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Abstract. Let G be a compact p-adic analytic group and let I be a right

ideal of the Iwasawa algebra kG. A closed subgroup H of G is said to control

I if I can be generated as a right ideal by a subset of kH. We prove that the

intersection of any collection of such subgroups again controls I. This has an

application to the study of two-sided ideals in nilpotent Iwasawa algebras.

1. Introduction

1.1. Controlling subgroups. Let G be a group and let k be a field. A subgroup

H of G is said to control a right ideal I of the group algebra k[G] if I can be

generated as a right ideal by a subset of the subalgebra k[H] of k[G], or equivalently,

if I = (I ∩ k[H]) · k[G]. It is clear that if I is controlled by a proper subgroup H

then I is completely determined by a right ideal in a smaller group algebra, namely

I ∩ k[H]. In the study of two-sided ideals in group rings, theorems that assert

that under suitable conditions a two-sided ideal is controlled by a known small

subgroup of the group are particularly desirable: a canonical example of such a

result is Zalesskii’s Theorem [11], which asserts that every faithful prime ideal of

the group algebra of a finitely generated torsion-free nilpotent group is controlled

by the centre of the group.

Let I be a right ideal of k[G] and suppose that I is controlled by H; it can happen

that I∩k[H] is controlled by an even smaller subgroup L of G, and then obviously I

will also be controlled by L. Somewhat less obviously, Passman showed that if two

different subgroups control I then so does their intersection. A simple argument

[9, Lemma 8.1.1] based on an induction on the size of support of an element in the

group ring then shows that for any right ideal I of k[G] there is always a unique

smallest subgroup of G that controls I; it is called the controller subgroup Iχ of I

and can be defined simply as the intersection of all possible controlling subgroups.

Using this notion, Roseblade [10] essentially classified the prime ideals of k[G] when

the group G in question is polycyclic-by-finite.

1.2. Completed group rings. Let G be a profinite group, let k be a field and let

k[[G]] be the completed group algebra of G with coefficients in k, defined as the

inverse limit of the ordinary group rings k[F ] as F runs over all continuous finite

homomorphic images of G. The purpose of this paper is to develop the notion of
1
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controller subgroups for profinite groups. Whenever H is a closed subgroup of G,

the completed group algebra k[[H]] is a closed subalgebra of k[[G]] and we say that

a closed right ideal I of k[[G]] is controlled by H if it can be topologically generated

by a subset of k[[H]], or equivalently, if I = (I ∩ k[[H]]) · k[[G]]. In this setting

arguments by induction on the size of support are no longer available, and it is no

longer clear in this generality that the intersection of two controlling subgroups (or

of a descending chain of controlling subgroups) again controls. The naive definition

of the controller subgroup as the intersection of all possible controlling subgroups

does not immediately seem to lead to an adequate theory.

However, if we restrict our focus to open subgroups H then not all is lost. In this

case (I∩k[[H]])·k[[G]] is automatically closed whenever I is closed, so the definition

of “controlling subgroup” coincides with the classical one. In §2 we abstract several

key features of Passman’s proofs from [9] and show that the intersection of any two

open controlling subgroups of an arbitrary ideal I of k[[G]] again controls I, and

in §2.7 we define the controller subgroup Iχ of I to be the intersection of all open

controlling subgroups of I. We show that Iχ has the desirable property that every

open subgroup U of G containing Iχ controls I, but were unable to answer the

following seemingly basic

Question. Let I be a closed right ideal of k[[G]]. Is I controlled by Iχ?

1.3. Iwasawa algebras. Let p be a prime number and let G be a compact p-adic

analytic group: a very special kind of profinite group. If R is a complete discrete

valuation ring of characteristic zero with uniformizer p and k is any factor ring of

R then the completed group algebra k[[G]] is alternatively known as an Iwasawa

algebra and is of interest in number theory. We will always denote Iwasawa algebras

by kG = k[[G]]. Lazard proved in [6] that kG is complete with respect to a filtration

whose associated graded ring is Noetherian; standard arguments from [7] then show

that every right ideal in kG is finitely generated and closed. The main result of

this paper is a positive answer to Question 1.2 for Iwasawa algebras.

Theorem A. Let G be a compact p-adic analytic group, let I be a right ideal of kG

and let H be a closed subgroup of G. Then I = (I ∩ kH)kG if and only if H ⊇ Iχ.

In particular, I = (I ∩ kIχ)kG.

The analogous result for left ideals also holds and can in fact be deduced from

Theorem A. The proof of the less straightforward “if” direction consists of two

main steps. First we show that after passing to a suitable open subgroup of G

containing H, we may assume that the homogeneous space G/H is “uniform” in

the sense that for some open normal uniform subgroup U of G, G/H is isomorphic

as a U -space to U/V for some closed isolated subgroup V = H ∩ U of U . We then

show that the factor module kG/(I ∩ kH)kG is isomorphic as a filtered k-module

to the set of power series (kH/(I∩kH))[[x1, · · ·xe]] and run an induction argument
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which in our setting serves as a kind of substitute to Passman’s induction argument

appearing in the proof of [9, Lemma 8.1.1].

