THE CENTRAL SHEAF OF A GROTHENDIECK CATEGORY
KONSTANTIN ARDAKOV, PETER SCHNEIDER

ABSTRACT. The center Z(A) of an abelian category A is the endomorphism ring of the
identity functor on that category. A localizing subcategory of a Grothendieck category C is
said to be stable if it is stable under essential extensions. The set L**(C) of stable localizing
subcategories of C is partially ordered under reverse inclusion. We show £ — Z(C/L) defines
a sheaf of commutative rings on L*!(C) with respect to finite coverings. When C is assumed
to be locally noetherian, we also show that the sheaf condition holds for arbitrary coverings.

1. INTRODUCTION

1.1. Background. During the initial stages of the local Langlands program the focus was
entirely on irreducible smooth representations of p-adic reductive groups in characteristic
zero. All the basic constructions like parabolic induction and Jacquet modules involved only
finite length representations. Later, first Casselman to some extent but foremost Bernstein
in the 1980s, used the full force of categorical methods to make an in-depth study of the
whole category Mod(G) of complex smooth representations of a p-adic reductive group G.
One of Bernstein’s celebrated results is the computation of the center of the category Mod(G),
nowadays called the Bernstein center [BDKV]. This is a commutative ring of course. But it
is important to notice that, apart for some special cases, the category Mod(G) has infinitely
many connected components, each of which has a noetherian center corresponding to an affine
scheme. The disjoint union of all these affine schemes is a scheme, but which in general is no
longer quasi-compact and hence not affine. The ring of global sections of its structure sheaf is
the Bernstein center. It therefore makes sense to call this scheme the central space of Mod(G).

When we now move to smooth representations of p-adic groups in characteristic p, we
showed in [AS] that the center of the category Mod(G) is very small. For example, for semisim-
ple G it is simply the group ring of the center of G. We therefore pursue a point of view which
is an extrapolation of the remark above on the characteristic zero case. It is modelled on the
following obvious phenomenon exhibited by projective varieties: they have very interesting
structure sheaves but uninteresting rings of global functions. Suppose, for simplicity, that the
category Mod(G) is locally noetherian. It was Gabriel in [Gab] who introduced the spectrum
Sp(C) of indecomposable injective objects of a locally noetherian Grothendieck category C.
He showed that any localizing subcategory £ of C is completely determined by the natural
image of Sp(C/L) in Sp(C). It follows that the collection of localizing subcategories £ of C can
be classified in terms of these subsets of Sp(C) (see section 6 below for more details). They
form the open sets in a topology on Sp(C) that is now known as the dual-Ziegler topology.
Our idea now is to attempt to assemble the centers of all the quotient categories C/L into a
sheaf of commutative rings on Sp(C) in this topology (compare also [DEG]).
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In the commutative setting it was exactly this procedure which enabled Gabriel in [Gab]
to prove his famous reconstruction theorem. For a noetherian scheme X we have its lo-
cally noetherian Grothendieck category of quasi-coherent sheaves QCoh(X). He shows that
Sp(QCoh(X)) is in a natural bijection with X. The open subsets U of the scheme X, through
their images in Sp(QCoh(X)), give rise to certain localizing subcategories Ly of QCoh(X).
Then he shows that the ring of sections Ox (U) of the structure sheaf of the scheme X over U
is naturally isomorphic to the center Z(QCoh(X)/Ly) of the quotient category QCoh(X)/Ly .
Gabriel’s theorem was later generalized to arbitrary quasi-separated schemes ([Ros], [Bra]).

But leaving the commutative setting one immediately runs into problems. Here is a very
k k
0 k
k. Then Spec(T) is a two-point space {P, @}, and there are two non-trivial proper localizing
subcategories Lp and Lg of Mod(T") that correspond to P and (@, respectively, see (7) below.
If the assignment £ — Z(Mod(7')/L£) had been a sheaf, then it would follow that

simple example: let T = be the ring of upper-triangular 2 x 2 matrices over a field

Z(T) = Z(Mod(T)) = Z(Mod(T)/Lp) x Z(Mod(T)/Lo)

has dimension 2 as a k-vector space. But an easy calculation shows that in fact dimy Z(7T") = 1.

Going back to [Gab] one notices that he shows that in appropriate commutative contexts
all localizing subcategories have the additional property of being stable (see section 3 for
the definition). So it seems quite natural that in general one should impose stability as an
additional condition. We show in this paper that by doing so our idea can be carried through.
In fact, by replacing Sp(C) by the set of all stable localizing subcategories of C equipped with
a certain Grothendieck topology, we produce a “central sheaf” for arbitrary Grothendieck
categories. This does not contradict the above example, as only one of the singleton subsets
of Spec(T) corresponds to a stable localizing subcategory.

The emerging p-adic local Langlands program is very categorical. The papers [AS] and
[DEG] give a first evidence for the relevance of our construction in this context.

1.2. Stability and main results. Recall that an abelian category is said to be Grothendieck
if it has small coproducts (hence small colimits), filtered colimits are exact, and it has a gener-
ator. For a general Grothendieck category C, the injective spectrum Sp(C) could be the empty
set: these are the so-called continuous spectral categories, (cf. [Pop] p. 324), consequently, the
set of its localizing subcategories (or the hereditary torsion theories, [Go2], [Ste]) can be quite
difficult to classify. The basic outcome of this paper is the observation that, at least as far as
the behaviour of centers is concerned, the situation improves considerably if we restrict our
attention only to the stable localizing subcategories.

The stable localizing subcategories of C form a set denoted by L*(C). We equip this set
with the structure of a Grothendieck site as follows. We view L%(C) as a category whose
objects are the elements of L*!(C) and whose morphisms L2 — £ are given by the inclusions
Ly S Lo. For L and Ly, ..., L, in L¥(C) we call {£;}1<;<n a covering of L if L =), L;. Our
first main result for general Grothendieck categories reads as follows.

Theorem 1.1. For any Grothendieck category C, Zc(L) := Z(C/L) is a sheaf on L*(C).

This result will be a consequence of the following purely categorical statement, which we
prove in Prop. 4.5. We first recall that Gabriel (cf. [Gab] p. 439) introduced for any diagram
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of exact functors between abelian categories

Ao

A

N
o

the category Ag ] [ A1 which he calls the recollement of Ay and A; along A. We apply this
A

with A; := C/L; and A := C/(Ly v L1) and the corresponding quotient functors, where Lo
and L£; are two localizing subcategories of our Grothendieck category C and Ly v £1 denotes
the smallest localizing subcategory which contains Ly and £;. It will be easy to see that the
corresponding recollement receives a natural functor

(1) C/(LonL1) — (C/Lo) ] (C/La).

C/(LovLy)

The following is our basic result, which crucially depends on the notion of stability.
Theorem 1.2. The functor appearing in (1) is an equivalence provided Ly and L1 are stable.

The restriction to the case of finite coverings in Thm. 1.1 can be removed if we impose a
finiteness condition on the Grothendieck category C as follows.

Recall that the injective spectrum Sp(C) of any Grothendieck category C is the set of
isomorphism classes of indecomposable injective objects of C (cf. [Pop] p. 331). If L is a
localizing subcategory of C, then an object of C is said to be L-torsion-free if it has no non-
zero subobjects in £, and the subset A(L) < Sp(C) is by definition the set of isomorphism
classes of indecomposable L-torsion-free injective objects. Note that A(L) is precisely the
image of Sp(C/L) in Sp(C) that was mentioned in section 1.1 above. A subset A < Sp(C)
will be called stable if it is of the form A(L) for some stable localizing subcategory £ of C.

Recall that C is said to be locally noetherian if it admits a set of noetherian generators. The
work of Gabriel [Gab] implies that when C is locally noetherian, the map £ — A(L) gives a
bijection between the set L*!(C) and the set of stable subsets of Sp(C). It is easy to see that the
stable subsets form a topology on Sp(C) which is coarser than the dual-Ziegler topology; we
call it the stable topology. For any stable subset A < Sp(C), let L4 denote the corresponding
stable localizing subcategory of C such that A(L4) = A. The map A — L4 is inclusion
reversing. Hence, for stable subsets 41 € Ay, we have a quotient functor C/L4, — C/L4,.
This means that the rule A — Z¢(A) := Z(C/L4) defines a presheaf Z¢; on Sp(C).

Our second main result then reads as follows.

Theorem 1.3. Suppose that C is a locally noetherian Grothendieck category. Then Z¢ is a
sheaf on Sp(C) for the stable topology.

Equivalently, the presheaf Z; appearing in Thm. 1.1 satisfies the sheaf condition for arbi-
trary coverings under the assumption that C is locally noetherian.

In the case where C = Mod(R) for some non-commutative noetherian ring R, a sheaf of
non-commutative rings R on Sp(C) in a topology, which is coarser than our stable topology, is
constructed in [GM]. In section 6.3 we show that our sheaf Z¢; embeds into R with image being
sectionwise the center of R. See also [Lou] for this ring theoretic setting. But the techniques
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in these papers rely heavily on the theory of rings of quotients ([Ste]) and do not generalize
to the case of a general locally noetherian category.

