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Abstract. The center ZpAq of an abelian category A is the endomorphism ring of the
identity functor on that category. A localizing subcategory of a Grothendieck category C is
said to be stable if it is stable under essential extensions. The set Lst

pCq of stable localizing
subcategories of C is partially ordered under reverse inclusion. We show L ÞÑ ZpC{Lq defines
a sheaf of commutative rings on Lst

pCq with respect to finite coverings. When C is assumed
to be locally noetherian, we also show that the sheaf condition holds for arbitrary coverings.

1. Introduction

1.1. Background. During the initial stages of the local Langlands program the focus was
entirely on irreducible smooth representations of p-adic reductive groups in characteristic
zero. All the basic constructions like parabolic induction and Jacquet modules involved only
finite length representations. Later, first Casselman to some extent but foremost Bernstein
in the 1980s, used the full force of categorical methods to make an in-depth study of the
whole category ModpGq of complex smooth representations of a p-adic reductive group G.
One of Bernstein’s celebrated results is the computation of the center of the category ModpGq,
nowadays called the Bernstein center [BDKV]. This is a commutative ring of course. But it
is important to notice that, apart for some special cases, the category ModpGq has infinitely
many connected components, each of which has a noetherian center corresponding to an affine
scheme. The disjoint union of all these affine schemes is a scheme, but which in general is no
longer quasi-compact and hence not affine. The ring of global sections of its structure sheaf is
the Bernstein center. It therefore makes sense to call this scheme the central space of ModpGq.

When we now move to smooth representations of p-adic groups in characteristic p, we
showed in [AS] that the center of the category ModpGq is very small. For example, for semisim-
ple G it is simply the group ring of the center of G. We therefore pursue a point of view which
is an extrapolation of the remark above on the characteristic zero case. It is modelled on the
following obvious phenomenon exhibited by projective varieties: they have very interesting
structure sheaves but uninteresting rings of global functions. Suppose, for simplicity, that the
category ModpGq is locally noetherian. It was Gabriel in [Gab] who introduced the spectrum
SppCq of indecomposable injective objects of a locally noetherian Grothendieck category C.
He showed that any localizing subcategory L of C is completely determined by the natural
image of SppC{Lq in SppCq. It follows that the collection of localizing subcategories L of C can
be classified in terms of these subsets of SppCq (see section 6 below for more details). They
form the open sets in a topology on SppCq that is now known as the dual-Ziegler topology.
Our idea now is to attempt to assemble the centers of all the quotient categories C{L into a
sheaf of commutative rings on SppCq in this topology (compare also [DEG]).
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In the commutative setting it was exactly this procedure which enabled Gabriel in [Gab]
to prove his famous reconstruction theorem. For a noetherian scheme X we have its lo-
cally noetherian Grothendieck category of quasi-coherent sheaves QCohpXq. He shows that
SppQCohpXqq is in a natural bijection with X. The open subsets U of the scheme X, through
their images in SppQCohpXqq, give rise to certain localizing subcategories LU of QCohpXq.
Then he shows that the ring of sections OXpUq of the structure sheaf of the scheme X over U
is naturally isomorphic to the center ZpQCohpXq{LU q of the quotient category QCohpXq{LU .
Gabriel’s theorem was later generalized to arbitrary quasi-separated schemes ([Ros], [Bra]).

But leaving the commutative setting one immediately runs into problems. Here is a very

simple example: let T “

ˆ

k k
0 k

˙

be the ring of upper-triangular 2 ˆ 2 matrices over a field

k. Then SpecpT q is a two-point space tP,Qu, and there are two non-trivial proper localizing
subcategories LP and LQ of ModpT q that correspond to P and Q, respectively, see (7) below.
If the assignment L ÞÑ ZpModpT q{Lq had been a sheaf, then it would follow that

ZpT q – ZpModpT qq – ZpModpT q{LP q ˆ ZpModpT q{LQq

has dimension 2 as a k-vector space. But an easy calculation shows that in fact dimk ZpT q “ 1.
Going back to [Gab] one notices that he shows that in appropriate commutative contexts

all localizing subcategories have the additional property of being stable (see section 3 for
the definition). So it seems quite natural that in general one should impose stability as an
additional condition. We show in this paper that by doing so our idea can be carried through.
In fact, by replacing SppCq by the set of all stable localizing subcategories of C equipped with
a certain Grothendieck topology, we produce a “central sheaf” for arbitrary Grothendieck
categories. This does not contradict the above example, as only one of the singleton subsets
of SpecpT q corresponds to a stable localizing subcategory.

The emerging p-adic local Langlands program is very categorical. The papers [AS] and
[DEG] give a first evidence for the relevance of our construction in this context.

1.2. Stability and main results. Recall that an abelian category is said to be Grothendieck
if it has small coproducts (hence small colimits), filtered colimits are exact, and it has a gener-
ator. For a general Grothendieck category C, the injective spectrum SppCq could be the empty
set: these are the so-called continuous spectral categories, (cf. [Pop] p. 324), consequently, the
set of its localizing subcategories (or the hereditary torsion theories, [Go2], [Ste]) can be quite
difficult to classify. The basic outcome of this paper is the observation that, at least as far as
the behaviour of centers is concerned, the situation improves considerably if we restrict our
attention only to the stable localizing subcategories.

The stable localizing subcategories of C form a set denoted by LstpCq. We equip this set
with the structure of a Grothendieck site as follows. We view LstpCq as a category whose
objects are the elements of LstpCq and whose morphisms L2 Ñ L1 are given by the inclusions
L1 Ď L2. For L and L1, . . . ,Ln in LstpCq we call tLiu1ďiďn a covering of L if L “

Ş

i Li. Our
first main result for general Grothendieck categories reads as follows.

Theorem 1.1. For any Grothendieck category C, ZCpLq :“ ZpC{Lq is a sheaf on LstpCq.

This result will be a consequence of the following purely categorical statement, which we
prove in Prop. 4.5. We first recall that Gabriel (cf. [Gab] p. 439) introduced for any diagram
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of exact functors between abelian categories

A0

$$
A

A1

::

the category A0
ś

A
A1 which he calls the recollement of A0 and A1 along A. We apply this

with Ai :“ C{Li and A :“ C{pL0 _ L1q and the corresponding quotient functors, where L0

and L1 are two localizing subcategories of our Grothendieck category C and L0 _ L1 denotes
the smallest localizing subcategory which contains L0 and L1. It will be easy to see that the
corresponding recollement receives a natural functor

(1) C{pL0 X L1q ÝÑ pC{L0q
ź

C{pL0_L1q

pC{L1q .

The following is our basic result, which crucially depends on the notion of stability.

Theorem 1.2. The functor appearing in (1) is an equivalence provided L0 and L1 are stable.

The restriction to the case of finite coverings in Thm. 1.1 can be removed if we impose a
finiteness condition on the Grothendieck category C as follows.

Recall that the injective spectrum SppCq of any Grothendieck category C is the set of
isomorphism classes of indecomposable injective objects of C (cf. [Pop] p. 331). If L is a
localizing subcategory of C, then an object of C is said to be L-torsion-free if it has no non-
zero subobjects in L, and the subset ApLq Ď SppCq is by definition the set of isomorphism
classes of indecomposable L-torsion-free injective objects. Note that ApLq is precisely the
image of SppC{Lq in SppCq that was mentioned in section 1.1 above. A subset A Ď SppCq

will be called stable if it is of the form ApLq for some stable localizing subcategory L of C.
Recall that C is said to be locally noetherian if it admits a set of noetherian generators. The

work of Gabriel [Gab] implies that when C is locally noetherian, the map L ÞÑ ApLq gives a
bijection between the set LstpCq and the set of stable subsets of SppCq. It is easy to see that the
stable subsets form a topology on SppCq which is coarser than the dual-Ziegler topology; we
call it the stable topology. For any stable subset A Ď SppCq, let LA denote the corresponding
stable localizing subcategory of C such that ApLAq “ A. The map A ÞÑ LA is inclusion
reversing. Hence, for stable subsets A1 Ď A2, we have a quotient functor C{LA2 Ñ C{LA1 .
This means that the rule A ÞÑ ZCpAq :“ ZpC{LAq defines a presheaf ZC on SppCq.

Our second main result then reads as follows.

Theorem 1.3. Suppose that C is a locally noetherian Grothendieck category. Then ZC is a
sheaf on SppCq for the stable topology.

Equivalently, the presheaf ZC appearing in Thm. 1.1 satisfies the sheaf condition for arbi-
trary coverings under the assumption that C is locally noetherian.

In the case where C “ ModpRq for some non-commutative noetherian ring R, a sheaf of
non-commutative rings R on SppCq in a topology, which is coarser than our stable topology, is
constructed in [GM]. In section 6.3 we show that our sheaf ZC embeds intoR with image being
sectionwise the center of R. See also [Lou] for this ring theoretic setting. But the techniques
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in these papers rely heavily on the theory of rings of quotients ([Ste]) and do not generalize
to the case of a general locally noetherian category.

We have shown in [AS2] that if G is the group SL2pQpq then ModpGq is a locally noetherian
category. In that paper, we also explain how to calculate SppModpGqq and give a uniform
construction of a large family of stable subsets of SppModpGqq. The resulting sheaf ZModpGq

is then closely related to the recent work of Dotto-Emerton-Gee [DEG].
In fact, in lectures in Dublin in July 2019 about [DEG], Emerton talked about the category

ModχpGq of mod-p smooth G “ GL2pQpq-representations with a fixed central character χ. He
made the very inspiring suggestion that the center of this category is small and uninteresting,
but that this only reflects the fact that this center is the ring of global sections of an interesting
sheaf formed by the centers of the quotient categories of ModχpGq. In our paper [AS] we
showed that, indeed, the center of the category ModpGq of smooth mod-p G-representations
of any connected algebraic p-adic group G only depends on the center of G. The present paper
now sets up a general formalism of central sheaves.

