ev : Int(or, 0x)m — ox[or]}, defined by

ev(f(Y))(A) == A(f(Y))

for all f(Y') € Int(or, 0k )m, A € ox[or] is an ox-module isomorphism.
Proof. This is essentially a complicated-looking tautology, but we try to give the details.

Note that ox[or]m is an ogx-lattice in K [b],,. We can therefore identify ox [or]%, with an
or-submodule of V' := Homg (K [b]m, K), a K-vector space of dimension m + 1. The linear
functionals ev(1),ev(Y),- -+ ,ev(Y™) are linearly independent in V because if Y 1" ¢; ev(Y?) =
0 then ev(> 1, ¢;Y)(0a) = >y cia’ = 0 for all a € of, and this forces g =+ = ¢, = 0. It
follows that ev : K[Y],, — V is injective and is therefore an isomorphism by the rank-nullity
theorem.

Hence ev : Int(or, 0x )m — ok [or], is injective. However if g € ok [or]%, then by the above
we can find some f(Y) € K[Y],, such that ev(f(Y)) = g¢. Since 6, € ox[or] for all a € or,
we see that f(a) =ev(f(Y))(da) = 9(d,) must lie in ox for all a € of,. O

Corollary 4.1.12. The map ev : Int(or,0x) — ox[or]k is an isomorphism.
Proof. This follows immediately from Proposition O

Proposition 4.1.13. Suppose that K is discretely valued. Then
O°(Xk)5, = col<i{n O°(X(r)K)5-
T

Proof. Since colimits commute with colimits, it is enough to show that for every m > 0,
O°(X0)3, = colim O°(X(r) ).
IS
Fix m > 0. Then O°(X(r)k)m form a decreasing chain of og-submodules of the m + 1-
dimensional K-vector space K [b],,, and all of them contain the ox-lattice ox[or]m. Since

K is discretely valued, the ox-module (K/ox)™*! satisfies the descending chain condition.
Hence there exists rg < 1 such that

(12) O°(X(r)k)m = O°(X(r0)k)m whenever ro<r <1
Following an argument of Schmidt [Sch14l proof of Proposition 4.9], we will now show that

O°(XK)m = O°(X(r0) K )m-
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The forward inclusion is clear, so fix some £ € O°(X(70) k' )m, choose a sequence of real numbers
rg < rp < re < --- approaching 1 and consider the K-Banach space

Aj=0X(rj)K).
Let ¢ : A7 = K [6]m be the obvious ok-linear map. Using we see that the convex subset
01 (6) C Ay

is non-empty. It was recorded in the proof of [ST02, Lemma 6.1] that the restriction maps
Ajy1 — Aj are compact. We may therefore argue as in [Gru68, Proposition V.3.2] that

@€ € 0°(%k)
7=0

is non-empty. Then any element A in this intersection satisfies A, = ¢, so & € O°(Xk)m as
required. Hence O°(Xk):, = O°(X(r)k);, whenever g < r < 1, and the result follows. [

4.2. The matrix coefficients p; ;(Y). Let B¢, be the rigid analytic open unit disc of radius
1 defined over C,, with global coordinate function Z. There is a twisted G, = Gal(C,/L)-
action on O(Bg,) given by F — F7 o [r(c~1)], which induces an L-algebra isomorphism

w:O(XL) — O(Bg,)

see [STO1, Corollary 3.8]. Inspecting the proof of this result, we see that it extends naturally
to give a description of O(Xf) for more general closed coefficient fields L C K C C,, as well:

Lemma 4.2.1. There is a K-algebra isomorphism
pr : O(Xg) — O(Bg, )%,
Since O°(Bc,) = oc, [Z], we deduce the following
Corollary 4.2.2. There is an isomorphism of ox-algebras
i O°(Xx) — og, [2]9%.
Until the end of we assume that Q is transcendental over K.

Definition 4.2.3. We call an og-subalgebra R of K[Q]Noc, admissible if P,(£2) € R for all
n > 0, and if R is stable under the natural G'z-action on K[Q] Noc,.

Example 4.2.4. K[Q]Noc, is itself an admissible ox-subalgebra of K[].
Proof. This follows from Corollary together with [ST01, Lemma 4.2(5)]. O

Definition 4.2.5. Let R C K[2] be an admissible ox-subalgebra.

(1) Let K[Q,, :={f(22) € K[Q] : deg(f) < n} for each n > 0.
(2) Let R, := RN K[Q],, for each n > 0.
(3) {bn(Q2) : n >0} C R is a regular basis if

bo(2) =1, and R, = R,—1®ogb,() forall n>1.

Lemma 4.2.6. Suppose that K is discretely valued. Then a regular basis exists for every
admissible ox-subalgebra R of K[Q] Noc,.
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Proof. Since € is assumed to be transcendental over K, the K-vector space K[(2],, has dimen-
sion n+ 1. The restriction of the norm |- | on C, to K[, turns it into a normed vector space
over K and by Definition [£.2.3(1), R, is contained in the unit ball with respect to this norm.
Since any two norms on a finite dimensional K-vector space are equivalent — see [Sch02,
Proposition 4.13] — it follows that R, C 7~ "ok [}, for sufficiently large m.

Since K is discretely valued, its valuation ring o is Noetherian and this forces R, to be
a free og-module of rank n + 1. Because the R,,’s form a nested chain, we can now construct
the desired ox-module basis for R by induction on n. O

Example 4.2.7. Let U := > oxP,(Q2). Then U is an admissible subalgebra of K], and
n=0
{P,(Q2) : n > 0} is a regular basis for R: since deg P;(Y) = j, an element f(f2) of U, is a

K-linear combination of Py(Q2),--- , P,(€2) lying in U, but {P,,,(2) : m > 0} is an or-module
basis for U so all coefficients of f(£2) must in fact lie in of,.

Until the end of we assume that

K is a discretely valued intermediate subfield L C K C C,,
Q) is transcendental over K,

R C K[Q]Noc, is an admissible ox-subalgebra, and
{bn(Q2) : n > 0} is a regular basis for R.

Lemma 4.2.8. Let j > 0.
(1) There are unique po ;(Y), p1,;(Y), -, p;;(Y) € K[Y] such that

j
Pi(YQ) = pij(Y)bi(€2).
1=0

(2) degpi;(Y) < j whenever 0 < i < j.

(3) degp;;(Y)=j.
(4) pij(a) € ox whenever a € o, and 0 <@ < j.

Proof. (1) Q is transcendental over K, and {b;(Q?) : i« > 0} is a K-vector space basis for
K[Q] with degb;(2) =i for each i. Hence it is also a K[Y]-module basis for the two-variable
€ K[Y] such that

]
polynomial algebra K[€2,Y], so we can find unique p; ;(Y")
Pi(YQ) =Y pij(Y)bi()

i>0

where p; j(Y) = 0 for sufficiently large i. Now Pj(s) is a polynomial in s of degree j by
[ST0L, Lemma 4.2(3)], so €/ is the highest degree monomial in § appearing in P;(Y'Q). Since
deg b;(Q2) = i, this means p; ;(Y') =0 for i > j.

(2) Since the highest degree monomial in Y appearing in P;(Y(2) is Y7, this means that
deg p; ;(Y) < j for each i < j.

(3) The monomial Y7/ appears in P;(YQ) with a non-zero coefficient. This monomial
does not appear in p; ;(Y)b;(£2) for any i < j because deg b;(€2) = 4 for all 4. So it must appear
in p; ;(Y)b;(£2), and because of (2), this can only happen if degp; ;(Y) = j.

(4) Let a € or,. We know that P;(af2) € oc, by [STOI, Lemma 4.2(5)]; in fact, P;(af) is an
or-linear combination of the P;(2) for 0 < i < j by Corollary so Pj(aQ2) € R. Setting
Y = a in (1) shows that p; j(a) € ok, since {b;(2) : i > 0} is a regular basis for R. O
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Theorem 4.2.9. For each A € D*~* (o, K') we have

=33 Mpr (V)b () 27,

=0 k=0

In the case when A = ¢, for some a € oy, Lemma [4.2.8 implies that

p(a) =Y Pi(a)Z7 = Z (Z pijla ) Z7 =" 6alpr;(Y))bp() 27
j=0

which explains where the formula comes from. We will now give a rigorous argument to show

that the formula is valid for any A € D= (oy, K).
Lemma 4.2.10. Let ¢ :=log;,(Z) be the Lubin-Tate logarithm. Then

pr(A) =D AYF/ENQMF for all A€ DF 7 (op, K).
k=0

Proof. Since we may identify C,[t] with C,[Z], we can write pug(A) = > ¢jmt™
m=0

¢im € Cp. Then applying [ST0I, Lemma 4.6(8)], we have
O-19,)k

MYE/RY = (e, v vy = 220
Proposition 4.2.11. Let A € Hom, (L[Y], K). Then in C,[t] = C,[Z] we have

J

Z)\ YE/ENQFF = iZA (1 (Y))br(0) 2.

k=0 7=0 k=0

o] .
Proof. For each k > 0, write t* = Y dgk)Z] € L[Z]. Substituting this into Lemma

) %

j=k
gives

o [ ]
(13) Z)\ YE ROk = ZA Yk /khQk Zd(k)Zj = (Z %d?)fm(yk)
k=0 j=k j=0 \k=0
On the other hand, the 1dent1ty
Y Pi(YQ)Z = exp(YQt) =) %thkY’“ =>
j=0 k=0 k=0
together with Lemma shows that for all j > 0 we have

J J
1
(14) S jydgk)szky’f = P() = pri(V)bi(Q
k=0 k=0

YROE S~
k! jz:dj Z
=k

Now, the L-linear form A : L[Y] — K extends to a K[Q]-linear form K[Q,Y] —

Applying this extension to gives

J J
Z AN = 37 Npry (V)i ().
k=0

?T \

(ux(N)(0) = Q@ %¢; . forall k> 0.

for some

O

4.2.10

K[Q).
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Substituting this equation into (13)) gives the result. O

Proof of Theorem [[.2.9, Follows immediately from Lemma[£.2.10]and Proposition[£.2.11] O

Definition 4.2.12. Let R be the og-linear span of {p;;(Y) : j > k > 0} in the space
I :=1Int(or, 0x) of ox-valued polynomials on oy,.

We will see shortly that R does not depend on the choice of regular basis for R.
Corollary 4.2.13. Let A € D'=2%(op, K). Then ux()\) € R[Z] if and only if A(R) C og.