1.4. An application to two-sided ideals. Our motivation for proving Theorem

A comes from our research into the structure of two-sided ideals in non-commutative

Iwasawa algebras. The basic idea (see [3], [2] and [1]) is to use the adjoint action

of G together with the right regular action of kG on itself to prove that under

certain hypotheses a two-sided ideal of kG must be controlled by a proper open

subgroup of G. In a forthcoming publication [4], we will sharpen this technique

and use Theorem A to prove an exact analogue of Zalesskii’s Theorem mentioned

in §1.1 above for Iwasawa algebras: if k is a field of characteristic p and G is a

nilpotent uniform pro-p group then every faithful prime ideal of kG is controlled

by the centre of G. Recall that a prime ideal P of kG is said to be faithful if G

embeds faithfully into the group of units of kG/P .
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providing him the opportunity to focus on his research without too many distrac-
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2. The controller subgroup for profinite groups

2.1. Locally constant functions. Let G be a profinite group and let k be a

commutative ring. Recall that a function f : G → k is locally constant if for all

g ∈ G there is an open neighbourhood U of g such that f is constant on U .

Definition. Let C∞ = C∞(G, k) denote the set of all locally constant functions

from G to k.

C∞ becomes a unital commutative k-algebra when equipped with pointwise mul-

tiplication of functions. Moreover it is a Hopf algebra over k, with comultiplication

∆, antipode S and counit ε given by the formulas

∆(f)(g, h) = f(gh), S(f)(g) = f(g−1) and ε(f) = f(1)

for all f ∈ C∞ and all g, h ∈ G.

2.2. Open subgroups. The group G acts by left and right translations on C∞ as

follows:

(g · f · h)(x) = f(hxg) for all g, h, x ∈ G, f ∈ C∞.
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For any open subgroup U of G (denoted U 6o G), let kG/U denote the set of

functions from the (finite) set of left cosets G/U to k, and define

π∗U : kG/U → C∞

by the formula π∗Uf(g) = f(gU). This is clearly an injection, whose image is the

set of left U -invariants in C∞:

π∗U (kG/U ) = {f ∈ C∞ : f(gU) = f(g) for all g ∈ G} = UC∞.

Similarly, kU\G can be identified with C∞ U .

Lemma. C∞ =
⋃

U6oG

UC∞ =
⋃

U6oG

C∞ U .

Proof. By symmetry, it is enough to prove the first equality. A locally constant

function defines a finite partition of G by open subsets. But any open subset of

G is a union of left cosets of an open subgroup of G, so by choosing a sufficiently

small open subgroup U we can ensure that the sets in the partition are all unions

of left cosets of U . It follows that f is constant on the left cosets of U and hence

lies in UC∞. �

2.3. Lemma. If U, V are open subgroups of G, then

C∞ U · C∞ V = C∞ U∩V .

Proof. Let δUg be the characteristic function of the clopen subset Ug of G. Clearly

{δUg : g ∈ G} forms a basis for C∞ U . Let W = U ∩ V . Now Wg = Ug ∩ V g for

any g ∈ G, so

δWg(x) = δUg(x)δV g(x) = (δUg · δV g)(x)

for all x ∈ G. Hence δWg = δUg · δV g. �

2.4. Module algebras. Recall [8] that if H is a Hopf algebra over k, then a k-

algebra A is a left H-module algebra if there exists an action

H ⊗A→ A, h⊗ a 7→ h · a

such that

h · (ab) = (h1 · a)(h2 · b), (hk) · a = h · (k · a) and 1 · a = a

for all h, k ∈ H and a, b ∈ A. Here we use the sumless Sweedler notation. There

is a similar notion of right H-module algebra, and the two notions coincide in the

case when H is commutative.
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2.5. G-graded algebras. Recall that if G is a finite group, then the k-algebra A

is a G-graded algebra if there exists a k-module decomposition A =
⊕

g∈GAg of A

such that Ag ·Ah ⊆ Agh for all g, h ∈ G, and 1 ∈ A1. It is known [8, Example 4.1.7]

that A is G-graded if and only if it is a kG-module algebra.

Definition. Let G be a profinite group and let A be a k-algebra. We say that A is

G-graded if for each clopen subset U of G there exists a k-submodule AU of A such

that

(i) A = AU1 ⊕AU2 ⊕ · · · ⊕AUn if G = U1 ∪ · · · ∪ Un is an open partition of G,

(ii) AU 6 AV if U ⊆ V are clopen subsets of G,

(iii) AU ·AV ⊆ AUV if U, V are clopen subsets of G,

(iv) 1 ∈ AU whenever U is an open subgroup of G.

Note that conditions (iii) and (iv) imply that AU is a k-subalgebra of A, for any

open subgroup U of G.

Proposition. Let G be a profinite group, let C∞ = C∞(G, k) and let A be a

k-algebra. Then A is a C∞-module algebra if and only if A is G-graded.