The authors acknowledge support from Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under Germany’s Excellence Strategy EXC 2044–390685587, Mathe-
matics Münster: Dynamics–Geometry–Structure. The second author also acknowledges sup-
port from the Mathematical Institute and Brasenose College, Oxford.

2. The setting

Let A be any abelian category. Its center ZpAq is, by definition, the endomorphism ring of
the identity functor on A. It is a commutative ring, which has the following partial functoriality
properties:

– For any full abelian subcategory A1 of A restriction induces a ring homomorphism
ZpAq Ñ ZpA1q.

– Any quotient functor A Ñ A{B with respect to a Serre subcategory B of A induces
a ring homomorphism ZpAq Ñ ZpA{Bq.

Suppose now that C is a Grothendieck category. This means that C is an abelian category
which has small coproducts (hence small colimits) such that filtered colimits are exact and
which has a generator. Such a category is locally small (i.e., the subobjects of any given object
form a set) and has enough injective objects (hence injective hulls) as well as small products.
In this case we may consider the following construction.

Recall that a full subcategory L of C is called localizing if it is closed under the formation of
subobjects, quotient objects, extensions, and arbitrary direct sums. In particular, it is strictly
full and abelian.

We note that the collection of all localizing subcategories of C is a set ([Pop] Note 3 on p.
298), which we will denote by LpCq.

Let L be a localizing subcategory of C. Since it is, in particular, a Serre subcategory we
may form the quotient category C{L together with the exact quotient functor T : C Ñ C{L
([Gab] Prop. 1 on p. 367). The functor T has a right adjoint S : C{L Ñ C, called the section
functor, which is left exact and fully faithful ([Gab] Prop. 8 on p. 377 and Prop. 2 on p. 369
and [Pop] p. 177). We also have, for any object Y in C, a largest subobject tLpY q of Y which
is maximal among all subobjects of Y which lie in L ([Gab] Cor. 1 on p. 375).

Lemma 2.1. (1) L and C{L are both Grothendieck categories, and the quotient functor
T : C Ñ C{L commutes with inductive limits.

(2) T ˝ S – idC{L.
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(3) The section functor S : C{L Ñ C preserves injective objects as well as essential exten-
sions.

Proof. (1) is [Gab] Prop. 9 on p. 378. (2) is [Gab] Prop. 3(a) on p. 371. (3) The preservation
of injective objects follows from the exactness of T and the adjointness HomC{LpT p´q, Iq “

HomCp´, SpIqq. For the preservation of essential extensions see [Pop] Cor. 4.4.7. □

Remark 2.2. Let L Ď L1 be localizing subcategories of C; we have:

i. L1{L is a localizing subcategory of C{L;
ii. the natural functor C{L Ñ C{L1 induces an equivalence pC{Lq

L

pL1{Lq
–
ÝÑ C{L1;

iii. The section functor S : C{L Ñ C sends L1{L to L1.

Proof. That L1{L is a Serre subcategory of C{L together with the asserted equivalence is a
special case of [Pop] Ex. 4.3.6. By Lemma 2.1 the functor T commutes with arbitrary direct
sums. Any family of objects in L1{L can be lifted to a family in L1. Since L1 is closed under
the formation of direct sums (in C) we conclude that L1{L is closed under the formation of
direct sums (in C{L). It follows ([Gab] Prop. 8 on p. 377 or [Pop] Prop. 4.6.3) that L1{L is
localizing in C{L.

For iii. let T pXq be any object in L1{L for some object X in L1, and consider the exact
sequence 0 Ñ tLpXq Ñ X Ñ ST pXq Ñ C Ñ 0. The outer terms tLpXq and C lie in L and
hence also in L1 because L Ď L1. Applying the exact quotient functor T 1 : C Ñ C{L1 to this
exact sequence shows that T 1pST pXqq – T 1pXq “ 0. Hence SpT pXqq lies in kerpT 1q “ L1 as
required. □

Remark 2.2 says that for localizing subcategories L Ď L1 of C the natural functor C{L Ñ

C{L1 is a quotient functor and hence induces a natural ring homomorphism ZpC{Lq Ñ ZpC{L1q

between the corresponding centers. Instead of just considering the center ZpCq we propose to
investigate the “presheaf” of commutative rings L ÞÑ ZpC{Lq on LpCq. This will require the
concept of stability of L, which we will discuss in the next section.

Here we only remark that obviously the intersection of any family of localizing subcategories
again is localizing. Therefore, for any two localizing subcategories L1,L2 of C the smallest
localizing subcategory L1 _ L2 of C which contains L1 and L2 is well defined.

3. Stability

Throughout the paper we let C denote a Grothendieck category. A localizing subcategory
L of C is called stable if it is closed under the passage to essential extensions. Obviously the
intersection of any family of stable localizing subcategories is stable.

Lemma 3.1. For any stable localizing subcategory L of C the quotient functor T : C Ñ C{L
preserves injective objects.

Proof. [Gab] Cor. 3 on p. 375. □

Proposition 3.2. Suppose that L is a stable localizing subcategory of C and let Y be an
injective object in C. We have:

(1) ST pY q is injective in C.
(2) There is an isomorphism Y – tLpY q ‘ ST pY q in C.
(3) tLpY q is injective in C.
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Proof. (1) This follows from Lemma 3.1 and Lemma 2.1(3).
(2) This follows from [Gab] Cor. 2 on p. 375, using the stability assumption on L.
(3) By (2), tLpY q is a direct summand of the injective object Y . □

Lemma 3.3. Let L Ď L1 be localizing subcategories of C such that L is stable. Then L1 is
stable in C if and only if L1{L is stable in C{L.

Proof. “ùñ” Let X ãÑ Y be an essential extension in C{L, where X is an object in L1{L.
Then SpXq ãÑ SpY q is an essential extension in C by Lemma 2.1(3). Since SpXq lies in L1 by
Remark 2.2.iii and since L1 is stable in C by assumption, we see that SpY q lies in L1. Using
Lemma 2.1(1), we deduce that Y – TSpY q lies in L1{L as required.

“ðù” Let X be a non-zero object in L1 and let Y be an injective hull of X in C; we
have to show that Y lies in L1. Since L is stable, using Prop. 3.2(2) we find an isomorphism
Y – W ‘ Y 1 where W :“ tLpY q and Y 1 :“ ST pY q. We will show that Y 1 lies in L1. We may
assume that Y 1 ‰ 0, as the claim is clear otherwise.

Consider the essential extension j : X ãÑ W ‘ Y 1. Since Y 1 is non-zero, X 1 :“ jpXq X Y 1

is essential in Y 1. Since Y 1 is L-torsion-free, T pX 1q is essential in T pY 1q by [Gab] Prop. 6 on
p. 374. Since X 1 is a subobject of X, X 1 lies in the localizing subcategory L1, so T pX 1q lies in
L1{L. Since L1{L is stable in C{L by assumption, the essential extension T pY 1q of T pX 1q lies
in L1{L as well. Hence ST pY 1q lies in L1 by Remark 2.2.iii. However ST pY 1q “ STST pY q –

ST pY q “ Y 1, so Y 1 lies in L1 as claimed.
Since W lies in L and since L Ď L1, we see that Y – W ‘ Y 1 lies in L1 as required. □

Next we will establish that with L1 and L2 also L1 _ L2 is stable.

Proposition 3.4. Let L1 and L2 be two localizing subcatgories of C such that L1 X L2 “ 0.
The strictly full subcategory L1,2 of C whose objects are isomorphic to X1 ‘X2 with Xi being
an object of Li for i “ 1, 2 is a stable localizing subcategory of C.

Proof. Let X “ X1 ‘ X2 be an object in L1,2, where Xi lies in Li for i “ 1, 2. Let Y be
a subobject of X in C and let Yi “ Xi X Y for i “ 1, 2. Then Y1 ‘ Y2 is an object in L1,2

contained in Y . We have the monomorphism

Y {Y1 “ Y {pX1 X Y q – pY `X1q{X1 ãÑ X{X1 – X2 ,

which shows that Y {Y1 lies in L2. On the other hand Y {Y1 admits an epimorphism onto
Y {pY1 ‘ Y2q so that the latter lies in L2 as well. The same argument works with the roles of
the indices 1 and 2 exchanged. We deduce that Y {pY1 ‘ Y2q lies in L1 X L2, and is therefore
zero. Hence Y “ Y1 ‘ Y2 lies in L1,2. By passing to the quotient objects, we see that X{Y –

pX1{Y1q ‘ pX2{Y2q also lies in L1,2.
We have shown that L1,2 is closed under quotient objects and subobjects. Since the for-

mation of injective hulls commutes with finite direct sums by [Gab] Lemma 2 on p. 358, and
since L1 and L2 are both stable in C, it is clear that L1,2 is stable under injective hulls in C.
Since L3 is clearly closed under the formation of small coproducts in C, we see that it remains
to show that L1,2 is closed under extensions in C.

