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Abstract. We prove an Induction Equivalence and a Kashiwara Equivalence

for coadmissible equivariant D-modules on rigid analytic spaces. This allows us
to completely classify such objects with support in a single orbit of a classical

point with co-compact stabiliser. As an application, we use the locally analytic

Beilinson-Bernstein equivalence to construct new examples of large families of
topologically irreducible locally analytic representations of certain compact

semisimple p-adic Lie groups.
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1. Introduction

1.1. Support of equivariant D-modules on rigid analytic spaces. Let G be
a p-adic Lie group and let K be a non-Archimedean field of mixed characteristic
(0, p). In our recent work [1], we introduced the category CX/G of coadmissible
G-equivariant D-modules on a smooth rigid K-analytic space X, which serves as
a p-adic analogue of the classical category of coherent D-modules on a smooth
complex algebraic variety that are strongly equivariant with respect to the ac-
tion of a real or complex Lie group. The main motivation for this construction
is the Beilinson-Bernstein-style Localisation Theorem — [1, Theorem C] — which,
combined with the Schneider-Teitelbaum equivalence [27, Theorem 6.3], gives an
anti-equivalence of categories V 7→ Loc(V ′b ) between the category of admissible lo-
cally analytic G-representations V of G with trivial infinitesimal central character
and the category of coadmissible G-equivariant D-modules on the rigid analytic
flag variety associated with the semisimple p-adic Lie group G.

In this paper, we start to address the following basic question.

Question. Given an admissible locally analytic representation V as above, what
can be the support of the sheaf Loc(V ′b )?

In the classical situation, ifM is a strongly equivariant D-module on a complex
algebraic variety, then it is in particular a coherent D-module and therefore its
support is closed in the Zariski topology. When we interpret an object M ∈ CX/G
as a sheaf M̃ on the Huber space X̃ associated with X, for formal reasons, the
support Supp(M̃) of M̃ is necessarily a G-stable subset of X̃ which detects whether

M is non-zero in the sense that Supp(M̃) 6= ∅ if and only if M 6= 0. Taking our
cue from the classical situation, as well as from an examination of the currently
known list of examples, we expect that when M 6= 0,

(i) Supp(M̃) is a closed subset of the topological space X̃,

(ii) Supp(M̃) ∩X is always non-empty.

In the first instance, we focus our attention on those objects M ∈ CX/G whose
support is as small as possible, set-theoretically. Guided by the expectations (i)
and (ii) above, this means considering supports of the form G · x where x ∈ X.

Note that the requirement that this is a closed subset of X̃ already puts a severe
restriction on the possible values of x: for example, it can be shown that when
G = SL2(L) for some finite extension L of Qp contained in K, acting on the rigid

analytic K-projective line X = P1,an
K by Möbius transformations, then the G-orbit

G · x of a point x ∈ X = P1(K)/Gal(K/K) is closed in the Huber space X̃ if and
only if x ∈ P1(L).

1.2. The main result. Suppose, then, that x ∈ X is such that G · x is closed in
X̃. We are able to completely classify the M ∈ CX/G that are supported on G · x.
In order to state our main result precisely, we need the following two definitions.

Definition 1.2.1. Let S be a subset of X.

(a) Let M be an abelian sheaf on X. We say that M is supported on S if
M|V = 0 for every admissible open subset V of X\S.

(b) Let CSX/G denotes the full subcategory of CX/G consisting of those M ∈
CX/G that are supported on S.
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We show in Lemma 2.1.2 below that an abelian sheaf M on X is supported on
S in this sense if and only if the support Supp(M̃) of the associated sheaf M̃ on

X̃ is contained in the closure S of S in X̃.

Definition 1.2.2. Let G be a group acting on a set X and let Y be a subset of
X. We say that the G-orbit of Y is regular in X if distinct G-translates of Y are
disjoint: for all g ∈ G we have (gY ∩ Y 6= ∅ ⇒ gY = Y ).

Evidently this condition is satisfied whenever Y = {x} is a singleton. When it
fails, the space GY is somehow “singular” at points that happen to lie on more
than one distinct G-translate of Y ; hence the choice of terminology.

Recall from [7, Definition 9.5.2/1] that a subset Y of a rigid analytic variety
X is said to be closed analytic if it is equal to the vanishing locus V (I ) of some
coherent ideal sheaf I of OX. We call these subsets Zariski closed in this paper.