Proof. (⇒) For each clopen subset U of G, let δU ∈ C∞ be its characteristic

function, and define AU := δU · A. Since 1 = δU1
+ · · · + δUn

is a decomposition

of 1 into a sum of orthogonal idempotents whenever G = U1 ∪ . . . ∪ Un is an open

partition of G, (i) holds. Part (ii) holds because δV · δU = δU whenever U ⊆ V .

Choose an open normal subgroup W of A such that U and V are unions of cosets of

W . Now kG/W is isomorphic to WC∞, so A is a kG/W -module algebra and therefore

A is G/W -graded by [8, Example 4.1.7]. Translating this into our notation shows

that (iii) and (iv) hold.

(⇐) Suppose A is G-graded. If f ∈ C∞, we can find an open normal subgroup

W of G such that f ∈ WC∞ by Lemma 2.2; then f is constant on the cosets of W

and we have the decomposition

A =
⊕

x∈G/W

Ax.

Define the action of f on A by the formula

f ·
∑

x∈G/W

ax =
∑

x∈G/W

f(x)ax.

This makes sense because f is constant on the cosets of W in G; note also that this

definition does not depend on the choice of W . Thus the action of each δx ∈ WC∞

is the projection of A onto the Ax-component. Since A is G-graded, it is easily

checked that this turns A into a C∞-module algebra. �



6 KONSTANTIN ARDAKOV

2.6. Controlling open subgroups.

Definition. Let A be a C∞-module algebra, let I be a right ideal of A, and let

U 6o G. We say that U controls I if I is a C∞ U -submodule of A:

C∞ U · I ⊆ I.

Let C(I) denote the set of open subgroups of G that control I.

Lemma. (a) U controls I if and only if I =
⊕

g∈U\G(I ∩AUg).
(b) C(I) is closed under finite intersections.

(c) If U ∈ C(I) and U 6 V 6o G then V ∈ C(I).

Proof. (a) By Proposition 2.5, we have a direct sum decomposition

A =
⊕

g∈U\G

AUg.

The action of δUg on A is precisely the projection onto the AUg component. Since

C∞ U is spanned by these characteristic functions, U controls I if and only if

I contains each component of each element of I in this decomposition. This is

equivalent to the statement

I =
⊕

g∈U\G

(I ∩AUg).

Part (b) follows from Lemma 2.3, and part (c) is obvious. �

So C(I) is a filter of open subgroups on G.

2.7. The controller subgroup.

Definition. Let A be a C∞-module algebra and let I be a right ideal of A. The

controller subgroup of I is

Iχ :=
⋂
C(I).

This is always a closed subgroup of G.

Proposition. Every open subgroup containing Iχ controls I:

C(I) = {U 6o G : Iχ 6 U}.

Proof. The inclusion ⊆ is obvious, so suppose that Iχ 6 U 6o G. Then

G− U ⊆
⋃

V ∈C(I)

(G− V ).

Since U is open, G − U is closed and hence compact. Each G − V is open since

each V is closed, so we can find a finite set V1, . . . , Vn ∈ C(I) such that

G− U ⊆
n⋃
i=1

(G− Vi).

Alternatively put, ∩ni=1Vi 6 U . Hence U controls I by Lemma 2.6. �
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2.8. Strongly G-graded algebras.

Definition. Let G be a profinite group and let A be a G-graded algebra. We say

that G is strongly G-graded if

AU ·AV = AUV

for all clopen subsets U, V ⊆ G.

This is again an obvious generalisation of the well-known notion in the case when

G is finite. The following result explains our terminology.

Proposition. Let A be a strongly G-graded algebra, let I be a right ideal of A

and let U be an open subgroup of G. Then I is controlled by U if and only if

I = (I ∩AU ) ·A.

Proof. (⇒) Fix g ∈ G and x ∈ I ∩ AUg. Since g−1Ug is an open subgroup of G,

1 ∈ Ag−1Ug. Now g−1U · Ug = g−1Ug and A is strongly G-graded, so we can find

a finite set of elements ai ∈ Ag−1U and bi ∈ AUg such that 1 =
∑
i aibi. Now

xai ∈ AUg · Ag−1U ⊆ AU and I is a right ideal, so x =
∑
i(xai)bi ∈ (I ∩ AU ) · A.

Hence

I ∩AUg ⊆ (I ∩AU ) ·A for all g ∈ G.

As I is controlled by U by assumption,

I =
⊕

g∈U\G

(I ∩AUg) ⊆ (I ∩AU ) ·A ⊆ I

by Lemma 2.6(a), and therefore I = (I ∩AU ) ·A.

(⇐) Since A is G-graded, A =
⊕

g∈U\GAUg. Hence

I = (I ∩AU ) ·A ⊆
⊕

g∈U\G

(I ∩AU ) ·AUg.

But AU · AUg ⊆ AUg and I is a right ideal, so (I ∩ AU ) · AUg ⊆ I ∩ AUg for all

g ∈ G, and therefore

I ⊆
⊕

g∈U\G

(I ∩AU ) ·AUg ⊆
⊕

g∈U\G

(I ∩AUg).