Let 0 Ñ X Ñ Y Ñ Z Ñ 0 be a short exact sequence in C, where X and Z are objects
in L1,2. Let I and J be injective envelopes of X and Z, respectively. Using (the dual of) the
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Horseshoe Lemma ([Wei] Lemma 2.2.8) we find a commutative diagram in C
0

��

0

��

0

��
0 // X

��

// Y //

��

Z //

��

0

0 // I // I ‘ J // J // 0

with exact rows and columns. We saw above that L1,2 is stable under injective envelopes in
C, so I and J lie in L1,2 because X and Z lie in L1,2. Hence I ‘ J also lies in L1,2 and its
subobject Y lies in L1,2 as well by the first paragraph above. □

Corollary 3.5. Suppose that L1 X L2 “ 0. Then L1 _ L2 “ L1,2, and L1 _ L2 is stable in C.
Proof. Clearly L1,2 must be contained in any localizing subcategory of C containing both L1

and L2, so L1,2 is contained in L1 _ L2. Conversely, L1,2 is a localizing subcategory of C by
Prop. 3.4, so L1_L2 is contained in L1,2. Hence L1_L2 “ L1,2 is stable in C by Prop. 3.4. □

Corollary 3.6. If L1 X L2 “ 0 then tL1_L2 “ tL1 ‘ tL2 and tL1 ˝ tL2 “ tL2 ˝ tL1 “ 0.

Proof. Let X be an object in C. Note first that tL1pXqXtL2pXq lies in L1XL2 and is therefore
zero. Hence the sum tL1pXq ` tL2pXq is direct, and is therefore contained in tL1_L2pXq. On
the other hand, tL1_L2pXq is an object in L1 _L2, so it is of the form X1 ‘X2 with Xi lying
in Li for i “ 1, 2. Then Xi ď tLipXq for i “ 1, 2, so tL1_L2pXq “ X1 ‘ X2 is contained in
ptL1 ‘ tL2qpXq. Finally tL1ptL2pXqq and tL2ptL1pXqq both lie in L1 X L2 and are therefore
zero. □

Proposition 3.7. If L1 and L2 are stable localizing subcategories of C then L1 _L2 is stable
as well.

Proof. Since obviously with L1 and L2 also L1XL2 is stable in C we use Lemma 3.3 to confirm
that L1{pL1 X L2q and L2{pL1 X L2q are stable in C{pL1 X L2q. Their intersection is zero so
that pL1{pL1 X L2qq _ pL2{pL1 X L2qq is stable in C{pL1 X L2q by Cor. 3.5. Using [NT] Prop.
3.2 one checks that pL1{pL1 X L2qq _ pL2{pL1 X L2qq “ pL1 _ L2q{pL1 X L2q. The reverse
direction in Lemma 3.3 finally implies that L1 _ L2 is stable in C. □

4. Identifying the Gabriel gluing

We fix two localizing subcategories L0,L1 of C. We then have the following natural com-
mutative diagram of Grothendieck categories and exact quotient functors1:

C{L0

F0

&&
C{pL0 X L1q

Q0

88

Q1 &&

C{pL0 _ L1q

C{L1

F1

88

1For simplicity we take the point of view that quotient categories have the same objects as the categories
they are the quotient of.
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In this situation [Gab] §IV.1 on p. 439 introduces the recollement category

D :“ pC{L0q
ź

C{pL0_L1q

pC{L1q

In addition [Gab] Prop. 1 on p. 440 gives us a natural functor

R : C{pL0 X L1q ÝÑ pC{L0q
ź

C{pL0_L1q

pC{L1q

which fits in the above diagram as follows:

(2) C{L0

F0

$$
C{pL0 X L1q

Q0

33

Q1

++

R // pC{L0q
ś

C{pL0_L1q

pC{L1q

T0

77

T1

''

C{pL0 _ L1q

C{L1

F1

::

Lemma 4.1. The functor R is exact and faithful.

Proof. Given an object X in C{pL0 X L1q, let ηX : F0Q0pXq Ñ F1Q1pXq be the identity
map of X viewed in C{pL0 _ L1q. Then the functor R is given on objects by RpXq “

pQ0pXq, Q1pXq, ηXq. It follows immediately from the exactness of Q0 and Q1 that R is also
exact.

Since R is additive, to show that R is a faithful functor, it is enough to show that Rpfq “ 0
implies f “ 0. Suppose, then, that f : X Ñ Y is such that Rpfq : RpXq Ñ RpY q is zero in
the recollement category D. Then the projections of Rpfq to C{L0 and C{L1 are zero, so both
Q0pfq : Q0pXq Ñ Q0pY q and Q1pfq : Q1pXq Ñ Q1pY q are zero. This means that impfq lies
in L1{pL0 X L1q as well as in L1{pL0 X L1q. So impfq “ 0 and hence f “ 0. We see that R is
faithful. □

All the functors Qi, Fi (by Remark 2.2) and Ti (by [Gab] Lemma 1 on p. 442) are quotient
functors and hence are exact and have right adjoint section functors Ui,Hi, and Si respectively.
For the convenience of the reader this is depicted in the following completed diagram:

(3) C{L0

U0

uu

S0

||

F0

��

C{pL0 X L1q

Q0

55

Q1

))

R // pC{L0q
ś

C{pL0_L1q

pC{L1q

T0

<<

T1

""

C{pL0 _ L1q

H0

^^

H1

��
C{L1

U1

ii

S1

bb

F1

@@
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(We will not use the functors Si, though.)
These section functors allow us to construct a functor

V : pC{L0q
ź

C{pL0_L1q

pC{L1q Ñ C{pL0 X L1q

in the opposite direction. For this we need:

‚ The composite Ui ˝Hi is a section functor for the composite Fi ˝Qi for i “ 0, 1. But
F0˝Q0 “ F1˝Q1 (by our convention for quotient categories). Hence we have a natural

isomorphism ι : U0 ˝H0
–
ÝÑ U1 ˝H1.

‚ Let ηi : idC{Li
Ñ Hi ˝ Fi and εi : Fi ˝Hi

–
ÝÑ idC{pLi_L1´iq

, for i “ 0, 1, denote the unit
and the counit of the adjunction between Fi and Hi, respectively.

‚ Let δi : idC{pLiXL1´iq
Ñ Ui ˝Qi and γi : Qi ˝ Ui

–
ÝÑ idC{Li

, for i “ 0, 1, denote the unit
and the counit of the adjunction between Qi and Ui, respectively.

Let now Θ “ pX0, X1, σq be an object in D. Recall that σ is an isomorphism F0pX0q
σ

ÝÑ
–

F1pX1q. Consider now the solid arrow diagram

(4) V pX0, X1, σq

π0,Θ

��

π1,Θ // U1pX1q

U1pη1,X1
q

��
U0pX0q

U0pη0,X0
q
// U0H0F0pX0q

U0H0pσq

–
// U0H0F1pX1q

ιF1pX1q

–
// U1H1F1pX1q

and take its fiber product V pX0, X1, σq in C{pL0 X L1q.
In order to investigate the relation between R and V we first have to recall a few facts

about adjunctions.

Lemma 4.2. i. Let A : A Ñ B be a functor and let Bi : B Ñ A, for i “ 0, 1, be two
right adjoint functors to A with corresponding counits αi : A ˝ Bi Ñ idB and units

βi : idA Ñ Bi ˝A. Then there is a unique natural isomorphism ν : B0
–
ÝÑ B1 such that

the diagrams

B0 ˝A
νAp´q // B1 ˝A

idA

β0

cc

β1

;; and A ˝B0
Apνq //

α0 ##

A ˝B1

α1{{
idB

are commutative; it is given by

νY “ B1pα0,Y q ˝ β1,B0pY q : B0pY q Ñ B1AB0pY q Ñ B1pY q for Y in B.

ii. Let A : A Ñ A1 be a functor with right adjoint B : A1 Ñ A and counit α and unit
β; furthermore, let A1 : A1 Ñ A2 be a functor with right adjoint B1 : A2 Ñ A1 and
counit α1 and unit β1. Then A1 ˝ A : A Ñ A2 has the right adjoint B ˝ B1 : A2 Ñ A;
the corresponding counit and unit are the composites

A1ABB1p´q
A1pαB1p´qq

ÝÝÝÝÝÝÝÑ A1B1p´q
α1

´
ÝÝÑ idA2p´q and idAp´q

β´
ÝÝÑ BAp´q

Bpβ1
Ap´q

q

ÝÝÝÝÝÝÑ BB1A1Ap´q,

respectively.



10 KONSTANTIN ARDAKOV, PETER SCHNEIDER

Proof. i. This is well known of course. But for the convenience of the reader we sketch a proof.
The two adjunction isomorphisms

HomApX,B0pY qq

ψX,Y–

��

HomBpApXq, Y q

adj0

–

44

adj1

–

**
HomApX,B1pY qq

give rise to the natural isomorphism ψ. By the Yoneda lemma it has to be of the form

ψX,Y “ HomApX, νY q for a unique natural isomorphism ν : B0
–
ÝÑ B1. The units satisfy

βi,X “ adjipidApXqq .

It immediately follows that νApXq ˝ β0,X “ β1,X which is the commutativity of the left hand
diagram. The counits satisfy

adjipαi,Y q “ idBipY q .

By, vice versa, expressing the adji and hence ψ in terms of the units and counits one easily
derives the asserted formula for νY .

Finally consider the diagram

AB0pY q
Apβ1,B0pY qq

// AB1AB0pY q

α1,AB0pY q

��

AB1pα0,Y q
// AB1pY q

α1,Y

��
AB0pY q

α0,Y // Y.