J
Proof. Theorem {4.2.9| tells us that px(\) € R[Z] if and only if >~ A(pr;(Y))br(2) € R for
k=0

all j > 0. Since {b;(Q2) : £ > 0} is a regular basis, this is equivalent to Mpr;(Y)) € ok for all
j>k>0. 0

Proposition 4.2.14. Let A € Homg (K[Y], K) be such that A(R) C o. Then there exists
Ac ,U,;(l(R[[Z]]) c OO(%K) such that A\K[Y} =\

Proof. The twisted G'z-action on C,[Z] preserves R[Z] since we assumed that R C K[Q]Noc,
is Gr-stable in Definition Therefore R[Z]%%* makes sense.
o J .
Define F) = > > Mok (Y)b(2)Z7 € Cu[Z]. Then F\ € K[Qt] = C,[Z]%<* by
j=0k=0
Proposition [4.2.11{ and F) € R[Z] because A(R) C ok. Hence Fy € R[Z]“%* C o, [Z]9x*,
so F = (X for some X € O°(Xk) by Corollary In particular, X € uz' (R[Z]).
Next, applying [ST0I, Lemma 4.6(8)] we see that for all m > 0,

MY™/mY) = {ur(N), Y™ /m!} = {Fy,Y™/m!} = {i )\(Yk/k:!)thk,Ym/m!} = \Y™/m)).
k=0

Since the Y™ /m! span K[Y] as a K-vector space, we conclude that 5\| K[y] = A O

Recall the isomorphism ev : Int(or,, 0x) — ok [or]%, from Corollary [4.1.12
Theorem 4.2.15. We have ev(R) = ' (R[Z])%.

Proof. T contains the ox-submodule of K[Y] generated by {p;;(Y") : j > 0} and deg p; ;(Y) =
j for each j > 0 by Lemma MB) Hence R spans K[Y] as a K-vector space. On the other
hand, R, := RN K[Y]<, is contained in Int(or, 0x), by Lemma 4), which is a finitely
generated or-module by Remark [4.1.10(2). Since K is discretely valued, R, is a finitely
generated ox-module for each n > 0. So we can find an ox-module basis {tg,t1, - ,tpn, -}
for R such that {to,--- ,t,} is an ox-module basis for R, for each n > 0. It follows that the
natural map R ®,, K — K[Y] is an isomorphism, and we may identify Hom,, (R, ox) with
{¢ € Homg (R, K) : 9(R) C ok }.
Let {t}, : m > 0} C Hom,, (R, 0x) be determined by

ty(tn) = 0myn forall m,n>0.

Then by Proposition [4.2.14} ¢}, extends to some A, € M}I(R[[Z]]) such that A, k(y] = t,- In
particular, we have A\, (t,) = o, for all m,n > 0.
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Now suppose that g € it (R[Z])% C ox[or]i. Then g = ev(h) for some h € Int(or, 0 )m
by Proposition [4.1.11] Since h € K[Y|<y, and since {to, - ,tm} is a K-vector space basis for
K[Y]m, we can write h = " cpt,, for some ¢, € K. But then

g(An) = ev(h)(A\n) = An(h) =ty (h) =¢, forall n>0.
Since A\, € pi (R[Z]) and g € ui' (R[Z])%, we conclude that g()\,) € of for all n > 0.

Hence h € 3.7 joxt, C R and g = ev(h) € ev(R). Hence ui' (R[Z])%, C ev(R).
Conversely, let A € u' (R[Z]). Then A\(R) C ok by Corollary and thus for all g € R,

ev(9)(\) = A(g) € ok. Hence ev(R) C ' (R[Z])%. O
Corollary 4.2.16. Let S C R be two admissible subalgebras of K[Q]. Then R C S.

Proof. We have p' (S[Z]) C pit (R[Z]), so ux (R[Z])% € pi (S[Z])% by Lemmald.1.6(2).
Hence ev(R) C ev(S) by Theorem 4.2.15, Hence R C S because ev is an isomorphism by
Corollary 4.1.12 O

Note that Theorem [4.2.15 implies that the ox-module R depends only on the admissible
subalgebra R and not the particular choice of regular basis {b,(€2) : n > 0} for R.

Lemma 4.2.17. Let A € DX~ (oy,, K). Then A € ok [or] if and only if A(Int(or, 0x)) C ok

Proof. Suppose that A\(Int(or,0x)) C ox. The m-adic completion of I is naturally isomorphic
to the ring C%(or,, 0x) of ox-valued continuous functions on or. Since A(I) C og, A extends
to an og-linear form A CO(OL, or) — ox which is automatically continuous. View A as an
element of oxfor] = D(or, K). The restrictions of A and of A € D=3 (op, K) to K[Y]
agree by construction. Since K[Y] is dense in C*"(or, K), we conclude that A lies in ox[or].

Conversely, if A\ € ox[or] = C%(or,0k)*, then X\ must take integer values on Int(or,o0x) C
CO (OL, OK). OJ

Theorem 4.2.18. Let R be an admissible subalgebra of K[Q]. Then uy' (R[Z]) = ox[or] if
and only if R = 1I.

Proof. («<=). Suppose that R = I, and let A € puj'(R[Z]). Then A(R) C ox by Corollary
Since R = I, this means that A\(I) C ox. Hence \ € ox[or] by Lemma

(=). Suppose that R < I. Since K is discretely valued, K /o is an injective cogenerator
of the category of ox-modules. Hence Hom,, (I/R, K/ox) is non-zero. So there exists an
or-linear map A : I — K such that A(R) C og, but A\(I) € ox. Regard A as an element
of Homg (K[Y], K); then by Proposition [4.2.14, A extends to some A € O°(Xf) such that

Ak[y] = A. Since A(R) C o, using Theorem {4.2.9 we see that px (M) € R[Z]. However,
A ¢ oxor] by Lemma because A\(I) € ok, so A € ui' (R[Z])\ox[oL]- O

We will now see what implications the above general results have for particular choices of
the admissible subalgebra R. Let B = K[Q]Noc, be the largest possible admissible subalgebra

of K[Q], and let U := Y ox P,(£2) be the smallest possible one. Recall from Example 4.2.7
n=0
that {P,(£2) : n > 0} forms a regular basis for U.

Corollary 4.2.19.
(1) U = Int(oz, o) if and only if u (U[Z]) = ox[oz].
(2) ox[or] = Ak (%) if and only if B = Int(oz, of).
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Proof. (1) This is an immediate consequence of Theorem with R ="U.

(2) Theorem tells us that B = I if and only if ox[or] = ux'(B[Z]). However
p (BIZ]) = ug (C,[Z]%* N B[ Z]) since i (O(X) k) is fixed by the twisted G -action on
C,[Z] by Lemma Hence u'(B[Z]) = uf_(l(o(cp [Z2]¢*) = Ak (%) by Corollary
and the result follows. U

Recall the matrix coefficients o; j(a) from Corollary

Lemma 4.2.20. Let R = U and let b, := P,, for each n > 0. Then
(1) pl](Y) = J,;J(Y) for all] 2 ) Z 0, and
(2) [a](Z)' = > 0ij(a)Z? for any a € of,,i > 0.
j=i

Proof. (1) This follows by comparing Corollary with Lemma [4.2.8{(1).
(2) Using Definition |3.2.1(5) and Lemma we see that (Py(s), Z") = Oy, for all i,k > 0.

j .
By Corollary |3.2.6) we have Pj(as) = ) oj(a)Pg(s). Fix i« > 0 and apply (—, Z") to this
k=0

equation: using equation we then have

0ij(a) = <Z okj(@) Pr(s), Zi> = (Pj(as), ') = (P;(s), [a)(2)").
k=0

Hence o; j(a) is precisely the coefficient of Z7 in the power series [a](Z)". O

This justifies the definition of the polynomials o; j(Y) which was given in We can now
give the proof of Theorem from the Introduction.

Theorem 4.2.21. If A (X) = or[or], then Pol = Int.
Proof. Note that Pol = U, in view of Lemma [4.2.20(1) and Definition 4.2.12l Now Az (X) =
1.2.19(2

O°(XL), so if this is equal to or[or], then B = Int(or, 0r) by Corollary ). But U C B,
so B C U C Int(or,or) by Corollary [4.2.16{ Hence U = Int(or,0r) as claimed.

O

4.3. Calculating the matrix coefficients o; ;(Y'). Here we will assume that the coordinate
Z on the Lubin-Tate formal group is chosen in such a way that

o an

mn
n=0

log;1(Z) =

It turns out that the polynomials P;j(s) are sparse: the coefficient of s in Pj(s) is non-zero
only if i = j mod (¢ — 1). We will obtain more information about these coefficients; this will
require developing some notation to deal with this sparsity. The calculations that follow rest
on the following observation.

Proposition 4.3.1. For every n > 0, we have

ykot-+ka

Pn(Y) - Z kol - kgq!- alki+2-kot-+dkg *
k0+qk1+---+qdkd=n
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Proof. If logyr(Z) =Y 120 Z ¢ /7% and exp is the usual exponential, then

ST P(Y)Z" = exp(Y -logyp(2)) = [[exp(y - 29 /'y = T[] (v - 27 /z*) k!
n=0

>0 >0 k>0
The coefficient of Z™ in this product is the sum of Y o+ +ka /il ... k1. gl-kid2hetddha oyer
all tuples (ko,--- ,kq) of positive integers such that ko + gk + - - - 4 ¢%kq = n. O

The following formula for the derivative %PH(Y) will be very useful in the calculations.
Proposition 4.3.2. For every n > 0, we have %Pn(Y) =2 k>0 a k. B, (Y).

Proof. By [ST0I, Lemma 4.2(4)], we have (Y + Z) = P, (Y) + > i_; Pj(Z)P,—;(Y). Hence
it is enough to determine which Pj(Z) have a term of degree 1 in them, and what the corre-

sponding coefficient is in this case. The answer now follows from Proposition [4.3.1] O
We fix m € {0,1,2,--- ,q¢ — 2} from now on. We will use the convenient notation

i:=m+i(¢g—1) forall ¢>0.

Definition 4.3.3. For each j > i > 0, we define

- . RS f-1y
Qm(l,J):{kENwi%lﬁ:Z, ;ke(q 1>:J—Z}a and

q_

(m) . L . 7/;1”%
S <ko;k1;k2;--~> T

keQm(4,5)

; i)! . . . .
Here (ko' kl%kzm) = ko'kz(% is the multinomial coefficient.

