
Submitted to
Journal für die reine und angewandte Mathematik

D̃-modules on rigid analytic spaces I
By Konstantin Ardakov at Oxford and Simon Wadsley at Cambridge

Abstract. We introduce a sheaf of infinite order differential operators ÙD on smooth
rigid analytic spaces that is a rigid analytic quantisation of the cotangent bundle. We show that
the sections of this sheaf over sufficiently small affinoid varieties are Fréchet-Stein algebras,
and use this to define co-admissible sheaves of ÙD-modules. We prove analogues of Cartan’s
Theorems A and B for co-admissible ÙD-modules.

2010 Mathematics Subject Classification: 14G22, 22E50, 32C38, 35R50.

The first author was supported by EPSRC grant EP/L005190/1



Submitted to
Journal für die reine und angewandte Mathematik

D̃-modules on rigid analytic spaces I
By Konstantin Ardakov at Oxford and Simon Wadsley at Cambridge

Contents

1. Introduction
2. Enveloping algebras of Lie–Rinehart algebras

3. Tate’s Acyclicity Theorem for ÿ�U (L)K
4. Exactness of localisation

5. Kiehl’s Theorem for coherent ÿ�U (L)K-modules
6. Fréchet–Stein enveloping algebras
7. The functor Ù⊗
8. Co-admissible U̇ (L)-modules on affinoid varieties
9. Sheaves on rigid analytic spaces
A. Proof of Theorem 9.1
References

1. Introduction

1.1. Background and motivation. The theory of D-modules goes back over forty
years to the work of Sato and Kashiwara for D-modules on manifolds [19] and to the work
of Bernstein for D-modules on algebraic varieties [9]. Originally introduced as a framework
for the algebraic study of partial differential equations there have also been fundamental appli-
cations in the studies of harmonic analysis, algebraic geometry, Lie groups and representation
theory. In this paper we attempt to initiate a new theory of D-modules for rigid analytic spaces
in the sense of Tate [30].

In their seminal paper [5], Beilinson and Bernstein explained how to study representa-
tions of a complex semi-simple Lie algebra g via twisted D-modules on the flag variety B of
the corresponding algebraic group. In particular they established an equivalence between the

The first author was supported by EPSRC grant EP/L005190/1



Ardakov and Wadsley, ÛD-modules on rigid analytic spaces I 3

category of finitely generated modules over the enveloping algebraU(g) with a fixed regular in-
finitesimal central character χ and the category of coherent modules for the sheaf of χ-twisted
differential operators on B.

Our primary motivation for this work is to establish a rigid analytic version of the Beilinson-
Bernstein equivalence in order to understand the representation theory of the Arens–Michael
envelope Ŭ(g) of the universal enveloping algebra of a semi-simple Lie algebra g over a com-
plete discretely valued field K. The Arens–Michael envelope is the completion of U(g) with
respect to all submultiplicative seminorms on U(g) that extend the norm on K; when g is the
Lie algebra of a p-adic Lie group and K is a p-adic field, Ŭ(g) occurs as the algebra of locally
analyticK-valued distributions on this group supported at the identity. It is therefore of interest
in the theory of locally analytic representations of p-adic groups, developed by Schneider and
Teitelbaum [25]. We delay the proof of our version of the Beilinson-Bernstein equivalence to
a later paper, but see Theorem E below for a precise statement. Here we construct the sheaf ÙD
on a general smooth rigid analytic space over K, and establish some of its basic properties.

1.2. Rigid analytic quantisation. In our earlier work [1] we proved an analogous the-

orem for certain Banach completions of Ŭ(g) localising onto a smooth formal model B̂ of the
flag variety. In this new programme we extend that work in two directions. In the base di-
rection, by working on the rigid analytic flag variety Ban which has a finer topology than a
fixed formal model B̂, the localisation is more refined and the geometry is more flexible1). In
the cotangent direction, we no longer fix a level n as we did in [1], and instead work simulta-
neously with all n. This involves using Schneider and Teitelbaum’s notions of Fréchet–Stein
algebras and co-admissible modules introduced in [26].

The definition of a Fréchet–Stein algebra is modelled around key properties of Stein al-
gebras; these latter arise as rings of functions on Stein spaces in (complex) analytic geometry.
There is a well-behaved abelian category of co-admissible modules defined for each Fréchet–
Stein algebra; in the case when the algebra in question is the ring of global rigid analytic
functions on a quasi-Stein rigid analytic space, this category is naturally equivalent to the cat-
egory of coherent sheaves on this space. It is known [24] that Ŭ(g) is a Fréchet-Stein algebra.
We view Ŭ(g) as a quantisation of the algebra of rigid analytic functions on g∗ in much the
same way that U(g) can be viewed as a quantisation of the algebra of polynomial functions on
g∗. This is the starting point for our work: our Beilinson–Bernstein style equivalence should
have the co-admissible modules for a central reduction of Ŭ(g) on one side.

1.3. Lie algebroids and completed enveloping algebras. When working with smooth
algebraic varieties in characteristic zero, one can view classical sheaves of differential operators
as special cases of sheaves of enveloping algebras of Lie algebroids; this is the approach taken
in [6]. We adopt this more general framework here partly for convenience at certain points of
our presentation and partly for the sake of flexibility in future work; in particular we will use
it to define sheaves of twisted differential operators in [3]. In section 9 below for each Lie
algebroid L on a rigid analytic space X we construct a sheaf ˚�U (L ) of completed universal
enveloping algebras on X . When X is smooth we then define ÙD := U̇ (T ). These sheaves

1) In fact with a little extra effort our construction can be localised to the rigid étale site but we do not
provide the details of that here.
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in this picture, ÙD is a quantisation of T ∗X .

One difficulty with extending the classical work on D-modules to the rigid analytic set-
ting is that the notion of quasi-coherent sheaves on rigid analytic spaces is problematic: see
[14, §2.1] for a basic treatment together with some instructive examples of what can go wrong
due to Gabber. See also [7] for some recent work in this direction. We resolve this difficulty
by avoiding it: we restrict ourselves to the study of ‘coherent’ modules for our sheaves of
rings. Because our sheaves of rings ˚�U (L ) are not themselves coherent the usual notion of
coherent sheaves of modules is not appropriate. However, the sections of our structure sheaves˚�U (L ) over sufficiently small affinoid subdomains turn out to be Fréchet–Stein, so Schneider
and Teitelbaum’s work shows us how to proceed: we replace the notion of ‘locally finitely
generated’ by ‘locally co-admissible’. When looked at through a particular optic, these ‘lo-
cally co-admissible’ sheaves do deserve to be seen as if they were coherent sheaves of modules
over some non-commutative structure sheaf on the cotangent bundle T ∗X . However in or-
der to make this interpretation precise it seems to be necessary to fully develop a theory of
micro-local sheaves in our context.

1.4. Main results. Our first main result is a non-commutative version of Tate’s Acyclic-
ity Theorem [30, Theorem 8.2].

Theorem A. Suppose that X is a smooth K-affinoid variety such that T (X) is a free
O(X)-module. Then ÙD(Y ) := ˝�U(T (Y ))

defines a sheaf ÙD of Fréchet-Stein algebras on affinoid subdomains ofX with vanishing higher
Čech cohomology groups.

Here ˝�U(T (Y )) can be concisely defined as the completion of the enveloping algebra
U(T (Y )) with respect to all submultiplicative seminorms that extend the supremum seminorm
on O(Y ); see Section 6.2 below for a more algebraic definition. Our next result involves an
appropriate version of completed tensor product Ù⊗, which we develop in Section 7.

Theorem B. Suppose that X is a smooth K-affinoid variety such that T (X) is a free
O(X)-module. Then

Loc(M)(U) := ÙD(U) Ù⊗ÛD(X)

M

defines a full exact embedding M 7→ Loc(M) of the category of co-admissible ÙD(X)-modules
into the category of sheaves of ÙD-modules on affinoid subdomains of X , with vanishing higher
Čech cohomology groups.

We can extend ÙD to a sheaf defined on general smooth rigid analytic varieties. Then we
prove the following analogue of Kiehl’s Theorem [20] for coherent sheaves of O-modules on
rigid analytic spaces.

Theorem C. Suppose that X is a smooth analytic variety over K. LetM be a sheaf ofÙD-modules on X . Then the following are equivalent.
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(a) There is an admissible affinoid covering {Xi}i∈I of X such that T (Xi) is a free O(Xi)-
module,M(Xi) is a co-admissible ÙD(Xi)-module and the restriction ofM to the affi-
noid subdomains of Xi is isomorphic to Loc(M(Xi)) for each i ∈ I .

(b) For every affinoid subdomain U of X such that T (U) is a free O(U)-module,M(U) is
a co-admissible ÙD(U)-module andM(V ) ∼= ÙD(V ) Ù⊗ÛD(U)

M(U) for every affinoid subdo-

main V of U .

We call a sheaf of ÙD-modules that satisfies the equivalent conditions of Theorem C co-
admissible. Theorems B and C immediately give the following

Corollary. Suppose X is a smooth K-affinoid variety such that T (X) is a free O(X)-
module. Then Loc is an equivalence of abelian categories co−admissibleÙD(X)−modules

 ∼=
 co−admissible sheaves ofÙD−modules on X  .

In fact we prove each of these statements in greater generality with T replaced by any
Lie algebroid on any rigid analytic space overK, and for right modules as well as left modules.

1.5. Future and related work. We plan to explain in the future how parts of the vast
classical theory of D-modules generalise to our setting with the results contained in this work
being merely the leading edge of what is to come. In particular in [2] we will prove the follow-
ing analogue of Kashiwara’s equivalence.

Theorem D. Let Y be a smooth closed analytic subvariety of a smooth rigid analytic
variety X . There is a natural equivalence of categories co−admissible sheaves ofÙD −modules on Y  ∼=

 co−admissible sheaves ofÙD−modules on X supported on Y

 .
In future work [3], we will prove an analogue of Beilinson and Bernstein’s localisation

theorem of [5] for twisted ÙD-modules on Ban. For the sake of brevity, we will only state the
version of this result for un-twisted ÙD-modules here.

Theorem E. Let G be a connected split reductive group over K with Lie algebra g,
let Ban be the rigid analytic flag variety and let Z(g) be the centre of U(g). Then there is an
equivalence of abelian categories co−admissible

Ŭ(g)⊗Z(g) K−modules

 ∼=
 co−admissible sheaves ofÙD−modules on Ban  .

We hope, perhaps even expect, that this work will have wider applications. Certainly it
seems likely that the study of p-adic differential equations will be synergetic with our work.
Also, much as the theory of algebraicD-modules was influential for the field of non-commutative
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algebraic geometry, this work might point towards a non-commutative rigid analytic geometry
(see also [27]).

It is appropriate to mention here the body of work by Berthelot and others begun in [10]
that considers sheaves of arithmetic differential operators on smooth formal schemes X over
W (k). There are points of connection between our work and Berthelot’s but the differences
are substantial. We also note that Patel, Schmidt and Strauch have begun a programme [22]
of localising locally analytic representations of non-compact semi-simple p-adic Lie groups
onto Bruhat-Tits buildings. Whilst their motivation is similar to ours there are again significant
differences between our approach and theirs.

1.6. A brief summary of our constructions. In order to construct our sheaves ˚�U (L )

we first define some intermediate objects that may well prove to be of interest in their own
right. Our definitions are heavily dependent on the notion of the enveloping algebra U(L) of a
Lie-Rinehart algebra L; we give a brief overview of this theory in Section 2 below.

Let R denote the ring of integers of our ground field K, and fix a non-zero non-unit
π ∈ R. Let X be an affinoid variety over K. Given an affine formal model A in O(X) and a
Lie-Rinehart (R,A)-Lie algebra L we define a G-topology Xw(L) on X consisting of those
affinoid subdomains Y of X such that O(Y ) has an affine formal model B with the property
that the unique extension of the natural action of L on O(X) to an action on O(Y ) preserves
B. We call these affinoid subdomains L-admissible.

For example if X = SpK〈x〉, A = R〈x〉, and L = A∂x then the closed disc Y ⊂ X of
radius |p|1/p centred at zero is L-admissible because R〈x, xp/p〉 is an L-stable affine formal
model in O(Y ). The smaller closed disc of radius |p| is not L-admissible, however it is pL-
admissible.

A key result due to Rinehart [23, Theorem 3.1] that underlies much of our work can be
viewed as a generalisation of the Poincaré-Birkhoff-Witt Theorem to the setting of (R,A)-
algebras. To apply this theorem directly to an enveloping algebra U(L), the (R,A)-algebra L
is required to be finitely generated and projective as an A-module: then Rinehart’s Theorem
states that the associated graded ring ofU(L) with respect to its canonical increasing exhaustive
filtration is isomorphic to the symmetric algebra SymA(L). Under these assumptions on L,
we construct a sheaf of Noetherian Banach algebras ÿ�U (L)K on the L-admissible affinoid
subdomains Y of X as follows:ÿ�U (L)K(Y ) := ¤�U(B ⊗A L)⊗R K

where B is any L-stable affine formal model contained in O(Y ), and “− denotes π-adic com-
pletion. It is not hard to check that ÿ�U (L)K(Y ) does not depend on the choice of B up to a
canonical isomorphism.

We would have liked to prove that the restriction maps ÿ�U (L)K(Y ) →ÿ�U (L)K(Z) are
flat whenever Z ⊆ Y are L-admissible affinoid subdomains of X . Because we were unable to
do this, we instead define a weaker L-accessible G-topology Xac(L) on X , and prove that if
Z ⊆ Y are L-accessible then ÿ�U (L)K(Z) is a flat ÿ�U (L)K(Y )-module on both sides. Since
every affinoid subdomain of X is πnL-accessible for sufficiently large n, this turns out to be
sufficient for our purposes.
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Now, the Xw(πnL) form an increasing chain of G-topologies on X and every affinoid
subdomain Y of X lives is Xw(πnL) for sufficiently large n, so the formula

U̇ (L)(Y ) := lim←−
¤�U (πnL)K(Y )

defines a presheaf of K-algebras U̇ (L) on all affinoid subdomains of X , which only depends
on the (K,O(X))-Lie algebra L := K ⊗R L. We show that this presheaf is actually a sheaf,
and that its sections over affinoid subdomains Y are Fréchet–Stein in the sense of [26] with
respect to the family (¤�U (πnL)K(Y ))n�0. The sheaf ÙD is obtained in the special case where
L = T (X). Given a Lie algebroid L on a general rigid analytic space X , we then use a

version of the Comparison Lemma to glue the sheaves ˇ�U (L (Y )) on the affinoid subdomains
Y of X to a sheaf ˚�U (L ) on X .

1.7. Structure of this paper. The main body of the paper begins in Section 3 where
we define and study theG-topologyXw(L) associated to aK-affinoid varietyX with an affine
formal model A and an (R,A)-Lie algebra L as explained above. The main result of that
section is that the presheaf ÿ�U (L)K on Xw(L) defined therein is a sheaf with vanishing higher
cohomology. In Section 4 we prove that the continuous K-algebra homomorphisms that arise
as restriction maps in the sheaves ÿ�U (L)K on Xac(L) are flat. In Section 5 we prepare the way
for Theorems B and C by proving preliminary versions for the sheaves ÿ�U (L)K on Xac(L).

In Section 6 we begin our study of Fréchet–Stein algebras. In particular we give a func-
torial construction that associates a Fréchet–Stein algebra Ŭ(L) to each (K,A)-Lie algebra L
withA an affinoid algebra and L finitely generated as anA-module. We do this via a more gen-
eral construction that associates a Fréchet–Stein algebra to every deformable R-algebra with
commutative Noetherian associated graded ring. Then in Section 7 we define a base change
functor Ù⊗ between categories of co-admissible modules over Fréchet–Stein algebras U and V
that possess a suitable U − V -bimodule.

In Sections 8 and 9, we put all of this together in order to prove Theorems A–C. More
precisely, Theorems A and B are special cases of Theorems 8.1 and 8.2, whereas Theorem C
and its Corollary are special cases of Theorem 9.4 and Theorem 9.5, respectively.

1.8. Acknowledgements. The authors are very grateful to Ian Grojnowski for introduc-
ing them to rigid analytic geometry and to localisation methods in representation theory. They
would also like to thank Ahmed Abbes, Oren Ben-Bassat, Joseph Bernstein, Kenny Brown,
Simon Goodwin, Ian Grojnowski, Michael Harris, Florian Herzig, Christian Johannson, Min-
hyong Kim, Kobi Kremnitzer, Shahn Majid, Vytas Paškūnas, Tobias Schmidt, Peter Schneider,
Wolfgang Soergel, Matthias Strauch, Catharina Stroppel, Go Yamashita and James Zhang for
their interest in this work. The first author was supported by EPSRC grant EP/L005190/1.

1.9. Conventions. Throughout this paper K will denote a complete discrete valuation
field with valuation ring R and residue field k.2) We fix a non-zero non-unit element π in R.

2) Many constructions of this paper make sense for arbitrary fields K equipped with a complete non-
archimedean valuation. However because R may not be Noetherian in this more general setting the proofs of
several important technical results such as Theorem 4.5 and Theorem 6.7 do not generalise in a straightforward
manner.
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IfM is an R-module, then ”M denotes the π-adic completion ofM. The term "module" will
mean left module, unless explicitly stated otherwise.

2. Enveloping algebras of Lie–Rinehart algebras

2.1. Lie–Rinehart algebras. Let R be a commutative base ring, and let A be a com-
mutativeR-algebra. A Lie–Rinehart algebra, or more precisely, an (R,A)-Lie algebra is a pair
(L, ρ) where

• L is an R-Lie algebra and an A-module, and

• ρ : L→ DerR(A) is an A-linear Lie algebra homomorphism

called the anchor map, such that [x, ay] = a[x, y] + ρ(x)(a)y for all x, y ∈ L and a ∈ A; see
[23]. We will frequently abuse notation and simply denote (L, ρ) by L whenever the anchor
map ρ is understood.

For every (R,A)-Lie algebra L there is an associative R-algebra U(L) called the en-
veloping algebra of L, which comes equipped with canonical homomorphisms

iA : A→ U(L) and iL : L→ U(L)

of R-algebras and R-Lie algebras respectively, satisfying

iL(ax) = iA(a)iL(x) and [iL(x), iA(a)] = iA(ρ(x)(a)) for all a ∈ A, x ∈ L.

The enveloping algebra U(L) enjoys the following universal property: whenever jA : A → S

is an R-algebra homomorphism and jL : L→ S is an R-Lie algebra homomorphism such that

jL(ax) = jA(a)jL(x) and [jL(x), jA(a)] = jA(ρ(x)(a)) for all a ∈ A, x ∈ L,

there exists a unique R-algebra homomorphism ϕ : U(L)→ S such that

ϕ ◦ iA = jA and ϕ ◦ iL = jL.