The left hand part commutes by one of the two triangular identities for the adjunction between
A and B1 ([ML] IV.1 Thm. 1), the right hand one by the naturality of α1. The composite of the
top horizontal arrows is equal to ApνY q by the formula for νY . This shows the commutativity
of the right hand diagram in the assertion.

ii. [ML] IV.8 Thm. 1. □

We first consider the solid part fo the diagram (4) for an object Θ of the form Θ “ RpXq “

pQ0pXq, Q1pXq, ηXq. Then U0H0pηXq is simply the identity morphism. Hence this solid part
becomes the solid part of the diagram
(5)

X
δ1,X

--
δ0,X

��

U1Q1pXq

U1pη1,Q1pXqq

��
U0Q0pXq

U0pη0,Q0pXqq
// U0H0F0Q0pXq “ U0H0F1Q1pXq

ιF1Q1pXq

–
// U1H1F1Q1pXq
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If ρi denotes the unit for the adjunction between F1 ˝Q1 and Ui ˝Hi then Lemma 4.2.ii tells
us that ρi,X “ Uipηi,QipXqq ˝ δi,X . Hence the complete diagram (5) simplifies to the diagram

X
ρ0,X

xx

ρ1,X

&&
U0H0F1Q1pXq

ιF1Q1pXq // U1H1F1Q1pXq,

which commutes by Lemma 4.2.i. By the universal property of the fiber product we therefore
obtain a natural transformation

(6) idC{pL0XL1q ÝÑ V ˝R .

Next we study the other composite R ˝ V . But for this we will always assume in the
following that L0 and L1 are stable.

Lemma 4.3. Suppose that L1 X L2 “ 0; we then have:

i. ExtjCpX0, X1q “ 0 for any X0 in L0 and X1 in L1 and any j ě 0.
ii. For i “ 0, 1 any object in Li is L1´i-closed.
iii. For i “ 0, 1 and any j ě 0 the derived functor RjUi sends pL0 _ L1q{Li to L1´i.

Proof. i. Let f : X0 Ñ X1 be a morphism in C. Then impfq is a quotient object of X0, so
it lies in L0; on the other hand it is a subobject of X1 so it lies in L1. Hence impfq lies in
L0 X L1 and is therefore zero. Hence f “ 0, so HomCpX0, X1q “ 0.

Choose an injective resolution X1
»
ÝÑ I‚ in C. Since X1 lies in L1 which is stable in C, we

see that Ij lies in L1 for all j ě 0, so HomCpX0, I
jq “ 0 for all j ě 0 by the first paragraph.

Therefore ExtjCpX0, X1q “ HjpHomCpX0, I
‚qq “ 0 as well.

ii. Let X be an object in Li, so X “ tLipXq. Then tL1´ipXq “ tL1´iptLipXqq “ 0 by Cor.
3.6, so X is L1´i-torsion-free. Next, any short exact sequence 0 Ñ X Ñ Y Ñ Z Ñ 0 with
Z lying in L1´i must split, because Ext1CpZ,Xq “ 0 by i. Hence X is L1´i-closed by [Gab]
Lemma 1.b on p. 370.

iii. Every object Y of pL0 _ L1q{Li is of the form Y “ QipXi ‘X1´iq, where Xj lies in Lj
for j “ 0, 1. Since QipXiq “ 0, we see that UipY q “ UiQipX1´iq. However X1´i lies in L1´i,
so it is Li-closed by ii. Therefore UiQipX1´iq – X1´i, so UipY q – X1´i lies in L1´i.

Now pick an injective resolution Y
»
ÝÑ I‚ in C{Li. From Cor. 3.5 we know that L0 _ L1 is

stable in C. Hence pL0 _L1q{Li is stable in C{Li by Lemma 3.3. It follows that the resolution
I‚ lies, in fact, in pL0 _ L1q{Li. Applying now the first paragraph with each Ij the assertion
easily follows. □

Lemma 4.4. For i “ 0, 1 and any j ě 0 the derived functor RjUi sends pL0 _ L1q{Li to
L1´i{pL0 X L1q.

Proof. Write N :“ L0 X L1. By the universal property of quotient categories we have the
following diagram of exact quotient functors:

C //

��

C{N

Q1
i

��

Qi

ttC{Li pC{N q{pLi{N q
Bi

oo
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Note that Qi is the functor appearing in the basic diagram (2). By Remark 2.2 the functor

Bi is an equivalence. Fix a quasi-inverse Ai : C{Li
»
ÝÑ pC{N q{pLi{N q to Bi. Now, AiQi “

AiBiQ
1
i – Q1

i. Since Bi is a right adjoint to Ai and Ui is a right adjoint to Qi, the functor
U 1
i :“ UiBi is a right adjoint to AiQi – Q1

i.
We have to show that RjpQ1´iUiq kills pL0 _ L1q{Li for all j ě 0. This has already been

shown in the case where N “ 0 in Lemma 4.3.iii. Fix j ě 0. Now, L0{N and L1{N are
stable localizing subcategories of C{N by Lemma 3.3, and their intersection is zero. Hence

RjpQ1
1´iU

1
iq kills pL0{N q_pL1{N q

Li{N by this special case.

We have Q1
1´i – A1´iQ1´i and U

1
i “ UiBi. Since A1´i and Bi are equivalences of categories,

we deduce that RjpQ1´iUiqBi kills
pL0{N q_pL1{N q

Li{N . As noted already in the proof of Prop. 3.7,

we have pL0{N q _ pL1{N q “ pL0 _ L1q{N . Hence RjpQ1´iUiqBi kills
pL0_L1q{N

Li{N .

Let X be an object of pL0 _ L1q{Li. Then X “ QipY q for some object Y of pL0 _ L1q{N .

But Qi “ BiQ
1
i, so X “ BiQ

1
ipY q, where Q1

ipY q lies in pL0_L1q{N
Li{N . Therefore RjpQ1´iUiqpXq “

RjpQ1´iUiqBiQ
1
ipY q “ 0 by the above. □

We claim that the map Q0pπ0,Θq : Q0V pX0, X1, σq
–
ÝÑ Q0U0pX0q is an isomorphism. Since

the functor Q0 is exact applying it to the diagram (4) results in another fiber product diagram.
Hence it is enough to show that the map Q0U1pη1,X1q : Q1U1pX1q Ñ Q0U1H1F1pX1q is
an isomorphism. By [Gab] Prop. 3.b on p. 371 kernel and cokernel of the map η1,X1 lie in
kerpF1q “ pL0 _ L1q{L1. On the other hand, by Lemma 4.4, the derived functors Q0R

jU1 “

RjpQ0U1q, for any j ě 0, are zero on pL0 _ L1q{L1. It easily follows that Q0U1pη1,X1q is

an isomorphism. By symmetry we have that Q1pπ1,Θq : Q1V pX0, X1, σq
–
ÝÑ Q1U1pX1q is an

isomorphism as well.

Proposition 4.5. Suppose that L0 and L1 are stable. Then

RV pX0, X1, σq
pγ0,X0

˝Q0pπ0,Θq,γ1,X1
˝Q1pπ1,Θqq

ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ pX0, X1, σq for Θ “ pX0, X1, σq

is a natural isomorphism between functors on D, and R : C{pL0 XL1q
»
ÝÑ D is an equivalence

of categories.

Proof. For the first part of the assertion it remains to show that the diagram

F0Q0V pΘq

ηV pΘq“id

��

F0pγ0,X0
˝Q0pπ0,Θqq

// F0pX0q

σ

��
F1Q1V pΘq

F1pγ1,X1
˝Q1pπ1,Θqq

// F1pX1q

is commutative. Consider the commutative diagram:

Q0V pX0, X1, σq

Q0pπ0,Θq

��

Q0pπ1,Θq
// Q0U1pX1q

Q0U1pη1,X1
q

��
Q0U0pX0q

γ0,X0 –

��

Q0U0pη0,X0
q
// Q0U0H0F0pX0q

γ0,H0F0pX0q –

��

Q0U0H0pσq

–
// Q0U0H0F1pX1q

γ0,H0F1pX1q –

��

Q0pιF1pX1qq

–
// Q0U1H1F1pX1q

X0

η0,X0 // H0F0pX0q
H0pσq

–
// H0F1pX1q
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The upper square is Q0 applied to the diagram (4), which is still a fiber product diagram.
The lower two squares are commutative by the naturality of the counit γ0. We now apply the
functor F0. First notice that the bottom line becomes the top line of the diagram

F0pX0q
F0pη0,X0

q
// F0H0F0pX0q

F0H0pσq

–
//

ε0,F0pX0q –

��

F0H0F1pX1q

ε0,F1pX1q –

��
F0pX0q F0pX0q

σ

–
// F1pX1q.

The commutativity of the left square is a general property of adjunctions ([ML] IV.1 Thm.
1(ii)), the one of the right square is the naturality of the counit ε0. If we combine this diagram
with F0 applied to the previous diagram we obtain the commutative diagram

F0Q0V pX0, X1, σq

F0pγ0,X0
˝Q0pπ0,Θqq

��

F0Q0pπ1,Θq
// F0Q0U1pX1q

F0Q0U1pη1,X1
q

��

F1Q1U1pX1q

F1Q1U1pη1,X1
q

��
F0Q0U1H1F1pX1q F1Q1U1H1F1pX1q

F0Q0U0H0F1pX1q

F0Q0pιF1pX1qq–

OO

F0pγ0,H0F1pX1qq–

��

F1Q1U0H0F1pX1q

F1Q1pιF1pX1qq–

OO

F0H0F1pX1q

ε0,F1pX1q–

��
F0pX0q

σ // F1pX1q .

By the analog for X1 of our earlier argument for X0 the diagram

F1Q1U1pX1q

F1Q1U1pη1,X1
q

��

F1pγ1,X1
q

–
// F1pX1q

F1pη1,X1
q

��

F1pX1q

F1Q1U1H1F1pX1q
F1pγ1,H1F1pX1qq

–
// F1H1F1pX1q

ε1,F1pX1q

–
// F1pX1q

is commutative. The combination of these last two diagrams results in the commutative
diagram

F0Q0V pX0, X1, σq

F0pγ0,X0
˝Q0pπ0,Θqq

��

F1pγ1,X1
˝Q1pπ1,Θqq

// F1pX1q

F0pX0q
σ // F1pX1q

?