Lemma 4.3.4. We have r](-;-n) =1 for all j > 0.

Proof. If i = j, then the second condition on a vector k € N> to lie in @Q,,(i,j) forces

ki1 = ko = --- = 0 because % > 0 for all £ > 1. But then kg = i = j from the first condition,
(m)

so the formula for r;;  collapses to give 1. O

Proposition 4.3.5. Let n = j for some j > 0. Write
n
P,(s) = Z b,(:)sk
k=0

with b € L for k=0,...,n.

1 Wehaveb(n):()ifkgén mod (¢ — 1).
’ (m)
(2) For each 0 <14 < j, we have bgl):ri*ij.

il

Proof. By Proposition the coefficient b,(fn) of s in P,(s), is given by

(n) _ 1
b = zk: (kolkylkg! - - - Ym0 kot 1k +2kat?
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where the sum runs over all possible sequences k = (ko, k1, k2, - --) of non-negative integers
satisfying the following two conditions:

ko+ki+ke+---=k, and ko+qki+ ¢kt =n.

Of course given any such sequence, necessarily k; must be zero for all sufficiently large ¢
depending only on n and k, and the set of solutions to these equations is always finite, so the
sum of all these fractions makes sense.

Next note that if kg, k1, - -+ satisfies these two conditions, then necessarily

n=k mod (¢—1).
This implies part (1). For part (2), let £ = i and n = j, and suppose that the non-negative
integers ko, k1, - - - satisfy kg + k1 4+ - - - = k; then subtracting gives
ko+aki+ ke +--=m+(g—1)j & (¢—Dki+ (¢ —Dha+--=(g=1)(j -9

In this way, we see that Qm(i,7) is precisely the set of sequences that contribute to the
coefficient of s* in Pj(s). This coefficient is then

& (m)
(n) 1 k! - ; LKy Tig
b= 2 T TR =

keQm(i,5)

Lemma 4.3.6. Suppose that j >4 > 0. Then rg;n) is the coefficient of ZZ in log,(Z)%

Proof. Write log;(Z)F =3°°, d¥) 2. Then

oo o oo o0
1

S Pu(Y)Z" = exp(V loggr(2)) = 3 logr(Z)YF = 37 0 S P zmy

n=0 k=0 k=0 n=~k
Equating the coefficent of Z"Y* shows that

1 .
b,(cn) = Ed,(f) for 1 <j<n.

Applying Proposition |4.3.5(2), we have 7"1(?) = ilbg) = dED. O

Corollary 4.3.7. Define polynomials Rg-m) (t) € L[t] for j > 0 by the formula

Then for all j > 0 we have Pj(s) = s - Rg-m)(sq*l).

Lemma 4.3.8. For each j > i > 0 there exist 0;;(Y") € Int(or,0r,) such that

Pi(Ys) =Y 0i;(Y)Pi(s).
1=0

Proof. By Example {Pn(Q) : n > 0} forms a regular basis for the admissible subalgebra
o
> ok Pp(2) of L[Q]. Apply Lemma 4.2.8{ and use the transcendence of Q over L. O

n=0
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Of course this is just another way of rephrasing Corollary [3.2.6] We will now see that the
matrix of polynomials (o5 ;(Y));; is sparse as well.
Proposition 4.3.9. Let j > 0 and suppose that 0 < k < j.
(1) 0% (Y)=0if k Zm mod (¢ —1).

(2) For each i =0, ..., 7 there exists TZ(J )(X) € L[X] such that

0y (V) = Y™ -7 (v ).
Proof. Using Lemma we have

J
J YS) = de’l(y Pk S
k=0

Dividing both sides by Y™s™ we obtain an equality of Laurent polynomials
J

(15) Rg )Yq Lga=1) Z "o (Y) - 5T Py(s).
k=

The left hand side of (15) is a polynomial in s9~! with coefﬁcients in L[Y]. The Laurent
polynomial s~™ Py (s) lies in s¥~™L[s971 s179] by Proposmon 5| Since

q—2

LY Jfs, 5] = @ S LIY][7, 517),

c=0
looking at the component of the right hand side of that lies in sCL[Y][s?71, s179] for
c€{l,---,q— 2} and then looking at the leading coeffiicent of s~ Pj(s) implies (1).

Using Corollary we can now rewrite as follows:

(16) Rj(m) ya-lga-1) ZY 01 (Y R(m)(sq by,

Since the left hand side of (16) is now a polynomlal in Y9! with coefficients in L[s9~!],
we deduce by looking at the right hand side of that the a priori Laurent polynomial
Y ™"0;;(Y) in Y in fact lies in LY. Part (2) follows. O

Setting ¢t = 597! and X = Y47, we deduce the following

Corollary 4.3.10. The polynomials R§m) (tX) satisfy

7
=S"7x) R ().
1=0

Definition 4.3.11. Consider the following infinite upper-triangular matrices.
(1) [rM]y; =i for j > i >0,
(m) (m )
(2) T =T (X), and
(3) Dx := diag(1, X, X?%,--+).
Lemma 4.3.12. We have the matrix equation

(m) . 7m) = Py . g,
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Proof. Note that each matrix appearing on the right hand side has infinitely many rows and
columns, but each one is also upper triangular, so matrix multiplcation makes sense. Moreover,
(m)

because rio =1 for all j > 0 by Lemma [4.3.4] the matrix r(™) is invertible, with inverse
matrix having entries on L.

Substitute the definition of R(m) (t) from Corollary [4.3.7] into Corollary [4.3.10| to obtain

(m) i .(m)

Iy J "
iyl (m) b1 0
KZ: ©)! txt = ) nx)) ©)! £

=0 =0

Equate the coefficients of t¢ to get

ZTJ h)‘

The right hand side is the (¢, j)-th entry of (™) .7(™)_ The left hand side is the (£, j)-th entry
of Dx - (™) The result follows. O

(m)

The following two results on the coefficients r, i are strictly speaking not needed for the
calculations appearing in Appendix A, but they are nevertheless interesting in their own right.

Lemma 4.3.13. For each j > ¢ > 0, we have

m i Zk
r’(J): 2. (ko;ki;--)ﬂ [(

keQm (i,5)

—Le) o
LI,

Proof. Let k € Qp,(2,7). Then Y2, ky (%) = j — 4, and therefore

k o R 7S o Sk
7'(‘[2 Z( ) . 71-1_-7 — 7'(']_7’ - ZZ:I ¢ . 7-[-2_.7 =7 4;1 Z‘
The result now follows from Definition 4.3.3] g

Proposition 4.3.14. Let j > ¢ > 0. Then
(1) mi=%. rZ(?) € or, and

(2) it rgz.l) = (jfz) mod 74 loy.

Proof. (1) Note that for every ¢ > 1 we have

_dl_y _ (= 11» “1_p_ la=D+() - 11>2+ Ha-1'-1

= ()(q—1)+(§)(q—1)2+ g1

Thus ay > 0 always. Hence the expression in the big brackets in Lemma lies in of,.
(2) The exponent of 7 appearing in the term in the sum corresponding to k € Q,(i,5)
is equal to > ;2 keay. It follows from the formula for o established above that a; = 0.
Hence this exponent is a positive multiple of ¢ — 1, unless k;, = 0 for all £ > 2. In this
case, the exponent is 0 and the corresponding term is equal to (Jf Z) because in this case

Zkzu—j—z O
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5. CONSEQUENCES OF THE KATZ ISOMORPHISM

5.1. Equivariant endomorphisms of L. Throughout this §, we assume that L = Q2
and that m = p. In particular, L, is the completion of L(G[p™]). We recall the statement of
the Katz isomorphism (Theorem : if S is a w-adically complete or-algebra, then the
map K* : Hom,, (C, (oL, oc,),S) — S[Z]¥*™ is an isomorphism.

Note the following criterion.

Lemma 5.1.1. A measure 1 € Hom,, (C&, (oL, 0c,),S) is supported in o} if and only if
q(K* (1)) = 0.
There is the usual Gy, x action on oc, [X], and on Hom,, (C&,, (oL, oc,), oc,) it is given by
g (W) (f) = gulg () = glu(a — f(r(g)~! - a)) since f is Gal continuous. In particular,
Theorem applied with S = oc, implies the following.
Corollary 5.1.2. We have
(1) Hom,, (C(O}al(oL,o(cp),o(cp)GL’* = AL(%)%'M.
(2) Hom,, (C2,(0f,0c,), 0c,)* = Ar(X)¥a=0.
Since L = Q,2, the map 7 is surjective. Let I'y, = Gal(L(G[p™])/L).

Lemma 5.1.3. The map Cgal(oz,ocp) — 000 given by f +— f(1) is an isomorphism of of-
modules.

Proof. This follows from the surjectivity of 7. More precisely, if x € 0, let f, € C%al(oz ,oc,)
be given by fz(1) =z and f,(7(g)) = g(z). Every element of C&, (0} , oc,) is of this form. O

al

Theorem applied with S = o7, now gives us the following

Theorem 5.1.4. The map K* gives rise to an or-linear isomorphism o7, ~ o, [Z]¥«=0.

Proposition 5.1.5. The space Hom,, (C&, (0}, 0c,), oc, )"

space of I'j-equivariant oy -linear maps 0o — 0sc.

Proof. If x € 0, let f; € C%al(oz,()@p) be as in the proof of Lemma above. If u €
HomoL(C%al(oz,OCP),OCP)GL’*, we define a map T' : 000 — 000 by T(z) = u(fy). We have
foty = fo + fy and for = af, if a € op so that T is or-linear. In addition, 7" is I'r-
equivariant because p is fixed under the G, x-action. Indeed, g(T'(x)) = g(u(fz)) = p(g(fz))

and g(f,)(1) = g(z) so that g(fy) = fy(s). Thercfore, g(T(x)) = T(g(x)).
Conversely, a I'p-equivariant or-linear map T : 0o, — 0o as above gives an element p €

Hom,, (C%al(0f> O(Cp)? O(Cp)GL’* via pu(fz) = T(z). U
Combining Corollary and Proposition [5.1.5] we get the following.
Theorem 5.1.6. We have EndeL(ooo) ~ Ap(X)¥a=0.