The reverse inclusion is clear, so I is controlled by U — again by Lemma 2.6(a). �

2.9. Completed group rings. Let k[[G]] denote the completed group ring of G

with coefficients in k:

k[[G]] := lim
←−

k[G/U ]

where the inverse limit is taken over all the open normal subgroups U of G. The

group G is always contained inside k[[G]] as a subgroup of the group of units of

k[[G]].

Lemma. k[[G]] is a strongly G-graded k-algebra.
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Proof. Let A = k[[G]], and let U be a clopen subset of G. If U is an open subgroup

of G, the completed group ring k[[U ]] is naturally a subring of k[[G]], so we define

AU := k[[U ]]. In general, U is a union of cosets of an open normal subgroup W

U = Wg1 ∪ · · · ∪Wgn

and we define AU :=
∑n
i=1 k[[W ]] · gi. Clearly this is independent of the choice of

subgroup W , or coset representatives gi. It is now straightforward to verify that all

the axioms of Definition 2.5 are satisfied, so A becomes a G-graded algebra. The

fact that

(k[[W ]] · g) · (k[[W ]] · h) = k[[W ]] · gh

for any open normal subgroup W of G and any g, h ∈ G implies that k[[G]] is

strongly G-graded. �

We remark that when G is a uniform pro-p group and k is a field of characteristic

p, one can show that each microlocalisation of the Iwasawa algebra k[[G]] inherits

the structure of a strongly G-graded k-algebra from k[[G]]. These microlocalisations

therefore provide further non-trivial examples of strongly G-graded k-algebras, but

we will not discuss them further in this paper.

3. Compact p-adic analytic groups

3.1. Some group theory. We refer the reader to [5, Chapter 4] for the definitions

and elementary properties of uniform pro-p groups. Let U be a uniform pro-p group

and let H be a closed subgroup. Let Ui = Up
i−1

be the lower p-series of U . Define,

for each i > 1,

H(i) := {g ∈ U | gp
i−1

∈ HUi+1}.

Lemma. (a) H(i) is a subgroup of U for all i > 1.

(b) H(i) 6 H(i+ 1) for all i > 1.

Proof. (a) Let g, h ∈ H(i), so that gp
i−1

, hp
i−1 ∈ HUi+1. By [5, Theorem 3.6(iv)],

(gh)p
i−1

≡ gp
i−1

hp
i−1

mod Ui+1.

So (gh)p
i−1 ∈ HUi+1 and gh ∈ H(i). Also (g−1)p

i−1

= (gp
i−1

)−1 ∈ HUi+1, and

hence g−1 ∈ H(i).

(b) Let g ∈ H(i), so that gp
i−1 ∈ HUi+1. By [5, Theorem 3.6(iii)], we can write

gp
i−1

= hup
i

for some h ∈ H and u ∈ U . Now

gp
i

= (hup
i

)p ≡ hpup
i+1

mod (U,Ui+1).

But (U,Ui+1) ⊆ Ui+2 by definition of the lower p-series, so gp
i ∈ HUi+2 and hence

g ∈ H(i+ 1). �
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Since U/U2 is a finite group, the ascending chain of subgroups

HU2 = H(1) 6 H(2) 6 · · · 6 U

must terminate:

H(`) = H(`+ 1) = · · ·

for some integer ` > 1.

3.2. Proposition. Let H be a closed subgroup of a uniform pro-p group U . Then

there exists an integer ` > 1, depending only on H, such that H ∩Ut is an isolated

uniform subgroup of Ut for all t > `.

Proof. Choose ` as in §3.1. We first show that H ∩ Ut is isolated in Ut whenever

t > `. Suppose for a contradiction that g ∈ Ut\H is such that gp ∈ H ∩ Ut.
Since H is a closed subgroup, and the Ui form a fundamental system of neigh-

bourhoods of the identity in U ,

H =

∞⋂
i=1

HUi.

As g ∈ Ut\H, we can find an integer m > t such that g ∈ HUm\HUm+1. Write

g = hz for some h ∈ H and z ∈ Um, and work modulo Um+2. By [5, Theorem 3.6],

the commutator (h, z) lies in Um+1, and the image of Um+1 is central in U/Um+2

and is an elementary abelian p-group. By the Hall-Petrescu formula [5, Appendix

A],

gp = (hz)p ≡ hpzp(h, z)
p(p−1)

2 mod Um+2.

Now if p = 2, we know from [5, Theorem 3.6(i)] that (h, z) ∈ Um+2. So (h, z)
p(p−1)

2 ∈
Um+2 regardless of whether p is odd or even. Hence

zp ≡ h−pgp mod Um+2;

but h ∈ H and gp ∈ H by assumption so zp ∈ HUm+2.

Since z ∈ Um, we may write z = up
m−1

for some u ∈ U by [5, Theorem 3.6(iii)].

So up
m

= zp ∈ HUm+2 and therefore u ∈ H(m+1). But m > t > `, so H(m+1) =

H(m) and hence u ∈ H(m). So z = up
m−1 ∈ HUm+1, and hence g = hz ∈ HUm+1,

a contradiction.