OO
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where ? is the solid arrow composite isomorphism

F0Q0U0H0F1pX1q

F0pγ0,H0F1pX1qq –

��

F0Q0pιF1pX1qq

–
// F0Q0U1H1F1pX1q F1Q1U1H1F1pX1q

F1pγ1,H1F1pX1qq–

��
F0H0F1pX1q

ε0,F1pX1q –

��

F1H1F1pX1q

ε1,F1pX1q–

��
F1pX1q

? // F1pX1q.

This reduces us to showing that ?, in fact, is the identity. By Lemma 4.2.ii the compositions
of the perpendicular arrows are the counits τi of the adjunctions between F0 ˝ Q0 “ F1 ˝ Q1

and Ui ˝Hi. Hence the above diagram can be rewritten as

F0Q0U0H0F1pX1q

τ0,F1pX1q –

��

F0Q0pιF1pX1qq

–
// F0Q0U1H1F1pX1q

τ1,F1pX1q–

��
F1pX1q

id // F1pX1q.

It is commutative by Lemma 4.2.i.
By the first part of the assertion the functor R is full and is essentially surjective on objects.

But by Lemma 4.1 it is also faithful. Hence it must be an equivalence. □

Since we will not use it we leave it to the reader to verify that the natural transformation
(6) is the unit for the adjunction between R and V .

The above result greatly generalizes [Gab] Prop. 2 on p. 441.

Proposition 4.6. For any finitely many stable localizing subcategories L1, . . . ,Ln of C the
natural maps

0 // Z
`

C{pL1 X . . .X Lnq
˘

//
śn
i“1 ZpC{Liq

//
//
ś

i,j Z
`

C{pLi _ Ljq
˘

form an exact sequence.

Proof. By induction w.r.t. n we only need to establish the case n “ 2. By [Gab] p. 446 we
always have the exact sequence

0 // Z
`

pC{L1q
ś

C{pL1_L2q

pC{L2q
˘

// ZpC{L1q ˆ ZpC{L2q
//
// ZpC{pL1 _ L2qq .

But under the stability assumption we may, by Prop. 4.5, identify the left hand term with
Z

`

C{pL1 X L2q
˘

. □

5. The central sheaf

We will make precise in which way L ÞÑ ZpC{Lq is a sheaf.
The set LpCq partially ordered by inclusion together with X and _ is a lattice. By Prop.

3.7 the subset LstpCq Ď LpCq of all stable localizing subcategories is a sublattice.

Proposition 5.1. The lattice LpCq is distributive.
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Proof. The proof given in [Go2] Prop. 29.1 in case C “ ModpRq for any ring R works in
general. For the convenience of the reader we provide one more detail. For avoiding confusion
we first point out that Golan defines torsion theories always to be hereditary and therefore
to correspond to localizing subcategories. The proof in loc. cit. reduces the assertion to the
following claim: Suppose that an object X in C is Li-torsion-free for i “ 1, 2; then it is also
L1 _ L2-torsion-free. To see this let LpXq denoted the localizing subcategory cogenerated
by the injective hull EpXq. Since X is Li-torsion-free one has Li Ď LpXq. It follows that
L1 _L2 Ď LpXq. But by definition EpXq is LpXq-torsion-free and hence is a fortiori L1 _L2-
torsion-free. Therefore X must be L1 _ L2-torsion-free. □

We now view LstpCq as a category with objects being the elements of LstpCq and where the
morphisms L2 Ñ L1 are given by the inclusions L1 Ď L2. For L and L1, . . . ,Ln in LstpCq we
call tLiu1ďiďn a covering of L if L “

Ş

i Li.
Lemma 5.2. With the above notion of coverings the category LstpCq is a Grothendieck site.

Proof. Since any diagram in LstpCq of the form

L1 _ L2

��

// L2

��
L1

// L

is a fiber product diagram the category LstpCq has fiber products. Obviously coverings compose
into coverings. That any base change of a covering again is a covering is immediate from the
distributivity in Prop. 5.1. □

Obviously L ÞÑ ZpC{Lq is a presheaf on the site LstpCq.

Theorem 5.3. ZCpLq :“ ZpC{Lq is a sheaf on LstpCq.

Proof. This is now immediate from Prop. 4.6. □

6. The locally noetherian case

The injective spectrum SppDq of a Grothendieck category is defined to be the collection of
isomorphism classes of indecomposable injective objects of D. It is a set (cf. [Pop] p. 331).

Throughout this section we assume that our Grothendieck category C is locally noetherian.
We will construct an alternative version of the central sheaf ZC which will be a sheaf on the
topological space SppCq equipped with the so-called stable topology.

Remark 6.1. Let L be any localizing subcategory of C; then L and C{L are locally noetherian,
and the section functor C{L Ñ C commutes with inductive limits.

Proof. [Gab] Cor. 1 on p. 379. □

For any localizing subcategory L of a Grothendieck category D one defines the subset

ApLq :“ trEs P SppDq : HomCpV,Eq “ 0 for any V P obpLqu

of SppDq. In the case of C these subsets ApLq form the open subsets of a topology on SppCq

which is called the dual-Ziegler topology (cf. [Her] Thm. 3.4 2). In fact, by [Her] Theorems 2.8

2The original Ziegler topology used in [Her] has the property that arbitrary intersections of open subsets
are open; this means that defining a set to be dual-Ziegler open precisely when it is Ziegler closed defines a
topology on SppCq.
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and 3.8, the map

collection of all localizing
»

ÝÝÑ set of all dual-Ziegler open(7)

subcategories of C subsets of SppCq

L ÞÝÑ ApLq

is an inclusion reversing bijection. This means that the dual-Ziegler open subsets of SppCq

classify the localizing subcategories of C: L can be reconstructed from ApLq by

obpLq “ tV P obpCq : HomCpV,Eq “ 0 for all rEs P ApLqu.

It also implies that

ApL1 X L2q “ ApL1q YApL2q and ApL1 _ L2q “ ApL1q XApL2q .

Lemma 6.2. For any localizing subcategory L of C the following are equivalent:

(a) L is stable;
(b) any indecomposable injective object of C either lies in L or has no non-zero subobject

lying in L.

Proof. We argue similarly as in [Gol] Prop. 11.3.
paq ùñ pbq: Let E be an indecomposable injective object in C. Suppose that tLpEq ‰ 0.

Then E is an injective hull of tLpEq and hence, by stability, is contained in L.
pbq ùñ paq: Since C is locally noetherian we may write an injective hull EpV q of an object

V lying in L as a direct sum EpV q “ ‘iPIEi of indecomposable injective objects Ei. Since
Ei X V ‰ 0 lies in L for any i P I we see that all Ei and hence EpV q lie in L. □

Corollary 6.3. Let L be a stable localizing subcategory of C; then

ApLq “ trEs P SppCq : E R obpLqu .

The following is a straightforward generalization of [Lou] Prop. 4.

Lemma 6.4. For a subset A Ď SppCq the following are equivalent:

(a) A “ ApLq for a stable localizing subcategory L of C;
(b) if rEs P SppCq satisfies HomCpE,E1q ‰ 0 for some rE1s P A then rEs P A.

Proof. paq ùñ pbq: Let rE1s P ApLq such that HomCpE,E1q ‰ 0. Then E does not lie in L.
Since L is stable Lemma 6.2 applies and tells us that E does not have any non-zero subobject
lying in L. Hence rEs P ApLq “ A.

pbq ùñ paq: Let L be the localizing subcategory of C cogenerated by the E1 for rE1s P A. This
means that L is the full subcategory of those objects V in C which satisfy HomCpV,E1q “ 0
for any rE1s P A. It is immediate that A Ď ApLq. Consider any rEs P ApLq. Then E cannot
lie in L. Hence there must exist an rE1s P A such that HomCpE,E1q ‰ 0. It follows from (b)
that rEs P A. This shows that A “ ApLq. To establish that L is stable we use Lemma 6.2. We
have just seen that the E which do not lie in L must have rEs P ApLq. By the very definition
of ApLq such E do not have a non-zero subobject lying in L. □

A subset A Ď SppCq will be called stable if it is of the form A “ ApLq for some stable
localizing subcategory L of C. It is clear, for example from Lemma 6.4, that arbitrary inter-
sections and unions of stable subsets are stable again. Therefore the stable subsets are the
open subsets for a topology which we call the stable topology of SppCq.
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For any stable subset A Ď SppCq let LA denote the stable localizing subcategory of C such
that ApLAq “ A. The map A ÞÑ LA is inclusion reversing. Hence, for A1 Ď A2, we have a
quotient functor C{LA2 Ñ C{LA1 . This means that

(8) A stable ÞÝÑ ZCpAq :“ ZpC{LAq

is a presheaf of commutative rings on SppCq for the stable topology. Our goal in this section
is to prove the following theorem.

Theorem 6.5. ZC is a sheaf on SppCq for the stable topology.

We first need several preparations.

6.1. Center via injective cogenerators. We will write an element in ZpCq often as z “

pzM qM with zM “ evM pzq denoting the endomorphism of the object M in C defined by z and
being called the evaluation of Z in M .

Recall (cf. [Ste] §IV.6) that an injective object E in C is a cogenerator of C if and only if
any non-zero object M in C has a non-zero homomorphism M Ñ E. Moreover, since C has
arbitrary products ([Ste] Cor. X.4.4), there is then a monomorphism M ãÑ

ś

iPI E for some
index set I.

For any x P SppCq we fix a representative Ex in the isomorphism class x “ rExs. We
introduce the following objects

E‘
C :“

à

xPSppCq

Ex and EπC :“
ź

xPSppCq

Ex .

Both are injective objects, the former since C is locally noetherian ([Gab] Prop. 6 on p. 387)
and the latter for formal reasons.