Corollary 5.1.7. We have A (X) = or[or] if and only if every I'z-equivariant or-linear map
0o — 0oo comes from an element of or,[I'L].

Proof. By Lemma below, we have A (X) = or[or] if and only if Ar(X)¥=0 = A(0)).
If 1 € Ar(X)¥=0, then it corresponds to an element of Hom,, (C, (o}, 0c,),oc,) " by
Corollary By Proposition the element p € Az (X)¥=0 comes from an element
v € or[I'L]. The element yp then corresponds to the image of v in A(o}) via 7. Indeed, if
g € I'p and T is given by = — g(x), then it corresponds to p : fy +— g(z) and g(x) = f.(7(g))
so that pu = d,( O

is naturally isomorphic to the

9)
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Using Corollary we get the following

Theorem 5.1.8. We have Ap(X) = or]or] if and only if every continuous L-linear and
Gr-equivariant map f : Lo, — Lo comes from the Iwasawa algebra L ®,, or[I'L].

Proof. Indeed, by Corollary AL(X)N (L ®,, or]or]) = orfoL]- O
Lemma 5.1.9. If A7 (X)¥=0 = A(0}), then AL (X) = or[or].

Proof. If f € AL(X), then &1 - o(f) € AL(X)¥=Y So o(f) € orfor] and f = Yup(f) €
opfor]. ([l

The following is pretty much in Fourquaux’s PhD; it implies that there are no Tate trace
maps Lo, — L or Lo, — Ly, (recall that Lo, is the completion of L(G[p*])).

Proposition 5.1.10. Let f : Lo, — Lo be a continuous, I'z-equivariant and L-linear map.
If f(Loo) is included in a finite field extension of L, then f(1) = 0.

Proof. We have logQ € L, and (g — 1)logQ =log7(g) if g € T'r.. Hence

(9—1)f(log) = f((g —1)log Q) = f(log(g)) = log7(g) - f(1).

Therefore if f(1) # 0, then f(log Q) is a period for log 7, and in particular does not belong to
a finite extension of L. O

Proposition [5.1.10] can be strengthened. Almost the same proof gives us the following.

Proposition 5.1.11. Let f : Lo, — Ly be a continuous, I';-equivariant and L-linear map.
If f # 0, then there exists a1 # 0, ag € L(G[p™]) such that f(L~) contains aj log Q2 + ay.

Proof. We have logQ € Lo and (g — 1)logQ = log7(g) if ¢ € T'r. Take = € L(G[p™])
such that f(z) # 0, and choose (recall that f(L,) C L, by Ax-Sen-Tate) some n such that
x, f(x) € Ly. If g € T, then

(9= 1) f(z-1ogQ) = f((g — 1)(x - logQ)) = f(x - log7(g)) = log7(g) - f(x).

Therefore (g—1)(f(z-logQ)— f(z)-log Q) = 0 for all g € T'y,, so that f(z-logQ)— f(x)-log €
L,, by Ax-Sen-Tate. We can take a1 = f(z) and ag = f(z -log Q) — f(x) - log 2. O

This can be strengthened even further. Let Liég denote the locally algebraic vectors in
Leo. Let c(g) = log7(g) = logxj(g). The set L8 is the set of z € Lo such that there
exists an open subgroup I'; of I';, and d > 0 and z¢p = x,21,...,24 € Lo such that g(z) =
xo + w1c(g) + - - - + 24¢(9)? if g € T Note that technically, these are the locally o-analytic
locally algebraic vectors in L. However since L = Q,2, every locally analytic vector is locally
o-analytic (see [BC16]).

Lemma 5.1.12. We have L4 = L(G[p>])[log ).
28 and write g(z) = 2o + x1¢(g) + - - - + zac(g)*
ifge'y. On L2 we have the derivative V : x — z; and we know (from the theory of locally
analytic vectors) that V7 (z)/j! = x; for all j. In particular, V(z4) = 0, so that x4 € L(G[p>]).

alg
00

Proof. One inclusion is easy. Now take z € L

The element x — x4 logd Q) is then in Loy and it is of degree < d — 1, which allows us to prove
the lemma by induction. O
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We see that V = ﬁ. For all n, the map V : L,[log Q] — Ly,[log Q] is surjective, and
its kernel is L. If f : Lo — L is a continuous, I'z-equivariant and L-linear map, then
F(LYE) € LY. In addition, V = limy_,1(g — 1)/c(g) so that foV = Vo f.

Proposition 5.1.13. Let f : Lo, — Lo be a continuous, I'z-equivariant and L-linear map.
If f # 0, there exists n > 0 such that L,, - f(Ly[log ©]) contains Ly[log ©].

Proof. Take x € L(G[p*>]) such that f(z) # 0 and let n > 0 be such that z, f(x) € L,,. We
prove by induction on d that Ly, - f(Ly[log€]) contains Ly[log Q]qeg<q. In order to do this, we

prove that f(z -log? Q) is a polynomial (in log Q) of degree d. The case d = 0 follows from
the fact that f(x) # 0. Now assume that the result holds for d — 1. We have

Vi(z-logQ) = f(x- Viog? Q) = f(dz - log?™1 Q),
so that f(x -log? Q) is a polynomial of degree d. This implies the claim. O

5.2. The dual of the ring of integers of a p-adic Lie extensions. Recall that 7w € oy, is
a uniformiser and kr, := oy /7oy, is the residue field of L. In this §, Lo, /L is an infinite Galois
extension with Galois group I' = Gal(Ls/L). We fix a chain

rorioIreo---

o0
of open normal subgroups of I" such that () I, = 1.
n=1
Definition 5.2.1. Let n > 1.
(1) L, := L.z, a finite Galois extension of L with Galois group T'/T),.
(2) oy is the integral closure of of, in L.
(3) o}, := Hom,, (0,,0r).
(4) ky = op/mop,.
(5) k) := Homy, (kn, kL)

Note that o, and o} are naturally or[I'/T',]-modules, both free of finite rank as an og-
module, and k, and &} are kp[I'/T',]-modules, both finite dimensional over ky.
Remark 5.2.2. Let n > 1.

(1) of can be identified with the inverse different Dznl/L of the extension L, /L.

(2) Applying the duality functor (—)* = Hom,, (—,0r) to the natural inclusion of or-
modules 0, — 0p41, We obtain a natural connecting map oy, ,; — o,. This map is
surjective, because the o,41/0, is a finitely generated and torsion-free or-module.

Lemma 5.2.3. For each n > 1, there is a short exact sequence of or [I'/T',,]-modules
0— o — o =k’ —0.
Proof. Let M be an op-module and consider the complex of or-modules
0— M* = M* 24 (M/zM)Y =0

where M* := Hom,, (M, o), (M/mM)"V = Homy, (M/7M, kz,) and np (f)(m+7M) = f(m)+
wor, € kr. This complex commutes with finite direct sums and is exact in the case when
M = or. So the complex is exact whenever M is a finitely generated free or-module. If M
also happens to be an or[G]-module for some group G, then the maps in the complex are

or|G]-linear. The result follows when we set M = o,, an or[I'/T',]-module which is free of
finite rank as an or-module. O
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We now pass to the limit as n — oco.

Definition 5.2.4. Recall the Iwasawa algebras A(I') = lim o, [['/T,] and Q") = im &y, [T/T].

(1) 000 := colimoy, an or [I']-module.
(2) of, = imoj,, a A(T)-module.

(3) k:oo := colim ky,, a kz[I'J-module.
: L m k), an Q(T')-module.

Lemma 5.2.5. There is a short exact sequence of A(I")-modules

0— o, —= o, — k% — 0.
Proof. The short exact sequences from Lemma [5.2.3| are compatible with variation in n, in
other words we get a short exact sequence of towers of A(T')-modules. Applying the inverse

limit functor gives a long exact sequence

*
TL

The IL term on the right vanishes in view of Remark ( ), whence the result. O

0 — o} —>o —>k —>L

Remark m(Z also implies that the natural maps o}, — o}, are surjective.
Proposition 5.2.6. The A(I')-modules o, and o}, are faithful.

Proof. Suppose ¢ € A(T) kills 0. Then its image &, € o[I'/T',] kills o,. Therefore &, €
L[I'/T,] kills L,, = 0, ®,, L. But Ly, is a free L]I'/T',]-module of rank 1 by the Normal Basis
Theorem. So, &, = 0 for all n > 0 and therefore £ = 0 as well.

Suppose now ¢ € A(T") kills 0. Then ¢ kills each the quotients o}, of o}, . But the action of
A(T) on o factors through or[I'/T',,], so the image &, of £ in or[I'/T',,] kills of. Since &, also
kills o, = (0})*, we deduce from the above that &, = 0 for all n. Hence £ = 0. O

Proposition 5.2.7. Suppose that pt |['/T1|. Then &y is a free kz[I'/T'1]-module of rank 1.

Proof. The field extension L;/L is tamely ramified by our assumption on |[I'/T';|. Now it
follows from Noether’s Theorem on rings of integers in tamely ramified extensions that o is
a free or[I'/T'1]-module of rank one — see, e.g. [Thol0L Proposition 2.1]. Hence o1 /7o; is a
free kz[I'/T'1]-module of rank one, and we can apply Lemma to conclude. D

Lemma 5.2.8. Suppose that I' is a p-adic Lie group. Let M = yLnMn be an inverse limit
of a tower of (I')-modules, where each M, is finite dimensional over kz. Then the natural
map on I'-coinvariants

MF — I&H(Mn)]j

is an isomorphism.

Proof. The Iwasawa algebra Q(I") is Noetherian, so its augmentation ideal J = (I' — 1)Q(T")

is finitely generated. Let uy,--- ,u, € J be generators and let N be an (I')-module; then
Nr=N/('=1)-N=N/JN = N/(usN + --- +u,N).

In other words, we have the short exact sequence of kj-vector spaces

(17) N ) N o,

Applying this to each M,,, we obtain an exact sequence of towers of Q(I')-modules

r)

Mz ) v S (My)e = 0
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where each term is a finite dimensional kp-vector space. The inverse limit functor is exact on
such towers, since they all satisfy the Mittag-Lefller condition. So passing to the inverse limit
we obtain the exact sequence of kj-vector spaces

M ) M (M) 0.
Comparing this with applied with N = M gives the result. O

Theorem 5.2.9. Suppose that

e [ is abelian,

o ptf|I'/T],
e '] is a torsionfree pro-p group of finite rank.