Hence Vt = H ∩ Ut is an isolated subgroup of the uniform pro-p group Ut. But

now

(Vt, Vt) 6 (Ut, Ut) ∩ Vt 6 Upt ∩ Vt = V pt

and therefore Vt is a powerful pro-p group. Since Vt is torsion-free, being a subgroup

of the torsion-free group Ut, Vt must also be uniform, by [5, Theorem 4.5]. �
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3.3. Extra-powerful groups. Recall that a uniform group U is said to be extra-

powerful if (U,U) 6 Up
2

. If U is uniform then Un = Up
n−1

is extra-powerful for all

n > 2 by [5, Theorem 3.6]. Proposition 3.2 has the following

Corollary. Let G be a compact p-adic analytic group, and let H be a closed subgroup

of G. Then there exists an open normal uniform extra-powerful subgroup U of G

such that H ∩ U is uniform and isolated in U .

Proof. By [5, Corollary 8.34], we can find an open normal uniform subgroup W of

G, and H∩W is a closed subgroup of W . By Proposition 3.2, there exists an integer

` such that H ∩Wt = (H ∩W ) ∩Wt is uniform and isolated in Wt for any t > `.

Take U = W`+1 = W p
` ; it is still open and normal in G, but also extra-powerful. �

3.4. Notation. Let H be a closed subgroup of a compact p-adic analytic group G.

Using Corollary 3.3, we fix an open normal uniform extra-powerful subgroup U of

G such that V := H ∩ U is an isolated uniform subgroup of U .

Pick a finite set of coset representatives C for V in H; then

H = CV and HU = CU.

Because V is isolated in U , gV p 7→ gUp defines an embedding V/V p ↪→ U/Up.

Let d := dimU and e := dimU − dimV . Choose a basis {g1V p, . . . , gd−eV p} for

V/V p over Fp and extend it to a basis {g1Up, . . . , gdUp} for U/Up, say. Since the

Frattini subgroup of U is Up by [5, Lemma 3.4], {g1, . . . , gd} is a minimal topological

generating set for U such that {g1, . . . , gd−e} is a minimal topological generating

set for V , by [5, Proposition 1.9(iii)].

Let R be a complete discrete valuation ring of characteristic 0 with uniformiser

p and residue field k of characteristic p, and let k be any quotient of R. The ring k

carries a canonical filtration v induced by the normalised discrete valuation on R.

Let bi = gi − 1 ∈ kU and write

bα := bα1
1 bα2

2 · · · b
αd

d ∈ kU for all α ∈ Nd.

We will also write

ci := bd−e+i for all i = 1, . . . , e,

cγ := cγ11 · · · cγee ∈ kU for all γ ∈ Ne, and

|α| := α1 + · · ·+ αd for all α ∈ Nd.

Finally, define

A∞ := kH, and An := kHUn for each n > 1 ,

where Un = Up
n−1

is the lower p-series of U .
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3.5. Formal power series rings. By the proof of [5, Theorem 7.20], kU can be

identified with the set of non-commutative formal power series in the variables

b1, . . . , bd:

kU =

∑
α∈Nd

λαbα : λα ∈ k

 .

Since HU = CU by construction and since C is finite, we can also write

A1 = C · kU =

∑
α∈Nd

λαbα : λα ∈ kC


where kC denotes the free k-module generated by the set C. Let us filter A1

by powers of the augmentation ideal m := ker
(
A1 → k[HU/U ]

)
, and extend the

filtration v on k to kC by setting

v

(∑
c∈C

ξcc

)
= inf
c∈C

v(ξc).

Then m = CwU where wU is the unique maximal ideal of kU and

mn = CwnU =

∑
α∈Nd

λαbα ∈ A1 : v(λα) + |α| > n for all α ∈ Nd
 .

Let deg : A1 → R∪{∞} be the degree function associated with the m-adic filtration

on A1; by definition, deg(x) = n if x ∈ mn\mn+1 for some n, and deg(x) = ∞
otherwise. It follows from the above expression for mn that

deg

∑
α∈Nd

λαbα

 = inf
α∈Nd

v(λα) + |α|.

Note that since U is extra-powerful by assumption, the associated graded ring gr kU

of kU with respect to this filtration is commutative. We should also point out that

because the function α 7→ v(λα)+|α| takes values in N∪{∞}, the infimum is always

attained at some α ∈ Nd; the same goes for other similar formulas appearing below.

Lemma. (a) Every element of A1 can be written uniquely as a non-commutative

formal power series in c1, . . . , ce with coefficients in A∞:

A1 =

∑
γ∈Ne

rγc
γ : rγ ∈ A∞ for all γ ∈ Ne

 .

(b) The degree function satisfies

deg

∑
γ∈Ne

rγc
γ

 = inf
γ∈Ne

deg(rγ) + |γ|.
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Proof. (a) By an analysis similar to that applied to A1 above, now applied to A∞,

A∞ = C · kV =

 ∑
β∈Nd−e

λβbβ : λβ ∈ kC

 .