We have shown in [AS2] that if G is the group SL2(Q)) then Mod(G) is a locally noetherian
category. In that paper, we also explain how to calculate Sp(Mod(G)) and give a uniform
construction of a large family of stable subsets of Sp(Mod(G)). The resulting sheaf Zyjoq(a)
is then closely related to the recent work of Dotto-Emerton-Gee [DEG].

In fact, in lectures in Dublin in July 2019 about [DEG], Emerton talked about the category
Mod, (G) of mod-p smooth G = GL2(Qy)-representations with a fixed central character x. He
made the very inspiring suggestion that the center of this category is small and uninteresting,
but that this only reflects the fact that this center is the ring of global sections of an interesting
sheaf formed by the centers of the quotient categories of Mod, (G). In our paper [AS] we
showed that, indeed, the center of the category Mod(G) of smooth mod-p G-representations
of any connected algebraic p-adic group G only depends on the center of G. The present paper
now sets up a general formalism of central sheaves.

The authors acknowledge support from Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under Germany’s Excellence Strategy EXC 2044-390685587, Mathe-
matics Miinster: Dynamics—Geometry—Structure. The second author also acknowledges sup-
port from the Mathematical Institute and Brasenose College, Oxford.

2. THE SETTING

Let 2 be any abelian category. Its center Z(2l) is, by definition, the endomorphism ring of
the identity functor on 2. It is a commutative ring, which has the following partial functoriality
properties:

— For any full abelian subcategory 2’ of 2 restriction induces a ring homomorphism
Z) — ZA).

— Any quotient functor 2 — 2A/B with respect to a Serre subcategory B of 2 induces
a ring homomorphism Z(2() — Z(A/B).

Suppose now that C is a Grothendieck category. This means that C is an abelian category
which has small coproducts (hence small colimits) such that filtered colimits are exact and
which has a generator. Such a category is locally small (i.e., the subobjects of any given object
form a set) and has enough injective objects (hence injective hulls) as well as small products.
In this case we may consider the following construction.

Recall that a full subcategory £ of C is called localizing if it is closed under the formation of
subobjects, quotient objects, extensions, and arbitrary direct sums. In particular, it is strictly
full and abelian.

We note that the collection of all localizing subcategories of C is a set ([Pop] Note 3 on p.
298), which we will denote by L(C).

Let £ be a localizing subcategory of C. Since it is, in particular, a Serre subcategory we
may form the quotient category C/L together with the exact quotient functor T': C — C/L
([Gab] Prop. 1 on p. 367). The functor 7" has a right adjoint S : C/L — C, called the section
functor, which is left exact and fully faithful ([Gab] Prop. 8 on p. 377 and Prop. 2 on p. 369
and [Pop] p. 177). We also have, for any object Y in C, a largest subobject t-(Y) of Y which
is maximal among all subobjects of Y which lie in £ ([Gab] Cor. 1 on p. 375).

Lemma 2.1. (1) L and C/L are both Grothendieck categories, and the quotient functor
T :C — C/L commutes with inductive limits.
(2) ToS >~ idc/ﬁ.
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(8) The section functor S : C/L — C preserves injective objects as well as essential exten-
S0NS.

Proof. (1) is [Gab] Prop. 9 on p. 378. (2) is [Gab] Prop. 3(a) on p. 371. (3) The preservation
of injective objects follows from the exactness of T' and the adjointness Home,.(T'(—),I) =
Home¢(—, S(I)). For the preservation of essential extensions see [Pop] Cor. 4.4.7. O

Remark 2.2. Let L < L' be localizing subcategories of C; we have:
i. L'/L is a localizing subcategory of C/L;
ii. the natural functor C/L — C/L' induces an equivalence (C/L)/(L'/L) =c/Ll;
iii. The section functor S :C/L — C sends L'/L to L.

Proof. That L£'/L is a Serre subcategory of C/L together with the asserted equivalence is a
special case of [Pop] Ex. 4.3.6. By Lemma 2.1 the functor 7' commutes with arbitrary direct
sums. Any family of objects in £'/L can be lifted to a family in £’. Since £’ is closed under
the formation of direct sums (in C) we conclude that £'/L is closed under the formation of
direct sums (in C/L). It follows ([Gab] Prop. 8 on p. 377 or [Pop] Prop. 4.6.3) that £'/L is
localizing in C/L.

For iii. let T(X) be any object in £'/L for some object X in £’, and consider the exact
sequence 0 — t2(X) - X — ST(X) — C — 0. The outer terms ¢-(X) and C lie in £ and
hence also in £’ because £ < L'. Applying the exact quotient functor 7" : C — C/L’ to this
exact sequence shows that 77(ST(X)) = T'(X) = 0. Hence S(T'(X)) lies in ker(T") = £’ as
required. O

Remark 2.2 says that for localizing subcategories £ < £’ of C the natural functor C/£ —
C/L'is a quotient functor and hence induces a natural ring homomorphism Z(C/L) — Z(C/L’)
between the corresponding centers. Instead of just considering the center Z(C) we propose to
investigate the “presheaf” of commutative rings £ — Z(C/L) on L(C). This will require the
concept of stability of £, which we will discuss in the next section.

Here we only remark that obviously the intersection of any family of localizing subcategories
again is localizing. Therefore, for any two localizing subcategories £1, Lo of C the smallest
localizing subcategory £1 v Lo of C which contains £1 and Lo is well defined.

3. STABILITY

Throughout the paper we let C denote a Grothendieck category. A localizing subcategory
L of C is called stable if it is closed under the passage to essential extensions. Obviously the
intersection of any family of stable localizing subcategories is stable.

Lemma 3.1. For any stable localizing subcategory L of C the quotient functor T : C — C/L
preserves injective objects.

Proof. [Gab] Cor. 3 on p. 375. O

Proposition 3.2. Suppose that L is a stable localizing subcategory of C and let Y be an
injective object in C. We have:

(1) ST(Y) is injective in C.

(2) There is an isomorphism Y =t (Y)@® ST(Y) in C.

(8) to(Y) is injective in C.
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Proof. (1) This follows from Lemma 3.1 and Lemma 2.1(3).
(2) This follows from [Gab] Cor. 2 on p. 375, using the stability assumption on L.
(3) By (2), tz(Y) is a direct summand of the injective object Y. O

Lemma 3.3. Let L < L' be localizing subcategories of C such that L is stable. Then L' is
stable in C if and only if L'/L is stable in C/L.

Proof. “=" Let X < Y be an essential extension in C/L, where X is an object in £'/L.
Then S(X) — S(Y) is an essential extension in C by Lemma 2.1(3). Since S(X) lies in £ by
Remark 2.2.iii and since £’ is stable in C by assumption, we see that S(Y) lies in £'. Using
Lemma 2.1(1), we deduce that Y = T'S(Y) lies in £'/L as required.

“«—=” Let X be a non-zero object in £ and let Y be an injective hull of X in C; we
have to show that Y lies in £'. Since L is stable, using Prop. 3.2(2) we find an isomorphism
Y =2W®Y where W :=t,(Y) and Y’ := ST(Y). We will show that Y’ lies in £'. We may
assume that Y’ # 0, as the claim is clear otherwise.

Consider the essential extension j : X — W @ Y’. Since Y is non-zero, X’ := j(X) nY’
is essential in Y. Since Y is L-torsion-free, T'(X’) is essential in T'(Y") by [Gab] Prop. 6 on
p. 374. Since X’ is a subobject of X, X’ lies in the localizing subcategory £’, so T'(X’) lies in
L'/L. Since L'/L is stable in C/L by assumption, the essential extension T'(Y") of T'(X') lies
in £'/L as well. Hence ST(Y”) lies in £ by Remark 2.2.iii. However ST(Y') = STST(Y) =~
ST(Y) =Y’ soY'lies in L' as claimed.

Since W lies in £ and since £ € L', we see that Y =~ W @ Y” lies in £’ as required. O

Next we will establish that with £ and £ also £1 v L5 is stable.

Proposition 3.4. Let £1 and Lo be two localizing subcatgories of C such that L1 n Lo = 0.
The strictly full subcategory L2 of C whose objects are isomorphic to X1 ® X with X; being
an object of L; fori = 1,2 is a stable localizing subcategory of C.

Proof. Let X = X1 @ X2 be an object in L2, where X; lies in £; for ¢« = 1,2. Let Y be
a subobject of X in C and let YV; = X; n'Y for i = 1,2. Then Y7 @ Y> is an object in L2
contained in Y. We have the monomorphism

Y/Yl = Y/(Xl N Y) =~ (Y -I-Xl)/Xl — X/Xl ~ Xo

which shows that Y/Y] lies in £o. On the other hand Y/Y; admits an epimorphism onto
Y /(Y1 ®@Y2) so that the latter lies in L9 as well. The same argument works with the roles of
the indices 1 and 2 exchanged. We deduce that Y /(Y1 @ Y2) lies in £1 n Lo, and is therefore
zero. Hence Y = Y] @ Y5 lies in £, 2. By passing to the quotient objects, we see that X /Y =~
(X1/Y1) @ (X2/Y>) also lies in L4 .