Then o, is a free A(T')-module of rank 1 if and only if the map k; — kL1 is an isomorphism.

Proof. (<) Note that the connecting maps k, — kp41 in the colimit ko := colimk, are
injective: if x + mo,, € k, maps to zero in k,41 then there is y € 0,41 such that x = 7y; but
then y € L, Nop4+1 = 0, and hence z = 7y € wo,. Under our hypothesis that k; — kgc} is an
isomorphism, it follows that for each n > 1, the map kLt — k;gil is an isomorphism. Applying
the (—)¥ = Homy, (—, k1) functor, we deduce that for each n > 1, the map on I';-coinvariants

(k;/—i-l)lﬁ - (k:"f)ﬂ

is an isomorphism. Now, Lemma tells us that

(kn\;o)r1 = lgl(kX)rl
Since the maps in the tower of I'1-coinvariants are all isomorphisms, we conclude that the
natural map of k[I'/T'1]-modules
(kc\;o)l_ﬁ - kY

must be an isomorphism. Now k" is a cyclic k. [I'/T'1]-module by Proposition and the
ideal JQ(T') generated by the augmentation ideal J of Q(T';) is topologically nilpotent in the
sense that J” — 0 as n — 00, because I'y is assumed to be pro-p. In this situation we can
apply the Nakayama Lemma for compact A-modules — see [BHI7, Corollary to Theorem 3]
— to deduce that kY is a cyclic Q(T")-module: any lift of a k7, ['/T'1]-module generator for &y
to kY, will generate it as an Q(T')-module.

Now of /mo’, = kY by Lemma The A(T')-module o}, is profinite and 7 — 0 as
n — oo in A(T"), so applying the Nakayama Lemma again, we conclude that o} is a cyclic
A(T)-module.

Since o}, is a faithful A(I")-module by Proposition and since I is abelian, we deduce
that o’ must be a free A(I")-module of rank 1.

(=) We reverse the argument above. Assume o} is a free A(I')-module of rank 1. Then
Lemma [5.2.5 implies that kY, is a free ©(I')-module of rank 1. Hence (k¥,)r, is a free k[I'/T']-
module of rank 1. By Lemma we have (kY)r, = @(k‘,\{)pl and the connecting maps
in the tower (k)r, are surjective, with the bottom term being (k) )r, = ky. Since this is a
free kr[I'/T'1]-module of rank 1 by Proposition the natural map (k% )r, — k) from the
inverse limit to the bottom term is a surjection between two free kp[I'/T';]-modules of rank 1.
So it is also an isomorphism. Dualising shows that k1 — k:gol is an isomorphism as well. [

Lemma 5.2.10. In the situation of Proposition suppose that o} is a free A(I')-module
of rank 1. Then L,,/L is tamely ramified for all n > 1.
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Proof. Consider the I',-coinvariants of o} . This must be a free rank 1 or[I'/T',]-module by
assumption. On the other hand, by construction, there’s a surjective oz, [I'/I',,]-linear map

(0% )r, = oy,
(see the remark just before Proposition [5.2.6)). Both sides are free or-modules of rank [L,, : L],

so this surjective map must actually be an isomorphism by the rank-nullity theorem. So, o},
is a free rank 1 oz [I'/T",]-module. But then using, for example [AB07, Lemmal, we see that

0, = Hom,, (0y,,01,) = Hom,, r/r,1(0y,, 0L['/T])

must also be a free rank 1 oz [I'/T',,]-module. In other words, o, has an integral normal basis,
so by [Thol0, Proposition 2.1] L, /L must be tamely ramified. O

The following result, which may be of independent interest, shows that the hypothesis that
the action map p : Q') — Endg)(kY,) is an isomorphism has strong implications about
ramification behaviour in the tower L./ L.

Lemma 5.2.11. Suppose that in the situation of Proposition we have I'y = I" and that
the action map p : Q(T') — Endgry(k%) is an isomorphism. Then L, /L is tamely ramified
for all n > 1.

Proof. Let a € kgg and consider the multiplication-by-a map ¢, : koo — koo. Since a is fixed
by I' = T'y, this map is Q(T')-linear. By our assumption on p, we can find some b € Q(T") such
that p(b) = a. Now a is algebraic over ky, and p is injective by assumption, so b € Q(I") must
be algebraic over kj, as well. Since I' = I'1, the mod-p Iwasawa algebra Q(T") is a power series
ring over kr in finitely many variables. The only elements of such a power series ring that
are algebraic over kj, are constants. Hence b € k;, and so a € k;, = kq since I' = I';. Hence
kL = k1. Now the result follows from Theorem and Lemma O

Returning to the setting of we have the following conclusion.

Corollary 5.2.12. Suppose that L = Q,2 and 7 = p, and let G be the Lubin-Tate formal
group attached to 7. We have Lo, = L(G[p™]); let T = Gal(Loo/L). Then oy [Z]¥4=0 is not
a free or[I'tT]-module of rank 1.

Proof. 1t is well known that L,,/L is not tamely ramified for any n > 2. Hence o} is not a free

A(TET)-module of rank 1 by Lemma [5.2.10} Since G is self-dual, the tower Lo,/L coincides
with the one defined at Definition [2.7.1(1). The result now follows from Theorem O

5.3. The operator ¥ and the span of the P,. We now turn to some consequences of the
Katz isomorphism for the span of the P,, where P, is the element of C& (o1, 0c,) given by
a + Po(a- Q). The Katz map K* : Hom,, (C&, (o, 0c,),S) — S[Z]¥+™ is then given by
B ano p(Pn) 2"

Proposition 5.3.1. The L-span of the P, is dense in the L-Banach space Cgal(oL, Cp).

Proof. Let W denote the closure of the L-span of the P, in C%al(oL, Cp). EW # Cgal(oL, Cp),
then it has a closed complement in Cgal(o ,Cp) and we can find a measure p # 0 that is zero
on W (and hence on all of the P,). This is a contradiction. O

Remark 5.3.2. There is another proof of this result. Indeed, locally analytic functions are
dense in C%(or, C,) and for locally analytic functions, we have the generalized Mahler expan-
sion of [STO1, Theorem 4.7]. So it is enough to prove that locally analytic and Gal continuous
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functions are dense in C2 (o1, Cp). A Gal-continuous function is determined by (f(p"))22,
where each f(p") € Ly and f(0) € L and f(p"™) — f(0). We can approximate each f(p") by
an element of Lo, and this way, we can show that Gal-continuous locally constant functions
are dense in the Gal-continuous functions. More precisely, given a sequence {f,} as above
and some k > 0, we have f,, — fo € pko(cp for all n > n(k), so we replace these f,, by f, and

approximate the others to within p—*.

We now choose a coordinate X on LT such that [p|pr(X) = pX + X% The polynomials P;
depend on the choice of coordinate. However, the or-module @©7'_,oy, - F; is independent of the
coordinate. Given this choice of coordinate, we have formulas and estimates for 1, in [FX13,
§2A].

Lemma 5.3.3. If k > 1, then 1,(X*) € L[X])_1.

Proof. See [FX13l, Proposition 2.2]. O
Let c’(A) denote the set of sequences {cy}n>0 with ¢, € A and ¢, — 0 (A = or, or L).
Corollary 5.3.4. The map c’(or) — C%al(oL, oc,) given by {¢;}i>0 Zizo ¢; P; is injective,

as well as the same map c°(L) = C&,,(or,Cp).

Proof. Lemma implies that for all k& > 0, there exists n = n(k) such that p"X* €
or[X]¥« ™. Let u be the corresponding measure. We have 1o ciPi) = p"cx hence if
ZiZO c¢; P; = 0, then ¢, = 0. The second assertion follows from the first. ]
Lemma 5.3.5. If k > 1, then ¢q(p" - op[X]x) C pF~ 1 op[X] 1.
Proof. This follows from [FX13l Proposition 2.2]. O

Let H, C L[] denote the set of P(Q2) such that deg P < n and P(a?) € oc, for all
a € or. Obviously, U, = &} yor, - P;(?) C Hy. Let p; : Cgal(oL,on) — L be the measure
corresponding to X?, so that u;(P;) = d;;.
Proposition 5.3.6. If Q(Q) ="' ;¢ P;(Q) € Hy, then ¢; € p~ "oy, if i < ¢™.
Proof. We have Q(Q2) € Cgal(oL,o(cp). By Lemma m p" Xt € op[X]¥emt if i < ¢™, and
hence p™u; € Hom,, (Cgal(oL, oc,),or) for all 0 <4 < ¢™. Hence p™c; € of. O
Corollary 5.3.7. We have Hx C p_kqu.

Let v, = p - 14 so that ¢, (0L [X]) C or[X].
Lemma 5.3.8. t,(X%+(@=1) = X* mod p and 4,(X™) = 0 mod p if m # —1 mod q.
Proof. This follows from [FX13, Proposition 2.2]. O
Corollary 5.3.9. The map °(L) — C2,,(or,Cp) is not surjective.

Proof. By Corollary it is injective. If it is a bijection, then the continuous dual of
€., (or, Cp) is naturally isomorphic to o, [X][1/p] via the map p — >, <o u(Pn)X™. However
by the Katz isomorphism, the image of this map is oy [X]% (1 /p)].

Take f(X) = 1+ X971 + X! 4 .... Lemma implies that ¢,(f) = f mod p and
hence ¢ (f) = f mod p. We therefore have ¢y (f) € p™f +p~ (Vo [X] for all n > 1, so
that f(X) is not in o [X]%™[1/p]. Hence oy [X][1/p] # or[X]¥™¢[1/p]. O
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In order to say more using Katz’ result, we need more elements of o [X]%« ", There is
or[X]%4=0, which contains X* for 1 < i < ¢ — 2 and pX9~' + (¢ — 1) and hence (@g;in .
2a0nIXT) & (X7 + (g — 1)) - @o(or[XT). T fu(X) € (X - op[X])¥r™ and the b, are
in or, then <o by (fn) € or[X ¥t as well (the sum converges for the weak topology,
and 1), is continuous for that topology). For example, if f(X) € (X - or[X])¥*=, then
Y n>0Pq(f) € or [X]¥e=".