Lemma 6.6. E‘
C and EπC are cogenerators of the category C.

Proof. Consider any object 0 ‰ M P obpCq. By Matlis’ theorem ([Gab] Thm. 2 on p. 388)
its injective hull EpMq decomposes as a direct sum of indecomposable injective objects, i.e.,
we have EpMq – ‘iEi ãÑ

ś

iEi with xi :“ rEis P SppCq. Hence we find an i0 such that

the composite homomorphism M
Ď
ÝÑ EpMq ãÑ ‘iEi

pri0
ÝÝÑ Ei0 – Exi0 ãÑ E‘

C ãÑ EπC is
non-zero. □

Definition 6.7. An injective cogenerator E of C is called a good cogenerator if it has a
subobject (and hence a direct factor) which is isomorphic to E‘

C .

Obviously E‘
C and EπC are good cogenerators. The reason for this definition is the following

fact.

Lemma 6.8. Let E be a good cogenerator of C; then, for any object M in C, there is an index
set I and a monomorphism M ãÑ ‘iPIE.

Proof. By Matlis’ theorem an injective hull EpMq ofM is of the form EpMq – ‘xPSppCq ‘iPIx

Ex for appropriate index sets Ix. By embedding all Ix into a common index set I the right
hand side is contained in ‘iPIE

‘
C . We obtain the sequence of monomorphismsM ãÑ EpMq ãÑ

‘iPIE
‘
C ãÑ ‘iPIE, where the last one exists by our assumption that E is good. □

Our goal in this section is to prove the following result.

Theorem 6.9. The evaluation map evE : ZpCq
–
ÝÑ ZpEndCpEqq, for any good cogenerator E

of C, is an isomorphism.
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For the proof we will construct a map in the opposite direction, using the definition of ZpCq.
We begin with the following observation. Let tXi : i P Iu and tYj : j P Ju be two collections
of objects in C. Set X :“ ‘iPIXi and Y :“ ‘jPJYj . Let ιi : Xi Ñ X and πj : Y Ñ Yj be the
canonical inclusions and projections. Then there is the natural composed map

(9) µ : HomCpX,Y q “
ź

i

HomCpXi,‘jYjq ãÑ
ź

i

HomCpXi,
ź

j

Yjq “
ź

i,j

HomCpXi, Yjq

that sends φ P HomCpX,Y q to its matrix µpφq :“ pφijq, where φij :“ πjφιi for all i, j. It is
visibly injective. 3

Suppose now that E is a good cogenerator, and let z P ZpEndCpEqq. To define an element
of ZpCq that corresponds to this z, we must construct elements zM P EndCpMq for all objects
M in C that commute with all homomorphisms in C. Obviously, if M “ ‘iPIE we define
zM :“ ‘i z. To simplify notation we write in the following EpIq :“ ‘iPIE for any index set I.

Lemma 6.10. Let I and J be two index sets. Then for all φ P HomCpEpIq, EpJqq, the following
square is commutative:

EpIq

z
EpIq

��

φ // EpJq

z
EpJq

��
EpIq

φ
// EpJq

Proof. For i P I, j P J let ιi : E ãÑ EpIq and πj : EpJq ↠ E be the inclusion into the ith
summand and the projection onto the jth summand, respectively. By the definitions of zEpIq

and zEpJq , we have πjzEpJq “ zπj and ιiz “ zEpIqιi. Let v :“ πjφιi P EndCpEq; then zv “ vz
because z P ZpEndCpEqq. Therefore

πjzEpJqφιi “ zπjφιi “ zv “ vz “ πjφιiz “ πjφzEpIqιi .

Hence zEpJqφ “ φzEpIq by the injectivity of µ. □

Now, given an arbitrary objectM in C, we can find, by our definition of a good cogenerator,
an exact sequence of the form

(10) 0 Ñ M
η

ÝÑ EpIq Ñ EpJq ,

and we can define zM : M Ñ M to be the unique homomorphism in C which makes the
following diagram commutative:

0 // M //

zM
��

EpIq //

z
EpIq

��

EpJq

z
EpJq

��
0 // M // EpIq // EpJq

Lemma 6.11. zM does not depend on the choice of the exact sequence (10).

3In Grothendieck categories we have the “usual” map ‘jYj Ñ
ś

j Yj and it is a monomorphism; see

Schubert H., Kategorien I, Satz 14.6.8.
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Proof. Suppose that 0 Ñ M
η1

ÝÝÑ EpI 1q Ñ EpJ 1q is another exact sequence which gives rise to
z1
M : M Ñ M ; then since EpI 1q is injective, we can find a homomorphism σ : EpIq Ñ EpI 1q

which makes

0 // M
η //

η1 !!

EpIq

σ
��

EpI 1q

commutative. Now consider the following diagram:

EpIq
z
EpIq //

σ

��

EpIq

σ

��

M

η

bb

zM // M

η

<<

0

>>``

  ~~
M

z1
M

//

η1

||

M
η1

""
EpI 1q

z
EpI1q

// EpI 1q.

The outer square is commutative by Lemma 6.10. The two trapezia on the sides commute by
definition of σ. The two trapezia on the top and bottom commute by the definition of zM
and z1

M , respectively. Chasing this diagram, we find that

η1zM “ σηzM “ σzEpIqη “ zEpI1qση “ zEpI1qη
1 “ η1z1

M .

Since η1 is a monomorphism, we conclude that zM “ z1
M as required. □

Lemma 6.12. Let θ :M Ñ M 1 be a homomorphism in C. Then zM 1θ “ θzM .

Proof. Choose exact sequences 0 Ñ M
η

ÝÑ EpIq Ñ EpJq and 0 Ñ M 1 η1

ÝÝÑ EpI 1q Ñ EpJ 1q.
Using the injectivity of EpI 1q together with Lemma 6.10, we can find a similar commutative
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diagram

EpIq
z
EpIq //

σ

��

EpIq

σ

��

M

η

bb

θ

��

zM // M

η

;;

θ

��

0

>>``

  ~~
M 1

zM 1

//

η1

||

M 1

η1

""
EpI 1q

z
EpI1q

// EpI 1q.

Chasing this diagram, we similarly find that

η1θzM “ σηzM “ σzEpIqη “ zEpI1qση “ zEpI1qη
1θ “ η1zM 1θ .

Because η1 is a monomorphism, θzM “ zM 1θ as required. □

Proof of Theorem 6.9. Let z P ZpEndCpEqq and define ψpzq :“ pzM qMPobpCq as constructed
above. Then Lemma 6.12 shows that ψpzq P ZpCq. By construction we have evEpψpzqq “ z.
Therefore evE is surjective.

For the injectivity let now z P ZpCq be such that zE “ 0. For any homomorphism f : U Ñ E
we have f ˝zU “ zE ˝f “ 0. But the cogenerator property means that the functor HomCp´, Eq

is faithful. It follows that zU “ 0. □

6.2. The sheaf property. We will proceed by comparing the presheaf ZC with another
presheaf defined as follows. Recall that we have fixed representatives of the isomorphism
classes x “ rExs P SppCq.

Definition 6.13. For every subset A of SppCq, we define

FpAq :“ tz “ pzxqx P
ź

xPA

ZpEndCpExqq : zyv “ vzx for all x, y P A and v P HomCpEx, Eyqu.

Evidently, F forms a presheaf on SppCq for the discrete topology.

Lemma 6.14. F is a sheaf for the stable topology of SppCq.

Proof. Suppose that tApiquiPI is a covering of some stable subset A of SppCq by stable subsets
Apiq, and let zpiq P FpApiqq be given for each i P I, such that zpiq|ApiqXApjq “ zpjq|ApiqXApjq for
each i, j P I. Then for each x P A, we may unambiguously define zx :“ zpiqx P ZpEndCpExqq

for any index i P I such that x P Apiq; this gives us a vector z P
ś

xPA ZpEndCpExqq such
that z|Apiq “ zpiq for all i P I. We must show that z P FpAq. To this end, let x, y P A and let
v P HomCpEx, Eyq; we must show that zyv “ vzx. If v “ 0 there is nothing to do, so we may
assume that v ‰ 0. Now, y P Apiq for some i P I; since Apiq is stable, also x P Apiq by Lemma
6.4. But then zyv “ vzx since x, y P Apiq and z|Apiq “ zpiq P FpApiqq. □
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For any subset A Ď SppCq let

LA :“ localizing subcategory of C cogenerated by the injective object EA :“ ‘xPAEx.

This means (cf. [Ste] proof of Prop. VI.3.7) that

LA is the full subcategory of all M P obpCq such that HomCpM,EAq “ 0.

Remark 6.15. Suppose that A “ ApLq for some localizing subcategory L of C; then LA “ L.
For this we recall from the beginning of this section that

ApLq “ tx P SppCq : HomCpM,Exq “ 0 for any M P obpLqu

and

obpLq “ tM P obpCq : HomCpM,Exq “ 0 for all x P ApLqu

“ tM P obpCq : HomCpM,
ź

xPApLq

Exq “ 0u.

Obviously, if HomCpM,
ś

xPApLq Exq “ 0 then HomCpM,‘xPApLqExq “ 0 as well. Vice versa,

suppose that HomCpM,‘xPApLqExq “ 0. Assuming that HomCpM,
ś

xPApLq Exq ‰ 0 we find

an y P ApLq such that HomCpM,Eyq ‰ 0, which is a contradiction. We conclude that

obpLq “ tM P obpCq : HomCpM,‘xPApLqExq “ 0u “ obpLApLqq .

Also recall from Lemma 6.4 that LA is stable if and only if A is stable.
For any localizing subcategory L of C we let qL : C Ñ C{L denote the quotient functor and

sL its right adjoint section functor. Recall that sL is fully faithful.