We have shown that L9 is closed under quotient objects and subobjects. Since the for-
mation of injective hulls commutes with finite direct sums by [Gab] Lemma 2 on p. 358, and
since £1 and Ly are both stable in C, it is clear that £, » is stable under injective hulls in C.
Since L3 is clearly closed under the formation of small coproducts in C, we see that it remains
to show that L o is closed under extensions in C.

Let 0 > X - Y - Z — 0 be a short exact sequence in C, where X and Z are objects
in £1 5. Let I and J be injective envelopes of X and Z, respectively. Using (the dual of) the
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Horseshoe Lemma ([Wei] Lemma 2.2.8) we find a commutative diagram in C

SR

o

0O—I——I1®J ——J—=0

with exact rows and columns. We saw above that £y o is stable under injective envelopes in
C,so I and J lie in £ 2 because X and Z lie in £y 2. Hence I @ J also lies in £y and its
subobject Y lies in L1 2 as well by the first paragraph above. O

Corollary 3.5. Suppose that L1 n Lo = 0. Then L1 v Lo = L12, and L1 v Ly is stable in C.

Proof. Clearly £12 must be contained in any localizing subcategory of C containing both £
and Lo, so Ly 2 is contained in £y v Lo. Conversely, L1 2 is a localizing subcategory of C by
Prop. 3.4, s0 L1 v L2 is contained in £y 2. Hence £1 v L3 = L4 2 is stable in C by Prop. 3.4. [

Corollary 3.6. If L1 n Lo =0 thentr,ve, =tr, ® g, andtg, otp, =tp, ote, = 0.

Proof. Let X be an object in C. Note first that t,, (X) ntz,(X) lies in £1 n Lo and is therefore
zero. Hence the sum tz, (X) + tz,(X) is direct, and is therefore contained in ¢z, 2,(X). On
the other hand, tz, .z, (X) is an object in £ v La, so it is of the form X; @ X5 with X; lying
in £; for i = 1,2. Then X; < tz,(X) for i = 1,2, so tg,vr,(X) = X1 @ Xo is contained in
(te, ®tr,)(X). Finally tr, (t2,(X)) and tz,(tz, (X)) both lie in £1 n L2 and are therefore
ZEero. U

Proposition 3.7. If L1 and Lo are stable localizing subcategories of C then L1 v Lo is stable
as well.

Proof. Since obviously with £, and Lo also £1 1 L5 is stable in C we use Lemma 3.3 to confirm
that £1/(L£1 n L2) and La/(L1 N L2) are stable in C/(L£1 n L2). Their intersection is zero so
that (£1/(£1 n L2)) v (L2/(L1 N L2)) is stable in C/(L1 n L2) by Cor. 3.5. Using [NT] Prop.
3.2 one checks that (£1/(L1 n L2)) v (L2/(L1 N L2)) = (L1 v L2)/(L1 n L2). The reverse
direction in Lemma 3.3 finally implies that £1 v Lo is stable in C. O

4. IDENTIFYING THE (GABRIEL GLUING

We fix two localizing subcategories Lg, £1 of C. We then have the following natural com-
mutative diagram of Grothendieck categories and exact quotient functors':

C/Lo

C/(,Coﬁ,cl) C/(Eo\/,cl)

C/L

LFor simplicity we take the point of view that quotient categories have the same objects as the categories
they are the quotient of.
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In this situation [Gab] §IV.1 on p. 439 introduces the recollement category
=(c/co) [] (/L)
C/(LovLy)

In addition [Gab] Prop. 1 on p. 440 gives us a natural functor

R:C/(Lon L) — (C/Lo) ] (C/Ly)

C/(Lov L)
which fits in the above diagram as follows:
(2) C/Lo
% \
C/(Lon L1) =B~ (/o) 1 (C/Ly1) /(Lo v L1)
C/(Lov L)
Q1 /
C/[,l

Lemma 4.1. The functor R is exact and faithful.

Proof. Given an object X in C/(Lo n L1), let nx : FoQo(X) — F1Q1(X) be the identity
map of X viewed in C/(Lo v L1). Then the functor R is given on objects by R(X) =
(Qo(X),Q1(X),nx). It follows immediately from the exactness of Qo and @; that R is also
exact.

Since R is additive, to show that R is a faithful functor, it is enough to show that R(f) =0
implies f = 0. Suppose, then, that f : X — Y is such that R(f) : R(X) — R(Y) is zero in
the recollement category D. Then the projections of R(f) to C/Ly and C/L; are zero, so both
Qo(f) : Qo(X) = Qo(Y) and Q1(f) : Q1(X) — Q1(Y) are zero. This means that im(f) lies
in £1/(Lon Ly1) as well as in L£1/(Lo N L1). So im(f) = 0 and hence f = 0. We see that R is
faithful. O

All the functors Q;, F; (by Remark 2.2) and 7; (by [Gab] Lemma 1 on p. 442) are quotient
functors and hence are exact and have right adjoint section functors U;, H;, and .S; respectively.
For the convenience of the reader this is depicted in the following completed diagram:

(3) C/Lo

C/(ﬁoﬁﬁl C/.C() C/£1 C/(/.:()Vﬁl)
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(We will not use the functors S;, though.)
These section functors allow us to construct a functor

Vi(C/Lo) ] (€/L1)—C/(Lon L)
C/(Lov L)
in the opposite direction. For this we need:

e The composite U; o H; is a section functor for the composite F; o Q; for « = 0,1. But
FyoQo = F10Q; (by our convention for quotient categories). Hence we have a natural
isomorphism ¢ : Uy o Hy = Ui o H.

e Let n; 1ide)p, > Hijo Fy and ¢, : F; 0o H; = id¢y(g,vz,_;), for i = 0,1, denote the unit
and the counit of the adjunction between F; and H;, respectively.

o Let d; :ide/g;nz,_;) = Uio Qi and v; 1 Q; 0 U; = idey,, for i = 0,1, denote the unit
and the counit of the adjunction between @); and U;, respectively.

Let now © = (Xo, X1,0) be an object in D. Recall that o is an isomorphism Fy(Xo) —

F(X1). Consider now the solid arrow diagram

(1) V(XoX1,0)-----—-—---- - -0

70,0 | Ui(m,x,)

\ Uo(no,x,) UogHo (o) LR (X])
Un(Xo) ©s UgHoFy(Xo) ~—> UoHoF1 (X1) ——* U H1 Fy (X))

and take its fiber product V(Xo, X1,0) in C/(Ly N L1).
In order to investigate the relation between R and V we first have to recall a few facts
about adjunctions.

Lemma 4.2. i. Let A: A — B be a functor and let B; : B — A, for i = 0,1, be two
right adjoint functors to A with corresponding counits «; : A o B; — idg and units
B; :idy — B;o A. Then there is a unique natural isomorphism v : By — By such that
the diagrams

Va(_ A(v
Byo A 40 BioA and Ao B ) Ao B

id 4 idg

are commutative; it is given by
vy = Bl (04073/) o Bl,Bo(Y) : Bo(Y) e BlABo(Y) — B1 (Y) fOT’ Y mn B

it. Let A: A — A be a functor with right adjoint B : A" — A and counit o and unit
B; furthermore, let A’ : A" — A" be a functor with right adjoint B’ : A” — A’ and
counit o and unit B'. Then A’ o A: A — A" has the right adjoint Bo B’ : A" — A;
the corresponding counit and unit are the composites

Al(apr_y) o
—_—

B(B,_))
A'B'(=) —idgr (=) and ida(—) £, BA(-) ﬂ)—»

A'ABB'(-) BB'A'A(-),

respectively.
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Proof. i. This is well known of course. But for the convenience of the reader we sketch a proof.
The two adjunction isomorphisms

Hom (X, By(Y))

Homp(A(X),Y) =YX,y

m

Homy (X, B1(Y))

give rise to the natural isomorphism . By the Yoneda lemma it has to be of the form
Yxy = Homy (X, vy) for a unique natural isomorphism v : By = Bj. The units satisfy
Bix = adj;(idacx)) -

It immediately follows that v4(x) o 8o, x = 81,x which is the commutativity of the left hand
diagram. The counits satisfy

adj;(aiy) = idp, vy -

By, vice versa, expressing the adj, and hence ¢ in terms of the units and counits one easily
derives the asserted formula for vy.
Finally consider the diagram

A(IB, ) AB1(«
ABy(Y) P00, A g ABy(Y) —210) A, (v)
\ lal,ABO(Y) iaq,y
ABy(Y) oy Y.