With these definitions in place, our main result reads as follows.

Theorem A. Let G be a p-adic Lie group acting continuously on a rigid analytic
space X, and let Y be a Zariski closed subset of X. Suppose that

(a) X is smooth and separated,
(b) Y is irreducible and quasi-compact,
(c) the G-orbit of Y is regular in X, and
(d) the stabiliser GY of Y is co-compact in G.

Then the functor of sections supported on Y gives an equivalence of categories

H0
Y : CGY

X/G

∼=−→ CYX/GY
.

Unfortunately, Theorem A requires a large number of conditions: we proceed
to discuss these in turn. Condition (a) on X is not restrictive at all, because the
category CX/G has only been defined in the case where X is smooth, and many rigid
spaces occurring in nature are separated. Condition (b) is slightly more restrictive,
but is satisfied in many examples of interest. Both (a) and (b) are needed to ensure
that the triple (X,Y, G) satisfies a certain technical condition that we call the Local
Stabiliser Condition — see Definition 2.5.6 — which is in turn needed to ensure
that the local cohomology functor H0

Y preserves coadmissibility.
The most restrictive condition in Theorem A is condition (c). As we show in

Example 3.4.18 and Remark 3.4.19, this condition cannot be simply omitted, as then
H0

Y does not preserve coadmissibility and Theorem A does not hold. Reflecting on
this example, it seems that condition (c) is close to being necessary. Away from
the somewhat trivial case where Y is a point, unfortunately we had to work quite
hard to come up with examples of triples (X,Y, G) where this regularity condition
on Y is satisfied. Indeed, we show in §4 below that when X = Pn,an is a projective
space, its Zariski closed subvariety Y has positive dimension and G is a subgroup
of GLn+1(L) which contains a transvection 1, then this condition is never satisfied.
On a more positive note, in Theorem D below we give an explicit example of a triple
(X,Y, G) where the G-orbit of Y in X is regular and Y is bigger than a point.
There, Y is some particular ruled surface inside the (3-dimensional) rigid analytic
flag variety X of GL4, and G is the group of units of some p-adic division algebra
of degree 4. In forthcoming work with Tobias Schmidt, we will apply Theorem A
in other interesting situations where Y is bigger than a single point.

1an element h ∈ GLn+1(L) such that rk(h− 1) = 1
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Let B be a closed subgroup of G. In §2.2 we construct an induction functor
indGB : CX/B −→ CX/G which, in the setting of Theorem A, serves as an inverse

to the local cohomology functor H0
Y with B = GY. In order to be able to show

that this induction functor preserves coadmissibility, we have to assume that the
homogeneous space G/B is compact: this explains the presence of condition (d) in
the statement of Theorem A. Note that in the case where Y is a point, {x} say,
the co-compactness of the stabiliser — or equivalently, the compactness of the G-
orbit G · x — is essentially forced upon us by our expectation (see §1.1 above) that

this orbit is closed in X̃ whenever X happens to be quasi-compact. Because the
rigid analytic flag variety of relevance to the locally analytic Beilinson-Bernstein
Localisation Theorem, [1, Theorem C] always happens to be quasi-compact, this
final restriction in Theorem A is not particularly onerous.

1.3. The equivariant Kashiwara equivalence. In those situations where The-
orem A does apply, one is left with the task of analysing the category CYX/GY

:

although the group G has been replaced by its smaller subgroup GY, the objects
in this category are still certain D-modules on X. Our second main result explains
how to deal with this category in the case where Y happens to be smooth.

Theorem B. Let ι : Y ↪→ X be the inclusion of a smooth, Zariski closed subset
Y into the smooth rigid analytic space X. Let G be a p-adic Lie group acting
continuously on X and stabilising Y. Then there are natural functors

ι+ : CY/G → CYX/G and ι\ : CYX/G → CY/G

which are mutually inverse equivalences of abelian categories.

Theorem B is proved at the end of §3.4. Combining Theorems A and B gives

Corollary 1.3.1. Let G be a p-adic Lie group acting continuously on a rigid
analytic space X, and let Y be a Zariski closed subset of X. Suppose that

(a) X is smooth and separated,
(b) Y is smooth, irreducible and quasi-compact,
(c) the G-orbit of Y is regular in X, and
(d) the stabiliser GY of Y is co-compact in G.