Lemma 6.16. Let L be a stable localizing subcategory of C. Then the quotient functor qL
restricts to an equivalence of categories between the full subcategory of all injective objects of
C which have no non-zero subobject contained in L and the full subcategory of all injective
objects of C{L.

Proof. By [Gab] Lemma 1 on p. 370 an injective object of C has no non-zero subobject
contained in L if and only if it is L-closed. We therefore consider the full subcategory D of
all L-closed objects of C. Then the restriction of qL to D is an equivalence of categories with
quasi-inverse sL, by [Gab] Prop. 3(a) and Cor. on p. 371. So it is enough to show that qL
sends the L-closed injectives in C to injectives in C{L, and that sL sends injectives in C{L to
the L-closed injectives in C.

Let I be an L-closed injective object in C. Then because L is stable, qLpIq is an injective
object in C{L by [Gab] Cor. 3 on p. 375. Conversely, let I be an injective object in C{L; then
sLpIq is an injective object in C since qL is an exact left adjoint to sL, and furthermore sLpIq

is L-closed by [Gab] Lemma 2 on p. 371. □

The injective objects Ex, for x P ApLq, by definition, and also the injective object EApLq,
by Remark 6.15, have no non-zero subobject contained in L. We now assume that L is stable.
It follows from [Gab] last paragraph on p. 383 (using the stability of L) that the rqLpExqs,
for x P ApLq, are precisely the elements of SppC{Lq, so that we choose these qLpExq as
representatives. The functor qL is a left adjoint and therefore commutes with arbitrary direct
sums; hence qLpEApLqq “ ‘xPApLq qLpExq “ E‘

C{L. The Lemma 6.16 then implies that

EApLq – sLpqLpEApLqqq “ sLpE‘

C{Lq .

But the functor sL is fully faithful. Therefore we obtain the following consequence.
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Corollary 6.17. Let L be a stable localizing subcategory of C. Then qLpEApLqq “ E‘

C{L, and

the functor qL induces an isomorphism of rings

EndCpEApLqq
–

ÝÝÑ EndC{LpE‘

C{Lq .

Note that for the same reason the functor qL also induces isomorphisms of rings

(11) EndCpExq
–

ÝÝÑ EndC{LpqLpExqq for any x P ApLq.

At this point we need a generalization of the well-known calculation of the center of a
matrix ring MnpRq over some associative ring R: central elements in MnpRq are necessarily
scalar matrices with entries in ZpRq.

Lemma 6.18. Let tXi : i P Iu be a collection of objects in C, and let X :“ ‘iPIXi. Then

ZpEndCpXqq “

tpziqi P
ź

iPI

ZpEndCpXiqq : zjv “ vzi for all i, j P I and v P HomCpXi, Xjqu.

Proof. Recall the injective map µ defined in (9). Suppose that α P ZpEndCpXqq. Take some
v P HomCpXi, Xjq and take any k, ℓ P I. Then πkαpιjvπiqιℓ “ πkpιjvπiqαιℓ; since πiιℓ “

δiℓ idXℓ
we deduce that

(12) δiℓαjkv “ δkjvαℓi for all i, j, k, ℓ P I, v P HomCpXi, Xjq .

Suppose that j ‰ k. Take ℓ :“ i :“ j and v :“ idXj in (12) to deduce that αjk “ 0 whenever
j ‰ k; thus the matrix µpαq of any α P ZpEndCpXqq is diagonal. Fixing i, j P I and taking
ℓ :“ i and k :“ j in (12) shows that αjjv “ vαii holds for all v P HomCpXi, Xjq. Taking i “ j
in this last equation shows that αii P ZpEndCpXiqq for all i P I. This shows that the map

ZpEndCpXqq Ñ tpziqi P
ź

iPI

ZpEndCpXiqq : zjv “ vzi for all v P HomCpXi, Xjqu

that sends α P ZpEndCpXqq to the vector pαiiq is well-defined; it is furthermore injective,
because µpαq is diagonal and because µ is injective.

To show that the map is surjective, take any pziqi P
ś

iPI ZpEndCpXiqq satisfying the given
condition and define α :“ ‘izi, an element of EndCpXq. We must show that α is central. Note
that πjα “ zjπj and αιi “ ιizi for all i, j P I, by the definition of α. Now if β P EndCpXq and
i, j P I, then applying the condition on the zi’s with v :“ πjβιi P HomCpXi, Xjq, we have

πjαβιi “ zjπjβιi “ zjv “ vzi “ πjβιizi “ πjβαιi .

Hence µpαβq “ µpβαq for all β P EndCpXq. Since µ is injective, we conclude that α is central
in EndCpXq as claimed. □

We let αA : ZpEndCpEAqq
–
ÝÑ FpAq be the isomorphism given by the above Lemma 6.18.
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Proposition 6.19. Let A Ď B be two stable subsets of SppCq. Then there is a commutative
diagram of commutative rings

(13) FpBq

res

��

ZpEndCpEBqq
αBoo

qLB //

γ

��

ZpEndC{LB
pE‘

C{LB
qq

Q

��

ZCpBq

ev
E‘
C{LBoo

res

��
FpAq ZpEndCpEAqqαA

oo
qLA

// ZpEndC{LA
pE‘

C{LA
qq ZCpAq.ev

E‘
C{LA

oo

Proof. Note that B “ ApLBq and A “ ApLAq by Remark 6.15. We let ι : EA ãÑ EB and
π : EB ↠ EB be the natural inclusion and projection maps, and define γpφq :“ π ˝ φ ˝ ι.
Then the first square commutes by the definitions of αB and αA. Let Q : C{LB Ñ C{LA be
the quotient functor, so that Q ˝ qLB

“ qLA
. Then

QpE‘

C{LB
q “ QqLB

pEBq “
à

xPB

qLA
pExq “

à

yPA

qLA
pEyq “ qLA

pEAq “ E‘

C{LA
.

Here the outer equalities come from Cor. 6.17. The middle equality holds true because
qLA

pExq “ 0 for any x P BzA: such an x does not lie in A “ ApLAq as noted at the be-
ginning of the proof, so the indecomposable injective Ex lies in the stable subcategory LA by
Lemma 6.2 and hence qLA

pExq “ 0. We now see that the middle square commutes. Finally,

the square on the right commutes because QpE‘

C{LB
q “ E‘

C{LA
as we saw above. □

Proof of Theorem 6.5. Let A be a stable subset of SppCq. By Cor. 6.17, the morphism qLA

appearing in the diagram p13q is an isomorphism. Therefore the composite map

ψA :“ αA ˝ q´1
LA

˝ evE‘

C{LA

: ZCpAq
–

ÝÝÑ FpAq

is an isomorphism of commutative rings by Lemma 6.18 and Thm. 6.9. Prop. 6.19 now tells
us that these maps ψA commute with the restriction maps in the presheaves ZC and F and

therefore combine to give an isomorphism of presheaves ψ : ZC
–

ÝÝÑ F . However F is a sheaf
by Lemma 6.14, so ZC must be a sheaf as well. □

6.3. Appendix: comparison with the work of Goldston-Mewborn. In the paper [GM],
the authors associate to a left noetherian ring R a sheaf U ÞÑ RU of non-commutative rings on
SppModpRqq equipped with a certain topology. In the case where R is commutative this topol-
ogy corresponds to the classical Zariski topology on SpecpRq under the canonical bijection
SpecpRq – SppModpRqq.

We recall [GM] p.20 that the closed sets in the Goldston-Mewborn topology on X :“
SppModpRqq are arbitrary intersections of subsets of the form KpIq, where I is a left ideal
in R, and KpIq consists of those points rE1s in X such that there exists rEs P X, a non-
zero module map α : R{I Ñ E and a directed path in G from rEs to rE1s. Here G is a
certain directed graph whose set of vertices is X; in view of [GM] Lemma 2.1, for two points
rEs, rE1s P X there is a directed path in G from rEs to rE1s precisely when HomRpE,E1q ‰ 0.

Lemma 6.20. Any open subset U of X in the Goldston-Mewborn topology is stable.

Proof. Without loss of generality we may assume that U “ XzKpIq. Let rE1s P U and let
rE2s P X be such that HomRpE2, E1q ‰ 0. By Lemma 6.4, it is enough to show that rE2s P U .
If not, then rE2s P KpIq so there is a path from rE3s to rE2s in G for some rE3s P X which
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admits a non-zero map α : R{I Ñ E3. But HomRpE2, E1q ‰ 0, so by [GM] Lemma 2.1, we
can find a path from rE2s to rE1s in G . Pasting these two paths together produces a path
from rE3s to rE1s in G and shows that rE1s P KpIq, which is a contradiction. □

Recall that we have fixed representatives of the isomorphism classes x “ rExs P SppModpRqq

and that we write EU :“ ‘xPUEx for every subset U of X. We denote the Goldston-Mewborn
sheaf of non-commutative rings on their topology by R; recall [GM] p. 23 that it is defined
as the bicommutator ring

RpUq :“ EndEndRpEU qpEU q.

For every subset V of U , we have the idempotent element of EndRpEU q which is the identity
on EV and zero on EUzV . Any f P RpUq has to commute with all of these idempotents, and
therefore must preserve the direct summand EV of EU . It follows that the above definition
makes sense on all subsets U of X, and produces a presheaf of non-commutative rings R.

Likewise, our sheaf F from Definition 6.13 is for the same reason a presheaf of rings defined
on all subsets of X. In order to compare the presheaves F and R, we need the following
elementary Lemma.

Lemma 6.21. For every R-module M , write BicRpMq :“ EndEndRpMqpMq for the bicommu-
tator ring. We have ZpEndRpMqq “ ZpBicRpMqq.