The left hand part commutes by one of the two triangular identities for the adjunction between
A and Bp ([ML]IV.1 Thm. 1), the right hand one by the naturality of o;. The composite of the
top horizontal arrows is equal to A(vy) by the formula for vy. This shows the commutativity
of the right hand diagram in the assertion.

ii. [ML] IV.8 Thm. 1. O

We first consider the solid part fo the diagram (4) for an object © of the form © = R(X) =
(Qo(X),Q1(X),nx). Then UyHy(nx) is simply the identity morphism. Hence this solid part
becomes the solid part of the diagram
()

X——_

\\ ————___ bhx
\ — - -

\ - —

\ T T T (X)

30,X \
\ iUl(nl,Ql(X))

\
\ Uo(M0,Q0(x)) LF1 Q1 (X)
UoQo(X) UoHoFoQo(X) = UoHoF1Q1(X) —= Ui H1 F1Q1(X)
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If p; denotes the unit for the adjunction between Fj o @)1 and U; o H; then Lemma 4.2.ii tells
us that p; x = Ui(n; g,(x)) © %i,x- Hence the complete diagram (5) simplifies to the diagram

PO, X P1,X

LFPQy(X)

UoHoF1Q1(X) UiH 1 F1Q:1(X),

which commutes by Lemma 4.2.i. By the universal property of the fiber product we therefore
obtain a natural transformation

(6) ide/(coney) — Vo R .

Next we study the other composite R o V. But for this we will always assume in the
following that £y and £; are stable.

Lemma 4.3. Suppose that L1 N Lo = 0; we then have:

1. Exté(Xo,Xl) =0 for any Xg in Ly and X1 in L1 and any j = 0.
1. Fori= 0,1 any object in L; is L1_;-closed. A
i1i. Fori=0,1 and any j = 0 the derived functor RIU; sends (Lo v L1)/L; to L1—;.

Proof. i. Let f : X9 — X; be a morphism in C. Then im(f) is a quotient object of Xg, so
it lies in Lo; on the other hand it is a subobject of X; so it lies in £;. Hence im(f) lies in
Lo n Ly and is therefore zero. Hence f = 0, so Hom¢ (X, X1) = 0.

Choose an injective resolution X1 =, I* in C. Since X; lies in £, which is stable in C , wWe
see that I7 lies in £ for all j = 0, so Home(Xg,I7) = 0 for all j > 0 by the first paragraph.
Therefore Ext}(Xo, X1) = H’(Home(Xo,1*)) = 0 as well.

ii. Let X be an object in £;, so X = tz,(X). Then tz, ,(X) =tz ,(tz,(X)) = 0 by Cor.
3.6, so X is Ly_;-torsion-free. Next, any short exact sequence 0 - X —» Y — Z — 0 with
Z lying in £1_; must split, because Ext}(Z, X) = 0 by i. Hence X is £1_;-closed by [Gab]
Lemma 1.b on p. 370.

iii. Every object Y of (Lo v L£1)/L; is of the form Y = Q;(X; @ X1—;), where X; lies in L;
for j = 0,1. Since Q;(X;) = 0, we see that U;(Y) = U;Q;(X1—;). However X;_; lies in £q_,,
so it is L;-closed by ii. Therefore U;Q;(X1—;) = X1, so U;(YV) = X1_; lies in £4_,.

Now pick an injective resolution Y =TI in C/L;. From Cor. 3.5 we know that Ly v L is
stable in C. Hence (Lo v £1)/L; is stable in C/L; by Lemma 3.3. It follows that the resolution
I* lies, in fact, in (Lo v £1)/L;. Applying now the first paragraph with each I’ the assertion
easily follows. O

Lemma 4.4. Fori = 0,1 and any j = 0 the derived functor RU; sends (Lo v L1)/L; to
,C1_Z‘/(,Co M ,Cl).

Proof. Write N := Ly n L1. By the universal property of quotient categories we have the
following diagram of exact quotient functors:

C C/N

l / |

€/ T (C/N)/(Li/N)
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Note that @Q; is the functor appearing in the basic diagram (2). By Remark 2.2 the functor
B; is an equivalence. Fix a quasi-inverse A; : C/L; — (C/N)/(Li/N) to B;. Now, A;Q; =
A;B;Q; = Q. Since B; is a right adjoint to A; and U; is a right adjoint to @, the functor
U] := U;B; is a right adjoint to 4;Q; = Q.

We have to show that R/ (Qq_;U;) kills (Lo v £1)/L; for all j > 0. This has already been
shown in the case where N' = 0 in Lemma 4.3.iii. Fix j > 0. Now, Lo/N and L1/N are
stable localizing subcategories of C/N by Lemma 3.3, and their intersection is zero. Hence
Rj( U/) kills (EO/N) /(ﬁl/N)

1-U; by this special case.

We have Q) _;, = A1_;Q1—; and U] = U;B,. Since A;_; and B; are equivalences of categories,
we deduce that RJ (Q1-:U;)B; kills w As noted already in the proof of Prop. 3.7,

we have (Lo/N) v (L1/N) = (Lo v L1)/N. Hence R/ (Q1_;U;)B; kills %f

Let X be an object of (Lo v £1)/L;. Then X = Q;(Y") for some object Y of (Lo v L1)/N.

But Q; = B;Q;, so X = B;Q;(Y'), where Q;(Y) lies in (LOEV@I\}/N Therefore R (Q1—;U;)(X) =

R (Q1-:U;)B;iQ.(Y) = 0 by the above. O

We claim that the map Qo(mo.e) : QoV (X0, X1, 0) =, QoUp(Xp) is an isomorphism. Since
the functor Qg is exact applying it to the diagram (4) results in another fiber product diagram.
Hence it is enough to show that the map QoUi(n1 x,) : Q1U1(X1) — QoUiH1F1(X,) is
an isomorphism. By [Gab] Prop. 3.b on p. 371 kernel and cokernel of the map 7 x, lie in
ker(Fy) = (Lo v £1)/L£1. On the other hand, by Lemma 4.4, the derived functors Qo R/U; =
R/ (QoUy), for any j = 0, are zero on (Lo v L£1)/L1. Tt easily follows that QU (m,x,) is
an isomorphism. By symmetry we have that Qq(7m1,0) : @1V (Xo, X1, 0) = QU (X)) is an
isomorphism as well.

Proposition 4.5. Suppose that Lo and L1 are stable. Then

(70,x¢°Q0(m0,0),71,x,°Q1(71,0))

RV(Xo,Xl, O')

(X0, X1,0) for © = (Xo, X1,0)

is a natural isomorphism between functors on D, and R : C/(Lyn L1) = D is an equivalence
of categories.

Proof. For the first part of the assertion it remains to show that the diagram

F{ X °Qo(mo,0
FoQoV (©) 0(70,x7°Q0(70,0)) Fo(Xo)

UV(G)_idl ia
)

Fi(v1,x,0Q1(m1,0)

F1Q,V(©) : F1(X1)
is commutative. Consider the commutative diagram:
Qo(m1,0)
QoV (X0, X1,0) e QoU1(X1)
Qo(ﬂo,@)l iQOUl(m x1)
QoUo(10,x,) QoUoHo(o) Qoltr (x1))
QoUo(Xo) el QoUoHoFy(Xo) O%; QoUoHoFl(X) *1; QoUrH1 1 F1(X1)
70,X¢ \L; Y0,HoFy(Xq) l; Y0,HoFy(X1) i ~
10,X¢q
Xo HyFy(Xp) HyF1(X1)

~
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The upper square is Qo applied to the diagram (4), which is still a fiber product diagram.
The lower two squares are commutative by the naturality of the counit vy. We now apply the
functor Fy. First notice that the bottom line becomes the top line of the diagram

Fo( ) H
Oni;o FoHyFy(Xo) ﬂ;) FoHoF(X1)

€o F()(Xo)i 50,F1(X1)l:

——— [ (Xo) 7 Fi(Xy).

~

The commutativity of the left square is a general property of adjunctions ([ML] IV.1 Thm.
1(ii)), the one of the right square is the naturality of the counit €g. If we combine this diagram
with Fp applied to the previous diagram we obtain the commutative diagram

FoQo(m1,0)
FoQoV (Xo, X1,0) FoQoUy (X1) == F1Q1U1(Xy)
FoQoU1(m,x;) J/F1Q1U1(m,x1)
FoQoUrH 1 F1(Xy) == QU1 H1 F1(X1)
x| FoQolery (xq)) ;TF1Q1(LF1(X1))

Fo(70,x4°Q0(m0,0)) FoQoUoHoF1(X1) == F1Q1UpHoF1(X1)

= | Fo(vo,myFy (x7))
F()HOFl (X1>

x| €0,F1(X1)

Fo(Xo) = F1(X1)

By the analog for X; of our earlier argument for Xy the diagram

Fi(v1,x;)
FiQ1U:(X0) — Fi(X1) Fi(X1)
F1Q1U1(771,X1)l iﬂ m X1
Fr(v,my 7y (X)) 1,Fy(X7)

FyQ U H Fi(X) —7>F1H1F1(X1 *>F1 (X1)

is commutative. The combination of these last two diagrams results in the commutative
diagram

Fi(71,x,0Q1(m1,0))
FOQOV(XO,Xl,O') - Fl(Xl)

FO('YO,XOOQO(WO,(-)))\L T?
Fo(Xo) z Fi(Xy)
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where 7 is the solid arrow composite isomorphism

FoQo(try (x1))

FoQoUoHoF1(X1) ~ FoQoUr H1 F1 (X)) == F1Q1U1 H1 F1(Xy)
FO('YO,HOFl(Xl))l: :lFl('YI»H1F1<X1))
FoHoFl(Xl) FlHlFl(Xl)
EO,FI(Xl)l: :lglvFl(Xl)

?