Then there is an equivalence of categories

ι\ ◦ H0
Y : CGY

X/G

∼=−→ CY/GY
.

Let us now specialise to the case where Y is a classical point {x}, so that
conditions (b) and (c) in Corollary 1.3.1 are satisfied automatically.

Corollary 1.3.2. Let G be a p-adic Lie group acting continuously on a smooth,
separated rigid analytic space X and let x ∈ X. Suppose that the stabiliser Gx of
x is co-compact in G. Then there is an equivalence of categories

Γ ◦ ι\ ◦ H0
{x} : CG·xX/G

∼=−→ CD∞(Gx,K).

Here D∞(Gx,K) is the algebra of smooth distributions on Gx from [26]; the
equivalence between C{x}/Gx and the category CD∞(Gx,K) of coadmissibleD∞(Gx,K)-
modules is given by the global sections functor Γ — see [1, Theorem B(c)].
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1.4. Applications to locally analytic representations. Combining Corollary
1.3.2 together with [1, Theorem C] and [27, Theorem 6.3], we obtain the following
consequences for the locally analytic representation theory of p-adic semisimple
groups. Following [27, §6], we will use RepL−an

K (G) to denote the abelian category
of all admissible locally L-analytic G-representations over K with continuous K-
linear maps, and we will use Repsm

K (G) to denote its full subcategory consisting of
the admissible smooth G-representations.

Theorem C. Let L be a finite extension of Qp contained in K, let G be an affine
algebraic L-group such that GK := G⊗L K is connected and split semisimple, and
let G be an open subgroup of G(L), and let X := (GK/B)rig be the rigid K-analytic
flag variety associated with GK .

(a) Suppose that the stabiliser Gx of the classical point x ∈ X is co-compact in
G. Then there is a fully faithful and exact embedding of abelian categories

jx : Repsm
K (Gx) ↪→ RepL−an

K (G)

given by jx(V ) := Γ(X, indGGx ι+ Loc
D∞(Gx,K)
{x} V ′b )′.

(b) Let y ∈ X be another classical point with co-compact stabiliser Gy and
suppose that y /∈ G · x. Then the essential images of jx and jy contain no
non-zero isomorphic objects.

Of course the essential image of jx may be characterised as the full subcategory

of G-representations V ∈ RepL−an
K (G) such that the support of Loc

D(G,K)
X (V ′b ) is

contained in G · x.
In the case where the open subgroup G of G(L) happens to be compact, the con-

dition on the stabiliser Gx imposed in Theorem C is vacuous. In this case, for every
x ∈ X and every irreducible admissible smooth representation V of Gx, Theorem C
produces a topologically irreducible admissible locally L-analytic G-representation
jx(V ). Furthermore, another such representation jy(W ) can be isomorphic to jx(V )
(even after a base-change to a finite extension of K) only if y lies in the same G-
orbit as x. Note that because the field of definition L is far from being algebraically
closed, the rigid analytic variety X admits a very large collection of “irrational”
G-orbits G · x: we can choose any increasing sequence L ⊂ L0 ⊂ L1 ⊂ L2 ⊂ · · · of
finite Galois extensions of L such that the semisimple affine algebraic group GL0

is split with flag variety X, and pick a point xn ∈ X(Ln)\X(Ln−1) for each n > 1;
then G · xn is necessarily contained in X(Ln)\X(Ln−1) and hence G · xn 6= G · xm
whenever n < m. The image of each of these orbits in X = X(K)/Gal(K/K)
then produces at least one irreducible admissible G-representation, namely jx(K)
where K is the trivial Gx-representation. In this way, we obtain a large family of
pairwise non-isomorphic topologically irreducible admissible locally L-analytic G-
representations whenever G is a compact open subgroup of G(L). As we explained
in §1.1 above, in the case where G is the group G(L) itself, the restriction that Gx is
co-compact is far more restrictive, because it essentially forces x to be an L-rational
point of X, and then jx(V ) is a principal series representation of G. Nevertheless,
in this case Theorem C may be used to establish the topological irreducibility of
these representations.