It is easy to show [23, §2] that iA : A → U(L) is always injective. If (L, ρ), (L′, ρ′) are two
(R,A)-Lie algebras then a morphism of (R,A)-Lie algebras is an A-linear map f : L → L′

that is also a morphism of R-Lie algebras and satisfies ρ′f = ρ.
A morphism of (R,A)-Lie algebras f : L → L′ induces an R-algebra homomorphism

U(f) : U(L) → U(L′) via U(f)(a) = a for a ∈ A and U(f)(iL(x)) = iL′(f(x)) for x ∈ L.
So in this way, U defines a functor from (R,A)-Lie algebras to associative R-algebras.

Definition. We say that an (R,A)-Lie algebra L is coherent if it is coherent as an A-
module. We say that L is smooth if in addition it is projective as a A-module.
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2.2. Base extensions of Lie–Rinehart algebras. Let A and B be commutative R-
algebras and let ϕ : A → B be an R-algebra homomorphism. If L is an (R,A)-Lie algebra,
the B-module B ⊗A L will not be an (R,B)-Lie algebra, in general. However this is true in
many interesting situations.

Lemma. Suppose that the anchor map ρ : L → DerR(A) lifts to an A-linear Lie alge-
bra homomorphism σ : L→ DerR(B) in the sense that

σ(x) ◦ ϕ = ϕ ◦ ρ(x) for all x ∈ L.

Then (B⊗AL, 1⊗σ) with the natural B-linear structure is an (R,B)-Lie algebra in a unique
way.

Proof. Write x · b := σ(x)(b) and bx := b ⊗ x for all x ∈ L and b ∈ B. Following
[23, (3.5)], we define a bracket operation on B ⊗A L in the only possible way as follows:

[bx, b′x′] := bb′[x, x′]− b′(x′ · b)x+ b(x · b′)x′

for all b, b′ ∈ B and x, x′ ∈ L. It is straightforward to verify that this bracket is well-defined,
skew-symmetric, and satisfies

[bx, c(b′x′)] = c[bx, b′x′] + (1⊗ σ)(bx)(c)b′x′

for all b, b′, c ∈ B and x, x′ ∈ L. Note that if x, y, z ∈ L and b ∈ B then

[[1x, 1y], bz] + [[1y, bz], 1x] + [[bz, 1x], 1y] = ([x, y] · b− x · (y · b) + y · (x · b))z

so the condition that σ : L → Derk(B) is a Lie homomorphism is necessary for the Jacobi
identity to hold. A longer, but still straightforward, computation shows that this condition is
also sufficient.

Corollary. Suppose that ψ : DerR(A) → DerR(B) is an A-linear homomorphism of
R-Lie algebras such that ψ(u) ◦ ϕ = ϕ ◦ u for each u ∈ DerR(A). There is a natural functor
B⊗A− from (R,A)-Lie algebras to (R,B)-Lie algebras sending (L, ρ) to (B⊗AL, 1⊗ψρ).

Proof. Suppose that (ρ, L) and (ρ′, L′) are (R,A)-Lie algebras and f : L→ L′ is a mor-
phism of (R,A)-Lie algebras. Give (B⊗AL, 1⊗ψρ) and (B⊗AL′, 1⊗ψρ′) the structures of
(R,B)-Lie algebras guaranteed by the Lemma; we have to show that 1⊗f : B⊗AL→ B⊗AL′
is then a morphism of (R,B)-Lie algebras.

It isB-linear and satisfies (1⊗ψρ′)◦(1⊗f) = 1⊗ψρ because ρ′f = ρ. Now if b, c ∈ B
and x, y ∈ L then

[(1⊗ f)(bx), (1⊗ f)(cy)] = bc[f(x), f(y)]− c(y · b)f(x) + b(x · c)f(y)

= (1⊗ f)([bx, cy]).

Thus 1⊗ f is an R-Lie algebra homomorphism.
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2.3. Rinehart’s Theorem. By construction, U(L) is generated as an R-algebra by
the images of iA : A → U(L) and iL : L → U(L). Let F0U(L) := iA(A) and let
FnU(L) = iA(A) +

∑n
j=1 iL(L)j for each n > 1. This defines a canonical increasing ex-

haustive filtration on U(L), and letting Sym(L) denote the symmetric algebra of theA-module
L, there is a natural surjection Sym(L)� grU(L).

Rinehart proved [23, Theorem 3.1] that this map is actually an isomorphism whenever
L is smooth. In this case, the natural map iA ⊕ iL : A ⊕ L → U(L) is injective, and we
will henceforth identify A and L with their respective images in U(L). Rinehart’s result also
implies that U(L) is a (left and right) Noetherian ring whenever A is Noetherian and L is
a finitely generated A-module; we will use this basic fact without further mention in what
follows.

Proposition. Let ϕ : A → B be a homomorphism of commutative R-algebras and let
(L, ρ) be a smooth (R,A)-Lie algebra. Suppose that ρ : L→ DerR(A) lifts to an A-linear Lie
algebra homomorphism σ : L→ DerR(B). Then there are natural isomorphisms

B ⊗A U(L)→ U(B ⊗A L) and U(L)⊗A B → U(B ⊗A L)

of filtered left B-modules and filtered right B-modules, respectively.

Proof. The pair (B⊗AL, 1⊗σ) is an (R,B)-Lie algebra by Lemma 2.2. The universal
property of U(L) induces a homomorphism of filtered R-algebras

U(ϕ) : U(L)→ U(B ⊗A L)

such that U(ϕ)(iL(x)) = iB⊗AL(1⊗ x) for all x ∈ L. Since U(ϕ) is left A-linear, we obtain
a filtered left B-linear homomorphism

1⊗ U(ϕ) : B ⊗A U(L) −→ U(B ⊗A L).

By [23, Theorem 3.1], its associated graded can be identified with the natural map

B ⊗A Sym(L) −→ Sym(B ⊗A L)

which is an isomorphism by [13, Chapter III, §6, Proposition 4.7]. The isomorphism

U(ϕ)⊗ 1: U(L)⊗A B → U(B ⊗A L)

of right B-modules is established similarly.

2.4. Lifting derivations of affinoid algebras. We now restrict our scope considerably,
and focus on K-affinoid algebras in this Subsection. Recall [8, §3.3], that if A → B is a
morphism of K-affinoid algebras, then there is a finitely generated B-module

ΩB/A

such that for any Banach B-module M there is a natural isomorphism

HomB(ΩB/A,M) ∼= DerbA(B,M)
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where DerbA(B,M) denotes the set of A-linear bounded derivations from B to M . Note
that every K-linear derivation from B to a finitely generated B-module M is automatically
bounded; this follows from the proof of [15, Theorem 3.6.1]. So DerbK(B,B) = DerK(B) in
particular.

Lemma. Let ϕ : A → B be an étale morphism of K-affinoid algebras. Then there is a
unique A-linear map

ψ : DerK(A)→ DerK(B)

such that ψ(u) ◦ ϕ = ϕ ◦ u for each u ∈ DerK(A). Moreover ψ is a homomorphism of K-Lie
algebras.

Proof. By [11, Corollary 2.1.8/3 and Theorem 6.1.3/1], ϕ : A→ B is bounded. Hence,
composition with ϕ induces A-linear maps

DerK(A)
α−→ DerbK(A,B)

β←− DerK(B).

SinceA→ B is étale, [8, Proposition 3.5.3(i)] shows that the natural mapB⊗AΩA/K → ΩB/K

is an isomorphism. Taking B-linear duals shows that the restriction map

β : DerK(B)→ DerbK(A,B)

is also an isomorphism and therefore every K-linear derivation of B is determined by its re-
striction to A. We therefore obtain a unique A-linear map

ψ := β−1 ◦ α : DerK(A)→ DerK(B)

such that ψ(u) ◦ ϕ = ϕ ◦ u for all u ∈ DerK(A). If u, v ∈ DerK(A) then the K-linear
derivations ψ([u, v]) and [ψ(u), ψ(v)] of B agree on the image of A in B and therefore are
equal. Hence ψ is a Lie homomorphism.

Combining the Lemma with Corollary 2.2 gives the following

Corollary. Let A → B be an étale morphism of K-affinoid algebras and let L be a
(K,A)-Lie algebra. Then there is a unique structure of a (K,B)-Lie algebra on B ⊗A L with
its natural B-module structure such that the natural map L → B ⊗A L is a K-Lie algebra
homomorphism and the diagram

L
ρL //

��

DerK(A)

ψ
��

B ⊗A L ρB⊗AL
// DerK(B)

commutes. Moreover this defines a canonical functor L 7→ B ⊗A L from (K,A)-Lie algebras
to (K,B)-Lie algebras.
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2.5. Torsion in U(L). Recall that R denotes the ring of integers in our complete dis-
cretely valued base field K. Let A be a commutative Noetherian R-algebra, and let L be
a coherent (R,A)-Lie algebra. Let L denote the image of L in L ⊗R K; this is again an
(R,A)-Lie algebra which is now flat as anR-module.

Let U(L) denote the image of U(L) in U(L) ⊗R K; note that unless L happens to be
smooth, the π-torsion submodule of U(L) may well be non-zero. In any case, because U(L)

is always generated as an R-algebra by the images of A and L inside it, we see that there is a
commutative diagram ofR-algebra homomorphisms with surjective arrows

U(L) // //

����

U(L)

����

U(L) // // U(L).

Note that because U(L⊗RK) ∼= U(L)⊗RK, the bottom arrow in this diagram is actually an
isomorphism.

Lemma. The functor X 7→ ‘XK = “X ⊗R K transforms each arrow in the above
diagram into an isomorphism.

Proof. The kernel of U(L) → U(L) is a finitely generated left ideal T in U(L) since
U(L) is Noetherian. Since T⊗RK = 0 by construction, we see that πn·T = 0 for some n > 0.

The sequence 0 → “T → ’U(L) → ’
U(L) → 0 is exact by [10, §3.2.3(ii)], and πn · “T = 0,

so ◊�U(L)K →
◊�
U(L)K is an isomorphism. This deals with the vertical arrows, and the result

follows.

3. Tate’s Acyclicity Theorem for Ÿ�U (L)K

3.1. L-stable affine formal models. Recall [12, §1] that an admissible R-algebra is a
commutativeR-algebra which is topologically of finite type and flat overR.

If A is a K-affinoid algebra and A is an admissible R-algebra then we say that A is an
affine formal model in A if A ∼= A⊗R K.

Lemma. Let A,B be two affine formal models in the K-affinoid algebra A. Then their
product AB is another formal model in A, and AB is finitely generated as a module over A
and B.

Proof. It follows from [11, 6.1.3/1, 2.1.8/3, 1.2.5/4] that f(A◦) ⊆ B◦ if f : A → B

is a K-algebra homomorphism between two K-affinoid algebras. Because A is the image of
R〈x1, . . . , xn〉 under some homomorphism K〈x1, . . . , xn〉 → A, it follows that A and B are
both contained in A◦. Now if S is a finite topological generating set for B as an R-algebra,
then the subalgebra A[S] of A generated by A and S is finitely generated as an A-module
by [12, Lemma 4.5], and is therefore contained in 1

πnA for some n > 0. This subalgebra is
therefore closed, and hence contains B. Thus A · B = A[S] and the result follows.
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Definition. Let σ : A → B be an étale morphism of K-affinoid algebras and let A be
an affine formal model in A. Let L be an (R,A)-Lie algebra and let B be an affine formal
model in B. We say that B is L-stable if σ(A) ⊂ B and the action of L on A lifts to B. We
say that σ : A→ B is L-admissible if there exists at least one L-stable affine formal model B
in B.

Note that because σ : A→ B is étale, the action ofL := L⊗RK onA lifts automatically
to B by Corollary 2.4, making this definition meaningful.

Corollary. Let σ : A → B be an L-admissible morphism of K-affinoid algebras, let
A be an affine formal model in A and let L be an (R,A)-Lie algebra. If B1 and B2 are two
L-stable formal models in B then there is a third L-stable formal model B3 in B containing
both B1 and B2, and t1, t2 > 0 such that πtiB3 ⊆ Bi for i = 1, 2.

Proof. The product B3 := B1B2 is again an affine formal model by the Lemma, and
it is L-stable because L acts on B by R-linear derivations. Now B3 is a finitely generated
Bi-module by the Lemma, and B3 ⊗R K = Bi ⊗R K for i = 1, 2.

3.2. The L-admissible G-topology. Let X be a K-affinoid variety. Recall from [11,
§9.1.4] the strong G-topology Xrig consisting of the admissible open subsets of X and admis-
sible coverings, and the weak G-topology Xw on X consisting of the affinoid subdomains of
X and finite coverings by affinoid subdomains.

Definition. Let X be a K-affinoid variety, and let L be an (R,A)-Lie algebra for some
affine formal model A in O(X). We say that an affinoid subdomain Y of X is L-admissible
if the pullback on functions O(X) → O(Y ) is L-admissible. We will denote the full sub-
category of Xw consisting of the L-admissible affinoid subdomains by Xw(L). We define an
L-admissible covering of an L-admissible affinoid subdomain of X to be a finite covering by
objects in Xw(L).

The following Lemma now shows that Xw(L) is a G-topology on X in the sense of
[11, Definition 9.1.1/1].

Lemma. Let X be a K-affinoid variety, and let L be an (R,A)-Lie algebra for some
affine formal model A in O(X). Then Xw(L) is stable under finite intersections.

Proof. Let Y, Z ∈ Xw(L) have L-stable affine formal models B and C respectively,
and let B“⊗AC denote the image of B“⊗AC in O(Y ∩ Z) = O(Y )“⊗O(X)O(Z). Then the fibre

product Spf(B)×Spf(A)Spf(C) in the category of admissible formal schemes is Spf(B“⊗AC) by

definition, see [12, p. 298]. Therefore B“⊗AC is an affine formal model in O(Y )“⊗O(X)O(Z)

by [12, Corollary 4.6]. It contains the L-stable subalgebra generated by the images of B“⊗1 and
1“⊗C as a dense subspace, and therefore is L-stable because every K-linear derivation of the
K-affinoid algebra B“⊗AC is automatically continuous.
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3.3. The functor Ÿ�U (L)K . Let V and W be two K-Banach spaces. Recall that a K-
linear map f : V → W is an isomorphism if it is bounded, and has a bounded K-linear
inverse.

Proposition. Let σ : A→ B be a map ofK-affinoid algebras, letA be an affine formal
model in A and let B ⊆ B′ be affine formal models in B containing σ(A).

(a) Let Q be a flat A-module. Then there is an isomorphism of Banach B-modulesÿ�B ⊗A Q⊗R K
∼=−→Ÿ�B′ ⊗A Q⊗R K.

(b) Suppose that σ is étale, let L be a smooth (R,A)-Lie algebra, and suppose that B and
B′ are L-stable. Then there is an isomorphism of K-Banach algebras¤�U(B ⊗A L)⊗R K

∼=−→ ¤�U(B′ ⊗A L)⊗R K.

Proof. (a) B′ is a finitely generated B-module by Lemma 3.1, so πaB′ ⊆ B for some
integer a. Since Q is flat, we obtain B-module embeddings

B ⊗A Q ↪→ B′ ⊗A Q ↪→ 1

πa
B ⊗A Q

that induce the required isomorphism ÿ�B ⊗A Q ⊗R K
∼=−→Ÿ�B′ ⊗A Q ⊗R K after completing

and inverting π.
(b) SinceB ⊆ B′ areL-stable affine formal models, the natural inclusionB⊗AL → B′⊗AL

is a homomorphism of (R,B)-Lie algebras, which induces anR-algebra homomorphism
U(B ⊗A L)→ U(B′ ⊗A L), and a K-algebra homomorphism¤�U(B ⊗A L)⊗R K → ¤�U(B′ ⊗A L)⊗R K

by functoriality. Now U(L) is a projective (hence flat) A-module by [23, Theorem 3.1], so in
view of Proposition 2.3, this homomorphism is an isomorphism of Banach B-modules by part
(a). Hence it is also a K-Banach algebra isomorphism.

Definition. For any L-admissible affinoid subdomain Y of X and any L-stable affine
formal model B in O(Y ), we defineÿ�U (L)K(Y ) := ¤�U(B ⊗A L)⊗R K.

Note that B⊗AL is an (R,B)-Lie algebra by Lemma 2.2, so ÿ�U (L)K(Y ) is an associative
K-Banach algebra, which does not depend on the choice of L-stable affine formal model B in
O(Y ) by Corollary 3.1 and Proposition 3.3(b).

Suppose now that Z and Y are L-admissible affinoid subdomains of X with Z ⊆ Y .
Choose an L-stable affine formal model B in O(Y ), and an L-stable affine formal model C′ in
O(Z). Let C be the product of C′ with the image of B in O(Z); then C is again an L-stable
affine formal model in O(Z). In this way we obtain R-algebra homomorphisms A → B → C
which produce the restriction maps O(X) → O(Y ) → O(Z) after applying − ⊗R K. The
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universal property of the enveloping algebra of a Lie–Rinehart algebra now yields R-algebra
homomorphisms

U(L)→ U(B ⊗A L)→ U(C ⊗A L)

and we see that ÿ�U (L)K is a functor from Xw(L) to K-Banach algebras. We have thus defined
a presheaf ÿ�U (L)K on Xw(L).

3.4. Rig-affinoid formal schemes. Recall the rigid generic fibre functor X 7→ Xrig

from admissible formalR-schemes to rigid K-analytic varieties [12, §4]. We say that a quasi-
compact and admissible (not necessarily affine) formal R-scheme X is a formal model for
the quasi-compact, quasi-separated rigid K-analytic variety X if X = Xrig. We say that a
quasi-compact admissible formalR-scheme X is rig-affinoid if Xrig is affinoid.

Let BT be the category of π-torsion R-modules which are bounded, i.e. killed by some
power of π. This is a Serre subcategory of the abelian categoryR−mod ofR-modules, and we
will work in the quotient abelian category

Q := R−mod /BT .

Let q : R−mod→ Q denote the natural exact quotient functor.
On several occasions we will need the Čech-to-derived functor spectral sequence

(1) Eij2 = Ȟ i(U ,Hj(F))⇒ H i+j(X,F)

from [29, Theorem 3.4.4]; see also [28, Lemma 21.11.6]. HereX is a site, U is a covering ofX ,
F is an abelian sheaf on X and Hj(F) is the abelian presheaf on X given by U 7→ Hj(U,F)

for any object U of X .

Lemma. Let X be a quasi-compact admissible formalR-scheme, let τ : Y → X be an
admissible blow-up and let F be a coherent OY -module.

(a) Riτ∗(F) is killed by a power of π for all i > 0.

(b) The map τ ] : OX → τ∗OY is injective, and coker(τ ]) is killed by a power of π.