For any α ∈ Nd, let β ∈ Nd−e and γ ∈ Ne denote its first d − e and last e

components, respectively. Abusing notation slightly, we may write α = (β, γ),

so that bα = bβcγ . Then each element r =
∑
α∈Nd λαbα in A1 can be written

uniquely as

r =
∑
γ∈Ne

rγc
γ where rγ =

∑
β∈Nd−e

λ(β,γ)b
β ∈ A∞.

We can now compute deg(r):

deg
(∑

γ∈Ne rγc
γ
)

= infβ∈Nd−e,γ∈Ne v(λ(β,γ)) + |β|+ |γ|
= infγ∈Ne

(
infβ∈Nd−e v(λ(β,γ)) + |β|

)
+ |γ|

= infγ∈Ne deg(rγ) + |γ|.

Part (b) follows. �

3.6. The structure of an induced module. Let J be a right ideal of A∞ and let

M∞ = A∞/J . This cyclic A∞-module carries the quotient filtration deg : M∞ →
R ∪ {∞}, defined by

deg(r + J) = sup
y∈J

deg(r + y).

Let x1, . . . , xe be formal variables, and let

M1 := M∞[[x1, . . . , xe]] =

{∑
α∈Ne

mαxα : mα ∈M∞

}
be the set of all formal power series in the xi with coefficients in M∞. We extend

the filtration on M∞ to M1 by setting deg xi = 1. More precisely, define

deg

(∑
α∈Ne

mαxα

)
= inf
α∈Ne

deg(mα) + |α|.

Proposition. Define ψ : M∞[[x1, . . . , xe]]→ A1/JA1 by

ψ

(∑
α∈Ne

(rα + J)xα

)
=
∑
α∈Ne

rαcα + JA1.

Then ψ is an isomorphism of filtered k-modules, if A1/JA1 is given the quotient

filtration.

Proof. Since A∞ is Noetherian, we can find a finite generating set {z1, . . . , zt} for

J . In view of Lemma 3.5, we see that JA1 is exactly the set of formal power series

in c1, . . . , ce with coefficients in J :

(1) JA1 =

{
t∑
i=1

zi
∑
α∈Ne

riαcα : riα ∈ A∞

}
=

{∑
α∈Ne

yαcα : yα ∈ J

}
.
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It follows that ψ is a well-defined bijection, and it remains to show that degψ(m) =

degm for all m =
∑
α∈Ne(rα + J)xα ∈M∞[[x1, . . . , xe]].

Let y =
∑
α∈Ne yαcα ∈ JA1 and let the infimum in the definition of degm be

attained at some β ∈ Ne; thus degm = deg(rβ + J) + |β|. Then using Lemma

3.5(b), we see that

degm > deg(rβ + yβ) + |β| > infα∈Ne deg(rα + yα) + |α| =
= deg

∑
α∈Ne(rα + yα)cα = deg

(∑
α∈Ne rαcα + y

)
for all y ∈ JA1. Therefore degm > degψ(m) by the definition of the quotient

filtration on A1/JA1.

To show the reverse inequality, for each α ∈ Ne let the supremum in the definition

of deg(rα+J) be attained at some yα ∈ J — this is possible even if deg(rα+J) =∞
because then rα ∈ J (since the quotient filtration on A1/J is separated) and we

can take yα = −rα. Then
∑
α∈Ne yαcα ∈ JA1, so

degψ(m) > deg
(∑

α∈Ne rαcα +
∑
α∈Ne yαcα

)
= infα∈Ne deg(rα + yα) + |α| = infα∈Ne deg(rα + J) + |α| = degm,

again using Lemma 3.5(b). Hence degψ(m) = degm for all m ∈ M∞[[x1, . . . , xe]]

and therefore ψ is an isomorphism of filtered k-modules. �

3.7. Let us transport the action of A1 on A1/JA1 to M1 via the isomorphism ψ of

Proposition 3.6. In other words, we turn M1 into a right A1-module by setting

m · r = ψ−1(ψ(m)r) for all m ∈M1, r ∈ A1.

Because ψ is an isomorphism of filtered k-modules, it is actually an isomorphism

of filtered A1-modules.

Lemma. For each n > 1, define Mn := M∞[[xp
n−1

1 , . . . , xp
n−1

e ]]. Then

ψ(Mn) =
An + JA1

JA1
.

Proof. By construction, HUn =
〈
H, gp

n−1

d−e+1, . . . , g
pn−1

d

〉
. Hence

An =

∑
γ∈Ne

rγc
pn−1γ : rγ ∈ A∞ for all γ ∈ Ne

 ,

so the image of An in A1/JA1 is∑
γ∈Ne

rγc
pn−1γ + JA1 : rγ ∈ A∞ for all γ ∈ Ne

 .

But this is clearly just ψ(Mn). �
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3.8. Define Nep := {α ∈ Ne : αi < p for all i = 1, . . . , e}. Part (b) of the next result

will be crucial to the proof of our main theorem.

Proposition. Fix n > 1.

(a) For any β ∈ Nep and any γ ∈ Ne,

deg(cp
n−1(β+pγ) − cp

nγcp
n−1β) > pn−1|β + pγ|.

(b) Let mβ ∈Mn+1 for all β ∈ Nep. Then

deg

∑
β∈Ne

p

mβ · cp
n−1β

 = inf
β∈Ne

p

deg(mβ) + pn−1|β| .