In [19], Kisin and Strauch constructed examples of topologically irreducible lo-
cally L-analytic representations Vχ,H associated with certain open G-orbits H =
G·x contained in P1(E), where E is some finite extension of L and G is some locally
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L-analytic subgroup of GL2(E) such that E · Lie(G) contains sl2(E). They also
proved that their representations are admissible whenever the orbit H is compact.
We expect that it can be shown that Theorem C gives a generalisation of their
construction at least when G is open in SL2(L) and G = SL2,L: then the dual
(Vχ,H)′b of Vχ,H should be isomorphic to jx(K) for those values of χ where Vχ,H
has trivial infinitesimal central character. Theorem C will then give a new proof of
the topological irreducibility of the Kisin-Strauch representations which does not
use Schneider-Teitelbaum’s p-adic Fourier transform from [25]. Describing the lo-
calisations of the D(G,K)-modules (Vχ,H)′b for other values of χ will involve the
theory of twisted G-equivariant D-modules, as was developed in [21].

1.5. A new class of topologically irreducible representations. The represen-
tations constructed above are all associated with G-orbits of the form G ·x where x
is a classical point of the rigid analytic flag variety. Our last main result, Theorem
D below, gives an explicit example of a large collection of triples (X,Y, G) where
the G-orbit of Y is regular in X with dim Y > 0.

Let D be a division algebra of degree 4 and dimension 16 over L and let G be
the connected L-form of GL4 such that G(L) = D×. We say that x ∈ G(K) is
generic if the L-algebra homomorphism x : O(G)→ K is injective. We also recall
that the twisted cubic is the projective curve C ⊆ P3 defined by the homogeneous
equations x0x2 = x2

1, x1x3 = x2
2, x0x3 = x1x2.

Theorem D. Suppose that K contains an algebraic closure of L. Let D be a
division algebra of degree 4 over L and let G be the connected L-form of GL4 such
that G(L) = D×. Let X be the flag variety of GL4 and let Y be the preimage in X
of the twisted cubic C in P3 under either one of the two projection maps X � P3.
Let Y ⊂ X be the corresponding rigid analytic varieties over K. Then the D×-orbit
of xY is regular in X for any generic x ∈ G(K).

The centre of the group D× acts trivially on the rigid analytic flag variety. Since
D× is compact modulo its centre, we can combine Theorem D, Corollary 1.3.1
and [1, Theorem C], to obtain new examples of topologically irreducible admissible
locally L-analytic D×-representations over K of the form

V (xY) := Γ(X, indD
×

D×xY
ι+OxY)′

for every generic x ∈ G(K). Note that V (xY) is not isomorphic to V (x′Y) if
D×xY 6= D×x′Y, because

Supp Loc(V (xY)′b) = D×xY.

1.6. Acknowledgements. I would like to thank Tobias Schmidt, Simon Wadsley
and Christian Johansson for their interest in this work. I would also like to thank
Tobias Schmidt for carefully reading this paper and correcting several inaccuracies.
This paper would not have been possible without the many conversations I had
with Ian Grojnowski on the nature of the ‘fuzzy delta function’ and his questions
about supports: thank you Ian.

The author was partially supported by EPSRC grant EP/L005190/1.

2. The induction equivalence CGY
X/G

∼= CYX/GY

2.1. Berkovich and Huber spaces. Recall from [28, §5] that to every rigid ana-
lytic space X we can associate two topological spaces P(X) and M (X), which we
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call the Huber space the Berkovich space, respectively. The elements of P(X) are
the prime filters on the admissible open subsets of X, and the elements of M (X)

are the maximal filters. The sets of the form Ũ := {p ∈ P(X) : U ∈ p} as
U ranges over the admissible open subsets of X form a basis for the topology on
P(X). There is a natural commutative diagram

P(X)

r

$$
X

<<

//M (X).

In this diagram, the inclusions from X into M (X) and P(X) send to x ∈ X to
mx := {admissible open U ⊂ X : x ∈ U} (the principal maximal filter on x), and
the continuous retraction map r sends p ∈P(X) to the unique maximal filter r(p)
containing p. If X is quasi-compact and quasi-separated (qcqs), then both P(X)
and M (X) are quasi-compact, and M (X) is Hausdorff. In fact, when X is qcqs, the
retraction map r realises M (X) as the maximal Hausdorff quotient space of P(X).
We will identify X with its image in P(X). By [28, §5] there is an equivalence of
categories between the abelian sheaves on X and the abelian sheaves on P(X).
Given an abelian sheaf M on X, we will denote the corresponding sheaf on P(X)

by M̃; it follows from the proof of [28, Theorem 1] that M̃(W̃) =M(W) for any
admissible open subset W of X.