(c) qH i(X ,O) = qH i(Y,O) for all i > 0.

Proof. (a) Because X is quasi-compact and the formation of admissible blow-ups is
local on the base, we may assume that X is affine, so that A := O(X ) is an admissible
R-algebra. Now Riτ∗(F) is the coherent sheaf of OX -modules associated to H i(Y,F) by
[16, Chapitre III, 3.4.5.1], so it is sufficient to show that H i(Y,F) is killed by a power of π
for all i > 0. Furthermore, since τ is proper, H i(Y,F) a finitely generated A-module by [16,
Chapitre III, Corollaire 3.4.4]. It will therefore be enough to show that H i(Y,F) ⊗R K = 0

for all i > 0.
Choose an open affine covering U = {Y1, . . . ,Yn} of Y . Note that Y is separated

because it is projective over the affine formal scheme X . Thus every finite intersection of
members of U is again affine, and hence the coherent sheafF has vanishing higher cohomology
on these intersections by [17, Theorem II.9.7]. Hence the spectral sequence (1) for the covering
U of Y collapses on page 2, and induces isomorphisms H i(Y,F) ∼= Ȟ i(U ,F) for all i > 0.

http://stacks.math.columbia.edu/tag/03AZ
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On the other hand, we can localise F to a coherent sheaf Frig ofOXrig -modules as in [12,
p. 315], and it follows from [12, Corollary 4.6] that C•(U ,F)⊗R K = C•(Urig,Frig). Hence
Ȟ i(U ,F)⊗RK ∼= Ȟ i(Urig,Frig) for all i > 0. However Xrig is affinoid, so these cohomology
groups vanish by the theorems of Kiehl and Tate [11, Theorem 9.4.3/3 and Corollary 8.2.1/5]
whenever i > 0.

(b) Again we may assume that X is affine with A := O(X ), and we choose an open
affine covering U = {Y1, . . . ,Yn} of Y . Then we want to show that

τ ](X ) : A → O(Y) = Ȟ0(U ,O)

is injective and that its cokernel is killed by a power of π. But

τ ](X )⊗R K : O(Xrig)→ O(Yrig) = Ȟ0(Urig,Orig)

is an isomorphism by [11, Theorem 8.2.1/1] and A embeds into O(Xrig) = A⊗R K because
O(X ) is an admissibleR-algebra. Hence τ ](X ) is injective and its cokernel is π-torsion. Since
this cokernel is also a finitely generated A-module by part (a), the result follows.

(c) We have the convergent Leray spectral sequence [31, Theorem 5.8.6]:

Eij2 = H i(X , Rjτ∗O)⇒ H i+j(Y,O)

whose terms Eij2 lie in BT whenever j > 0 by part (a). Hence the image of this spectral
sequence in the quotient category Q = R−mod /BT collapses on page 2 and the edge maps
induce canonical isomorphisms qHn(X , τ∗O) ∼= qHn(Y,O) for all n > 0. Now a long exact
sequence together with part (b) implies that qHn(X , τ∗O) ∼= qHn(X ,O) for all n > 0, and
the result follows.

Corollary. If the quasi-compact admissible formal R-scheme X is rig-affinoid, then
H i(X ,O) ∈ BT for all i > 0.

Proof. By part (d) of the proof of Raynaud’s Theorem [12, Theorem 4.1], we can find
an affine admissible formal R-scheme X ′ together with a diagram X ← Y → X ′, where both
arrows are admissible blow-ups. Now Lemma 3.4(c) implies that

qH i(X ,O) = qH i(Y,O) = qH i(X ′,O) for all i > 0.

But H i(X ′,O) = 0 for i > 0 by [17, Theorem II.9.7] because X ′ is affine.

Proposition. Let U = {X1, . . . ,Xn} be an open covering of a quasi-compact admissi-
ble formalR-scheme X . Suppose that X and each Xi are rig-affinoid. Then Ȟn(U ,O) ∈ BT
for all n > 0.

Proof. Consider the spectral sequence (1) for the covering U of X and the sheaf O.
Since Xrig is affinoid, it is separated; because each Xi,rig is assumed to be affinoid, it now fol-
lows from [12, Proposition 4.7] that every finite intersection Z of members of U is rig-affinoid.
HenceHj(O)(Z) ∈ BT for all j > 0 by the Corollary, which implies that Ȟ i(U ,Hj(O)) ∈ BT
for all i > 0 and all j > 0. Hence the image of this spectral sequence in Q collapses on page
2 and the edge maps induce canonical isomorphisms qȞn(U ,O) ∼= qHn(X ,O) for all n > 0.
However Hn(X ,O) ∈ BT for all n > 0 because X is rig-affinoid, again by the Corollary.
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3.5. An analogue of Tate’s Acyclicity Theorem. Whenever X is a formal model for
X , we will identify theR-algebra O(X ) with its natural image inside the K-algebra O(X).

Lemma. Let X be a K-affinoid variety and let X ,X ′ be two formal models for X .
Then there exist integers a, b > 0 such that πaO(X ′) ⊆ O(X ) ⊆ π−bO(X ′).

Proof. By part (d) of the proof of Raynaud’s Theorem [12, Theorem 4.1], we can find
a diagram X τ← Y → X ′ where both arrows are admissible formal blow-ups. By Lemma
3.4(b), there exists some a > 0 such that πaτ∗OY ⊆ τ ](OX ) ⊆ τ∗OY . Applying Γ(X ,−)

produces inclusions πaO(Y) ⊆ O(X ) ⊆ O(Y) inside O(X). By symmetry, we also obtain
πbO(Y) ⊆ O(X ′) ⊆ O(Y) for some b > 0. Therefore

πaO(X ′) ⊆ πaO(Y) ⊆ O(X ) ⊆ O(Y) ⊆ π−bO(X ′)

as required.

We can now state and prove the main result of Section 3.

Theorem. Let X be a K-affinoid variety, and let L be a smooth (R,A)-Lie algebra
for some affine formal model A in O(X). Then every L-admissible covering of X is ÿ�U (L)K-
acyclic.

Proof. Let U := {X1, . . . , Xn} be the given L-admissible covering, and choose some
L-stable affine formal model Ai in O(Xi) for each i = 1, . . . , n. For every non-empty subset
S of {1, . . . , n}, write XS =

⋂
i∈S Xi, and let AS be the closed R-subalgebra of O(XS)

generated by the images of Ai ⊂ O(Xi) in O(XS) under the natural restriction maps. Then
AS is an L-stable affine formal model in O(XS) for every S by Lemma 3.2, and moreover we
have a natural subcomplex

C• := [0→ A→
n∏
i=1

Ai →
∏
|S|=2

AS → · · · → A{1,...,n} → 0]

of the augmented Čech complex

C•aug(U ,O) = [0→ O(X)→
n∏
i=1

O(Xi)→
∏
|S|=2

O(XS)→ · · · → O(X{1,...,n})→ 0].

Now by [12, Lemma 4.4], we can find an admissible formal blow-up X ′ → X := Spf(A)

together with an open covering U ′ = {X ′1, . . . ,X ′n} of X ′ such that Xi = X ′i,rig for all
i = 1, . . . , n. Writing X ′S :=

⋂
i∈S X ′i and BS := O(X ′S) for every non-empty subset S

of {1, . . . , n}, we can consider the augmented Čech complex

D• := C•aug(U ′,O) := [0→ A→
n∏
i=1

Bi →
∏
|S|=2

BS → · · · → B{1,...,n} → 0].

Applying the Lemma to each term of C• and D• produces embeddings of complexes

C• ↪→ C•aug(U ,O)←↩ D•
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together with integers a, b > 0 such that πaD• ⊆ C• ⊆ π−bD•. Since X and each X ′i are rig-
affinoid, we see that D• has bounded π-torsion cohomology by Lemma 3.4(b) and Proposition
3.4, and the same is true for the isomorphic sub-complex πaD•. Since C•/πaD• is killed
by πa+b by construction, a long exact sequence shows that C• also has bounded π-torsion
cohomology.

Because L is smooth, it follows from [23, Theorem 3.1] that U(L) is a projective, and
hence flat, A-module. Hence U(L) ⊗A C• also has bounded π-torsion cohomology. There-

fore ¤�U(L)⊗A C• ⊗R K is exact by the elementary Lemma 3.6 below. But it follows from

Proposition 2.3 that ¤�U(L)⊗A C• ⊗R K ∼= C•aug(U ,ÿ�U (L)K).

3.6. Lemma. Let C• be a complex of flat R-modules with bounded torsion cohomol-
ogy. Then Hq(”C•) ∼= Hq(C•) for all q, and ”C• ⊗R K is exact.

Proof. Since C• has no π-torsion by assumption, for each n,m > 0 we have a commu-
tative diagram of complexes ofR-modules with exact rows:

0 // C•
πn+m //

πm

��

C• // C•/πn+mC• //

��

0

0 // C•
πn
// C• // C•/πnC• // 0.

Now fix q, chooseN > 0 such thatHq(C•) andHq+1(C•) are killed by πN and let n,m > N .
Applying the long exact sequence of cohomology produces another commutative diagram with
exact rows:

0 // Hq(C•) // Hq(C•/πn+mC•) //

��

Hq+1(C•) //

πm

��

0

0 // Hq(C•) // Hq(C•/πnC•) // Hq+1(C•) // 0.

Consider this diagram as a short exact sequence of towers of R-modules. Since the vertical
arrow on the right is zero for m > N by assumption, and the vertical arrow on the left is an
isomorphism, the long exact sequence associated to the inverse limit functor lim←− shows that

Hq(C•) ∼= lim←−H
q(C•/πnC•) and lim←−

1Hq(C•/πnC•) = 0 for all q.

Because the maps in the tower of complexes (C•/πnC•)n are surjective, this tower satisfies
the Mittag-Leffler condition. The cohomological variant of [31, Theorem 3.5.8] implies that

lim←−H
q(C•/πnC•) ∼= Hq(”C•) for all q.

Therefore ”C• has π-torsion cohomology.
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4. Exactness of localisation

4.1. One-variable Tate extensions. Let A be a (not necessarily commutative) Banach
K-algebra. Then the free Tate algebra in one variable t over A is

A〈t〉 :=

{ ∞∑
i=0

tiai ∈ A[[t]] : ai → 0 as i→∞
}
.

Similarly we can define M〈t〉 for a Banach A-module M , and it is readily checked that M〈t〉
is naturally a Banach A〈t〉-module.

We will soon need to understand certain torsion submodules of M〈t〉.

Lemma. Let f ∈ A.

(a) M〈t〉 is (ft− 1)-torsion-free.

(b) If (t− f) ·
Ä∑∞

j=0 t
jmj

ä
= 0 then fm0 = 0 and fmj = mj−1 for all j > 1.

(c) If f is central in A and M is Noetherian, then M〈t〉 is (t− f)-torsion-free.

Proof. (a) If (ft − 1)
∑∞
j=0 t

jmj = 0 then m0 = 0 and fmj = mj+1 for all j > 0.
Hence mj = 0 for all j > 0 by induction.

(b) This is a direct calculation, similar to part (a).
(c) Since f acts by A-linear endomorphisms of M and M is Noetherian, the ascending

chain ofA-submodules 0 ⊆ ker f ⊆ ker f2 ⊆ · · · inM must terminate at ker f r, say. Suppose
that (t − f) ·

Ä∑∞
j=0 t

jmj

ä
= 0. Then f j+1mj = fm0 = 0 for all j > 0 by part (b), so

mj ∈ ker f j+1 = ker f r for j > r. Hence 0 = f rmi+r = mi for all i > 0 and
∑∞
i=0 t

imi = 0.

4.2. Lifting derivations fromA toA〈t〉. We begin with an elementary result.

Lemma. Let A be a π-adically completeR-algebra, let u be anR-linear derivation of
A and let b ∈ A〈t〉. Then u extends uniquely to an R-linear derivation v of A〈t〉 such that
v(t) = b.

Proof. There is a unique R-linear derivation v0 : A[t] → A〈t〉 extending u : A → A
such that v0(t) = b. Since A is π-adically complete, so is A〈t〉, and v0 : A[t] → A〈t〉 is
π-adically continuous, being R-linear. Since A[t] is dense in A〈t〉, v0 extends uniquely to an
R-linear derivation v of A〈t〉.

Proposition. Let A be an affine formal model in a K-affinoid algebra A and let L be
an (R,A)-Lie algebra with anchor map ρ : L → DerR(A). Write x · a = ρ(x)(a) for x ∈ L
and a ∈ A. Let f ∈ A be such that L · f ⊂ A. Then there are two lifts

σ1, σ2 : L → DerR(A〈t〉)

of the action of L on A to A〈t〉, such that

σ1(x)(t) = x · f and σ2(x)(t) = −t2(x · f) for all x ∈ L.
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Proof. The R-algebra A is admissible and is therefore π-adically complete. By the
Lemma, for any x ∈ L there is a uniqueR-linear derivation σ1(x) ofA〈t〉 such that σ1(x)(t) = x·f .
The map σ1 : L → DerR(A〈t〉) obtained in this way is A-linear because ρ is A-linear. Let
x, y ∈ L; then

σ1([x, y])(t) = [x, y] · f = x · (y · f)− y · (x · f) = (σ1(x)σ1(y)− σ1(y)σ1(x)) (t)

so the derivation σ1([x, y])−[σ1(x), σ1(y)] is identically zero onA[t]. SinceA〈t〉 is π-adically
complete and A[t] is dense in A〈t〉, σ1 is a Lie homomorphism.

Similarly we can construct an A-linear map σ2 : L → DerR(A〈t〉) extending ρ such
that σ2(x)(t) = −t2x · f for all x ∈ L. Let x, y ∈ L and write x · b = σ2(x)(b) for
b ∈ A〈t〉. Then x · (y · t) = x · (−t2(y · f)) = 2t3(x · f)(y · f) − t2x · (y · f). Therefore
x · (y · t)− y · (x · t) = −t2[x, y] · f = [x, y] · t because f ∈ A and ρ is a Lie homomorphism.
Hence σ2 is also a Lie homomorphism.

4.3. L-stable affine formal models for Weierstrass and Laurent domains. Let A be
a K-affinoid algebra and fix f ∈ A. Let A be an affine formal model for A, and choose a ∈ N
such that πaf ∈ A. Define

u1 = πat− πaf and u2 := πaft− πa ∈ A〈t〉.

Let X := Sp(A) and let Ci = A〈t〉/uiA〈t〉 be the K-affinoid algebras corresponding to the
Weierstrass and Laurent subdomains

X1 := X(f) = Sp(C1) and X2 := X(1/f) = Sp(C2)

of X , respectively.
Let L be an (R,A)-Lie algebra such that L · f ⊂ A. Then by Proposition 4.2, the action

of L on A lifts to A〈t〉 in two different ways σ1 and σ2, and Li := A〈t〉 ⊗A L becomes an
(R,A〈t〉)-Lie algebra by Lemma 2.2, with anchor map 1⊗ σi.

Lemma. Let L be an (R,A)-Lie algebra and let f ∈ A be a non-zero element such
that L · f ⊂ A. Then the affinoid subdomains Xi of X are L-admissible.

Proof. Let Ci := A〈t〉/uiA〈t〉. A direct calculation shows that

σ1(x)(u1) = 0 and σ2(x)(u2) = −(x · f)tu2 for all x ∈ L.

It follows that uiA〈t〉 is a σi(L)-stable ideal of A〈t〉, and therefore the image Ci of Ci in Ci is
an L-stable affine formal model in Ci. Hence Xi is L-admissible.

Proposition. Let L be a smooth (R,A)-Lie algebra and let f ∈ A be a non-zero ele-
ment such that L · f ⊂ A.

(a) U(Li)/πU(Li) is isomorphic to (U(L)/πU(L)) [t] as a A〈t〉-module.

(b) ÿ�U(Li)K is a flat ◊�U(L)K-module on both sides.
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(c) There is a short exact sequence

0→ÿ�U(Li)K
ui·−→ÿ�U(Li)K →ÿ�U (L)K(Xi)→ 0

of right ÿ�U(Li)K-modules, and a short exact sequence

0→ÿ�U(Li)K
·ui−→ÿ�U(Li)K →ÿ�U (L)K(Xi)→ 0

of left ÿ�U(Li)K-modules.

Proof. (a) By Proposition 2.3, there is a A〈t〉-module isomorphism

U(Li) = U(A〈t〉 ⊗A L) ∼= A〈t〉 ⊗A U(L).

It induces A〈t〉-module isomorphisms

U(Li)
πU(Li)

∼=
A〈t〉
πA〈t〉

⊗ A
πA

U(L)

πU(L)
∼= k[t]⊗k

U(L)

πU(L)
.

(b) The associated graded ring gr ÿ�U(Li)K w.r.t. the π-adic filtration is k[t]⊗k gr ◊�U(L)K ,
which is flat over gr ◊�U(L)K . Now apply [26, Proposition 1.2].

(c) By symmetry, it is sufficient to prove the first statement. By definition, the se-
quence 0 → A〈t〉 ui·−→ A〈t〉 → Ci → 0 is exact. Tensor it on the right with the flat
left A〈t〉-module U(Li) and apply Proposition 2.3 to get a short exact sequence of right
U(Li)-modules 0 → U(Li)

ui·−→ U(Li) → U(Ci ⊗A L) → 0. Since U(Li) is Noether-
ian, π-adic completion is exact on finitely generated U(Li)-modules by [10, §3.2.3(ii)]. Hence

0 → ÿ�U(Li)K
ui·−→ ÿ�U(Li)K → ¤�U(Ci ⊗A L)K → 0 is exact. Now by Lemma 2.5, there is a

natural isomorphism ¤�U(Ci ⊗A L)K
∼=−→ ¤�U(Ci ⊗A L)K

and ¤�U(Ci ⊗A L)K ∼= ÿ�U (L)K(Xi) as Ci is an L-stable affine formal model in Ci.

Remark. It follows from part (c) of the Proposition that the image of ÿ�U (L)K(X) inÿ�U (L)K(X1) is dense since it also contains the image of t.

4.4. Towards flatness. We keep the notation from the previous Subsection.

Lemma. LetM be a finitely generated ◊�U(L)K-module. Then there is a natural isomor-
phism of Banach A〈t〉-modules ηM : M〈t〉

∼=−→ÿ�U(Li)K ⊗÷U(L)K
M .

Similarly, ifN is a finitely generated right ◊�U(L)K-module there is a natural isomorphism
of Banach A〈t〉-modules ηN : N〈t〉

∼=−→ N ⊗÷U(L)K
ÿ�U(Li)K .