(c) Every element of Mn can be written uniquely in this form:

Mn =
⊕
β∈Ne

p

Mn+1 · cp
n−1β .

Proof. (a) This follows from the fact that gr kU is commutative.

(b) Write mβ =
∑
γ∈Ne mβγx

pnγ for some mβγ ∈M∞, and define

m′ :=
∑
β∈Ne

p

∑
γ∈Ne

mβγx
pn−1(β+pγ) =

∑
β∈Ne

p

∑
γ∈Ne

mβγ · cp
n−1(β+pγ).

As β runs over Nep and γ runs over Ne, β + pγ runs over Ne. So

deg(m′) = inf
β∈Ne

p

inf
γ∈Ne

deg(mβγ) + pn−1|β + pγ|

by the definition of the degree function on M1. On the other hand, deg(mβ) =

infγ∈Ne deg(mβγ) + pn|γ| for all β ∈ Nep, so

deg(m′) = inf
β∈Ne

p

deg(mβ) + pn−1|β| .

Now consider the difference between m′ and the element we started off with, namely

m :=
∑
β∈Ne

p
mβ · cp

n−1β :

m′ −m =
∑
β∈Ne

p

∑
γ∈Ne

mβγ · (cp
n−1(β+pγ) − cp

nγcp
n−1β).

Since M1 is a filtered A1-module with respect to deg, part (a) implies that

deg(m′ −m) > infβ∈Ne
p

infγ∈Ne deg(mβγ) + deg(cp
n−1(β+pγ) − cp

n−1βcp
nγ)

> infβ∈Ne
p

infγ∈Ne deg(mβγ) + pn−1|β + pγ| = deg(m′).

Therefore deg(m) = deg(m′) = infβ∈Ne
p

deg(mβ) + pn−1|β| as claimed.

(c) Let m =
∑
α∈Ne mαxp

n−1α ∈Mn. Define, for each β ∈ Nep,

mβ :=
∑
γ∈Ne

mβ+pγx
pnγ ∈Mn+1.
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An argument similar to the one given in the proof of (b) above shows that

deg

m− ∑
β∈Ne

mβ · cp
n−1β

 > deg(m).

So m can be approximated arbitarily closely by elements of
∑
β∈Ne

p
Mn+1 · cp

n−1β .

The quotient filtration on (An+1 + JA1)/JA1 is complete, so Mn+1 is complete

with respect to the degree filtration by Lemma 3.7. Hence

Mn =
∑
β∈Ne

p

Mn+1 · cp
n−1β .

Finally the sum is direct by part (b) and the fact that the degree filtration on Mn+1

is separated. �

Corollary. An =
⊕

β∈Ne
p
An+1c

pn−1β.

Proof. Take J = 0 in part (c) of the Proposition. �

3.9. We will need the following rather general Lemma in the proof of our main

result.

Lemma. Let G be a profinite group, let A be a strongly G-graded algebra and let

U be an open subgroup of G.

(a) For any right ideal J of AU , (JA) ∩AU = J.

(b) If I is a right ideal of A and U controls I, then (I ∩AU )χ = Iχ.

Proof. We will use Propositions 2.7 and 2.8 without further mention in this proof.

(a) This follows from the fact that A =
⊕

g∈U\GAUg.

(b) Suppose that V ∈ C(I). Then U ∩ V ∈ C(I) by Lemma 2.6(b):

I = (I ∩AU∩V )A.

Since AU∩V ⊆ AU , part (a) implies that

I ∩AU = ((I ∩AU∩V )AU )A ∩AU = ((I ∩AU ) ∩AU∩V )AU ,

so U ∩ V ∈ C(I ∩AU ). Hence (I ∩AU )χ 6 U ∩ V for all V ∈ C(I) and therefore

(I ∩AU )χ 6 U ∩ Iχ = Iχ

because U controls I by assumption.

On the other hand, let V ∈ C(I ∩AU ); then I ∩AU = (I ∩AV )AU and

I = (I ∩AU )A = (I ∩AV )A .

So V ∈ C(I) and therefore Iχ 6 V for all V ∈ C(I ∩AU ). Hence

Iχ 6 (I ∩AU )χ

and the result follows. �
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3.10. We return to the hypotheses and notation introduced in §3.6 — §3.8, and

recall that every element m ∈Mn can be uniquely written in the form

m =
∑
β∈Ne

p

mβ · cp
n−1β

for some mβ ∈Mn+1 by Proposition 3.8(c).

Lemma. Let I1 be a right ideal of A1 = kHU which is controlled by HUn for all

n > 1. Let J = I1∩A∞ and let W = ψ−1(I1/JA1), an A1-submodule of M1. Then

(a) W ∩Mn = (W ∩Mn+1) ·An for all n > 1, and

(b) if m =
∑
β∈Ne

p
mβ · cp

n−1β ∈W ∩Mn then mβ ∈W ∩Mn+1 for all β ∈ Nep.