Fl(Xl) Fl(Xl)

This reduces us to showing that 7, in fact, is the identity. By Lemma 4.2.ii the compositions
of the perpendicular arrows are the counits 7; of the adjunctions between Fjy o Qg = F} o Q1
and U; o H;. Hence the above diagram can be rewritten as

FoQo(tr (x1))
FoQoUoHoFy (X1) ———— FoQoU1 H1 F1 (X7)

TO’Fl(Xl)iZ :iTLFﬂXl)

Fi(X1) id Fi(Xy).

It is commutative by Lemma 4.2.i.
By the first part of the assertion the functor R is full and is essentially surjective on objects.
But by Lemma 4.1 it is also faithful. Hence it must be an equivalence. 0

Since we will not use it we leave it to the reader to verify that the natural transformation
(6) is the unit for the adjunction between R and V.
The above result greatly generalizes [Gab] Prop. 2 on p. 441.

Proposition 4.6. For any finitely many stable localizing subcategories L1, ..., Ly, of C the
natural maps

0— Z(C/(,Cl N...N ,Cn)) — 1_[?=1 Z(C/Ll) :: H@j Z(C/(,Cl \ ,CJ))
form an exact sequence.

Proof. By induction w.r.t. n we only need to establish the case n = 2. By [Gab] p. 446 we
always have the exact sequence

0—=2Z((C/Lr) TI (C/L2))—=Z(C/Lr) x Z(C/L2) __Z Z(C/(L1 v L)) -
C/(L1vL2)

But under the stability assumption we may, by Prop. 4.5, identify the left hand term with
Z(C/(El ﬁﬁg)). O
5. THE CENTRAL SHEAF

We will make precise in which way £ — Z(C/L) is a sheaf.
The set L(C) partially ordered by inclusion together with n and v is a lattice. By Prop.
3.7 the subset L*¢(C) < L(C) of all stable localizing subcategories is a sublattice.

Proposition 5.1. The lattice L(C) is distributive.
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Proof. The proof given in [Go2] Prop. 29.1 in case C = Mod(R) for any ring R works in
general. For the convenience of the reader we provide one more detail. For avoiding confusion
we first point out that Golan defines torsion theories always to be hereditary and therefore
to correspond to localizing subcategories. The proof in loc. cit. reduces the assertion to the
following claim: Suppose that an object X in C is L£;-torsion-free for ¢ = 1,2; then it is also
Ly v Lo-torsion-free. To see this let £(X) denoted the localizing subcategory cogenerated
by the injective hull E(X). Since X is L;-torsion-free one has £; < L£(X). It follows that
L1 v Ly € L(X). But by definition E(X) is £(X)-torsion-free and hence is a fortiori £1 v La-
torsion-free. Therefore X must be £ v Lo-torsion-free. O

We now view L% (C) as a category with objects being the elements of L!(C) and where the
morphisms Lo — £ are given by the inclusions £ S Ls. For £ and L1, ..., L, in L¥(C) we
call {£;}1<i<n a covering of L if £ =), L;.

Lemma 5.2. With the above notion of coverings the category L (C) is a Grothendieck site.
Proof. Since any diagram in L*(C) of the form
L1V Lo— Lo

N

Ly L

is a fiber product diagram the category L% (C) has fiber products. Obviously coverings compose
into coverings. That any base change of a covering again is a covering is immediate from the
distributivity in Prop. 5.1. O

Obviously £ — Z(C/L) is a presheaf on the site L (C).
Theorem 5.3. Z¢(L) := Z(C/L) is a sheaf on L5 (C).

Proof. This is now immediate from Prop. 4.6. (|

6. THE LOCALLY NOETHERIAN CASE

The injective spectrum Sp(D) of a Grothendieck category is defined to be the collection of
isomorphism classes of indecomposable injective objects of D. It is a set (cf. [Pop] p. 331).

Throughout this section we assume that our Grothendieck category C is locally noetherian.
We will construct an alternative version of the central sheaf Zc which will be a sheaf on the
topological space Sp(C) equipped with the so-called stable topology.

Remark 6.1. Let £ be any localizing subcategory of C; then L and C/L are locally noetherian,
and the section functor C/L — C commutes with inductive limits.

Proof. [Gab] Cor. 1 on p. 379. O
For any localizing subcategory L of a Grothendieck category D one defines the subset
A(L) :={[E] € Sp(D) : Hom¢(V, E) = 0 for any V € ob(L)}
of Sp(D). In the case of C these subsets A(L) form the open subsets of a topology on Sp(C)
which is called the dual-Ziegler topology (cf. [Her] Thm. 3.4 2). In fact, by [Her] Theorems 2.8

2The original Ziegler topology used in [Her] has the property that arbitrary intersections of open subsets
are open; this means that defining a set to be dual-Ziegler open precisely when it is Ziegler closed defines a
topology on Sp(C).
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and 3.8, the map

(7) collection of all localizing — set of all dual-Ziegler open
subcategories of C subsets of Sp(C)
L— A(L)

is an inclusion reversing bijection. This means that the dual-Ziegler open subsets of Sp(C)
classify the localizing subcategories of C: £ can be reconstructed from A(L) by

ob(L) ={V € ob(C) : Hom¢(V, E) = 0 for all [E] € A(L)}.
It also implies that
A(ﬁl M ﬁg) = A(ﬁl) ) A(ﬁg) and A(ﬁl \ ,CQ) = A([,l) M A([,Q) .

Lemma 6.2. For any localizing subcategory L of C the following are equivalent:

(a) L is stable;
(b) any indecomposable injective object of C either lies in L or has no non-zero subobject
lying in L.

Proof. We argue similarly as in [Gol] Prop. 11.3.

(a) = (b): Let E be an indecomposable injective object in C. Suppose that t-(E) # 0.
Then E is an injective hull of ¢, (F) and hence, by stability, is contained in L.

(b) = (a): Since C is locally noetherian we may write an injective hull F(V') of an object
V lying in £ as a direct sum E(V) = @;erE; of indecomposable injective objects E;. Since
E;nV #0 lies in L for any i € I we see that all F; and hence E(V) lie in L. O

Corollary 6.3. Let L be a stable localizing subcategory of C; then
A(L) = {[E] € Sp(C) : E ¢ ob(L)} .
The following is a straightforward generalization of [Lou] Prop. 4.

Lemma 6.4. For a subset A < Sp(C) the following are equivalent:

(a) A= A(L) for a stable localizing subcategory L of C;
(b) if [E] € Sp(C) satisfies Home(E, E') # 0 for some [E'] € A then [E] € A.

Proof. (a) = (b): Let [E’] € A(L) such that Hom¢(E, E’) # 0. Then E does not lie in L.
Since L is stable Lemma 6.2 applies and tells us that E does not have any non-zero subobject
lying in £. Hence [E] € A(L) = A.

(b) = (a): Let L be the localizing subcategory of C cogenerated by the E’ for [E’] € A. This
means that £ is the full subcategory of those objects V' in C which satisfy Home(V, E') = 0
for any [F’'] € A. Tt is immediate that A € A(L). Consider any [E] € A(L). Then E cannot
lie in £. Hence there must exist an [E’] € A such that Hom¢(E, E’) # 0. It follows from (b)
that [E] € A. This shows that A = A(L). To establish that £ is stable we use Lemma 6.2. We
have just seen that the E which do not lie in £ must have [E] € A(L). By the very definition
of A(L) such E do not have a non-zero subobject lying in L. O

A subset A < Sp(C) will be called stable if it is of the form A = A(L) for some stable
localizing subcategory L of C. It is clear, for example from Lemma 6.4, that arbitrary inter-
sections and unions of stable subsets are stable again. Therefore the stable subsets are the
open subsets for a topology which we call the stable topology of Sp(C).
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For any stable subset A € Sp(C) let £4 denote the stable localizing subcategory of C such
that A(L4) = A. The map A — L4 is inclusion reversing. Hence, for Ay € Ay, we have a
quotient functor C/L4, — C/L4,. This means that

(8) A stable — Z¢(A) := Z(C/L4)

is a presheaf of commutative rings on Sp(C) for the stable topology. Our goal in this section
is to prove the following theorem.

Theorem 6.5. Z¢ is a sheaf on Sp(C) for the stable topology.
We first need several preparations.

6.1. Center via injective cogenerators. We will write an element in Z(C) often as z =
(zar)ar with zps = evpy(2) denoting the endomorphism of the object M in C defined by z and
being called the evaluation of Z in M.

Recall (cf. [Ste] §IV.6) that an injective object E in C is a cogenerator of C if and only if
any non-zero object M in C has a non-zero homomorphism M — E. Moreover, since C has
arbitrary products ([Ste] Cor. X.4.4), there is then a monomorphism M — []._; E for some
index set I.