Proof. Choose a finitely generated ’U(L)-submoduleM in M which generates M as a
K-vector space. Thenÿ�U(Li)K ⊗÷U(L)K

M ∼=
Å÷U(Li)⊗‘U(L)

M
ã
⊗R K.
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The finitely generated ÷U(Li)-module ÷U(Li)⊗‘U(L)
M is π-adically complete by [10, §3.2.3(v)]

because ÷U(Li) is Noetherian. So, for any sequence of elements mj ∈ M tending to zero, the

series
∑∞
j=0 t

j ⊗mj converges to a unique element ηM
Ä∑∞

j=0 t
jmj

ä
in ÿ�U(Li)K ⊗÷U(L)K

M .

Because t commutes with A, it is straightforward to see that ηM is A〈t〉-linear. It follows
from Proposition 4.3(a) that η÷U(L)K

is an isomorphism. We may now view η as a natural

transformation between two right exact functors and use the Five Lemma to conclude that ηM
is always an isomorphism. The proof of the right module version is similar.

Our proof of the exactness of the localisation functor rests on the following elementary

Proposition. Let S → T be a ring homomorphism. Let u ∈ T be a left regular element
and suppose that

(a) T is a flat right S-module,

(b) T ⊗S M is u-torsion-free for all finitely generated left S-modules M .

Then W := T/uT is also a flat right S-module.

Proof. LetM be a finitely generated S-module and pick a projective resolutionP• �M

of M . Since TS is flat, T ⊗S P• � T ⊗S M is a projective resolution so

TorS1 (W,M) = H1(W ⊗S P•) = H1(W ⊗T (T ⊗S P•)) ∼= TorT1 (W,T ⊗S M).

The short exact sequence 0→ T
u·−→ T →W → 0 induces the long exact sequence

0 = TorT1 (T, T ⊗S M)→ TorT1 (W,T ⊗S M)→ T ⊗S M
u·−→ T ⊗S M,

so TorS1 (W,M) = TorT1 (W,T ⊗S M) vanishes by assumption (b). Hence W is a flat right
S-module by [31, Proposition 3.2.4].

4.5. Flatness for Weierstrass and Laurent embeddings. Here is the first main result
of Section 4.

Theorem. Let X be a K-affinoid variety and let f ∈ O(X) be non-zero. Let A be an
affine formal model in O(X) and let L be a smooth (R,A)-Lie algebra such that L · f ⊆ A.
Let X1 = X(f) and X2 = X(1/f). Then ÿ�U (L)K(Xi) is a flat ÿ�U (L)K(X)-module on both
sides for i = 1 and i = 2.

Proof. We know that Ti := ÿ�U(Li)K is a flat right S := ◊�U(L)K-module, and thatÿ�U (L)K(Xi) ∼= Ti/uiTi as a right Ti-module by Proposition 4.3. LetM be a finitely generated
S-module. By Lemma 4.4 and Proposition 4.4, to prove that ÿ�U (L)K(Xi) is a flat right S-
module it will be enough to show that theA〈t〉-moduleM〈t〉 is ui-torsion-free. The case i = 2

follows immediately from Lemma 4.1(a). Since u1 = πa(t − f), we just have to show that
M〈t〉 is (t− f)-torsion-free.

Suppose now that the element
∑∞
j=0 t

jmj ∈ M〈t〉 is killed by t − f . Then setting
m−1 := 0, we have the equations fmj = mj−1 for all j > 0 from Lemma 4.1(b), and
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lim
j→∞

mj = 0. We consider the S-submodule N of M generated by the mj . Since M is

Noetherian, N must be generated by m0, . . . ,md for some d > 0, say.
LetM be a finitely generated S := ’U(L)-submodule of M which generates M as a K-

vector space, and let N :=
∑d
i=0 Smi. Since S is Noetherian,M∩N is a finitely generated

S-submodule of N which generates N as a K-vector space, so the S-modules M∩ N and
N contain π-power multiples of each other. So for all n > 0 we can find jn > 0 such that
mj ∈ πnN for all j > jn, because lim

j→∞
mj = 0.

Since U(L) is generated by A+ L as anR-algebra and [f,A+ L] ⊆ L · f ⊂ A we see
that [f, U(L)] ⊆ U(L) and consequently [f,S] ⊆ S. Because

f
d∑
j=0

sjmj =
d∑
j=0

[f, sj ]mj + sjmj−1 ∈ N for all s0, . . . , sd ∈ S

we see that f iN ⊆ N for all i > 0. Therefore for any j, n > 0 we have

mj = f jnmj+jn ∈ f jnπnN ⊆ πnN .

Hence mj ∈
⋂∞
n=0 π

nN = 0 for all j > 0 and
∑∞
j=0 t

jmj = 0, so Ti is a flat right S-module
as claimed. The same argument for finitely generated right S-modules M also shows that Ti is
a flat left S-module.

4.6. L-accessible rational subdomains.
Until the end of Section 4, we will fix the following notation.

• X is a K-affinoid variety,

• A is an affine formal model in O(X),

• L is a smooth (R,A)-Lie algebra,

• S := ÿ�U (L)K .

We start with the following Lemma, which tells us that our sheaves ÿ�U (L)K behave well
with respect to restriction.

Lemma. Let Y be an L-admissible affinoid subdomain of X , let B be an L-stable
affine formal model in O(Y ) and let L′ = B ⊗A L. Then an affinoid subdomain Z of Y is
L-admissible if and only if it is L′-admissible, and there is a natural isomorphismÿ�U (L′)K(Z)

∼=−→ÿ�U (L)K(Z) for every Z ∈ Yw(L′).

Proof. If Z is L-admissible with L-stable affine formal model C, then the closed R-
subalgebra of O(Z) generated by C and the image of B in O(Z) is L′-stable, so Z is L′-
admissible. The converse is clear.

Now choose an L′-stable affine formal model C in O(Z). Then C is also L-stable, and
C ⊗B L′ = C ⊗B (B ⊗A L) ∼= C ⊗A L as (R, C)-Lie algebras. Henceÿ�U (L′)K(Z) ∼= ¤�U(C ⊗B L′)K ∼= ¤�U(C ⊗A L)K ∼= ÿ�U (L)K(Z)

as required.
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We would like to prove that every L-admissible étale morphism of affinoids Y → X has
the property that S(Y ) is a flat right and left S(X)-module. Unfortunately we cannot do this
at the moment and we introduce a new notion, that of L-accessibility, as a consequence of this.

Definition. (a) Let Y ⊆ X be a rational subdomain. If Y = X , we say that it is
L-accessible in 0 steps. Inductively, if n > 1 then we say that it is L-accessible in n
steps if there exists a chain Y ⊆ Z ⊆ X , such that

• Z ⊆ X is L-accessible in (n− 1) steps,
• Y = Z(f) or Z(1/f) for some non-zero f ∈ O(Z),
• there is an L-stable affine formal model C ⊆ O(Z) such that L · f ⊆ C.

(b) A rational subdomain Y ⊆ X is said to be L-accessible if it is L-accessible in n steps
for some n ∈ N.

Proposition. Let Y ⊆ X be anL-accessible rational subdomain. Then it isL-admissible
and S(Y ) is a flat S(X)-module on both sides.

Proof. Assume that Y ⊆ X is L-accessible in n steps, and proceed by induction on
n. The statement is vacuous when n = 0, so assume n > 1. Choose a chain Y ⊆ Z ⊆ X

where Z ⊆ X is L-accessible in n − 1 steps, assume that Y = Z(f) or Z(1/f) for some
non-zero f ∈ O(Z) and let C ⊆ O(Z) be an L-stable affine formal model such that L · f ⊆ C.
Then L′ := C ⊗A L is an (R, C)-Lie algebra and L′ · f ⊆ C, so Y ⊆ Z is L′-admissible by
Lemma 4.3. Hence Y ⊆ X is also L-admissible. Now L′ is also smooth, so ÿ�U (L′)K(Y ) is
a flat ÿ�U (L′)K(Z)-module on both sides by Theorem 4.5, whereas ÿ�U (L′)K(Y ) ∼= S(Y ) andÿ�U (L′)K(Z) ∼= S(Z) by the Lemma. Since S(Z) is a flat S(X)-module on both sides by
induction, S(Y ) is also a flat S(X)-module on both sides.

4.7. Proposition. Let Y be a rational subdomain of X , L-accessible in n steps.

(a) LetU be anL-admissible affinoid subdomain ofX , and let B be anL-stable affine formal
model in U . Then U ∩Y is a rational subdomain of U which is L′ := B⊗AL-accessible
in n steps.

(b) Let B be an L-stable affine formal model in O(Y ), and let Z be a rational subdomain of
Y which is L′ := B ⊗A L-accessible in m steps. Then Z is a rational subdomain of X
which is L-accessible in (n+m) steps.

Proof. (a) Proceed by induction on n, and suppose that n > 1 as the case when n = 0

is trivial. We have a commutative pullback diagram

Y // Z // X

U ∩ Y

OO

// U ∩ Z

OO

// U

OO

where Z ⊆ X is L-accessible in (n− 1) steps, Y = Z(f) or Z(1/f) for some f ∈ O(Z) and
L · f ⊆ C for some L-stable affine formal model C in O(Z). Let g = 1⊗ f be the image of f
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in O(U ∩Z). Then U ∩Z ⊆ U is L′-accessible in (n− 1)-steps by induction, U ∩ Y is either
(U ∩ Z)(g) or (U ∩ Z)(1/g), and L′ · g ⊆ B“⊗AC which is an L-stable affine formal model in
O(U ∩ Z) by the proof of Lemma 3.2. Therefore U ∩ Y ⊆ U is L-accessible in n steps.

(b) Proceed by induction onm, and assume thatm > 1 as the case whenm = 0 is trivial.
Choose Z ⊆ W ⊆ Y with W ⊆ Y being L′-accessible in (m − 1) steps, and Z = W (f)

or W (1/f) for some f ∈ O(W ), and L′ · f ⊆ C for some L-stable affine formal model C in
O(W ). Then W ⊆ X is L-accessible in n + m − 1 steps by induction, and L · f ⊆ C, so
Z ⊆ X is L-accessible in n+m steps.

Corollary. Let Y ⊆ X and U ⊆ X be two L-accessible rational subdomains. Then
U ∩ Y ⊆ X is also an L-accessible rational subdomain.

Proof. Choose an L-stable affine formal model B in O(U). By part (a) of the Proposi-
tion, U ∩ Y ⊆ U is a rational subdomain which is L′ := B ⊗A L-accessible. Since U ⊆ X is
also L-accessible, part (b) of the Proposition (applied to U ∩ Y ⊆ U ) gives that U ∩ Y is an
L-accessible rational subdomain in X .

4.8. L-accessible affinoid subdomains. Recall that by the Gerritzen-Grauert Theorem
[15, Theorem 4.10.4], every affinoid subdomain Y of an affinoid K-variety X is actually the
union of finitely many rational subdomains in X . In view of this fact, we make the following

Definition.

(a) An affinoid subdomain Y of X is said to be L-accessible if it is L-admissible and there
exists a finite covering Y =

⋃r
j=1Xj where each Xj is an L-accessible rational subdo-

main of X .

(b) A finite affinoid covering {Xj} of X is said to be L-accessible if each Xj is an L-
accessible affinoid subdomain of X .

It follows from Proposition 4.6 that everyL-accessible rational subdomain isL-admissible,
and is therefore also an L-accessible affinoid subdomain.

Lemma. (a) The intersection of finitely many L-accessible affinoid subdomains is
again an L-accessible affinoid subdomain.

(b) If Z ⊆ Y are L-accessible affinoid subdomains of X and B is an L-stable affine formal
model in O(Y ), then Z is an L′ := B ⊗A L-accessible affinoid subdomain of Y .

Proof. (a) This follows from Corollary 4.7 together with Lemma 3.2.
(b) Let {Z1, . . . , Zn} be a covering of Z by L-accessible rational subdomains of X . By

Proposition 4.7(a), each Zi = Y ∩ Zi is an L′-accessible rational subdomain of Y .

4.9. Theorem.

(a) Let Y ⊆ X be an L-accessible affinoid subdomain.
Then S(Y ) is a flat S(X)-module on both sides.
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(b) Let X = {X1, . . . , Xm} be an L-accessible covering of X .
Then

⊕m
i=1 S(Xj) is a faithfully flat S(X)-module on both sides.

Proof. (a) By definition, there is a finite covering V = {X1, . . . , Xm} of Y by L-
accessible rational subdomainsXj . Every finite intersection of these subdomains isL-accessible
by Lemma 4.8(a), so every ring appearing in C•(V,S) is flat as a S(X)-module on both sides
by Proposition 4.6.

The augmented Čech complex C•aug(V,S) is acyclic by Theorem 3.5. A long exact
sequence of Tor groups shows that the kernel of a surjection between two flat modules is again
flat. By an induction starting with the last term, the kernel of every differential in this complex
is a flat S(X)-module on both sides. In particular, S(Y ) is flat as S(X)-module on both sides.

(b) By part (a),
⊕m
i=1 S(Xj) is a flat right S(X)-module. By Lemma 4.8(a) and part

(a), each term in the complex C•aug(X ,S) is a flat right S(X)-module. Since it is acyclic by
Theorem 3.5 we may view it as a flat resolution of the zero module. Let N be a left S(X)-
module. By [31, Lemma 3.2.8],C•aug(X ,S)⊗S(X)N computes Tor

S(X)
• (0, N) and is therefore

acyclic. SoN embeds into⊕mj=1S(Xj)⊗S(X)N and hence⊕mj=1S(Xj) is a faithfully flat right
S(X)-module. The same proof shows that it is also a faithfully flat left S(X)-module.

5. Kiehl’s Theorem for coherent Ÿ�U (L)K-modules

In this Section we continue with the assumptions made in Subsection 4.6, namely:

• X is a K-affinoid variety,

• A is an affine formal model in O(X),

• L is a smooth (R,A)-Lie algebra,

• S := ÿ�U (L)K .

It follows from Lemma 4.8(a) that the L-accessible affinoid subdomains ofX together with the
L-accessible coverings form a G-topology on X . We will denote this G-topology by Xac(L).
Thus we have at our disposal four different G-topologies on X , represented on the level of
objects as follows:

Xac(L) ⊆ Xw(L) ⊂ Xw ⊆ Xrig.

5.1. Localisation. For every finitely generated S(X)-moduleM , we can define a presheaf
of S-modules Loc(M) on Xw(L) by setting

Loc(M)(Y ) := S(Y )⊗S(X) M.

for every Y in Xw(L). Similarly, for every finitely generated right S(X)-module M , we can
define a presheaf of right S-modules Loc(M) on Xw(L) by setting

Loc(M)(Y ) := M ⊗S(X) S(Y ).

We will frequently use the fact that S(Z) is a flat S(Y )-module on both sides whenever Z ⊆ Y
are L-accessible affinoid subdomains of X — this follows from Theorem 4.9(a).
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Proposition. Loc is a full exact embedding of abelian categories from the category of
finitely generated S(X)-modules (respectively, right S(X)-modules) to the category of sheaves
of S-modules (respectively, right S-modules) on Xac(L) with vanishing higher Čech cohomol-
ogy groups.

Proof. Suppose first that f : M → N is a morphism of finitely generated S(X)-modules.
By the universal property of tensor product, for each Y in Xac(L) there is a unique morphism
of S(Y )-modules Loc(f)(Y ) := id⊗f making the diagram

M
f

−−−−→ Ny y
S(Y )⊗S(X) M −−−−→

id⊗f
S(Y )⊗S(X) N

commute. If Loc(f) = 0 for some S(X)-linear map f : M → N , then taking Y = X in this
diagram shows that f = 0; hence Loc is faithful. If θ : Loc(M) → Loc(N) is an S-linear
map, there is a unique S(X)-linear map f : M → N such that θ(X)(1⊗m) = 1⊗ f(m) for
all m ∈M . It is now easy to see that θ = Loc(f), and hence Loc is full.

Next, suppose that 0→M1 →M2 →M3 → 0 is an exact sequence of finitely generated
S(X)-modules. Since S(Y ) is a flat right S(X)-module for each Y ∈ Xac(L), each sequence

0→ Loc(M1)(Y )→ Loc(M2)(Y )→ Loc(M3)(Y )→ 0

is exact. This suffices to see that Loc is exact.
Finally, we prove that if M is any finitely generated S(X)-module then every Xac(L)-

covering U = {U1, . . . , Un} of every L-accessible affinoid subdomain Y of X is Loc(M)-
acyclic. This will imply that Loc(M) is a sheaf on Xac(L) with vanishing higher Čech coho-
mology groups.

Let B be an L-stable affine formal model in Y and let L′ = B ⊗A L. By Lemma 4.8(b)
we can view U as a covering of Y in Yac(L′). Then U is S-acyclic by Lemma 4.6 and Theorem
3.5. But every term in the Čech complex C•aug(U ,S) is a flat right S(Y ) = ÿ�U(L′)K module
by Theorem 4.9(a). Therefore

C•aug(U ,Loc(M)) ∼= C•aug(U ,S)⊗S(Y ) Loc(M)(Y )

is also acyclic as claimed. The case of right modules is almost identical.

5.2. U -coherent modules. Following [11, §9.4.3], we say that an S-moduleM is co-
herent if there is an Xac(L)-covering U = {U1, . . . , Un} of X such that, for each 1 6 i 6 n,
M|Ui may be presented by an exact sequence of the form

Sri |Ui → Ssi |Ui →M|Ui → 0.

Using Proposition 5.1, we note that in this situation, if we choose L-stable affine formal models
Bi in Ui and write Li = Bi ⊗A L, we may view the morphism Sri |Ui → Ssi |Ui as Loc(fi)

for some S(Ui)-linear map fi : S(Ui)
ri → S(Ui)

si . Writing Mi for the cokernel of fi and
applying Proposition 5.1 again we see that there is an isomorphismM|Ui ∼= Loc(Mi) as S|Ui-
modules since both arise as the cokernel of Loc(fi).
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Since each ring S(Ui) is left Noetherian and so every finitely generated S(Ui)-module
is finitely presented, it follows from the discussion above that an S-module M is coherent
precisely if there is an Xac(L)-covering {U1, . . . , Un} of X such that for each 1 6 i 6 n,
M|Ui is isomorphic to Loc(Mi) for some finitely generated S(Ui)-module Mi.

Definition. Given an Xac(L)-covering U = {U1, . . . , Un} of X , we say that an S-
module (respectively, right S-module)M is U-coherent if for each 1 6 i 6 n there is a finitely
generated S(Ui)-module (respectively, right S(Ui)-module) Mi such thatM|Ui is isomorphic
to Loc(Mi) as a sheaf of S|Ui-modules (respectively, right S|Ui-modules).

Proposition. Let U be an Xac(L)-covering of X , and suppose that α : M → N is
a morphism of U-coherent left or right S-modules. Then kerα, cokerα and Imα are each
U-coherent.