Remark 5.3.10. We have
(1) (X)) =0if1<i<g—2andg+1<i<2¢—3and2¢+1<i<3q—4
(2) ¥q(1) =1 and ¢g(X71) = (1 — q)/p and 1 (X7) = X
(3) ¥g(X?772) = g — 1 and ¥g(X?771) = X (1/p — 2p) and (X ?9) = X?
(4) More generally, 1 (X") = X1pg (X"79) — pipg(X*179)

Lemma 5.3.11. We have p kxdt-1 ¢ or [X]¥a ¢ but not pk_quk_l.
Proof. Recall that 1,(X971) = (1—¢q)/p. This implies that 1,(1/X) = ¢, (X7 4+p) /pe(X)) =

1/pX. If k > 1, then
k—1 . k=1 _q
(q.>.pz:(q. > kll/lEpOL
1 1—1

This implies that goq(qufl) € X1 + pFXop [X]4x—1- By Lemma we have

qufl qu _ qufl qu—171 .
wq(qu_1) =, (Soq( ) + < Pq( ) c +0L[[Xﬂwq_mt-

This implies the Lemma by induction on k. O
Corollary 5.3.12. There is an h € H in which the coefficient of Py_; is in p koz

Proof. Let ¢y € Cd,(or,Cp)* be the linear form corresponding to X7 =1 There is an
fe C(();al(OL,OCp) such that cx_1(f) € p koz (if it was in p'~*or, for all f, then pk_lch,1

would be an integral linear form, and we’d have p"~1 X7 =1 € o7 [X]¥= ¢, This is not the case
by lemma [5.3.11f). By Corollary the L-span of the P, is dense in C&,,(or,, Cp). Therefore

there is an h € H such that || f — hl| < p~*. We then have cx_;(h) € p~*o]. O

6. OTHER CRITERIA
We indicate how to prove Theorems [I.8.1] and [I.8:2]

6.1. The Lubin—Tate derivative. As we said in the Introduction, Theorem follows
from Theorem [I.4.1] and Proposition [6.1.2] below.
Lemma 6.1.1. The sum ;) ow" is ¢if n=10,it is 0 if (¢—1) f n, and it is (¢ — 1)(—p)*
ifn=(¢g— 1)k with & > 1.
Proof. Since [p)(T) = pT + T4, the sum is over 0 and the roots of 797! = —p. If \ is one
of the roots, the set of all the roots is {fA},s-1_;. The result follows (for n = 0 it is a
convention). O
Proposition 6.1.2. Assume that L = Q2 and that 7 = p. Let A\ = QI plg— 1) € OEP.

It f(Z) € oc,[Z], then ipy(f) — A~ DI7(f) € oc,[Z].
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Proof. Recall from [Kat81], p. 667] that f(ZaY) = ano Y7 Po(9)£(Z). We have b, (£)(Z) =
1/q- Z[p](w)zo f(Z @ w), so that

(S LS Swpo ;Z 3wt | P0)f(2).

7 (=0 n>0 n>0 \ [p](w)=0

By Lemma“ 6.1.1} the >~ w™ for n not divisible by ¢—1 are zero, and the > w" for n = (¢—1)k
are divisible by ¢ except when k£ = 1. Hence

pib(f) — j]<q —1)(=p) P 1 (D)(f) € oz, [Z].

The proposition now follows from the fact that

011 -1 Qa1
Pl = o =727 =)
6.2. Changing the base field. We now turn to Theorem If K is a subfield of L, we
also have a character variety X for K; write X and Xr. An L-analytic character n : o, — (C;f
can be restricted to ox, and it is then K-analytic. This gives a rigid analytic map X; — Xk.
This map in turn gives rise to a map resy /g : Oc,(Xk) — Oc,(XL), which sends bounded
functions to bounded functions, and Oy (X ) to Op(X1) for all closed subfields L € M C C,,.

=pD? 1.\ O

Lemma 6.2.1. On bounded functions, resy,/x : O(I)Cp(%K) — O(%p (Xp) is injective.

Proof. Suppose that f € O(%p (Xk) is zero on the restriction to ok of every L-analytic character
of or. Since o is a direct summand of oy, every torsion character of ox extends to a torsion
character of or,. Hence f is zero on all torsion characters of ox. This implies that f =0 as f
is bounded. ]

If p1 is a distribution on ok, we define a distribution resy g (1) on o, as follows: if f €
C™(or), we let resy (1) (f) = p(fl,, ). This is compatible with the above map if we view
elements of Oc, (X) as distributions.

Lemma 6.2.2. If 4 is a distribution on ok, whose image under res; i (1) is a measure on
oL, then there exists a measure fi on ox such that = fi on LC(ok).

Proof. Let f be a locally constant function on og. Since og is a direct summand in oy,
we can extend f to a locally constant function f on oy, in a way that the sup norm of f
on oy, is the sup norm of f on ok. Since resy k(1) is a measure, there exists C such that
|l resr/k (11)(9)lloy, < C - |lgllo, for all locally constant functions g on or,. We then have

||N(f)HOK = HreSL/K(N)(]F)HOL <C- HfHOL =C- HfHOK

We can now let i(f) = p(f) for any f € LC(ok). The above estimate shows that fi extends
continuously to C%(og). O

Proposition 6.2.3. If O} (X1) = L ®,, A(oy), then O% (Xk) = L ®o, A(ok).

Proof. If u € (’)i’:(f{ K ), then p can be seen as a distribution on ok, and it gives rise via resy, /g
to an element of L ®,, A(or). By Lemma there is a measure i on ox such that u = i
on LC(og). The image of the distribution p — fi under resy i belongs to L ®,, A(or) and
is zero on locally constant functions, hence resr, k(p— @) = 0. By Lemma @ = [ and
hence i is a measure on og. (|
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Theorem 6.2.4. If K/L is finite and if Ax(Xx) = ox[ox], then Ar(Xr) = or]or]-

APPENDIX A. AN ALGORITHM FOR WHETHER THE 05 ;'S SPAN Int(or,0r)
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A.1l. Introduction. Let Q, C L C C, be a field of finite degree d over Q,, oy, the ring of
integers of L, 7 € oy, a fixed prime element, and ¢ := |or,/mr0r| the dimension of the residue
field.

For an or-submodule S of L[Y] and an integer n, let S, = {f € S : deg(f) < n}.

Recall that the polynomials P,(Y) are defined by

exp(Y -logr(Z2)) = Z P (Y)Z".
n=0

We will choose the coordinate Z such that logy(Z) = > 50,7 %2 ¢
Define the upper-triangular matrix (03,;); ;- with entries in L[Y] by

J
Pi(Ys) =Y 0i;(Y)Pi(s).
=0

By Lemmas and we know that o; ;(Y) € Int(or, o) and that deg(o; ;(Y)) < j.
The question is whether the op-linear span of {o; ;(Y) : 0 <14 < j} equals Int(or,, 0r). In this
write-up we develop an algorithm to check whether (Int(oL,oL))n is contained in the oj-
linear span of {0;;(Y):0 <i < j < N} for some fixed N, where for convenience we require
qg—1]|N.

A.2. Theory.
A.2.1. Reduction to 7‘1-(3). To ease notation, for a fixed a € {0,1,...,q¢ — 2}, we denote i =

a+ (g —1)i.
By Proposition |4.3.9(2), there exist upper-triangular matrices 7@ (Y') such that

2y

(18) 0, (Y) =Y 7 (ye),

Definition A.2.1. For a polynomial P(z), we denote by 7, (P) the coefficient of 2™ in P.
Definition A.2.2. Let M be the or-linear span of {o;;(Y):0 <4 <j}. For a fixed a,
let M(® be the or-linear span of {O'Z,Z(Y) 0<i < j}. Let S(® be the or-linear span of
{TZ»(;)(Y) 0<i < j}.

Lemma A.2.3. Let (fb(a))bzo be a regular basis for S(® — that is, each fb(a) has degree b.
Then, M = Int(or,o0r) if and only if for all a € {0,1,...q¢ — 2} and b > 0, we have

ve (/i) = —wy(a +b(g — 1))
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Proof. For a fixed a € {0,1,...q— 2}, by (18), we have v5(0;;(Y)) = 0 if s # j (mod ¢ — 1).
So, by definition, M = @I_5 M(®).
We write S(@(Y9~1) = {f(Y?1): f € S(@}. Equation shows that

M@ =ye. N@ iyl

Having chosen a regular basis (féa))bzo, these give regular bases (fb(a) (Yq_l))b>0 for
S@(ya-1h,

So, we get regular bases (Yafb(a) (Yq_l)) b0 for M (@) and thus a regular basis {Y“flfa) (Ya—1y:
a€{0,1,...q—2},b>0} for M.

Then, M = Int(or,0r,) is equivalent to Vw(fya%(q_l)(Yaféa)(qul))) = —wg(a+b(qg — 1)),
which is equivalent to v (y( b(a))) = —wy(a+b(g—1)). O

Let n = a + b(q — 1), where a,b are integers, with a € {0,1,...q — 2}. The proof above
shows that a polynomial of degree n with 7-valuation of leading term equal to —wq(n) exists
in My if and only a polynomial of degree b with the same valuation of leading term exists in

S](\(;/)(qil). So, the strategy will be to compute regular bases for SJ(\?/)(qq)'

A.2.2. A formula for Ti([]l-). One advantage of this approach is that the matrices 7'1-(7(;-) (Y) can

be computed quickly. Recall Definition m (where we merely change notation, calling m by
a instead):

Definition A.2.4. For each j > 7 >0, let
> . ¢ -1 o
keN®:> ky=i> k <q_1> =j—ip;
£=0 (=1
(a) ._ 2 —3%° ik
rig =) <k0;k1;...> e

keQa(i,5)

Qali,J) :

Define the upper triangular matrix (D; ;);; of coefficients as follows:
Definition A.2.5. Let D; ; = ilv;P;(Y).

This does not depend on a. From Proposition [4.3.2] we obtain the following recursion
formula, valid for ¢ > 1:

—-Tr
Dm‘:E T Di1j—qr
r>0

with the initial conditions being Dy ; = dg,;.

Now, by Proposition [4.3.5(2) it follows that rl(flj) = D; ;. To tie this back to Ti(’a-), we recall
from Definition [4.3.11{(3) the notation Dy := diag(1,Y,Y?,...). Then, Lemma gives
7(@) = (r(@)=1 . Dy . (@) This gives a fast algorithm to compute the matrices 7(*), as the

recurrence relation for D allows us to compute 7(®) easily.
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A.2.3. Gaussian elimination over a (discrete) valuation ring. Let R be a (discrete) valuation
ring and let A be an m X n matrix with entries in R. We define notions of elementary row
operations and row echelon form over R, similarly to the definitions over a field.