Proof. (a) By the modular law, I1 ∩ (An+1 +JA1) = (I1 ∩An+1) +JA1. Therefore

ψ(W ∩Mn+1) =
(I1 ∩An+1) + JA1

JA1

and hence

ψ ((W ∩Mn+1) ·An) =
(I1 ∩An+1)An + JA1

JA1
.

But (I1 ∩An+1)An = (I1 ∩An+1)A1 ∩An by Lemma 3.9(a), and

(I1 ∩An+1)A1 ∩An = I1 ∩An

since I1 is controlled by HUn+1 by assumption, so

ψ ((W ∩Mn+1) ·An) =
(I1 ∩An) + JA1

JA1
= ψ(W ∩Mn) .

Since ψ is an isomorphism by Proposition 3.6, part (a) follows.

(b) Since W ∩Mn = (W ∩Mn+1) · An by part (a), we can find w1, . . . , ws ∈
W ∩Mn+1 and r1, . . . , rs ∈ An such that

m =

s∑
i=1

wi · ri .

By Corollary 3.8 we can write ri =
∑
β∈Ne

p
riβcp

n−1β for some riβ ∈ An+1. Now

m =

s∑
i=1

wi ·
∑
β∈Ne

p

riβcp
n−1β =

∑
β∈Ne

p

(
s∑
i=1

wi · riβ

)
· cp

n−1β

and hence mβ =
∑s
i=1 wi ·riβ ∈W ∩Mn+1 for all β ∈ Nep by Proposition 3.8(c). �

3.11. Proof of Theorem A. (⇒) Let U be an open subgroup containing H and

let f ∈ C∞ U . Then the action of f on kG defined in Proposition 2.5 is a left

kU -module endomorphism of kG, so f.I = f.((I ∩ kH)kG) ⊆ (I ∩ kH)f(kG) ⊆ I.

So U controls I by Definition 2.6 and therefore Iχ ⊆ U for any open subgroup

containing H. Since H is closed, it has to contain Iχ by [5, Proposition 1.2(iii)].

(⇐) By Corollary 3.3 we can find an open normal uniform subgroup U of G

such that V = H ∩ U is uniform and isolated in U . Because Iχ 6 H 6 HU by
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assumption, I is controlled by HU by Proposition 2.7, and it will be enough to

show that I1 = I ∩ kHU is controlled by H.

Recall the notation of §3.4. Note that Iχ1 = Iχ 6 H by Lemma 3.9(b), so I1

is controlled by HUn for all n > 1 by Proposition 2.7. Let J = I1 ∩ A∞ and

W = ψ−1(I1/JA1), an A1-submodule of M1. Because ψ is an isomorphism by

Proposition 3.6, it will be enough to show that W = 0.

Suppose W 6= 0 for a contradiction. Pick 0 6= w1 ∈ W . We will inductively

construct a sequence of elements w1, w2, w3, . . . such that:

• wn ∈W ∩Mn, for all n > 1,

• deg(wn+1) 6 degwn, for all n > 1,

• deg(wn+1 − wn) > pn−1 for all sufficiently large n.

Assume wn ∈W ∩Mn has been constructed. By Proposition 3.8(c) we can write

wn =
∑
β∈Ne

p

m
(n)
β · cp

n−1β

for some unique m
(n)
β ∈Mn+1. By Proposition 3.8(b), we know that

deg(wn) = inf
β∈Ne

p

deg(m
(n)
β ) + pn−1|β|;

let this minimum be attained at β = βn and define wn+1 := m
(n)
βn

. Thus

(2) deg(wn+1) = deg(wn)− pn−1|βn|

and wn+1 ∈ W ∩ Mn+1 by Lemma 3.10(b). Thus the first two conditions are

satisfied. Summing equation (2) from n = 1 to n = r shows that

deg(wr+1) = deg(w1)−
r∑

n=1

pn−1|βn| .

Since deg(wr+1) is always non-negative by construction, this forces βn to be 0 for

all sufficiently large n. But then

wn+1 − wn =
∑

0 6=β∈Ne
p

m
(n)
β · cp

n−1β

has degree at least pn−1 by Proposition 3.8(b), so our third condition also holds.

Since deg(wn+1 − wn)→∞ as n→∞ and M1 is complete, the limit

w := lim
n→∞

wn

exists and is non-zero because deg(wn) 6 deg(w1) < ∞ for all n > 1. Fix r > 1;

then wn ∈Mn ⊆Mr for all n > r. As Mr is a closed subset of M1, we deduce that

w ∈Mr for all r > 1, and therefore

0 6= w ∈
∞⋂
r=1

M∞[[xp
r−1

1 , . . . , xp
r−1

e ]] = M∞.
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Now I1/JA1 is a closed submodule of A1/JA1 and ψ is a homeomorphism, so W

is a closed submodule of M1 and therefore w = limn→∞ wn ∈ W . This shows that

W ∩M∞ 6= 0, which is absurd because

ψ(W ∩M∞) =
I1
JA1

∩ A∞ + JA1

JA1
=

(I1 ∩A∞) + JA1

JA1
= 0

by the modular law and the fact that I1 ∩A∞ = J . �
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