Proof. We compute using Proposition 5.1 that (kerα)|Ui ∼= Loc(kerα(Ui)), that
(cokerα)|Ui ∼= Loc(cokerα(Ui)) and that Imα|Ui = Loc(Imα(Ui)).

5.3. Coverings of the form X = X(f) ∪ X(1/f). We generalise some techni-
cal results from [15, §4.5] to our non-commutative setting. This involves making appropriate
changes to the material presented in [15, §4.5], but we repeat these proofs here nevertheless.
Note that it is incorrectly asserted in the proof of [15, Lemma 4.5.4] that s2 has dense image;
in fact it is the map s1 that has dense image.

First, we suppose that f ∈ O(X) is such that L · f ⊆ A. Then

X1 := X(f), X2 := X(1/f) and X3 := X(f) ∩X(1/f)

are allL-accessible. We write si : S(Xi)→ S(X3) for the canonical restriction maps (i = 1, 2).
We define the norm ||M || of a matrix M with entries in a K-Banach algebra to be the supre-
mum of the norms of the entries of M .

Lemma. There is a constant c > 0 such that every matrix M ∈ Mn(S(X3)) with
||M−I|| < c can be written as a productM = s1(Q1)

−1·s2(Q2)
−1 for someQi ∈ GLn(S(Xi)).

Proof. By Theorem 3.5, the bounded K-linear map

s1 − s2 : S(X1)⊕ S(X2)→ S(X3)

is surjective. So, by Banach’s Open Mapping Theorem there is a constant 0 < d < 1 such
that if N is any n × n matrix with entries in S(X3) we can find N1 ∈ Mn(S(X1)) and
N2 ∈Mn(S(X2)) such that

N = s1(N1)− s2(N2) and d · sup(||N1||, ||N2||) 6 ||N ||.

We define c := d3. Suppose now that M ∈ GLn(S(X3)) satisfies ||M − I|| < c and
let A1 = M − I . We can then find B1i ∈ Mn(S(Xi)) of norm at most d2 such that
A1 = s1(B11) + s2(B12). Then

A2 := (I − s1(B11))(I +A1)(I − s2(B12))− I
= s1(B11)s2(B12)− s1(B11)A1 −A1s2(B12)− s1(B11) ·A1 · s2(B12)
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is a matrix with coefficients in O(X3) and has norm at most d4.
Inductively, we can find sequencesAm, Bm1, Bm2 of matrices with coefficients in S(X3),S(X1),

S(X2) and norms bounded by dm+1, dm and dm respectively such thatAm = s1(Bm1)+s2(Bm2)

and
Am+1 := (I − s1(Bm1))(I +Am)(I − s2(Bm2))− I.

Because dm → 0 as m→∞, the limit

Qi := lim
m→∞

(1−Bmi) · · · (1−B1i)

exists in Mn(S(Xi)) and Qi ∈ GLn(S(Xi)) for i = 1, 2. By construction,

s1(Q1) ·M · s2(Q2) = I

so M = s1(Q1)
−1 · s2(Q2)

−1 as claimed.

5.4. Theorem. Suppose that N is an {X1, X2}-coherent sheaf of S-modules. Then
the canonical S(Xi)-linear maps S(Xi) ⊗S(X) N (X) → N (Xi) are surjective for i = 1 and
i = 2.

Similarly, if N is an {X1, X2}-coherent sheaf of right S-modules, then the canonical
S(Xi)-linear maps N (X)⊗S(X) S(Xi)→ N (Xi) are surjective for i = 1 and i = 2.

Proof. We first deal with the case of left S-modules. Let us identify N (X3) with
S(X3) ⊗S(X1) N (X1) and with S(X3) ⊗S(X2) N (X2). Suppose that a1, . . . , an generate
N (X1) as a S(X1)-module and b1, . . . , bn generateN (X2) as a S(X2)-module. Then the sets
{1⊗ a1, . . . , 1⊗ an} and {1⊗ b1, . . . , 1⊗ bn} each generate N (X3) as a S(X3)-module.

Consider N (X3)
n as a left module over the n × n matrix ring Mn(S(X3)) and let

a,b ∈ N (X3)
n be the column vectors whose jth entries are 1 ⊗ aj and 1 ⊗ bj , respectively.

Then we may find non-zero U, V ∈Mn(S(X3)) such that

a = Ub and b = V a.

Let c denote the constant from Lemma 5.3. Since the image of s1 : S(X1) → S(X3) is dense
by Remark 4.3, we can find V ′ ∈Mn(S(X1)) such that

||s1(V ′)− V || < c/||U ||.

Therefore ||(s1(V ′) − V )U || < c, and by Lemma 5.3, we can find Qi ∈ GLn(S(Xi)) for
i = 1, 2 such that

I + (s1(V
′)− V )U = s1(Q1)

−1s2(Q2)
−1.

Applying this matrix identity to the vector b ∈ N (X3)
n we obtain

s1(Q1V
′)a = s2(Q

−1
2 )b.

Writing a′i =
∑n
j=1(Q1V

′)ijaj ∈ N (X1) and b′i =
∑n
j=1(Q

−1
2 )ijbj ∈ N (X2), we see that

1 ⊗ a′i = 1 ⊗ b′i in N (X3) for each i = 1, . . . , n. Since N is a sheaf, we can find elements
d1, . . . , dn ∈ N (X) such that the image of di inN (X1) is a′i and the image of di inN (X2) is
b′i for each i = 1, . . . , n. Since the matrix Q−12 is invertible, the elements b′1, . . . , b

′
n generate

N (X2) as an S(X2)-module. Therefore the map S(X2)⊗S(X)N (X)→ N (X2) is surjective.
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Now consider an arbitrary element v ∈ N (X1). Since 1⊗b′1, . . . , 1⊗b′n generateN (X3)

as a S(X3)-module we can write 1⊗ v =
∑n
i=1 zi ⊗ b′i for some zi ∈ S(X3). The surjectivity

of S(X1) ⊕ S(X2) → S(X3) means that we can find xi ∈ S(X1) and yi ∈ S(X2) such that
zi = s1(xi) + s2(yi) for each i = 1, . . . , n. Therefore

1⊗ (v −
n∑
i=1

xia
′
i) = 1⊗ v −

n∑
i=1

s1(xi)⊗ a′i =
n∑
i=1

s2(yi)⊗ b′i = 1⊗
n∑
i=1

yib
′
i

inside N (X3), because 1 ⊗ a′i = 1 ⊗ b′i for all i. Since N is a sheaf, there is an element
w ∈ N (X) whose image inN (X1) is v−∑n

i=1 xia
′
i and whose image inN (X2) is

∑n
i=1 yib

′
i.

In particular, v is the image of 1⊗w+
∑n
i=1 xi⊗di under the map S(X1)⊗S(X)N (X)→ N (X1).

Therefore this map is also surjective.
In the case of right S-modules, again we can find a generating set {a1, . . . , an} for

N (X1) as a right S(X1)-module, and a generating set {b1, . . . , bn} for N (X2) as a right
S(X2)-module. Then {a1 ⊗ 1, . . . , an ⊗ 1} and {b1 ⊗ 1, . . . , bn ⊗ 1} each generate N (X3)

as a right S(X3)-module. We consider N (X3)
n as a right module over the n × n matrix ring

Mn(S(X3)) and let a,b ∈ N (X3)
n be the row vectors whose jth entries are aj ⊗ 1 and

bj ⊗ 1, respectively. Then we may find non-zero U, V ∈ Mn(S(X3)) such that a = bU

and b = aV. Choose V ′ ∈ Mn(S(X1)) as above satisfying ||U(s1(V
′) − V )|| < c, and

let T := U(s1(V
′) − V ). Then ||(I + T )−1 − I|| < c also, so by Lemma 5.3, we can

find Qi ∈ GLn(S(Xi)) for i = 1, 2 such that (I + T )−1 = s1(Q1)
−1s2(Q2)

−1. Hence
I+T = s2(Q2)s1(Q1), and applying this matrix identity to the vector b ∈ N (X3)

n we obtain
as1(V

′Q−11 ) = bs2(Q2). Therefore the elements b′j :=
∑n
i=1 bi(Q2)ij ∈ N (X2) extend to

global sections of N and generate N (X2) as a right S(X2)-module because the matrix Q2 is
invertible. Thus N (X)⊗S(X) S(X2)→ S(X1) is surjective, and the same argument as in the
case of left modules now shows that N (X)⊗S(X) S(X1)→ N (X1) is also surjective.

Corollary. If N is an {X(f), X(1/f)}-coherent sheaf of S-modules then there is a
finitely generated S(X)-module N such that Loc(N) ∼= N . A similar statement holds for an
{X(f), X(1/f)}-coherent sheaf of right S-modules.

Proof. By symmetry, it will suffice to treat the case of left S-modules. As before write
X1 = X(f) andX2 = X(1/f). By the Theorem, the natural maps S(Xi)⊗S(X)N (X)→ N (Xi)

are surjective for i = 1, 2. Since N (Xi) is a Noetherian S(Xi)-module, we can find a finitely
generated S(X)-submodule M of N (X) such that S(Xi) ⊗S(X) M → N (Xi) is surjec-
tive for i = 1, 2. Thus the natural map α : Loc(M) → N is surjective since its restric-
tions to X1 and X2 are both surjective. Since Loc(M) and N are both {X1, X2}-coherent,
kerα is also {X1, X2}-coherent by Proposition 5.2 so we may find a finitely generated S(X)-
submodule M ′ of (kerα)(X) such that Loc(M ′)→ kerα is surjective. ThusN is isomorphic
to the cokernel of Loc(M ′) → Loc(M). Since Loc is full, this cokernel is isomorphic to
Loc(coker(M ′ →M)) and we are done.

Here is our non-commutative version of Kiehl’s Theorem for sheaves of S-modules and
L-accessible Laurent coverings.
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5.5. Theorem. Suppose that f1, . . . , fn ∈ O(X) are such that L · fi ⊆ A for each
i = 1, . . . , n. Let U be the Laurent covering {X(fα1

1 , . . . , fαnn ) | αi ∈ {±1}}. Then U is
L-accessible and every U-coherent sheafM of left (respectively, right) S-modules on Xac(L)

is isomorphic to Loc(M) for some finitely generated left (respectively, right) S(X)-module
M .

Proof. The L-accessibility of U follows from Corollary 4.7. By symmetry, it is suffi-
cient to treat the case of left S-modules. We proceed by induction on n, the case n = 1 being
Corollary 5.4.

Suppose that n > 1, and that for every family (X , A, L) satisfying our standing hy-
potheses, the result is known for all smaller values of n. Suppose also that f1, . . . , fn ∈ O(X)

satisfy the hypotheses of the Proposition and thatM is U-coherent.
Consider the cover V := {X(fn)(fα1

1 , . . . , fαnn−1) | αi ∈ {±1}} of X(fn). Let B be an
L-stable affine formal model for X(fn); then L′ = B ⊗A L is a smooth (R,B)-Lie algebra.
Now L′ ·fi ⊆ B for all i < n, and sinceM|V is V-coherent the induction hypothesis gives that
M|X(fn) is isomorphic to Loc(M1) for some finitely generated S(X(fn))-module M1.

Using an identical argument for X(1/fn), M|X(1/fn) is isomorphic to Loc(M2) for
some finitely generated S(X(1/fn))-module M2. Applying Corollary 5.4 again completes the
proof.

6. Fréchet–Stein enveloping algebras

We assume throughout Section 6 that A is a K-affinoid algebra and that L is a coherent
(K,A)-Lie algebra.

6.1. Lie lattices.

Definition. Let A be an affine formal model in A and let L ⊆ L be an A-submodule.

(a) L is an A-lattice if it is finitely generated as an A-module, and KL = L.

(b) L is a A-Lie lattice if in addition it is a sub (R,A)-Lie algebra of L.

Lemma. Let L be an A-lattice in L.

(a) If L is an A-Lie lattice then πnL is also an A-Lie lattice for all n > 0.

(b) If B is another affine formal model in A then there is n > 0 such that

πmL · B ⊆ B for all m > n.

(c) There is n > 0 such that πmL is an A-Lie lattice in L for all m > n.

Proof. (a) This is clear.
(b) Let x1, . . . , xd generate L as an A-module, and let ρ : L → DerK(A) be the anchor

map. The derivation ρ(xi) : A → A is bounded for each i = 1, . . . , d — see the discussion in
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Section 2.4. So there ismi > 0 such that πmiρ(xi)(B) ⊆ B. By Lemma 3.1, we can find t > 0

such that πtA ⊆ B. Let n = t+ maxmi and suppose that m > n. Then

πmL · B ⊆
d∑
i=1

πtA πmiρ(xi)(B) ⊆ B.

(c) Since L is a (K,A)-Lie algebra generated by x1, . . . , xd as an A-module, there are akij ∈ A
such that [xi, xj ] =

∑d
k=1 a

k
ijxk for 1 6 i, j 6 d. Since A = K · A, there is s > 0 such that

πsakij ∈ A for all i, j and k. Then for m > s we can compute

[πmxi, π
mxj ] ∈

d∑
k=1

π2makijxk ∈ πmL

and hence πmL is an R-Lie algebra for m > s. Using part (b), we can find s′ > 0 such that
πmL · A ⊆ A for all m > s′. Now take n = max{s, s′}.

6.2. Fréchet completions of enveloping algebras. Let A be an affine formal model in
A, and let L be an A-Lie lattice in L. We define

Ŭ(L)A,L := lim←−
⁄�U(πnL)K .

Being a countable inverse limit of K-Banach algebras, Ŭ(L)A,L is a Fréchet algebra.

Lemma. Let A be an affine formal model in A and let L1,L2 be two A-Lie lattices in
L. Then there is a unique continuous K-algebra isomorphism

Ŭ(L)A,L1
∼=−→ Ŭ(L)A,L2

which restricts to the identity map on U(L).

Proof. Since L1 ∩ L2 is again an A-Lie lattice in L, we may assume without loss of
generality that L1 ⊆ L2. The universal property of U(−) induces K-Banach algebra homo-

morphisms ¤�U(πnL1)K → ¤�U(πnL2)K for each n > 0 and hence a continuous K-algebra
homomorphism

α : Ŭ(L)A,L1 → Ŭ(L)A,L2 .

Because L1 and L2 are A-lattices in L, we can find an integer s such that πsL2 ⊆ L1. This
gives K-Banach algebra homomorphisms ¤�U(πn+sL2)K → ¤�U(πnL1)K for each n > 0 and
hence a continuous K-algebra homomorphism

β : Ŭ(L)A,L2 → Ŭ(L)A,L1 .

It is easy to see that α and β are mutually inverse.

Thus Ŭ(L)A,L is independent of the choice of L up to unique isomorphism, and we write

Ŭ(L)A to denote any of these Fréchet algebra completions of U(L).
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Proposition. Let A and B be two affine formal models in A. Then there is a unique
continuous isomorphism

Ŭ(L)A
∼=−→ Ŭ(L)B

which restricts to the identity map on U(L).

Proof. Choose an A-Lie lattice L and a B-Lie lattice J in L. By Lemma 3.1, we can
find an integer r such that πr · A ⊆ B. Similarly we can find an integer s such that πs · L ⊆ J .

Let x1, . . . , xd generate L as an A-module, and let T be the image of ÷U(J ) insideÿ�U(J )K . The universal property of U(−) induces an R-algebra map θ0 : U(πsL)→ÿ�U(J )K .
Now U(πsL) is generated as an A-module by the set

{(πsx1)α1 · · · (πsxd)αd : α ∈ Nd}.

Since θ0 sends all these elements to T and since A ⊆ π−rB, we see that the image of θ0 is
contained in π−rT . Hence θ0 extends to a K-algebra homomorphism

θ0 : ⁄�U(πsL)K →ÿ�U(J )K .

Applying the same argument to πs+n · L ⊆ πnJ for each n > 0, we obtain a compatible
sequence of K-algebra homomorphisms

θn : ¤�U(πs+nL)K → ⁄�U(πnJ )K

and hence a continuous K-algebra homomorphism

θA,B := lim←− θn : Ŭ(L)A → Ŭ(L)B

which restricts to the identity map on U(L). Since θB,A ◦ θA,B is the identity map on the dense
image ofU(L) inside Ŭ(L)A, it must be equal to id

Ū(L)A
. Similarly θA,B◦θB,A = id

Ū(L)B
.

Definition. Let A be a K-affinoid algebra and let L be a (K,A)-Lie algebra which is
finitely generated as an A-module. The Fréchet completion of U(L) is

Ŭ(L) := Ŭ(L)A = lim←−
⁄�U(πnL)K

for any choice of affine formal model A in A and A-Lie lattice L in L.

The above Lemma and Proposition ensure that this definition does not depend on the
choice of A or L, up to unique isomorphism.

6.3. Functoriality. Whenever σ : A → B is an étale morphism of affinoid algebras,
there is a Lie homomorphism ψ : DerK(A) → DerK(B) by Lemma 2.4, and we may view
B ⊗A L as a (K,B)-Lie algebra by Corollary 2.4.

Proposition. Let σ : A → B be an étale morphism of K-affinoid algebras, and let
ϕ : L→ L′ be a morphism of coherent (K,A)-Lie algebras. Then there are unique continuous
K-algebra homomorphisms
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(a) Ŭ(L)→ ˇ�U(B ⊗A L) extending the natural map U(L)→ U(B ⊗A L), and

(b) Ŭ(L)→ U̇(L′) extending the natural map U(L)→ U(L′).

Proof. Choose some affine formal model A in A and any affine formal model B in B
containing σ(A). We will construct an A-Lie lattice L in L and a B-Lie lattice J in B ⊗A L
(respectively, an A-Lie lattice J in L′) such that (σ ⊗ 1)(L) ⊆ J (respectively, ϕ(L) ⊆ J ).
Then the universal property of U(−) induces continuous K-algebra homomorphisms⁄�U(πmL)K →¤�U(πmJ )K

for all m > 0, and passing to the inverse limit gives the required map Ŭ(L) → ˇ�U(B ⊗A L)

(respectively, Ŭ(L)→ U̇(L′)). In each case uniqueness follows from the density of the image
of U(L) in Ŭ(L).

(a) Choose an A-Lie lattice L in L using Lemma 6.1, and let J be the image of B ⊗A L
in B ⊗A L. Then J is a B-lattice in B ⊗A L so by Lemma 6.1(b), πnJ is a B-Lie lattice in
B ⊗A L for some n > 0. Now (σ ⊗ 1)(πnL) ⊆ πnJ .

(b) Let J be an A-Lie lattice in L′. Then ϕ−1(J ) generates L as a K-vector space and
hence contains an A-lattice in L. By Lemma 6.1(c), ϕ−1(J ) contains an A-Lie lattice L in L
and ϕ(L) ⊆ J .