Definition A.2.6. Given a matrix A as above, the elementary row operations are as follows.

(1) Swap two rows.
(2) Multiply an entire row by a unit in R.
(3) Add an R-multiple of a row to another row.

Lemma A.2.7. Performing elementary row operations on a matrix preserves its R-row span.

Proof. For each elementary row operation on A, we define an m X m matrix B with entries
in R such that the result of applying the elementary row operation on A is BA. Observe that
in each case, B is invertible, so BA has the same R-row span as A. O

Lemma A.2.8 (Gaussian Elimination). Let A be a matrix as above. Assume that m > n
and that A has rank n. Then, one can perform a sequence of elementary row operations on
A to produce an upper-triangular matrix of rank n.

Proof. We will exhibit an algorithm that puts A in the required form.

We start with the leftmost column. As A has rank n, there is a non-zero entry on column
1. Pick the one with minimal valuation and swap rows, so that the entry on column 0 with
minimal valuation is on position (0,0). Let the new matrix be B.

Then, for each row 7 > 1, subtract %‘3 x (row 0) from row 4. After all of these operations,

the matrix has block form:
boo *
0 |A

where * denotes some 1 X (n — 1) matrix, and A’ is an (m —1) X (n — 1) matrix. Observe that,
as A had rank n and the elementary row operations don’t change the rank, A" will have rank
n—1.

Now, we can inductively apply the same procedure to A’. Observe that all row operations
on A’ extend to row operations on the whole matrix that don’t change the block structure
(as the corresponding entries in the first column are all 0’s). By construction, the end result
is an upper-triangular matrix, which has the same rank as the initial matrix A. O

A.3. Implementation. We focus on the totally ramified extension L = Q,(p'/?) and the
unramified extension of degree d, where we take the prime p, the degree d, and the cutoff NV
as input parameters.

Fix a € {0,1,...,q—2}. Firstly, we compute the matrices (T(a))0§i§j<N/(q,1) following the
method discussed in Section Then, for s =0,...,N/(qg — 1) — 1, we will appeal to the
following result to inductively compute a basis (géa)’s)ogbgs for the or-span of {TZ»(;) 0<i <
j < s}, with each géa)’s having degree b.

Proposition A.3.1. Fix s > 0, and let (géa)’s_l)ogbgs_l be a basis for the oyp-span of

{Té? :0 <i<j<s—1} such that each gba)’s*1 has degree b.
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Record the coefficients of these polynomials gia)’s_l in s row vectors, and append s+ 1 new
row vectors obtained from the coefficients of Tif’s) to obtain the (2s + 1) x (s + 1) matrix

V' Ys—l 1

° * IR Ts(fls)

(a),57l
Y . % g571

B = | o g(()a)’s_l

* * * T(a)

0,s
* * * TS@LS

with coefficients in L. The o’s are non-zero (where Bso # 0 because 055 = Y2 by Lemma

which by Equation |18 implies that ng) =Y?¥), so B has rank s + 1.
Bring the full-rank matrix B to upper-triangular form B’ using Gaussian elimination over

the discrete valuation ring oy, as per Lemma Then

(i) we can define the new polynomials gga)’s,g(a)’s, . ,g[()a)’S by reading off the first s + 1

rows of B’, so that each géa)’s has degree b and (géa)’s)

of{ri(’;):OSiSsz};
(ii) for each b = 0,...,s — 1, the m-adic valuation of the leading coefficient in the new

polynomial glga)’s is at most that of the old polynomial gl()a)’s_l.

o<b<s form a basis for the or-span

Proof. By Lemma the upper-triangular matrix B’ still has rank s + 1, so it has only
non-zero elements on its main diagonal. Hence for each b = 0,1,..., s, the polynomial géa)’s
obtained by reading off the b-th row has degree b. Then of course these polynomials are
linearly independent. Also they are the only non-zero rows in B’, so by Lemma their
or-span is the same as that of the rows of B, which by construction is precisely the or-span
of {r\%:0<1<j < s}, giving (i).

Now fix 0 < b < s — 1, and consider what happens to the b-th column when we reduce B
to B’. Observe that in the proof of Lemma when we operate on the j-th column for
j=0,...,s—b—1, as the row for géa)’s_l has a 0 entry in the j-th column, it is neither chosen
to be the pivot row nor altered as we subtract off multiples of the pivot row. Thus when we
operate on the (s—b)-th column to determine the (s—b)-th row and column of B’, the leading

coefficient of géa) *~! must be a candidate for the pivot. But the pivot B._, __, is chosen to

have minimal valuation, so Vﬂ(vb(géa)’sfl)) > ve(BL_ ) Now BL_, ., = fyb(g(ga)’s) by
definition, giving (ii). O
For b fixed, it follows that

ve(w(g ), s=bb+1,...
(a)

. . . S . . .
is a non-increasing sequence. Moreover, as g, '~ € S (@) can be written as an oy -linear combi-

nation of the fi(a)’s and each fi(a) is of degree 7, we must have géa)’s = Zogz‘gb A fi(a) for some
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A; € or; by looking at the leading coeflicient, it follows that

Va((9s”)) = ve((£L7)) = —wgla + b(g — 1)).

These observations motivate us to look at the following

Definition A.3.2. For n = a+b(q—1), let so(n) be the minimal s > b such that (g\""")o<p<s
satisfies v (’Yb(gzga)’s)) = —wq(n), if such s exists; otherwise set so(n) = oco.
Then whenever s > s¢(n) in the computations, we can immediately conclude that the

equality uw(wb(féa))) = —wy(a+b(¢ — 1)) in Lemma holds for this n = a + b(g — 1).
We may thus make a small optimisation: at any stage s, if s > so(a + b(¢ — 1)) for all

0 < b < d then we can just drop the last d columns when carrying out Gaussian elimination.
Indeed for all s’ > s it is unnecessary to compute (géa)’s Jo<b<d as the m-adic valuation of
each leading term has already hit the desired minimum, and to compute the leading terms of

(géa)’s )Ja<b<s' We do not need the lower-order terms in the last d columns.

3-adic Eisenstein Extension Field in y defined by x~2 - 3
250 [ %
X
200 [ g
‘ 5 3
X
% x5 % x5
o 150 2 A
XX XX
: ¥ ¥ e Z
X X X
< AN B 2%
Posd XX osd XX XX
S F ;
: X X X X X X
[ X X X X X X
50 - T
| :
NERE 5" F S - HEF F o
S0 0 w0 7 2000 0 U300 0 a0 so0  eo0 700 800

n=a+b(g—1)

FIGURE 1. extension = "3,2,800,ram" — sp(n) in the quadratic ramified
extension Q3(v/3) for n < 800. Red points are the n’s for which sg(n) > 800.

A.4. Data. For reference, the computations in Figure [I] took

e 227.04 seconds for D;
e 616.45 seconds for 7(9 and 616.43 seconds for 7(1);
e 0.20 seconds for s = 50, 1.89 seconds for s = 100, 6.15 seconds for s = 150, 12.09
seconds for s = 200, etc. for a = 0, and slightly less for a = 1.
We see that so(n)—b seems to depend on the p-adic digits of n; we only managed to prove a
special case of this pattern, which we will discuss below. Nonetheless, the data do suggest that

so(n) is finite for every n and hence that Int(oz,, or) is spanned by the o; ;’s as an or-module.
A similar pattern emerges for larger p and unramified extensions: see Figures[2]and [3|below.
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More data and plots can be found |on our GitHub repository.

17-adic Eisenstein Extension Field in y defined by x~2 - 17
120 7 S S I

b
I
i

b
R
Hepo o

40

o " Ts0 7 w00 o0 2000 " 2500 3000
n=a+b(g—1)
FIGURE 2. extension = "17,2,3216,ram" — so(n) in the quadratic ramified

extension Q17(1/17) for n < 3216. Note that red points are the n’s for which

so(n) > 3216 — not enough computation was done to unveil the pattern for
the larger n’s!

5-adic Unramified Extension Field in y defined by x*3 + x + 1

:

50

40

FIGURE 3. extension = "5,3,12524,unram" — sp(n) in the cubic unrami-
fied extension of Q5 for n < 12524. Again, note how the red points — the n’s
for which sg(n) > 12524 — give the illusion of so(n) — b decreasing.


https://github.com/Team-Konstantin/Bounded-Functions-on-Character-Varieties/tree/writeup

BOUNDED FUNCTIONS ON THE CHARACTER VARIETY 63

A.5. Some results.
Definition A.5.1. Given a natural number n, let s4(n) be the sum of digits of n in base g.

Recall Definition [A.3.2k

Definition. For n = a + b(q — 1), let so(n) be the minimal s > b such that (glga)’s)ogbgs

satisfies uﬂ(fyb(glga)’s)) = —wgy(n), if such s exists; otherwise set sop(n) = oco.

We define the following more intuitive quantity:

Definition A.5.2. For n = a + b(q — 1), let Cap(n) = a + bso(n). Alternatively, Cap(n) is
the minimal N > n such that the or-span of {o;;: 0 <7 < j < N} contains a polynomial of
degree n and m-valuation of the leading term —wg(n).

Here, the equivalence of the two definitions follows from the definition of so(n).
Let n = a + b(q — 1). Analysing the computational results, we are led to believe that, if
sq(n) < p, then so(n) = b. This is made clear by the following:

Theorem A.5.3. Let n be a positive integer such that s,(n) < p. Let j = n and i = s4(n).
Then o; ; is a polynomial of degree n, with m-valuation of leading term equal to —wg(n).