Proof. Let g : M Ñ M be an element in ZpBicRpMqq. Then g commutes with the action of
every element of R on M and therefore g P EndRpMq. Since g P BicRpMq, it commutes with
every element of EndRpMq and therefore in fact lies in ZpEndRpMqq.

Suppose now that f P ZpEndRpMqq. Then f :M Ñ M commutes with action of EndRpMq

on M and therefore lies in BicRpMq. Since f P EndRpMq, f commutes with the action of
every element of BicRpMq and therefore in fact lies in ZpBicRpMqq. □

We now proceed to relate F to R.

Proposition 6.22. The presheaf F embeds into the presheaf R, in such a way that for every
subset U of X, the image of FpUq in RpUq is equal to the center of RpUq.

Proof. For arbitrary subsets V Ď U of X, we can consider the following diagram:
ś

xPU

ZpEndRpExqq

pr

��

Ď // ś

xPEU

BicRpExq

pr

��

FpUq

ff

res

��

ZpEndRpEU qq

ś

res
jj

αU

–oo Ď // RpUq “ BicRpEU q

ś

res 66

res

��
FpV q

xx

ZpEndRpEV qq
αV

–oo Ď //

ś

res
tt

RpV q “ BicRpEV q

ś

res
((

ś

xPV

ZpEndRpExqq
Ď // ś

xPEV

BicRpExq

The maps αU and αV were defined after Lemma 6.18; it implies the commutativity of the
two triangles in the above diagram containing these two arrows. All of the arrows labelled
with the inclusion sign exist as a consequence of Lemma 6.21.

For the first statement, we have to show that the inner rectangle commutes. Note that
the outer rectangle commutes for trivial reasons. The trapezium on the left commutes by
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the definition of the restriction maps in F . The trapezium on the right commutes for similar
reasons. The commutativity of the remaining two trapezia is clear.

The second statement is now clear in view of Lemma 6.21. □

Corollary 6.23. Let R be a left noetherian ring, let C :“ ModpRq and let X “ SppCq. The
restriction of our central sheaf ZC to the Goldston-Mewborn topology on X embeds into the
sheaf R, in such a way that the image of ZCpUq in RpUq coincides with the center of RpUq

for every Goldston-Mewborn open subset U of X.

Proof. By the proof of Theorem 6.5, we have an isomorphism of presheaves ψ : ZC
–

ÝÑ F on
the stable subsets of X. Now apply Proposition 6.22. □

We emphasize that even in this setting, our sheaf ZC is defined on a much finer topology
on X than the one considered by Goldston-Mewborn. In the setting of an arbitrary locally
noetherian Grothendieck category, it is not even clear how to define the notion of the bicom-
mutator ring of an object, and hence how to extend the definition of Goldston-Mewborn’s
non-commutative sheaf R to this more general situation.

7. Other cases

There are two more cases where SppCq can be used for an alternative interpretation of the
central sheaf ZC .

7.1. The locally finitely presented case. Throughout this section we make the weaker
assumption that C is locally finitely presented. This means that the Grothendieck category
has a set of finitely presented generators. Then any object of C is a filtered colimit of finitely
presented objects.

Recall from Remark 6.1 that in the locally noetherian case all section functors commute
with filtered colimits. This is no longer the case for a general locally finitely presented C.
Therefore one restricts attention to the localizing subcategories L which are of finite type. By
definition this means that the corresponding section functor commutes with filtered colimits
whose transition maps are monomorphisms.

Remark 7.1. For any localizing subcategory L of finite type in C, the quotient category C{L
is, in general, only locally finitely generated.

Proof. [Ga0] Thm. 5.8 (compare also Prop. 5.9). □

Proposition 7.2. i. There is a topology on SppCq such that

collection of all localizing
»

ÝÝÑ set of all closed

subcategories of finite type of C subsets of SppCq

L ÞÝÑ ApLq

is an inclusion reversing bijection.
ii. For any localizing subcategories of finite type L1, L2, and tLiuiPI of C we have:

a) L1 X L2 and
Ž

iPI Li are of finite type;
b) ApL1 X L2q “ ApL1q YApL2q and Ap

Ž

iPI Liq “
Ş

iPI ApLiq.

Proof. For i. and ii.a) see [Gar] Thm. 11 and its proof. ii.b) then follows immediately. □

Corollary 7.3. Finite unions and intersections of stable closed subsets of SppCq are stable.
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Proof. The above Prop. 7.2.ii together with Prop. 3.7. □

Corollary 7.4. The presheaf A ÞÑ ZpC{LAq on SppCq has the sheaf property for finite cov-
erings of stable closed subsets by stable closed subsets.

Proof. This follows now directly from Prop. 4.6. □

That in the locally noetherian case we could prove the sheaf property for infinite coverings
as well relied very much on the fact that in this case any injective object is a direct sum
of indecomposables. This fails for any C of a more general kind. But one of the basic rea-
sons that Prop. 7.2 works is that a locally finitely generated category is cogenerated by its
indecomposable injective objects in the sense of [Kra] Lemma 3.1.

We also mention that the more restrictive case where C is locally coherent was treated in
[Her] and [Kra]. In this situation the section functor of a localizing subcategory of finite type
even commutes with filtered colimits and the corresponding quotient category again is locally
coherent ([Ga0] Thm. 5.14).

7.1.1. A basic case. An important class of Grothendieck categories where Prop. 7.2 and its
corollaries apply is the following. Let G be a locally profinite group and k be a field. We let
ModpGq denote the category of smooth G-representations in k-vector spaces. (Recall that a
G-representation V is called smooth if the stabilizer of any vector in V is open in G.) This
obviously is an (AB5) abelian category.

Lemma 7.5. Let U be a fundamental system of compact open subgroups of G. Then the
representations krG{U s, for U P U, form a set of generators of ModpGq.

Proof. Let α : V Ñ V 1 be a non-zero map and choose a v P V such that αpvq ‰ 0 as well as a
U P U which fixes v. Then the map αU : V U Ñ V 1U on U -fixed vectors is non-zero. It remains
to note that HomModpGqpkrG{U s,´q “ p´qU . □

It follows that ModpGq is a Grothendieck category. It clearly is locally of finite type.

Lemma 7.6. Let U Ď G be a compact open subgroup and M be a finite dimensional repre-
sentation in ModpUq. Then the compact induction indGU pMq is finitely presented in ModpGq.

Proof. We have

HomModpGqpind
G
U pMq, V q “ HomModpUqpM,V q “ pHomkpM,kq bk V qU .

Now use [Pop] Thm. 3.5.10 observing that the functor p´qU of U -invariants commutes with
filtered colimits. □

Proposition 7.7. The category ModpGq is locally finitely presented.

Proof. This is immediate from the above two lemmas. □

Remark 7.8. In [Sho] it is shown that for G “ SL2pF q with F {Qp any finite extension and
k a finite field of characteristic p the category ModpGq is locally coherent. Recently this has
been extended to G “ GL2pF q in [Tim].
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7.2. The locally coirreducible cases. Throughout this section we assume that C is locally
coirreducible. For the definition we refer to [Pop] p. 330. Any locally noetherian C and, more
generally, any C which has a Krull dimension in the sense of [Gab] p. 383 is locally coirreducible
by [Pop] Thm. 5.5.5. In contrast, a locally coherent category need not be locally coirreducible.

Lemma 7.9. For any localizing subcategory L of C the categories L and C{L are locally
coirreducible as well.

Proof. [Pop] Prop. 5.3.6. □

For the convenience of the reader we first recall the following elementary concept. Let S
be any set. A topological closure operator on S is a selfmap A ÞÑ A on the power set PpSq

satisfying:

(1) H “ H,
(2) A Ď A (in particular, X “ X),

(3) A “ A,
(4) AYB “ AYB.

Note that p4q implies

(5) A Ď B ùñ A Ď B.

A subset A Ă S is called closed if A “ A.
Consider an arbitrary family tAiuiPI of closed subsets and put A :“

Ş

iPI Ai. Then

A Ď A Ď
č

iPI

Ai “
č

iPI

Ai “ A .

It follows that A is closed. This shows that there is a unique topology on S whose closed
subsets are the closed subsets in the above sense.

For any localizing subcategory L of C we earlier defined the subset ApLq Ď SppCq. Vice
versa, for any subset A Ď SppCq, we define

LA :“ localizing subcategory of all Y such that HomCpY,Eq “ 0 for any rEs P A.

Proposition 7.10. i. L “ LApLq for any localizing subcategory L;
ii. the map A ÞÑ ApLAq is a topological closure operator on SppCq.

Proof. i. We obviously have

L Ď LApLq and ApLq Ď ApLApLqq Ď ApLq ,

hence

(14) ApLApLqq “ ApLq .

It follows from [Gab] Cor. 2 on p. 375 that the section functor C{L Ñ C induces a bijection

SppC{Lq
»
ÝÑ ApLq. (Note that the above even holds for a general Grothendieck category.)

Therefore [Pop] Cor. 5.3.8 says that (14) implies that L “ LApLq.
ii. [Pop] Cor. 5.3.9. □

We call a subset of SppCq closed if it is closed w.r.t. the closure operator in the above Prop.
7.10. Then part i. of this proposition says that all subsets of the form ApLq are closed and
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part ii. says that any closed subset A “ A “ ApLAq comes from a localizing subcategory. It
follows that

collection of all localizing subcategories of C »
ÝÝÑ set of all closed subsets of SppCq

L ÞÝÑ ApLq

is a bijection. As in section 7.1 we deduce

Corollary 7.11. The presheaf A ÞÑ ZpC{LAq on SppCq has the sheaf property for finite
coverings of stable closed subsets by stable closed subsets.
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