6.4. Fréchet-Stein algebras. Following [26, §3] we say that aK-algebra U is Fréchet-
Stein if

• there is a tower U0 ← U1 ← U2 ← · · · of Noetherian K-Banach algebras,

• the image of Un+1 is dense in Un for all n > 0,

• Un is a flat right Un+1-module for all n > 0,

• U = lim←−Un.

This definition is designed with a view towards categories of left modules. Because we will
also need to work with right modules in the future, we make this definition more precise by
saying that U is left Fréchet-Stein. If there is a tower U0 ← U1 ← U2 ← · · · of Noetherian
K-Banach algebras with dense images such that U ∼= lim←−Un and each Un is a flat left Un+1-
module for all n > 0, then we say that U is right Fréchet-Stein. If both conditions are satisfied,
then we say that U is two-sided Fréchet-Stein.

Theorem. Let A be a K-affinoid algebra and let L be a coherent (K,A)-Lie algebra.
Suppose L has a smooth A-Lie lattice L for some affine formal model A in O(X). Then Ŭ(L)

is a two-sided Fréchet-Stein algebra.

We start preparing for the proof of this Theorem, which is given below in Section 6.7:
the main problem is to establish flatness.

Recall [1, §3.5] that a positively filtered R-algebra U is said to be deformable if grU is
flat overR. Its n-th deformation is by definition its subring

Un :=
∑
i>0

πinFiU.
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It follows from [1, Lemma 3.5] that Un is again a deformable R-algebra, whose filtration is
given by

FjUn = Un ∩ FjU =
j∑
i=0

πinFiU.

We begin by recording some useful general facts on deformable algebras.

Lemma. Let U be a deformableR-algebra. Then

(a) U1 ∩ πtU =
∑
i>t π

iFiU for any t > 0.

(b) (Un)m is equal to Um+n for any n,m > 0.

Proof. (a) The R-module U/FtU is a direct limit of iterated extensions of R-modules
of the form grj U , each of which is flat by assumption. Hence U/FtU has no R-torsion and
consequently FtU ∩ πtU = πtFtU . Since

∑
i>t π

iFiU ⊆ πtU ,

U1 ∩ πtU ⊆
(
FtU +

∑
i>t

πiFiU

)
∩ πtU ⊆ (FtU ∩ πtU) +

∑
i>t

πiFiU =
∑
i>t

πiFiU

by the modular law, and the reverse inclusion is clear.
(b) (Un)m =

∑
j>0 π

jm∑j
i=0 π

inFiU =
∑
i>0(

∑
j>i π

jm+inR)FiU = Un+m.

6.5. The subspace filtration on U1. We will need to study the subspace filtration on
U1 induced from the π-adic filtration on U in detail.

Lemma. Let U be a deformable R-algebra such that grU is commutative. Suppose
that grU is generated by the symbols of the elements x1, . . . , xm ∈ U as an algebra over
gr0 U . Let rj = deg xj . Then

FiU = F0U ·
¶
xα1
1 · · ·x

αm
m |

∑
αjrj 6 i

©
for each i > 0.

Proof. It is sufficient to prove that FiU is contained in the right hand side, the reverse
inclusion being clear. We proceed by induction on i, the case i = 0 being trivial. For every
z ∈ FiU , the image of z in gri U is a gr0 U -linear combination of monomials in the symbols
of the xj’s by our assumption. Hence for each α ∈ Nd such that

∑
αjrj = i we can find

λα ∈ gr0 U = F0U such that
z −

∑
λαx

α ∈ Fi−1U.

The result follows immediately by applying the inductive hypothesis.

Proposition. LetU be a deformableR-algebra such that grU is a commutative Noether-
ian graded ring, and let I := U1 ∩ πU . Then the subspace filtration on U1 arising from the
π-adic filtration on U and the I-adic filtration on U1 are topologically equivalent.
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Proof. Because grU is commutative and Noetherian, there are elements x1, . . . , xm in
U whose symbols generate grU as an algebra over gr0 U by [4, Proposition 10.7]. We may
assume that each rj := deg xj is positive; then

π ∈ I and πrjxj ∈ I for all j > 1.

Let r0 := 1; it follows from the Lemma that πiFiU is generated as an F0U -module by all
possible elements of the form

(πr0)α0(πr1x1)
α1 · · · (πrmxm)αm

where αj ∈ N for all j = 0, . . . ,m and
∑m
j=0 αjrj = i. If the integer t is given and

i > tmax rj , then
Ä∑m

j=0 αj
ä

max rj >
∑m
j=0 αjrj = i > tmax rj , so

(πr0)α0(πr1x1)
α1 · · · (πrmxm)αm ∈ It

because π ∈ I and πrjxj ∈ I for all j > 1. Therefore by Lemma 6.4(a) we have

U1 ∩ πtmax rjU =
∑

i>tmax rj

πiFiU ⊆ It ⊆ U1 ∩ πtU for all t > 0

because I is an F0U -submodule of U .

6.6. π-adic completions. If U is a deformable R-algebra, then ”Un := lim←−Un/π
aUn

will denote the π-adic completion of Un. The algebra’Un,K := K ⊗R”Un
may be equipped with the structure of a K-Banach algebra, with unit ball ”Un. Since U0 = U ,
we will abbreviate ’U0,K to ÛK .

Theorem. Let U be a deformableR-algebra such that grU is a commutative Noether-
ian ring. Then ÛK is a flat ’U1,K module on both sides.

Proof. In this proof, "flat module" will mean "flat module on both sides". Because’U1,K = ”U1 ⊗R K, it will be enough to prove that ÛK is a flat ”U1-module. By Proposition 6.5,
the I-adic completion V of U1 is isomorphic to the closure of the image of U1 in “U . Thus we
have natural maps ”U1 → V → ÛK . We observe that V is π-adically complete by the proof of
[32, Theorem VIII.5.14] noting that ideals in V are I-adically closed by [21, Theorem II.2.1.2,
Proposition II.2.2.1]

We begin by filtering both ”U1 and V π-adically. Notice that V/πV is the I/πU1-adic
completion of U1/πU1 which is flat by [4, Proposition 10.14]. Since U1 is π-torsion free,
gr”U1

∼= (U1/πU1)[t]. Similarly, since V is isomorphic to a subring of “U , it has no π-torsion,
and so grV ∼= (V/πV )[t]. Hence grV is flat as a gr”U1-module. Since both ”U1 and V are
π-adically complete, [26, Proposition 1.2] implies that V is a flat ”U1-module.

Next, we again consider the subspace filtration on U1 induced by the π-adic filtration on
U . We have grU ∼= U [t], where t := grπ and U := U/πU has degree zero. It follows from
Lemma 6.4(a) that the image of grU1 inside grU is equal to ⊕j>0tj · FjU , where FjU is the
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image of FjU in U . Since the quotient filtration FjU on U is exhaustive, the localisation of
this image obtained by inverting t is equal to U [t, t−1]. Now V is the completion of U1 so

(grV )t = (grU1)t = U [t, t−1] = gr ÛK

and therefore gr ÛK is a flat grV -module. Hence we can again invoke [26, Proposition 1.2] to
deduce that ÛK is a flat V -module.

Remark. Essentially all ideas involved in this proof can already be found in [26].

6.7. The functor U 7→ ŪK . Let U be a deformable R-algebra. By functoriality of
π-adic completion, the descending chain

U = U0 ⊃ U1 ⊃ U2 ⊃ · · ·

induces an inverse system of K-Banach algebras and bounded algebra maps

ÛK = ’U0,K ←’U1,K ←’U2,K ← · · ·

whose inverse limit we denote by

ŨK := lim←−
’Un,K .

The natural maps ŨK → ’Un,K may be used to construct semi-norms | · |n on ŨK so that the
completion of ŨK with respect to | · |n is ’Un,K . In this way ŨK becomes a Fréchet algebra.

Theorem. LetU be a deformableR-algebra such that grU is commutative and Noether-
ian. Then ŨK is a two-sided Fréchet–Stein algebra.

Proof. Each ’Un,K is Noetherian because grU is Noetherian. The image of ◊�Un+1,K in’Un,K is dense because it contains the image of UK in ’Un,K , which is dense because ’Un,K is
the completion of UK with respect the semi-norm | · |n.

Each Un is a deformable R-algebra with grUn ∼= grU by [1, Lemma 3.5], and the first
deformation (Un)1 of Un is equal to Un+1 by Lemma 6.4(b). Hence ’Un,K is a flat ◊�Un+1,K-
module on both sides by Theorem 6.6.

Proof of Theorem 6.4. The algebra U = U(L) is deformable because grU = Sym(L)

by [23, Theorem 3.1], and Un is naturally isomorphic to U(πnL) for all n > 0. Therefore

Ŭ(L) = lim←−
⁄�U(πnL)K ∼= lim←−

’Un,K = ŨK

is two-sided Fréchet-Stein by Theorem 6.7.

7. The functor Ù⊗
From now on we will work with categories of left modules, however all our results will

have analogues valid for categories of right modules. We omit giving the necessary repetitive
details to save space.
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7.1. Co-admissible completion. Suppose that U is a left Fréchet–Stein algebra. Re-
call, [26, §3], that if U = lim←−Un is a presentation of U as a left Fréchet–Stein algebra then a
coherent sheaf of U•-modules is a family (Mn) of finitely generated Un-modules Mn together
with isomorphisms Un⊗Un+1 Mn+1

∼=−→Mn for each n. The coherent sheaves of U•-modules
form an abelian category Coh(U•) with respect to the obvious notion of morphism. Then a
U -module M is said to be co-admissible if it is isomorphic as a U -module to lim←−Mn for some
coherent sheaf of U•-modules (Mn) . By [26, Lemma 3.8] the question of whether a given U -
module is co-admissible does not depend of the choice of U• presenting U . The co-admissible
U -modules form a full subcategory CU of all U -modules. By [26, Corollary 3.3] the natural
functors

Γ: Coh(U•)→ CU and LocU• : CU → Coh(U•)

that send a coherent sheaf (Mn) of U•-modules to the co-admissible U -module lim←−Mn, and
a co-admissible U -module M to the coherent sheaf (Un ⊗U M) of U•-modules, are mutually
inverse equivalences of categories.

Definition. We say that a co-admissible U -module ıM is a co-admissible completion of
a U -module M if there is a U -linear map ιM : M → ıM such that for every co-admissible
U -module N and every U -linear map f : M → N there is a unique U -linear map g : ıM → N

such that g ◦ ιM = f .

By usual arguments with universal properties, if a U -module M has a co-admissible
completion, it (together with the map ι) is uniquely determined up to unique isomorphism.

Proposition. Suppose that U = lim←−Un is a presentation of U as a left Fréchet–Stein
algebra. If M is a U -module such that each Un ⊗U M is finitely generated as a Un-module
then lim←−Un⊗UM (together with the natural map ιM : M → lim←−Un⊗UM ) is a co-admissible
completion of M .

Proof. Certainly lim←−Un⊗UM is a co-admissible U -module, so suppose thatN is also a
co-admissible U -module and f : M → N is a U -linear map. By functoriality, there is a natural
commutative diagram

M
ιM //

f

��

lim←−Un ⊗U MÛf
��

N ιN
// lim←−Un ⊗U N

where Ûf = lim←− 1 ⊗ f . Since N is co-admissible, ιN is an isomorphism so we may define
g := ι−1N ◦ Ûf . Then g ◦ ιM = f .

Suppose that h : lim←−Un ⊗U M → N is another U -linear map such that h ◦ ιM = f .
Then ιN ◦ h ◦ ιM = ιN ◦ f = Ûf ◦ ιM , so the U -linear map

q := ιN ◦ h− Ûf : lim←−Un ⊗U M → lim←−Un ⊗U N

is zero on the image of ιM . By [26, Corollary 3.3], q is the inverse limit of Un-linear maps
qn : Un ⊗U M → Un ⊗U N where qn(xn) = q(x)n for any x = (xn) ∈ lim←−Un ⊗U M . Now
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for any m ∈ M , ιM (m) = (1 ⊗ m) ∈ lim←−Un ⊗U M , so qn(1 ⊗ m) = q(ιM (m))n = 0.
Since qn is Un-linear, we see that qn = 0 for all n and hence q = 0. So ιN ◦ h = Ûf and
h = ι−1N ◦ Ûf = g.

7.2. A Fréchet structure on Hom sets for co-admissible modules. Suppose that U
is a left Fréchet–Stein algebra. Let QU be the partially ordered set of continuous seminorms q
on U such that the corresponding Banach completion Uq is a left Noetherian K-algebra.

Lemma. Let U• be a Fréchet–Stein structure on U .

(a) For each q ∈ QU andM,N ∈ CU , HomUq(Uq⊗UM,Uq⊗UN) is naturally aK-Banach
space.

(b) There is a natural bifunctor from QU × CU to the category of K-Banach spaces and
continuous maps sending the pair (q,M) to Uq ⊗U M .

(c) For each M and N in CU ,

HomU (M,N) ∼= lim←−
q∈QU

HomUq(Uq ⊗U M,Uq ⊗U N)

∼= lim←−
n

HomUn(Un ⊗U M,Un ⊗U N).

Proof. Write qn for the semi-norm on U such that Un = Uqn . For each q ∈ QU , there
is some n such that q 6 qn: the set {qn} is cofinal in QU .

(a) Suppose M,N are co-admissible U -modules and q ∈ QU . We can find n such that
there is a continuous homomorphism of Noetherian K-Banach algebras Un → Uq. Since M
and N are co-admissible Un ⊗U M and Un ⊗U N are finitely generated Un-modules. Thus
Uq ⊗U M ∼= Uq ⊗Un Un ⊗U M and Uq ⊗U N are finitely generated Uq-modules. Thus
by [26, Proposition 2.1], Uq ⊗U M and Uq ⊗U N have canonical Banach topologies and
HomUq(Uq ⊗U M,Uq ⊗U N) consists of continuous K-linear maps. In particular, this is a
closed subspace of the Banach space consisting of all continuousK-linear maps fromUq⊗UM
to Uq ⊗U N .

(b) Suppose now that q′ 6 q ∈ QU and M ∈ CU . Then we can define

ψM,q,q′ : Uq ⊗U M → Uq′ ⊗U M

by identifying Uq′ ⊗U M with Uq′ ⊗Uq Uq ⊗U M and setting ψM,q,q′(uq ⊗m) = 1⊗ uq ⊗m.
Now if q, q′ ∈ QU , M,N ∈ CU and f ∈ HomU (M,N), then

Uq ⊗U M
id⊗f //

ψM,q,q′

��

Uq ⊗U N

ψN,q,q′

��
Uq′ ⊗U M id⊗f

// Uq′ ⊗U N

is a commutative diagram. Hence (q,M) 7→ Uq ⊗U M is a bifunctor.
(c) Write Mn = Un ⊗U M and Nn = Un ⊗U N . Since the set qn is cofinal in

QU , it suffices to show that HomU (M,N) ∼= lim←−n HomUn(Mn, Nn). Now by the equiva-
lence of categories between coherent U•-modules and coadmissible U -modules there is a K-
linear isomorphism HomU (M,N) ∼= HomCohU•(M•, N•). Thus it remains to observe that if
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(fn) ∈ ∏n>0 HomUn(Mn, Nn) then f• is a morphism of coherent U•-modules if and only if
ψN,qn+1,qn ◦ fn+1 = fn ◦ ψM,qn+1,qn for each n > 0.

Definition. Suppose that M and N are co-admissible U -modules. Using the Lemma
we can make

HomU (M,N) ∼= lim←−
q∈QU

HomUq(Uq ⊗U M,Uq ⊗U N)

into a K-Fréchet space by giving it the inverse limit topology in the category of locally convex
vector spaces.

7.3. The functorM 7→ P Ù⊗VM . Let U and V be left Fréchet–Stein algebras.

Definition. We say that a Fréchet space P is a U -co-admissible (U, V )-bimodule if P is
a co-admissible left U -module equipped with a continuous homomorphism V op → EndU (P )

with respect to the topology on EndU (P ) defined in §7.2.

For any Fréchet-Stein structures U• and V• on U and V respectively, the definition
of the Fréchet topology on EndU (P ) implies that V op → EndU (P ) is continuous if and
only if for every n > 0, there is some m > 0 and a continuous algebra homomorphism
V op
m → EndUn(Un ⊗U P ) such that the diagram

V op //

��

EndU (P )

��
V op
m

// EndUn(Un ⊗U P )

commutes. Thus for example U is a U -co-admissible (U, V )-bimodule whenever V → U is a
continuous homomorphism of left Fréchet–Stein algebras.

Lemma. Suppose that P is a U -co-admissible (U, V )-bimodule. Then for every co-
admissible V -module M , there is a co-admissible U -module

PÙ⊗VM
and a V -balanced U -linear map

ι : P ×M → PÙ⊗VM
satisfying the following universal property: if f : P ×M → N is a V -balanced U -linear map
with N ∈ CU , then there is a unique U -linear map g : PÙ⊗VM → N such that g ◦ ι = f .
Moreover, PÙ⊗VM is determined by its universal property up to canonical isomorphism.

Proof. Let U = lim←−Un and V = lim←−Vn be presentations of U and V as left Fréchet–
Stein algebras and let n > 0 be fixed. Then Pn := Un ⊗U P is a (Un, V )-bimodule that
is finitely generated as a Un-module. Because V op → EndU (P ) is continuous, the map
V op → EndUn(Pn) factors through Vm for some m. Thus

Pn ⊗V M ∼= Pn ⊗Vm (Vm ⊗V M)
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is a finitely generated Un-module because M is co-admissible. Therefore P ⊗V M has a
co-admissible completion by Proposition 7.1, and we define

PÙ⊗VM := ˝�P ⊗V M = lim←−Pn ⊗V M.

The universal properties of ⊗V and of co-admissible completion ensure that PÙ⊗VM satisfies
the required universal property.

We note that if U , V and P are as in the Lemma then for any choice of U• presenting U
as a left Fréchet–Stein algebra, and any M ∈ CU , we have isomorphisms

Un ⊗U (PÙ⊗VM) ∼= Un ⊗U P ⊗V M.

For any f ∈ HomCV (M,M ′), the universal property for Ù⊗V uniquely determines an element

1Ù⊗f ∈ HomCU (PÙ⊗VM,PÙ⊗VM ′) since the composite P ×M 1×f−→ P ×M ′ → PÙ⊗VM ′ is
V -balanced and U -linear. Thus we have defined the co-admissible base change functor

PÙ⊗V− : CV −→ CU .

7.4. Associativity of Ù⊗.

Lemma. Suppose that U , V and W are left Noetherian K-Banach algebras, P is a
(U, V )-bimodule, and Q is a (V,W )-bimodule. Suppose further that P and Q are finitely
generated over U and V respectively, and that V op → EndU (P ) and W op → EndV (Q) are
both continuous. Then P ⊗V Q is a finitely generated left U -module and the natural map
W op → EndU (P ⊗V Q) is continuous.