For any = € Sp(C) we fix a representative E, in the isomorphism class z = [E,]. We
introduce the following objects

EE?;: @ E, and E; = H E, .
zeSp(C) zeSp(C)

el

Both are injective objects, the former since C is locally noetherian ([Gab] Prop. 6 on p. 387)
and the latter for formal reasons.

Lemma 6.6. Ega and E} are cogenerators of the category C.

Proof. Consider any object 0 # M € ob(C). By Matlis’ theorem ([Gab] Thm. 2 on p. 388)
its injective hull E(M) decomposes as a direct sum of indecomposable injective objects, i.e.,
we have F(M) = @;FE; — |[, E; with z; := [E;] € Sp(C). Hence we find an iy such that

pr;
the composite homomorphism M = E(M) — @®;E; —2% i = By E® — ET is

non-zero. O

Definition 6.7. An injective cogenerator E of C is called a good cogenerator if it has a
subobject (and hence a direct factor) which is isomorphic to Ega

Obviously Ega and EJ are good cogenerators. The reason for this definition is the following
fact.

Lemma 6.8. Let E be a good cogenerator of C; then, for any object M in C, there is an index
set I and a monomorphism M — @1 E.

Proof. By Matlis’ theorem an injective hull E(M) of M is of the form E(M) = @,esp(c) Dicl,
E, for appropriate index sets I,. By embedding all I, into a common index set I the right
hand side is contained in @®;ec IE? . We obtain the sequence of monomorphisms M <« E(M) —
®Pic IEE@ — @;er F, where the last one exists by our assumption that E is good. ]

Our goal in this section is to prove the following result.

Theorem 6.9. The evaluation map evg : Z(C) = Z(Ende(E)), for any good cogenerator E
of C, is an isomorphism.
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For the proof we will construct a map in the opposite direction, using the definition of Z(C).
We begin with the following observation. Let {X; : i € I} and {Y} : j € J} be two collections
of objects in C. Set X := @ie; X; and YV := @jesYj. Let ¢; : X; — X and 7; : Y — Y; be the
canonical inclusions and projections. Then there is the natural composed map

(9)  p:Home(X,Y) = | [Home(X;,@;Y;) — | [Home(X,, [ [V5) = | [ Home (X4, Y5)
i i J ,J

that sends ¢ € Home(X,Y) to its matriz p(p) := (@ij), where ;5 := mjpu,; for all i, 7. It is
visibly injective. *

Suppose now that E is a good cogenerator, and let z € Z(End¢(F)). To define an element
of Z(C) that corresponds to this z, we must construct elements zy; € Endg (M) for all objects
M in C that commute with all homomorphisms in C. Obviously, if M = @®;c;E we define

zp = @; z. To simplify notation we write in the following EW .= @, E for any index set I.

Lemma 6.10. Let I and J be two index sets. Then for all ¢ € Home (E(I), E(J)), the following
square 1s commutative:

Jold) v EW)
ZpI) l ‘LZE(J)
Ed) EW)

Proof. For i € I,j € J let 1; : E — EU) and T E) — F be the inclusion into the ith
summand and the projection onto the jth summand, respectively. By the definitions of zgn)
and zp (s, we have iz = zm; and (2 = zpm . Let v := mjp1; € Ende(E); then zv = vz
because z € Z(End¢(E)). Therefore

TjRp(N) Pl = ZTjPlL; = 2V = V2 = TjPLiz = TjPZp)li .
Hence zp )@ = @z by the injectivity of p. O

Now, given an arbitrary object M in C, we can find, by our definition of a good cogenerator,
an exact sequence of the form

(10) 0—M-L gD g

and we can define zpy : M — M to be the unique homomorphism in C which makes the
following diagram commutative:

0 M EW) EW)
ZMl ZE(I)\L ZE(J)‘L
0 M E{ EW)

Lemma 6.11. zy; does not depend on the choice of the exact sequence (10).

3In Grothendieck categories we have the “usual” map @®;Y; — H]YJ and it is a monomorphism; see
Schubert H., Kategorien I, Satz 14.6.8.
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7
Proof. Suppose that 0 — M —— EU) — E') is another exact sequence which gives rise to

20+ M — M; then since EI) ig injective, we can find a homomorphism ¢ : EX) — EU)
which makes

Zp)

M e M

N,

o 0 o

S\
N

ZE(I/)

The outer square is commutative by Lemma 6.10. The two trapezia on the sides commute by
definition of . The two trapezia on the top and bottom commute by the definition of zy,
and 2}, respectively. Chasing this diagram, we find that

/ / )
NzZyp = 0Ny = 0zZpnt) = ZE(I/)O'T] = ZE(]I)’I'] =Nz -

Since 7’ is a monomorphism, we conclude that z); = 2}, as required. O

Lemma 6.12. Let 0 : M — M’ be a homomorphism in C. Then zpp0 = 0z)p;.

Proof. Choose exact sequences 0 — M —» EU) — EU) and 0 — M’ o, EI) — B,
Using the injectivity of EU") together with Lemma 6.10, we can find a similar commutative
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diagram
ED B0 B0
x /
M M M
o 0 0 [ o

E{) B,

ZE(I/)

Chasing this diagram, we similarly find that
77/92M =0NzZM = 0Zpn1) = Zpa)on = ZE(I’)77/9 = TIIZM/H .

Because 7 is a monomorphism, 6z); = 2,0 as required. U

Proof of Theorem 6.9. Let z € Z(Endc(E)) and define ¥(2) := (2um)ameob(c) as constructed
above. Then Lemma 6.12 shows that ¢ (z) € Z(C). By construction we have evg(¢(z)) = z.
Therefore evg is surjective.

For the injectivity let now z € Z(C) be such that zg = 0. For any homomorphism f : U — F
we have fozy = zgof = 0. But the cogenerator property means that the functor Home(—, E)
is faithful. It follows that zy = 0. ]

6.2. The sheaf property. We will proceed by comparing the presheaf Zc with another
presheaf defined as follows. Recall that we have fixed representatives of the isomorphism
classes © = [E,] € Sp(C).

Definition 6.13. For every subset A of Sp(C), we define

F(A) :={z=(zz)z € H Z(End¢(Ey)) 1 2yv = vzg for all z,y € A and v € Home(Ey, Ey)}.
r€A

Evidently, F forms a presheaf on Sp(C) for the discrete topology.
Lemma 6.14. F is a sheaf for the stable topology of Sp(C).

Proof. Suppose that {A(7) }er is a covering of some stable subset A of Sp(C) by stable subsets
A(i), and let z(i) € F(A(4)) be given for each i € I, such that 2(i)|a)~a() = 2(4)|40)~a) for
each i,j € I. Then for each x € A, we may unambiguously define z, := 2(i), € Z(End¢(E;))
for any index i € I such that x € A(%); this gives us a vector z € [ [,.4 Z(End¢(E,)) such
that 2 4(;) = 2(i) for all i € I. We must show that 2 € F(A). To this end, let z,y € A and let
v € Home(E,, Ey); we must show that zyv = vz,. If v = 0 there is nothing to do, so we may
assume that v # 0. Now, y € A(¢) for some i € I; since A(i) is stable, also x € A(i) by Lemma
6.4. But then z,v = vz, since z,y € A(i) and 24(;) = 2(i) € F(A(3)). O
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For any subset A < Sp(C) let
L 4 := localizing subcategory of C cogenerated by the injective object F4 := @ypecaFy.
This means (cf. [Ste] proof of Prop. VI.3.7) that
L 4 is the full subcategory of all M € ob(C) such that Homg (M, E4) = 0.

Remark 6.15. Suppose that A = A(L) for some localizing subcategory L of C; then L4 = L.
For this we recall from the beginning of this section that

A(L) = {x e Sp(C) : Hom¢(M, E;) =0 for any M € ob(L)}
and
ob(L) = {M € ob(C) : Hom¢ (M, E,) = 0 for all x € A(L)}

= {M € ob(C) : Home(M, [] E.)=0}.
zeA(L)
Obviously, if Home (M, H$EA(£) E;) = 0 then Home (M, @ea(r)Bx) = 0 as well. Vice versa,
suppose that Home (M, @,ea(r)Ex) = 0. Assuming that Home (M, H:UEA(,C) E;) # 0 we find
an y € A(L) such that Home(M, Ey) # 0, which is a contradiction. We conclude that

Ob(ﬁ) = {M € Ob(C) : HOmc(M, C‘B:peA(ﬁ)Ea:) = 0} = Ob(['A(L)) .

Also recall from Lemma 6.4 that £ 4 is stable if and only if A is stable.
For any localizing subcategory L of C we let ¢ : C — C/L denote the quotient functor and
s its right adjoint section functor. Recall that s, is fully faithful.

Lemma 6.16. Let £ be a stable localizing subcategory of C. Then the quotient functor qr
restricts to an equivalence of categories between the full subcategory of all injective objects of
C which have mo non-zero subobject contained in L and the full subcategory of all injective
objects of C/L.