Recall the definition of the polynomials ¢, (Y) from [dSI09]:
Y](t) =) ea(¥)t"
n=1

Translating the definition of the polynomials o; ;(Y") and using Lemma we get:

(Y1) = (Z Cn(Y)t"> = o (V)P
n=1 j=t
Using the binomial theorem, this gives:
Ui,j = Z Cni1Cng - - - Cny

ni+ng+..+n;=j

Of course, for i = 1 we obtain oy j = ¢;. So, the proof of the Theorem 3.1 in [dSI09] shows
that Cap(n) = n for n equal to some power of q. We will extend this result to all n that
have s4(n) < p, where s4(n) is the sum of digits of n, written in base ¢. For this, we need the
following lemma:

Lemma A.5.4. Let nq,ng, ..., n; be positive integers. Then, wq(n1)+wq(n2)+. .. +wy(n;) <
wq(n1 +ng + ...+ n;). Equality holds if and only if s4(n1) + sq(n2) + ... 4+ sq(n;) = sq(n1 +
ng + ...+ n;), that is, if there is "no carrying” in the sum ny +ns + ... + n;.
Proof. Direct calculations show that
n — sq(n)

qg—1
Substituting into our inequality, we need to prove

Sq(n1) + sq(n2) + ...+ s¢(ni) > sq(n1 +no + ... +ny)

which can be checked by direct calculations or by induction. Equality holds in the initial
inequality if and only if it holds here, which is to say there is "no carrying” in the sum
ny+ng + ...+ n;. O

wy(n) =



1
2
3

4
5

6

[

[os]

64 KONSTANTIN ARDAKOV AND LAURENT BERGER

Now, we are ready for:

Proof of Theorem[A.5.3 Recall that

04,5 = E CniCng - - - Cny

ni+na+...4+n;=j

where each ¢ is a polynomial of degree at most k, with m-valuation of the leading term at
least —wg(n) (as it is in Int(or, 0r)).

Let’s look at each of the terms ¢y, cp, . ..cp,. As each ¢, has degree at most k, this con-
tributes to the coefficient of Y* in 0; ; if and only if deg(cy,, ) = n1, deg(cn,) = na, ..., deg(cy;) =
n;. For the moment, assume this is the case. Then, the coefficient of Y™ in this product is the
product of leading coefficients of the ¢,,’s, which has 7-valuation at least —(wq(n1) +wq(n2)+
...+ wq(n;)). Now, using Lemma this is at least —wq(n1 +no + ... +n;) = —wy(n),
with equality if and only if s4(n1) + sq(n2) + ... + s¢(ns) = sq(n) = i, so the n;’s are powers
of g. That is, the only contribution to the coefficient of Y in o0;; that has small enough
valuation comes from permutations of the unique way of writing n as a sum of ¢ powers
of g. In other words, if n = byby—1...b1by(,) is the writing of n in base ¢, then the only
terms that have a possible contribution are obtained when (n1,ne,...,n;) is a permutation
of (¢°¢% ....q" ...,q"), where each ¢* appears by, times.

But, by [dSI09], when k is a power of ¢, ¢, is a polynomial of degree exactly k, with
m-valuation of leading term exactly —wy(k). So, when (ni,ng,...,n;) is a permutation as
above, the product ¢, ¢y, ... ¢y, is a polynomial of degree n, with m-valuation of leading term
equal to —wg(n). Moreover, as proved before, if (n1,ng,...,n;) is not such a permutation, the
product ¢y, Cp, - .. Cp, has the coefficient of Y™ either 0 or of 7-valuation larger than —wg(n).

As there are (b(),blz,.n.,br) such permutations, with p ¢t (bo,blf...,b,«) (because ¢ < p by the
initial assumption on n), the final sum o;; has degree n, with m-valuation of leading term

—wy(n). O
Definition then gives:

Corollary A.5.5. Let n be a positive integer such that sq(n) < p. Then Cap(n) = n.
The numerical data suggests that this is the largest set on which Cap(n) = n.

A.6. SageMath Code. (tested on Sage 9.4)

extension = "3,2,100,ram" # Choose the extension to compute with
precision = 1000 # Choose the precision that Sage will use
parse = extension.split(’,’)

p = int(parse[0]) # Prime to calculate with

d = int(parse[1]) # Degree to calculate with

N = int(parse([2]) # Cutoff; must be divisible by q-1
ram = parse [3]

# Python imports

from time import process_time
import matplotlib.pyplot as plt
import numpy as np
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# Definitions

from sage.rings.padics.padic_generic import ResidueLiftingMap
from sage.rings.padics.padic_generic import ResidueReductionMap
import sage.rings.padics.padic_extension_generic

power = p~d - 1
t_poly = nun

if ram == "ram":
t_poly = f£"x"{d}-{p}"

;) else:

# generate poly for unramified case
Fp = GF(p)
Fp_t.<t> = PolynomialRing(Fp)
unity_poly = t~(power) - 1
factored = unity_poly.factor ()
factored_str = str(factored)
start = factored_str.find (" "+str(d))
last_brac_pos = factored_str.find(")",start)
first_brac_pos = len(factored_str) \
- factored_str[::-1].find("(",len(factored_str)-start)
t_poly = factored_str[first_brac_pos:last_brac_pos].replace(’t’,’x’)

# Define the polynomial to adjoin a root from
Q_p = Qp(p,precision)

R_Qp.<x> = PolynomialRing(Q_p)

f_poly = R_Qp(t_poly)

# Define the p-adic field, its ring of integers and its residue field

; # These dummy objects are a workaround to force the precision wanted

dummyl.<y> = Zp(p).ext (f_poly)
dummy?2 .<y> = Qp(p).ext (f_poly)

o_L.<y> = dummyl.change(prec=precision)
L.<y> = dummy2.change (prec=precision)
k_L = L.residue_field ()

print (L)

# Find the generator of the unique maximal ideal in o_L.

5 Pi = o_L.uniformizer ()
# Find f, e and q
f = k_L.degree() # The degree of the residual field extension
e = L.degree()/k_L.degree() # The ramification index
qQ=p°f

Do linear algebra over the ring of polynomials L[X]
# in one variable X with coefficients in the field L:

5 L_X.<X> = L[]
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# \Tau"{(m)} in Definition 10.10 of

(roughly,

<Y> = L[]

L.valuation ()

KONSTANTIN ARDAKOV AND LAURENT BERGER

The subroutine Dmatrix calculates the following sparse matrix of coefficients.
Let D[k,n] be equal to k!
I compute this using the useful and easy recursion formula

times the coefficient of Y"k in the polynomial P_n(Y).

D[k,n] = \sum_{r \geq 0} \pi~“{-r} D[k-1,n-q"r]

Dmatrix (S):
D = matrix (L,
D[0,0] =1

S,8)

The algorithm is as follows:
S is (gq-1)*Size),
using the recursion formula.

for k in range(1,8):

for n in range(k,S):

that can be derived from Laurent’s Prop 1.20 of "outline9".
first make a zero matrix with S rows and columns

then quickly populate it one row at a time,

= D[k,n] + D[k-1,n-q"r]/Pi"r # the actual recursion

r =0

while n >= q°r:
D[k,n]
r = r+l

return D

def TauMatrix(Size, m,

def

def

def

if D is None:

D=None):

D = Dmatrix((q - 1) * (Size + 1))

R = matrix (L,

Size,Size,

# Define a diagomnal matrix:

Diag = matrix(L_X,

Size,Size,

# Compute the inverse of R:

S = R.inverse ()

lambda x,y:

"bounded26":

lambda x,y: D[m + (q-1)*x, m + (g-1)*yl)

kronecker_delta(x,y) * X "x)

# Compute the matrix Tau using Lemma 10.11 in "bounded26":

Tau = S * Diag * R

return Tau

underscore (m,

i):

return m + ix(g-1)

w_q(n):

return (n - sum(n.digits(base=q))) / (g-1)

compute_s (N, filename=None):

assert N%(q-1)

0
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t_start = process_time ()

D = Dmatrix (N)

t_end = process_time ()

print (£"D matrix: {t_end-t_start : .2f} sec")
sO_s = [-1 for in range (N)]

for a in range(q-1):

t_start = process_time ()

Tau_a = TauMatrix(N//(q-1), a, D)

t_end = process_time ()

print (f"a={a}, Tau matrix: {t_end-t_start : .2f} sec")

B_old = Matrix(0,0)

d =0

for s in range(N // (q-1)):
t_start = process_time ()

# 1

# 2. Add a O column to its left
# 3

B = Matrix (L, 2*s-d+1, s-d+1)
B[0,0] =1 # Tau_als, s]
B[1l:s-d+1, 1:] = B_old

for i in [0 .. s-1]:

coeffs = Tau_al[i, s].list ()

B[s-d+1+i, B.ncols()-len(coeffs)+d:] = vector (L,

# Perform Gaussian elimination

i0 = 0

ks = []

for k in range(B.ncols()):
valuation_row_pairs = [

(v(B[i,k]), i) for i in range(iO, B.nrows())

if not valuation_row_pairs:

raise ValueError ("B is not full-rank")
minv, i_minv = min(valuation_row_pairs)
ks .append (k)

Use the non-zero rows from previous calculations

67

Add rows corresponding to entries from the j_th column of Tau_a

reversed (coeffs[d:]))

if B[i,k] !'= 0]

# Swap the row of minimum valuation with the first bad row

B[i0O, :]1, Bl[i_minv, :] = B[i_minv, :], B[iO,

# Divide the top row by a unit in o_L
u = B[i0, k] / Pi~int(e * v(B[iO, k1))
B[i0, :] /= u

# Cleave through the other rows
for i in range(i0 + 1, B.nrows()):
if v(B[i, k]) >= v(B[iO0, k]):

:]
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Bli, :] -= B[i, k]/B[i0, k]

i0 += 1

d_is_updated = False

for b in [d .. s]:
n = a + b*x(q-1)
if v(B[s-b, s-bl]) * e == -w_q(n):
if sO_s[n] == -1:
sO_s[n] = s
else:

if not d_is_updated:
d =b
d_is_updated = True

B_old = B[:s-d+1, :s-d+1]
t_end = process_time ()
print (f"a={a}, s={s}: {t_end-t_start : .2f} sec",

if filename is not None:
with open(filename, ’w’) as f:
f.write("n,s0\n")
for n, sO0 in enumerate(sO_s):
f.write(£f"{n},{s0}\n")
print ()

style.use(’bmh’)
= plt.figure(figsize=(15,6), dpi=300)
n, sO0 in enumerate(sO_s):
if sO != -1:

b =mn// (q-1)

plt.plot(n, sO-b, ’x’, ¢c=’C0’)
else:

plt.plot(n, 0, ’x’, c=’Cl’)
xlabel(r"$n = a + b(gq-1)$%$")
ylabel("$s_0(n) - b$")
title(str (L))
minorticks_on ()
grid (which=’both’)
grid(which="major’, linestyle=’-’, c=’grey’)

urn sO_s, fig

compute_s (N);
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