Proof. LetX := {x1, . . . , xn} generateP as a leftU -module and let Y := {y1, . . . , ym}
generate Q as a left V -module. Then if p⊗ q ∈ P ⊗Q, we can write

p⊗ q =
m∑
i=1

p⊗ viyi =
m∑
i=1

pvi ⊗ yi

for some v1, . . . , vm ∈ V . Now for each i, pvi =
∑n
j=1 uijxj for some uij ∈ U . Thus

p⊗q =
∑
i,j uijxj⊗yi. Since P ⊗V Q is generated by elementary tensors as an abelian group,

it follows that it is generated as a U -module by the set X ⊗ Y := {x⊗ y | x ∈ X, y ∈ Y }.
Choose sub-multiplicative norms on U , V andW that define their Banach topologies and

let U , V andW be the corresponding unit balls. By a non-commutative version of [11, §3.7],
UX , VY and U(X ⊗ Y ) are unit balls with respect to some norms on P , Q and P ⊗V Q that
define their respective Banach topologies.

Since V op → EndU (P ) and W op → EndV (Q) are continuous, there are natural num-
bers a and b such that UXV ⊆ π−aUX and VYW ⊆ π−bVY . Thus

U(X ⊗ Y )W ⊆ U(X ⊗ π−bVY) = π−bUXV ⊗ Y ⊆ π−(a+b)U(X ⊗ Y )

and so W op → EndU (P ⊗V Q) is continuous as claimed.
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Proposition. Suppose that U , V and W are left Fréchet–Stein algebras, that P is a
U -co-admissible (U, V )-bimodule and that Q is a V -co-admissible (V,W )-bimodule. Then
PÙ⊗VQ is a U -co-admissible (U,W )-bimodule, and for every co-admissible W -module M
there is a canonical isomorphism

PÙ⊗V (QÙ⊗WM)
∼=−→ (PÙ⊗VQ)Ù⊗WM

of co-admissible U -modules.

Proof. Let U•, V• and W• be Fréchet–Stein structures on U , V and W respectively.
PÙ⊗VQ is a co-admissible U -module by Lemma 7.3, and to see thatW op → EndU (PÙ⊗VQ) is
continuous, it suffices to show that for each n > 0, W op → EndUn

Ä
Un ⊗U (PÙ⊗VQ)

ä
factors

continuously through some W op
l .

Fix n > 0 and write Pn := Un ⊗U P . Because V op → EndU (P ) is continuous, there is
somem > 0 such that V op → EndUn(Pn) factors through a continuous map V op

m → EndUn(Pn).
Let Qm := Vm ⊗V Q so that there is a canonical isomorphism Pn ⊗Vm Qm ∼= Pn ⊗V Q of
(Un,W )-bimodules. Because W op → EndV (Q) is continuous, there is some l > 0 such
that W op → EndVm(Qm) factors through a continuous map W op

l → EndVm(Qm). Hence
W op
l → EndUn(Pn ⊗Vm Qm) is continuous by the Lemma, so W op → EndU (PÙ⊗VQ) is

continuous. Now, for the choice of m above, there are canonical isomorphisms

Un ⊗U
Ä
PÙ⊗V (QÙ⊗WM)

ä ∼= Pn ⊗V (QÙ⊗WM)

∼= Pn ⊗Vm (Vm ⊗V
Ä
QÙ⊗WM)

ä
∼= Pn ⊗Vm Qm ⊗W M

∼= Pn ⊗V Q⊗W M

∼= Un ⊗U (PÙ⊗VQ)⊗W M

∼= Un ⊗U
Ä
(PÙ⊗VQ)Ù⊗WMä

.

We note that the composite isomorphism

Un ⊗U
Ä
PÙ⊗V (QÙ⊗WM)

ä ∼=−→ Un ⊗U
Ä
(PÙ⊗VQ)Ù⊗WMä

does not depend onm provided that it is sufficiently large with respect to n. Since n is arbitrary,
the result follows.

Corollary. Let W → V → U be a sequence of continuous morphisms of left Fréchet–
Stein algebras. Then there is a canonical isomorphism

UÙ⊗V (V Ù⊗WM)
∼=−→ UÙ⊗WM

of U -modules, for every co-admissible W -module M .

7.5. Co-admissible flatness. Let U and V be left Fréchet–Stein algebras.

Definition. Let P be a U -co-admissible (U, V )-bimodule.

(a) P is a c-flat right V -module if PÙ⊗V− is exact.
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(b) P is a faithfully c-flat right V -module if in addition PÙ⊗VM = 0 only if M = 0.

Proposition. Let P be a U -co-admissible (U, V )-bimodule.

(a) The functor PÙ⊗V− is right exact.

(b) If U = lim←−Un is a presentation of U as a left Fréchet–Stein algebra such that Un ⊗U P
is a flat right V -module for all n, then P is c-flat over V .

(c) If additionally, for all non-zero M ∈ CV there exists n such that Un ⊗U P ⊗V M is
non-zero, then P is a faithfully c-flat right V -module.

Proof. Let Pn = Un⊗UP and consider the functor LocU• ◦(PÙ⊗V−) : CV → Coh(U•).
This is equivalent to the functor (Pn ⊗V −). Since LocU• is an equivalence of categories, it
suffices to show that a) Pn⊗V − is always right exact, b) it is exact if each Pn is flat over V , and
c) if for all non-zero M ∈ CV there exists n such that Pn ⊗V M is non-zero then (Pn ⊗V M)

is non-zero. All these statements are either well-known or clear.

7.6. Rescaling the Lie lattice. We will now apply the theory developed in Section 7 to

the Fréchet-Stein enveloping algebras Ŭ(L) introduced in Section 6.
Let Y be an affinoid subdomain of the K-affinoid variety X and suppose that L is a

coherent (R,A)-Lie algebra for some formal model A in O(X).

Lemma. (a) For each g ∈ O(X), there is an n > 0 such that πnL · g ⊆ A.

(b) There exists l > 0 such that Y is πnL-admissible for all n > l.

Proof. Choose a set of generators {x1, . . . , xd} for L as an A-module.
(a) Since xi · g ∈ O(X) for each 1 6 i 6 d and O(X) = K · A, there are ni > 0 such

that for each such i, πnixi · g ∈ A. Taking n = sup{ni} we see that πnL · g ⊆ A.
(b) Choose an affine formal model B in O(Y ) which contains the image of A in O(Y ).

Since B is topologically finitely generated and the action of each xi on O(Y ) is bounded we
can find mi > 0 such that for each 1 6 i 6 d, πmixi · B ⊆ B. Taking l = sup{mi} we see
that B is πnL-stable for all n > l.

Proposition. There is an m > 0 such that Y is πnL-accessible for all n > m.

Proof. First suppose that Y is a rational subdomain of X . By [11, Proposition 7.2.4/1],
there is a chain Y = Zr ⊆ Zr−1 ⊆ · · · ⊆ Z1 = X such thatZk+1 = Zk(gk) orZk+1 = Zk(1/gk)

for some gk ∈ O(Zk). By part (a) of the Lemma, we may then inductively find mk > mk−1
(with m0 = 0) and πmkL-stable affine formal models Bk in O(Zk) such that πmkL · gk ⊆ Bk.
Then Y ⊆ X is πnL-accessible for all n > mr.

Returning to the general case, let l be given by part (b) of the Lemma. By [15, Theorem
4.10.4], we can find rational subdomains X1, . . . , Xr of X such that Y =

⋃r
j=1Xj . By part

(a) of the Lemma, we can find integers m1, . . . ,mr > l such that each rational subdomain
Xj ⊆ X is a πnL-accessible for n > mj . We may then take m = sup{mj}.

Here is the main result of Section 7.
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7.7. Theorem. Let X = SpA be a K-affinoid variety, let A be an affine formal model
in A, and let L be a smooth A-Lie lattice in the (K,A)-Lie algebra L.

(a) If Y is an affinoid subdomain of X , then ˇ�U(O(Y )⊗A L) is a c-flat Ŭ(L)-module on
both sides.

(b) If {Y1, . . . , Yn} is an affinoid covering of X , then ⊕ni=1
ˇ�U(O(Yi)⊗A L) is a faithfully

c-flat Ŭ(L)-module on both sides.

Proof. Replacing L by a π-power multiple if necessary, by Proposition 7.6 we may
assume that Y and each Yi are πnL-accessible affinoid subdomains ofX for all n > 0. Choose
an L-stable affine formal model B in B := O(Y ); then L′ := B⊗AL is a smooth B-Lie lattice
in B ⊗A L so using Definition 6.2, we may write

Ŭ(L) = lim←−
⁄�U(πnL)K and ˇ�U(B ⊗A L) = lim←−

¤�U(πnL′)K .

Now Ŭ(L) is a two-sided Fréchet-Stein algebra by Theorem 6.4, so ⁄�U(πnL)K is a flat Ŭ(L)-

module on both sides by the two-sided version of [26, Remark 3.2]. Also ¤�U(πnL′)K is a

flat ⁄�U(πnL)K-module on both sides by Theorem 4.9(a). Therefore ¤�U(πnL′)K is a flat Ŭ(L)-

module on both sides, and hence ˇ�U(B ⊗A L) is a c-flat Ŭ(L)-module on both sides by the
two-sided version of Proposition 7.5(b). This establishes part (a), and part (b) follows from the
two-sided version of Proposition 7.5(c) and Theorem 4.9(b).

8. Co-admissible U̇ (L)-modules on affinoid varieties

In this Section we suppose that X is a K-affinoid variety, A is an affine formal model in
O(X), L is a smooth (R,A)-Lie algebra, and L = L ⊗R K.

8.1. Sheaves of Fréchet–Stein enveloping algebras.

Definition. For each affinoid subdomain Y of X , write

U̇ (L)(Y ) := ˇ�U(O(Y )⊗O(X) L)

for the Fréchet completion of the enveloping algebra U(O(Y )⊗O(X) L).

Theorem. U̇ (L) is a sheaf of two-sided Fréchet–Stein algebras on Xw.

Proof. Let Y be an affinoid subdomain of X . By replacing L by a π-power multiple if
necessary and applying Lemma 7.6(b), we may assume that Y is L-admissible. Let B be an
L-stable affine formal model in Y . Then B ⊗A L is a smooth B-Lie lattice in O(Y )⊗O(X) L,

so U̇ (L)(Y ) is a two-sided Fréchet-Stein algebra by Theorem 6.4.
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By Proposition 6.3(a), U̇ (L) is a presheaf on Xw. Let U = {Y1, . . . , Ym} be an Xw-
covering of Y . By replacing L by a π-power multiple again if necessary and applying Lemma
7.6(b), we may assume that U is πnL-admissible for all n > 0. Now

U̇ (L)(Z) ∼= lim←−
n>0

¤�U (πnL)K(Z)

whenever Z is an intersection of members of U , and the truncated augmented Čech complex

0→¤�U (πnL)K(Y )→
m⊕
i=1

¤�U (πnL)K(Yi)→
⊕
i<j

¤�U (πnL)K(Yi ∩ Yj)

is exact for each n > 0 by Theorem 3.5. Since lim←− is left exact, the complex

0→ U̇ (L)(Y )→
m⊕
i=1

U̇ (L)(Yi)→
⊕
i<j

U̇ (L)(Yi ∩ Yj)

is also exact, and hence U̇ (L) is a sheaf.

8.2. Localisation. For every co-admissible Ŭ(L)-module M , we can define a presheaf

Loc(M) of U̇ (L)-modules on Xw by setting

Loc(M)(Y ) := U̇ (L)(Y ) Ù⊗
Ū(L)

M

for each affinoid subdomain Y of X . The restriction maps in Loc(M) are obtained from the
associativity isomorphism

U̇ (L)(Z) Ù⊗
Ū (L)(Y )

Ñ
U̇ (L)(Y ) Ù⊗

Ū(L)

M

é
∼= U̇ (L)(Z) Ù⊗

Ū(L)

M

given by Corollary 7.4, which is applicable by Proposition 6.3(a).

Theorem. Loc defines a full exact embedding of abelian categories from the category
of co-admissible Ŭ(L)-modules to the category of sheaves of U̇ (L)-modules on Xw with van-
ishing higher Čech cohomology groups.

Proof. Suppose that f : M → N is a morphism of co-admissible Ŭ(L)-modules. By
the universal property of Ù⊗, for each Y in Xw there is a unique morphism of U̇ (L)(Y )-
modules idÙ⊗f : Loc(M)(Y )→ Loc(N)(Y ) making the diagram

M
f

−−−−→ Ny y
Loc(M)(Y ) −−−−→

idÛ⊗f Loc(M)(X)
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commute. It is now easy to see that Loc is full and faithful functor as claimed.
Suppose now that 0 → M1 → M2 → M3 → 0 is an exact sequence of co-admissible

Ŭ(L)-modules. Since U̇ (L)(Y ) is a c-flat U̇ (L)(X)-module on both sides for each Y ∈ Xw

by Theorem 7.7, each sequence

0→ Loc(M1)(Y )→ Loc(M2)(Y )→ Loc(M3)(Y )→ 0

is exact. This suffices to see that Loc is exact.
Finally, we prove that if M is a co-admissible Ŭ(L)-module, then any Xw-covering U of

an affinoid subdomain Y of X is Loc(M)-acyclic. This will imply that Loc(M) is a sheaf on
Xw with vanishing higher Čech cohomology groups.

Using Proposition 7.6, we may assume that U is a πnL-accessible covering of Y for each
n > 0. Write M = lim←−Mn where Mn := ⁄�U(πnL)K ⊗

Ū(L)
M , and consider the sheaves

Mn := Loc(Mn) of ¤�U (πnL)K-modules on Xac(π
nL). By Proposition 5.1, the augmented

Čech complexes C•aug(U ,Mn) are exact for each n > 0.
Now Loc(M)(Y ) = lim←−Mn(Y ) and Loc(M)(U) = lim←−Mn(U) for each U ∈ U .

Moreover, by [26, Theorem B], lim←−
(j)Mn(Y ) = 0 and lim←−

(j)Mn(U) = 0 for each j > 0 and

each U ∈ U . Consider the exact complex of towers of U̇ (L)(Y )-modules

C•aug(U , (Mn)).

An induction starting with the left-most term shows that lim←−
(j) is zero on the kernel of every

differential in this complex, for all j > 0. Therefore lim←−C
•
aug(U ,Mn) is exact. But this

complex is isomorphic to C•aug(U ,Loc(M)).

8.3. Co-admissible U̇ (L)-modules. We will now start to study the essential image of
Loc.

Definition. Let M be a U̇ (L)-module. Given an Xw-covering U = {U1, . . . , Un} of
X , we say that M is U-co-admissible if for each 1 6 i 6 n there is a co-admissible U̇ (L)(Ui)-
moduleMi such that M |Ui is isomorphic to Loc(Mi) as sheaves of U̇ (L)|Ui-modules. We say
that M is co-admissible if there is someXw-covering U ofX such that M is U-co-admissible.

Proposition. Suppose that α : M → N is a morphism of U-co-admissible U̇ (L)-
modules for some admissible covering U . Then kerα, cokerα and Imα are each U-co-
admissible.

Proof. We can compute using Theorem 8.2 that (kerα)|Ui ∼= Loc(kerα(Ui)), that
(cokerα)|Ui ∼= Loc(cokerα(Ui)) and that Imα|Ui = Loc(Imα(Ui)).

Lemma. Suppose that M is a sheaf of U̇ (L)-modules isomorphic to Loc(M) for some

co-admissible Ŭ(L)-module M . Then the sheaf Loc

Å◊�U(L)K ⊗
Ū(L)

M

ã
on Xac(L) has sec-

tions given by Z 7→ÿ�U (L)K(Z)⊗
Ū (L)(Z)

M (Z).
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Proof. The commutative diagram

Ŭ(L)

��

U̇ (L)(X) //

��

U̇ (L)(Z)

��◊�U(L)K
ÿ�U (L)K(X) //ÿ�U (L)K(Z)

induces an isomorphismÿ�U (L)K(Z) ⊗÷U(L)K

◊�U(L)K ⊗
Ū(L)

M ∼= ÿ�U (L)K(Z) ⊗
Ū (L)(Z)

U̇ (L)(Z) Ù⊗
Ū(L)

M

and the result follows.

8.4. Kiehl’s Theorem. Here is the main result of Section 8, which shows that co-

admissible Ŭ(L)-modules may be obtained by patching together appropriate local informa-
tion. It can be viewed as an analogue of the classical Theorem of Kiehl [15, Theorem 4.5.2] on
coherent O-modules on rigid analytic spaces.

Theorem. Let M be a sheaf of U̇ (L)-modules on Xw. Then the following are equiva-
lent.

(a) M is co-admissible.

(b) M is U-co-admissible for all Xw-coverings U of X .

(c) M is isomorphic to Loc(M) for some co-admissible Ŭ(L)-module M .

Proof. Note that (c) =⇒ (b) and (b) =⇒ (a) are trivial. We will prove (a) =⇒ (c).
Suppose that U is a covering ofX by affinoid subdomains such that M is U-co-admissible. By
[11, Lemmas 8.2.2/2-4], we can find a Laurent covering V = {X(fα1

1 , . . . , fαmm ) | αi ∈ {±1}}
for some f1, . . . , fm ∈ O(X) which is a refinement of U . Certainly M is V-co-admissible so
we may, without loss of generality, assume that U = V . Using Proposition 7.6, we may also
assume that U is πnL-accessible for all n > 0.

In an attempt to improve readability, we write Sn for the sheaf ¤�U (πnL)K on Xac(π
nL)

and S∞ for the sheaf U̇ (L) on Xw, so that S∞(X) ∼= lim←−Sn(X) and

S∞(Y ) ∼= lim←−Sn(Y ) for all Y ∈ U .

Fix n > 0. Consider the sheafification Mn of the presheaf Z 7→ Sn(Z) ⊗S∞(Z) M (Z) on
Xac(π

nL). Let Y ∈ U , so that M (Y ) is a co-admissible S∞(Y )-module, and M|Yw is isomor-
phic to Loc(M (Y )) by assumption. By Lemma 8.3 applied to M|Yw there are isomorphisms

Mn|Yw ∼= Loc
Ä
Sn(Y )⊗S∞(Y ) M (Y )

ä
for each Y ∈ U . ThusMn is a U-coherent Sn-module, so there is a finitely generated Sn(X)-
module Mn and an isomorphism Loc(Mn)

∼=−→Mn by Theorem 5.5.
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Now Loc(Mn) ∼= Loc(Sn(X) ⊗Sn+1(X) Mn+1) as sheaves on Xac(π
nL), because they

have the same local sections on U . Thus M∞ := lim←−Mn is a co-admissible S∞(X)-module.
We will show that Loc(M∞) is isomorphic to our sheaf M .