Proof. By [Gab] Lemma 1 on p. 370 an injective object of C has no non-zero subobject
contained in £ if and only if it is £-closed. We therefore consider the full subcategory D of
all L-closed objects of C. Then the restriction of ¢z to D is an equivalence of categories with
quasi-inverse sz, by [Gab] Prop. 3(a) and Cor. on p. 371. So it is enough to show that qr
sends the L-closed injectives in C to injectives in C/L, and that s, sends injectives in C/L to
the L-closed injectives in C.

Let I be an L-closed injective object in C. Then because L is stable, ¢ (I) is an injective
object in C/L by [Gab] Cor. 3 on p. 375. Conversely, let I be an injective object in C/L; then
sc(I) is an injective object in C since g is an exact left adjoint to s., and furthermore s, (1)
is L-closed by [Gab] Lemma 2 on p. 371. O

The injective objects E, for z € A(L), by definition, and also the injective object E, (),
by Remark 6.15, have no non-zero subobject contained in £. We now assume that L is stable.
It follows from [Gab] last paragraph on p. 383 (using the stability of £) that the [qz(Ez)],
for x € A(L), are precisely the elements of Sp(C/L), so that we choose these gz (E;) as
representatives. The functor g, is a left adjoint and therefore commutes with arbitrary direct
sums; hence qc(Ea(z)) = @rea(r) 4c(Er) = E?/ﬁ. The Lemma 6.16 then implies that

Eac) = sc(ac(Ba)) = sc(EG) -

But the functor s, is fully faithful. Therefore we obtain the following consequence.
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Corollary 6.17. Let L be a stable localizing subcategory of C. Then qc(Eaz)) = Ega/ﬁ, and
the functor qr induces an isomorphism of rings

Ende(Eaz) — Ende/e(EBF,) -
Note that for the same reason the functor ¢, also induces isomorphisms of rings
(11) Ende(E,) = Ende/r(qe(E;))  for any z € A(L).

At this point we need a generalization of the well-known calculation of the center of a
matrix ring M, (R) over some associative ring R: central elements in M, (R) are necessarily
scalar matrices with entries in Z(R).

Lemma 6.18. Let {X; :i € I} be a collection of objects in C, and let X := @®;c; X;. Then

Z(Ende(X)) =
{(z); € HZ(EndC(XZ-)) :zjv = vz for all i, j € I and v € Home (X5, X;)}.

iel

Proof. Recall the injective map p defined in (9). Suppose that o € Z(End¢(X)). Take some
v € Home(X;, X;) and take any k,£ € I. Then mpa(vjom)y = m(Lvm;)ong; since mivy =
di¢idx, we deduce that

(12) dieorjpv = Opjvay;  for all i,j,k, €€ I,ve Home(X;, Xj) .

Suppose that j # k. Take £ :=i:= j and v := idx; in (12) to deduce that aj; = 0 whenever
J # k; thus the matrix u(«) of any a € Z(End¢ (X)) is diagonal. Fixing 4,j € I and taking
¢:=1and k := j in (12) shows that a;;v = vay; holds for all v € Home(X;, X;). Taking i = j
in this last equation shows that a;; € Z(End¢(X;)) for all i € I. This shows that the map

Z(End¢ (X)) — {(zi)i € H Z(Ende(X5)) : zjv = vz; for all v e Home (X5, X;)}

el

that sends o € Z(End¢(X)) to the vector (ay;) is well-defined; it is furthermore injective,
because p(«) is diagonal and because p is injective.

To show that the map is surjective, take any (z;); € [ [,c; Z(Endc(X;)) satisfying the given
condition and define o := @; z;, an element of End¢(X). We must show that « is central. Note
that mjo = zjmj and ou; = 1;2; for all 4, j € I, by the definition of a. Now if 5 € End¢(X) and
i,j € I, then applying the condition on the z;’s with v := 7;8¢; € Home(X;, X;), we have

T = zjmiBL = zjv = vz = wiBLiz; = miPai; .

Hence p(af) = u(Ba) for all B € Ende(X). Since p is injective, we conclude that « is central
in End¢(X) as claimed. O

We let ay : Z(Ende(E4)) = F(A) be the isomorphism given by the above Lemma 6.18.
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Proposition 6.19. Let A € B be two stable subsets of Sp(C). Then there is a commutative
diagram of commutative rings

ev @
By

(13)  F(B) <" Z(Ende(Ep)) 2 Z(Ende)z, (ES,,)

rcsl ’Yl Ql res
F(A) <5 Z(Ende(Ea)) —— Z(Ende, (E?MA)) o Zc(A).

qc
A C/L A

Proof. Note that B = A(Lp) and A = A(L4) by Remark 6.15. We let ¢ : F4 — Ep and
7w : Ep — FEp be the natural inclusion and projection maps, and define v(p) := mo p o .
Then the first square commutes by the definitions of ap and a4. Let Q : C /Lp — C/L A be
the quotient functor, so that Q o gz, = qc,. Then

Q(ESBMB) = Qqcp (EB) = @ aca (Ez) = C—B qﬁA(Ey) =dcL, (Ea) = EéB/[;A .
zeB yeA
Here the outer equalities come from Cor. 6.17. The middle equality holds true because
qc,(Ey) = 0 for any z € B\A: such an = does not lie in A = A(L4) as noted at the be-
ginning of the proof, so the indecomposable injective E, lies in the stable subcategory L4 by
Lemma 6.2 and hence ¢ ,(E;) = 0. We now see that the middle square commutes. Finally,
the square on the right commutes because @(ESB/ £B> = ESB/ £, 88 we saw above. O

Proof of Theorem 6.5. Let A be a stable subset of Sp(C). By Cor. 6.17, the morphism ¢,
appearing in the diagram (13) is an isomorphism. Therefore the composite map

Yai=aaoqlo evpe, Zo(A) = F(A)

is an isomorphism of commutative rings by Lemma 6.18 and Thm. 6.9. Prop. 6.19 now tells
us that these maps 14 commute with the restriction maps in the presheaves Z¢ and F and
therefore combine to give an isomorphism of presheaves v : Z¢ =5 F. However F is a sheaf
by Lemma 6.14, so Z¢ must be a sheaf as well. ]

6.3. Appendix: comparison with the work of Goldston-Mewborn. In the paper [GM],
the authors associate to a left noetherian ring R a sheaf U — Ry of non-commutative rings on
Sp(Mod(R)) equipped with a certain topology. In the case where R is commutative this topol-
ogy corresponds to the classical Zariski topology on Spec(R) under the canonical bijection
Spec(R) = Sp(Mod(R)).

We recall [GM] p.20 that the closed sets in the Goldston-Mewborn topology on X :=
Sp(Mod(R)) are arbitrary intersections of subsets of the form K (I), where [ is a left ideal
in R, and K (I) consists of those points [E’] in X such that there exists [EF] € X, a non-
zero module map « : R/I — E and a directed path in ¢ from [E] to [E’]. Here ¢ is a
certain directed graph whose set of vertices is X; in view of [GM] Lemma 2.1, for two points
[E],[E'] € X there is a directed path in ¢ from [FE] to [E'] precisely when Hompg(E, E’) # 0.

Lemma 6.20. Any open subset U of X in the Goldston-Mewborn topology is stable.

Proof. Without loss of generality we may assume that U = X\K(I). Let [E1] € U and let
[E2] € X be such that Hompg(Fs, E1) # 0. By Lemma 6.4, it is enough to show that [Es] € U.
If not, then [E2] € K(I) so there is a path from [E3] to [Es2] in ¢ for some [E3] € X which
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admits a non-zero map « : R/l — FEs3. But Hompg(Es, E1) # 0, so by [GM] Lemma 2.1, we
can find a path from [F2] to [E1] in 4. Pasting these two paths together produces a path
from [E3] to [E1] in ¢ and shows that [F1] € K(I), which is a contradiction. O

Recall that we have fixed representatives of the isomorphism classes z = [E,] € Sp(Mod(R))
and that we write Ey := @,y E, for every subset U of X. We denote the Goldston-Mewborn
sheaf of non-commutative rings on their topology by R; recall [GM] p. 23 that it is defined
as the bicommutator ring

R(U) := Endgna,(g,) (Ev)-
For every subset V' of U, we have the idempotent element of Endg(Ey) which is the identity
on Ey and zero on Epny. Any f € R(U) has to commute with all of these idempotents, and
therefore must preserve the direct summand Ey of Ey. It follows that the above definition
makes sense on all subsets U of X, and produces a presheaf of non-commutative rings R.

Likewise, our sheaf F from Definition 6.13 is for the same reason a presheaf of rings defined
on all subsets of X. In order to compare the presheaves F and R, we need the following
elementary Lemma.

Lemma 6.21. For every R-module M, write Bicr(M) := Endgpq, ) (M) for the bicommu-
tator ring. We have Z(Endg(M)) = Z(Bicgr(M)).

Proof. Let g : M — M be an element in Z(Bicg(M)). Then g commutes with the action of
every element of R on M and therefore g € Endg(M). Since g € Bicg(M), it commutes with
every element of Endr(M) and therefore in fact lies in Z(Endg(M)).