Let θn denote the S∞(X)-linear map M∞ → Mn(X) defined by the composite of the
natural map M∞ → Mn and the global sections of the isomorphism Loc(Mn) → Mn. Let
Y ∈ U . Combining the isomorphism

Loc(Mn)(Y ) = Sn(Y )⊗Sn(X) Mn
∼=−→Mn(Y )

together with the canonical isomorphism Mn
∼= Sn(X) ⊗S∞(X) M∞ given by [26, Corollary

3.1] produces a compatible family of isomorphisms

αn(Y ) : Sn(Y )⊗S∞(X) M∞
∼=−→Mn(Y )

given by the S∞(X)-balanced map (s,m) 7→ s · θn(m)|Y .
Passing to the limit as n→∞ gives an isomorphism of S∞(Y )-modules

α(Y ) : Loc(M∞)(Y ) = S∞(Y )Ù⊗S∞(X)M∞
∼=−→M (Y )

given by the S∞(X)-balanced map (s,m) 7→ s · lim(θn(m)|Y ). Since M|Y ∼= Loc(M (Y ))

by assumption, Theorem 8.2 gives an isomorphism

αY : Loc(M∞)|Y
∼=−→M|Y

of sheaves of S∞|Y -modules whose local sections

αY (Z) : S∞(Z) Ù⊗
S∞(X)

M∞ →M (Z)

are given by αY (Z)(sÙ⊗m) = s · lim(θn(m)|Y )|Z , whenever Z is an affinoid subdomain of Y .
Because lim(θn|Y )|Z = lim θn|Z , it follows that

αY (Y ∩ Y ′) = αY ′(Y ∩ Y ′) for every Y, Y ′ ∈ U .

Hence the αY patch together to an isomorphism of sheaves α : Loc(M∞)→M .

9. Sheaves on rigid analytic spaces

In this Section X is a rigid K-analytic space.

9.1. Lie algebroids. Let Xw denote the subset of Xrig consisting of the affinoid subdo-
mains of X . Since we do not assume that X is separated, Xw is not closed under intersections
in Xrig and thus is not a G-topology on X in general. However, every admissible open subset
in Xrig has an admissible cover by affinoid subdomains of X .

Definition. [11, §9.2.1] A subset B of objects ofXrig is a basis for the topology if every
admissible open has an admissible cover by objects in B.
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In particular, Xw is a basis of X .

Definition. If B is a basis of X , a presheaf F on B is a sheaf if for every admissible
cover {Ui} of U by objects in B and any choice of admissible covers {Wijk} of Ui ∩ Uj ,

F(U)→
∏
F(Ui)⇒

∏
F(Wijk)

is exact.

Theorem. Suppose that B ⊆ Xrig is a basis for the topology X . The restriction functor
induces an equivalence of categories between sheaves on Xrig and sheaves on B.

This is a consequence of the Comparison Lemma [18, Theorem C.2.2.3], but we give a
proof in Appendix A for the convenience of the reader.

Proposition. There is a coherent sheaf TX of K-Lie algebras on Xrig with

TX(U) := DerK O(U)

for every affinoid subdomain U of X . Moreover, for all admissible open subsets Y of X ,
TX(Y ) acts by derivations on O(Y ).

Proof. We define the restriction maps TX(U) → TX(V ) for V ⊆ U affinoid subdo-
mains in X using Lemma 2.4. By the uniqueness part of that Lemma this defines a presheaf of
K-Lie algebras on Xw. Let {Ui} be an admissible affinoid cover of an affinoid subdomain U
of X . Then it is routine to check that the sequence

0→ TX(U)→
∏
TX(Ui)→

∏
TX(Ui ∩ Uj)

is exact, so TX defines a sheaf of K-Lie algebras on Xw. By the Theorem, this extends to a
sheaf of K-Lie algebras on Xrig. A similarly routine verification shows that TX(Y ) acts by
derivations on O(Y ) whenever Y is an admissible open subset of X .

We call the sheaf TX constructed in the Proposition the tangent sheaf of X .

Definition. A Lie algebroid on X is a pair (ρ,L ) such that

• L is a locally free sheaf of O-modules of finite rank on Xrig,

• L has the structure of a sheaf of K-Lie algebras, and

• ρ : L → T is an O-linear map of sheaves of Lie algebras such that

[x, ay] = a[x, y] + ρ(x)(a)y

whenever U is an admissible open subset of X , x, y ∈ L (U) and a ∈ O(U).

For example, if X is smooth, then the tangent sheaf TX is locally free of finite rank by
definition, and thus (idTX , TX) is a Lie algebroid on X by the Proposition.
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9.2. Lie-Rinehart algebras and Lie algebroids. If (ρ,L ) is a Lie algebroid on X ,
then (ρ(U),L (U)) is a (K,O(U))-Lie algebra for every admissible open subset U of X .
Moreover every affinoid subdomain U of X , L (U) is smooth by [15, Proposition 4.7.2].

Definition. A morphism (ρ,L ) → (ρ′,L ′) of Lie algebroids on X is a morphism
of sheaves θ : L → L ′ such that θ(U) is a morphism of (K,O(U))-Lie algebras for every
U ⊆ X in Xrig.

Lemma. Let Y = Sp(A) be a K-affinoid variety. The global sections functor Γ(Y,−)

defines an equivalence of categories between the category of Lie algebroids on Yrig and the
category of smooth (K,A)-Lie algebras.

Proof. First, suppose that (L, ρ) is a smooth (K,A)-Lie algebra and define Loc(L) to
be the locally free sheaf on Yw given by Loc(L)(U) = O(U) ⊗A L for U ⊆ Y affinoid
and natural restriction maps. By Corollary 2.4 there is a unique structure of a (K,O(U))-Lie
algebra on Loc(L)(U) with anchor map ρ(U) so that

L
ρ //

��

DerK(A)

��
Loc(L)(U)

ρ(U) // TY (U)

commutes. Suppose that V ⊆ U are affinoid subdomains of Y , and consider the diagram

L //

ρ

��

Loc(L)(U) //

ρ(U)
��

Loc(L)(V )

ρ′(V )
��

DerK(A) // TY (U) // TY (V )

where ρ′(V ) is the anchor map for the unique (K,O(V ))-Lie algebra structure on Loc(L)(V )

making the right-hand square commute. Since the left-hand square also commutes, the outer
square must commute and ρ′(V ) = ρ(V ) by the uniqueness of ρ(V ). Thus ρ : Loc(L)→ TY |Yw
is a morphism of sheaves of Lie algebras on Yw. By [11, Proposition 9.2.3/1], Loc(L) extends
to a Lie algebroid Loc(L) on Yrig.

Now, suppose that f : L → L′ is a morphism of (K,A)-Lie algebras. By Corollary 2.4
there is a unique morphism of sheaves on Yw

Loc(f) : Loc(L)|Yw → Loc(L′)|Yw

such that Loc(f)(Y ) = f , given by Loc(f)(U) = O(U)⊗Af for affinoid subdomainsU ⊆ Y .
By [11, Proposition 9.2.3/1] again, Loc(f) extends to a morphism of Lie algebroids. Thus Loc

defines a functor inverse to Γ(Y,−).

Corollary. If (ρ,L ) is a Lie algebroid on a rigid K-analytic space X , then for every
affinoid subdomain U of X , L |U ∼= Loc(L (U)).
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9.3. The Fréchet completion of U (L ). We will need to work with a slightly coarser
basis for Xrig than Xw.

Definition. Let L be a Lie algebroid on the rigid K-analytic space X , and let Y be an
affinoid subdomain of X . We say that L (Y ) admits a smooth Lie lattice if there is an affine
formal model A in O(Y ) and a smooth A-Lie lattice L in L (Y ). We let Xw(L ) denote the
set of affinoid subdomains Y of X such that L (Y ) admits a smooth Lie lattice.

Lemma. Xw(L ) is a basis for X .

Proof. Suppose that Y is an affinoid subdomain of X such that L (Y ) is a free O(Y )-
module. Choose an affine formal model A in O(Y ); then L (Y ) has a free A-lattice spanned
by a generating set for L (Y ) as an O(Y )-module, and some π-power multiple of this lattice
will be a freeA-Lie lattice by Lemma 6.1(c). Thus L (Y ) has a smoothA-Lie lattice whenever
L (Y ) is a freeO(Y )-module, so Xw(L ) is a basis for X since L is a locally freeO-module.

Theorem. Let X be a rigid K-analytic space. There is a natural functor U̇ (−) from
Lie algebroids on X to sheaves of K-algebras on Xrig such that there is a canonical isomor-
phism ˚�U (L )|Yw ∼= ˇ�U (L (Y ))

for every Y ∈ Xw(L ).

Proof. Given a Lie algebroid L on X , let ˚�U (L ) be the presheaf of K-algebras on Xw

given by ˚�U (L )(Y ) := ˛�U(L (Y ))

on affinoid subdomains Y of X , with restriction maps given by Proposition 6.3(a).
By Theorem 8.1, ˚�U (L ) is a sheaf ofK-algebras onXw(L ). BecauseXw(L ) is a basis

for X by the Lemma, ˚�U (L ) extends uniquely to a sheaf of K-algebras on Xrig by Theorem
9.1.

Moreover if L → L ′ is a morphism of Lie algebroids on X then Proposition 6.3(b),
together with Lemma A.1, gives a morphism of sheaves of K-algebras ˚�U (L ) →¸�U (L ′) on
Xrig in a functorial way.

Definition. We call the sheaf ˚�U (L ) constructed in the Theorem the Fréchet comple-
tion of U (L ). If X is smooth, L = T and ρ = 1T , we callÙD := U̇ (T )

the Fréchet completion of D.
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9.4. Co-admissible sheaves of modules. Let L be a Lie algebroid on X . By analogy
with the definition of coherent sheaves given in [17, §II.5], we make the following

Definition. A sheaf of ˚�U (L )-modules M on Xrig is co-admissible if there is an ad-
missible covering {Ui} of X by affinoids in Xw(L ) such that M |Ui,w is a co-admissible˚�U (L )|Ui,w -module for all i in the sense of Definition 8.3.

We record three equivalent ways of thinking about co-admissible modules.

Theorem. The following are equivalent for a sheaf M of ˚�U (L )-modules on Xrig:

(a) M is co-admissible,

(b) M |Uw is a co-admissible ˚�U (L )|Uw -module for every U ∈ Xw(L ),

(c) M (U) is a co-admissible ˚�U (L )(U)-module, and the natural map˚�U (L )(V ) Ù⊗
Ŭ (L )(U)

M (U) −→M (V )

is an isomorphism whenever V,U ∈ Xw(L ) and V ⊆ U .

Proof. (a)⇒ (b). Let {Ui} be an admissible affinoid covering of X such that M |Ui,w
is a co-admissible ˚�U (L )|Ui,w -module and Ui ∈ Xw(L ) for all i. Let U be another object of
Xw(L ); then {U ∩ Ui} is an admissible cover of U . Choose an admissible affinoid covering
{Vij}j of U ∩Ui for each i; then {Vij}i,j is an admissible affinoid covering of U and therefore
admits a finite subcoveringW , say. Now M |Uw isW-co-admissible in the sense of Definition
8.3 since each W ∈ W is an affinoid subdomain of some Ui.

(b) ⇒ (c). Let U ∈ Xw(L ). By Theorem 8.4, M |Uw is isomorphic to Loc(MU ) for
some co-admissible ˚�U (L )(U)-module MU . Now MU = Loc(MU )(U) ∼= M (U), so M (U)

is a co-admissible ˚�U (L )(U)-module. Hence

M (V ) ∼= Loc (M (U)) (V ) = ˚�U (L )(V ) Ù⊗
Ŭ (L )(U)

M (U)

for every affinoid subdomain V of U .
(c)⇒ (a). Using Lemma 9.3, choose an admissible covering {Ui} of X by affinoids in

Xw(L ), and let Mi := M (Ui) for each i. Then Mi is a co-admissible ˚�U (L )(Ui)-module,
and there is a natural isomorphism of sheaves of ˚�U (L )|Ui,w -modules

Loc(Mi)
∼=−→M |Ui,w

for each i, by assumption. Hence M is co-admissible.

It follows readily from Proposition 8.3 that the full subcategory of sheaves of ˚�U (L )-
modules on Xrig whose objects are the co-admissible ˚�U (L )-modules is abelian.
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9.5. Two corollaries. We begin with a more general version of Corollary 1.4, which
follows immediately from Theorems 8.2 and 8.4.

Theorem. Suppose that L is a Lie algebroid on a K-affinoid variety X such that
L (X) admits a smooth Lie lattice. Then Loc is an equivalence of abelian categories co−admissible˚�U (L )(X)−modules

 ∼=
 co−admissible sheaves of˚�U (L )−modules on X

 .
Given an abelian sheaf F on X , write H•(X,F) to denote the sheaf cohomology of F ,

and let H̆•(U ,F) denote the Čech cohomology of F with respect to the covering U .

Proposition. Suppose that X is separated, M is a co-admissible ˚�U (L )-module and
U is any cover of X by affinoids in Xw(L ). Then

H i(X,M ) = H̆ i(U ,M )

for all i > 0. In particular, H i(X,M ) = 0 for i > |U|.

Proof. Since X is separated, every finite intersection V of elements of U is affinoid.
Thus by Theorem 9.4, M |V is a co-admissible ˚�U (L )|V -module and so has vanishing Čech
cohomology groups by Theorem 8.4 and Theorem 8.2. Hence the spectral sequence (1) for the
covering U and the sheaf M from Subsection 3.4 collapses on page 2.

It follows from the Proposition that in the setting of the Theorem, the global sections
functor Γ(X,−) is an exact quasi-inverse to the localisation functor Loc.

A. Proof of Theorem 9.1

When X is affinoid, [11, Proposition 9.2.3/1] gives that the restriction functor from
sheaves on Xrig to sheaves on Xw is an equivalence of categories. In this appendix we ex-
tend this result to bases for general rigid K-analytic spaces X .

A.1. Lemma. Suppose that B ⊆ Xrig is a basis. The restriction functor r from sheaves
on Xrig to the category of sheaves on B is full and faithful.

Proof. Suppose that F and G are sheaves on Xrig and θ is a natural transformation from
r(F) to r(G). We must show that θ extends uniquely to a morphism of sheaves t : F → G.

Suppose that U is an admissible open subset of X and U = {Ui} is a admissible cover
of U by Ui in B. Since G is a sheaf on Xrig,

G(U)→
∏
G(Ui)⇒

∏
i,j

G(Ui ∩ Uj)
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is exact. For each pair i, j, choose an admissible cover {Wijk} of Ui ∩ Uj by objects in B.
Since G is a sheaf, G(Ui ∩ Uj) →

∏
k G(Wijk) is a monomorphism for each pair i, j and so

G(U) is also the equaliser of
∏G(Ui)⇒

∏
ijk G(Wijk). Thus G|B is a sheaf on B.

Since θ is a natural transformation, the two composites

F(U)→
∏
F(Ui)→

∏
G(Ui)⇒

∏
G(Wijk)

agree. Thus there is a unique t(U) ∈ Hom(F(U),G(U)) such that

F(U) //

t(U)
��

∏F(Ui)∏
θ(Ui)

��
G(U) // ∏G(Ui)

commutes. Next, suppose that V = {Vj} is a refinement of U with each Vj in B. Then

F(U) //

t(U)
��

∏F(Ui)∏
θ(Ui)

��

// ∏F(Vj)∏
θ(Vj)

��
G(U) // ∏G(Ui) // ∏G(Vj)

also commutes, so t(U) = t(V). Since any two such covers of U have a common refinement,
we see that t(U) := t(U) does not depend on the choice of cover of U . In particular if U is in
B, t(U) = θ(U).

Now suppose that V ⊆ U are admissible opens in Xrig with U in B. Let {Vi} be an
admissible cover of V by objects in B. Consider the diagram

F(U) //

θ(U)

��

F(V ) //

t(V )

��

∏F(Vi)

θ(V )

��
G(U) // G(V ) // ∏G(Vi).

The outer square commutes because θ is a natural transformation. The right-hand square com-
mutes by the construction of t(V ). Since G is a sheaf, the bottom rightmost horizontal mor-
phism is a monomorphism so it follows that the left-hand square commutes.

Finally, consider V ⊆ U for general admissible opens inXrig. Let {Ui} be an admissible
cover of U by objects in B and define Vi := V ∩ Ui so that {Vi} is an admissible cover of V .
Then consider the diagram

F(U) //

t(U)
��

∏F(Ui) //∏
θ(Ui)

��

∏F(Vi)∏
t(Vi)

��
G(U) // ∏G(Ui) // ∏G(Vi).

The left-hand square commutes by construction of t(U). The right-hand square commutes by
the previous paragraph since eachUi is in B. Thus the outer square commutes. By repeating the
argument used in the case U is in B we see that t is the unique morphism of sheaves extending
θ as required.
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A.2. Proposition. Suppose B ⊆ Xrig is a basis of X . The essential image of the
restriction functor from sheaves on Xrig to presheaves on B consists of the sheaves on B.

Proof. Suppose that F is a sheaf on B. We will construct a sheaf F on Xrig whose
restriction is naturally isomorphic to F . Suppose U is an admissible open subvariety of X
and U = {Ui | i ∈ I} is an admissible cover of U by objects in B. For each i, j ∈ I let
Vij = {Vijk} denote an admissible cover of Ui ∩ Uj by objects in B. Then define H0(U , F )

to be the equaliser of
∏
i∈I F (Ui) ⇒

∏
F (Vijk). Since F is a sheaf on B, ifWij = {Wijl} is

a refinement of Vij then
∏
F (Vijk) →

∏
F (Wijl) is a monomorphism. Thus H0(U , F ) only

depends on the choice of cover U not on the choice of Vij . Note also that, by the definition of
a sheaf on B, H0(U , F ) = F (U) whenever U is a admissible cover of U ∈ B.

Now, we can define for any admissible open subset U of X

F(U) := lim−→H0(U , F )

where the direct limit is over all covers of U by objects in B. In particular F(U) ∼= F (U) for
U ∈ B. Suppose that V ⊆ U are admissible open subsets of X . If U = {Ui | i ∈ I} is an
admissible cover of U by objects in B then V = {Ui ∩ V | i ∈ I} is an admissible cover of
V . For each i we can find an admissible cover Vi of Ui ∩ V by objects in B. Then

⋃Vi is an
admissible cover of V by objects in B. Moreover, the universal property of equalisers defines
a map H0(U , F )→ H0(

⋃Vi, F )→ F(V ). These patch together using the universal property
of direct products to give a morphism F(V ) → F(U). It is routine to check that in this way
F defines a presheaf on Xrig whose restriction to B is naturally isomorphic to F . The proof of
[11, Lemma 9.2.2/3] shows that F is in fact a sheaf.
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