Suppose now that f € Z(Endg(M)). Then f: M — M commutes with action of Endg(M)
on M and therefore lies in Bicg(M). Since f € Endr(M), f commutes with the action of
every element of Bicr(M) and therefore in fact lies in Z(Bicg(M)). O

We now proceed to relate F to R.

Proposition 6.22. The presheaf F embeds into the presheaf R, in such a way that for every
subset U of X, the image of F(U) in R(U) is equal to the center of R(U).

Proof. For arbitrary subsets V' < U of X, we can consider the following diagram:

[1 Z(Endr(Ex)) [1 Bicr(E.)

xzelU zeEy

F(U) <—— Z(Endg(Ey)) — R(U) = Bicr(Ev)

pr res ires pr

F(V) <—— Z(Endg(Ev)) — R(V) = Bicr(Ev)

[1 Z(Endr(Ex)) [1 Bicr(E.)

zeV zeEy,

=

n

The maps oy and ay were defined after Lemma 6.18; it implies the commutativity of the
two triangles in the above diagram containing these two arrows. All of the arrows labelled
with the inclusion sign exist as a consequence of Lemma 6.21.

For the first statement, we have to show that the inner rectangle commutes. Note that
the outer rectangle commutes for trivial reasons. The trapezium on the left commutes by
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the definition of the restriction maps in F. The trapezium on the right commutes for similar
reasons. The commutativity of the remaining two trapezia is clear.
The second statement is now clear in view of Lemma 6.21. O

Corollary 6.23. Let R be a left noetherian ring, let C := Mod(R) and let X = Sp(C). The
restriction of our central sheaf Z¢ to the Goldston-Mewborn topology on X embeds into the
sheaf R, in such a way that the image of Z¢(U) in R(U) coincides with the center of R(U)
for every Goldston-Mewborn open subset U of X.

Proof. By the proof of Theorem 6.5, we have an isomorphism of presheaves ¢ : Z¢ —=> Fon
the stable subsets of X. Now apply Proposition 6.22. ]

We emphasize that even in this setting, our sheaf Z¢ is defined on a much finer topology
on X than the one considered by Goldston-Mewborn. In the setting of an arbitrary locally
noetherian Grothendieck category, it is not even clear how to define the notion of the bicom-
mutator ring of an object, and hence how to extend the definition of Goldston-Mewborn’s
non-commutative sheaf R to this more general situation.

7. OTHER CASES

There are two more cases where Sp(C) can be used for an alternative interpretation of the
central sheaf Z¢.

7.1. The locally finitely presented case. Throughout this section we make the weaker
assumption that C is locally finitely presented. This means that the Grothendieck category
has a set of finitely presented generators. Then any object of C is a filtered colimit of finitely
presented objects.

Recall from Remark 6.1 that in the locally noetherian case all section functors commute
with filtered colimits. This is no longer the case for a general locally finitely presented C.
Therefore one restricts attention to the localizing subcategories £ which are of finite type. By
definition this means that the corresponding section functor commutes with filtered colimits
whose transition maps are monomorphisms.

Remark 7.1. For any localizing subcategory L of finite type in C, the quotient category C/L
18, in general, only locally finitely generated.

Proof. [Ga0] Thm. 5.8 (compare also Prop. 5.9). O
Proposition 7.2. i. There is a topology on Sp(C) such that

collection of all localizing —— set of all closed
subcategories of finite type of C subsets of Sp(C)
L+— A(L)
18 an inclusion reversing bijection.
it. For any localizing subcategories of finite type L1, Lo, and {L;}icr of C we have:
a) L1 0 Ly and \/,c; L; are of finite type;
b) ALy 0 L2) = A(L1) v A(L2) and A(N e L) = (Nier A(Li).

Proof. For i. and ii.a) see [Gar] Thm. 11 and its proof. ii.b) then follows immediately. O

Corollary 7.3. Finite unions and intersections of stable closed subsets of Sp(C) are stable.
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Proof. The above Prop. 7.2.ii together with Prop. 3.7. g

Corollary 7.4. The presheaf A — Z(C/L4) on Sp(C) has the sheaf property for finite cov-
erings of stable closed subsets by stable closed subsets.

Proof. This follows now directly from Prop. 4.6. g

That in the locally noetherian case we could prove the sheaf property for infinite coverings
as well relied very much on the fact that in this case any injective object is a direct sum
of indecomposables. This fails for any C of a more general kind. But one of the basic rea-
sons that Prop. 7.2 works is that a locally finitely generated category is cogenerated by its
indecomposable injective objects in the sense of [Kra] Lemma 3.1.

We also mention that the more restrictive case where C is locally coherent was treated in
[Her| and [Kra]. In this situation the section functor of a localizing subcategory of finite type
even commutes with filtered colimits and the corresponding quotient category again is locally
coherent ([Ga0] Thm. 5.14).

7.1.1. A basic case. An important class of Grothendieck categories where Prop. 7.2 and its
corollaries apply is the following. Let G be a locally profinite group and k be a field. We let
Mod(G) denote the category of smooth G-representations in k-vector spaces. (Recall that a
G-representation V is called smooth if the stabilizer of any vector in V' is open in G.) This
obviously is an (AB5) abelian category.

Lemma 7.5. Let 1 be a fundamental system of compact open subgroups of G. Then the
representations k[G /U], for U € U, form a set of generators of Mod(QG).

Proof. Let a: V — V' be a non-zero map and choose a v € V such that a(v) # 0 as well as a
U e Y which fixes v. Then the map oV : VU — V'V on U-fixed vectors is non-zero. It remains
to note that Homygoq(q) (K[G/U], —) = (—)V. O

It follows that Mod(G) is a Grothendieck category. It clearly is locally of finite type.

Lemma 7.6. Let U < G be a compact open subgroup and M be a finite dimensional repre-
sentation in Mod(U). Then the compact induction ind$ (M) is finitely presented in Mod(G).

Proof. We have
HomMod(G) (indg(M)a V) = HomMod(U)(Mv V) = (Homk(Mv k) Rk V)U .

Now use [Pop] Thm. 3.5.10 observing that the functor (—)V of U-invariants commutes with
filtered colimits. O

Proposition 7.7. The category Mod(G) is locally finitely presented.
Proof. This is immediate from the above two lemmas. O

Remark 7.8. In [Sho| it is shown that for G = SLo(F) with F'/Q, any finite extension and
k a finite field of characteristic p the category Mod(G) is locally coherent. Recently this has
been extended to G = GLo(F') in [Tim].
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7.2. The locally coirreducible cases. Throughout this section we assume that C is locally
coirreducible. For the definition we refer to [Pop] p. 330. Any locally noetherian C and, more
generally, any C which has a Krull dimension in the sense of [Gab] p. 383 is locally coirreducible
by [Pop] Thm. 5.5.5. In contrast, a locally coherent category need not be locally coirreducible.

Lemma 7.9. For any localizing subcategory L of C the categories L and C/L are locally
cotrreducible as well.

Proof. [Pop| Prop. 5.3.6. O

For the convenience of the reader we first recall the following elementary concept. Let .S
be any set. A topological closure operator on S is a selfmap A — A on the power set (5)
satisfying:

1) & =0, _
(2) A< A (in particular, X = X),
(3) A=4,

(4) AuB=AuUB.
Note that (4) implies
(5) Ac B= Ac B.

A subset A < S is called closed if A = A.

Consider an arbitrary family {A;};c; of closed subsets and put A :=()..; A;. Then

el
AcAc (VA4 =(4=4.
el el
It follows that A is closed. This shows that there is a unique topology on S whose closed
subsets are the closed subsets in the above sense.

For any localizing subcategory L of C we earlier defined the subset A(L) < Sp(C). Vice
versa, for any subset A € Sp(C), we define

L4 := localizing subcategory of all Y such that Hom¢(Y, E) = 0 for any [E] € A.

Proposition 7.10. i. L= Ly for any localizing subcategory L;
i1. the map A — A(L4) is a topological closure operator on Sp(C).

Proof. i. We obviously have

L < Lar) and A(L) € A(Lay) € A(L)
hence
(14) A(Lay) = A(L) .

It follows from [Gab] Cor. 2 on p. 375 that the section functor C/L — C induces a bijection
Sp(C/L) = A(L). (Note that the above even holds for a general Grothendieck category.)
Therefore [Pop] Cor. 5.3.8 says that (14) implies that £ = L 4(.).

ii. [Pop] Cor. 5.3.9. O

We call a subset of Sp(C) closed if it is closed w.r.t. the closure operator in the above Prop.
7.10. Then part i. of this proposition says that all subsets of the form A(L) are closed and
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part ii. says that any closed subset A = A = A(L4) comes from a localizing subcategory. It
follows that

collection of all localizing subcategories of C — set of all closed subsets of Sp(C)

L A(L)

is a bijection. As in section 7.1 we deduce

Corollary 7.11. The presheaf A — Z(C/La) on Sp(C) has the sheaf property for finite
coverings of stable closed subsets by stable closed subsets.
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