Definition 2.1.1. Let S be a subset of X and let M be an abelian sheaf on X.
We say that M is supported on S if M|U = 0 for every admissible open subset U
of X\S.

The intuition behind this definition is explained by the following

Lemma 2.1.2. Let S be a subset of X. An abelian sheaf M on X is supported
on S if and only if Supp(M̃) is contained in the closure S of S in P(X).

Proof. By the support of an abelian sheaf F on a topological space X we mean the
set Supp(F) := {x ∈ X : Fx 6= 0}. Suppose that M is supported on S and that

M̃p 6= 0 for some p ∈ P(X). Then for all open sets U 3 p there is an admissible

open V ⊂ X such that p ∈ Ṽ ⊂ U and M̃(V) 6= 0. Then V cannot be contained

X\S and thus V∩S 6= ∅. Hence U∩S 6= ∅ and p ∈ S. Conversely, if Supp(M̃) ⊆ S,

let U be an admissible open subset of X\S. Then Ũ∩S = Ũ∩X∩S = U∩S = ∅,
so Ũ∩ S = ∅. Hence M̃p = 0 for all p ∈ Ũ whence M̃|Ũ = 0. Therefore M|U = 0,

which means that M is supported on S. �

We refer the reader to [14, §1] for standard notation from the theory of local
cohomology of abelian sheaves on topological spaces.

Definition 2.1.3. Let M be an abelian sheaf on X and let S be a subset of X.

(a) We define the subgroup of sections of M supported on S to be

ΓS(M) := H0
S(M) := H0

S
(M̃) = ker

Ä
M(X) −→ M̃(P(X)\S)

ä
,

(b) We also have the presheaf H0
S(M), given by

H0
S(M)(U) := H0

Ũ∩S(M̃|Ũ) = ker
Ä
M(U) −→ M̃(Ũ\S)

ä
for every admissible open U of X.
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Lemma 2.1.4. Suppose that X\S is an admissible open subset of X. Then the

closure S of S in P(X) equals P(X)\X̃\S.

Proof. If s ∈ S then s /∈ X\S so X\S /∈ ms and ms /∈ X̃\S. Since X̃\S is open, this

implies that S ⊆P(X)\X̃\S. Let ‹U be a basic open neighbourhood of an element

p ∈P(X)\X̃\S. Then X\S /∈ p, so U cannot be contained in X\S because p is a

filter and because U ∈ p. So S∩U 6= ∅ and S∩Ũ 6= ∅. This implies that p ∈ S. �

Corollary 2.1.5. Suppose that X\S is an admissible open subset of X and M is
an abelian sheaf on X. Then H0

S(M) = ker(M(X)→M(X\S)) andH0
S(M)(U) =

ker(M(U)→M(U\S)) for every admissible open subset U in X.

Proof. By Lemma 2.1.4, M(P(X)\S) =M(X̃\S) =M(X\S). �

We return to the setting of equivariant D-modules. Let G be a p-adic Lie group
acting continuously on the rigid analytic space X.

Lemma 2.1.6. Let M be a G-equivariant D-module on X and let S be a subset
of X. Then

(a) H0
S(M) is a GS-equivariant D-module on X, and

(b) H0
S(M) is locally Fréchet whenever M is coadmissible.

Proof. Part (a) is straightforward. For part (b), let U ∈ Xw(T ) and note that
H0

U∩S(M) is the simultaneous kernel of the restriction maps M(U) → M(V)
as V ranges over all quasi-compact subsets of U such that V ∩ S = ∅. These
restriction maps are continuous maps between Fréchet spaces by [1, Lemma 6.4.5].
It follows that H0

U∩S(M) is a closed subspace ofM(U), and therefore itself carries
a canonical Fréchet topoogy. We leave to the reader the task of verifying that the
GS-equivariant structure maps H0

S(M)(U)→ H0
S(M)(gU) constructed in part (a)

are continuous for every g ∈ GS . Therefore the GS-equivariant D-module H0
S(M)

is locally Fréchet, by [1, Definition 3.6.1(a)]. �

Definition 2.1.7. Let S be a subset of X. Then CSX/G denotes the full subcategory

of CX/G consisting of those M ∈ CX/G such that M|V = 0 for every admissible

open subset V of X\S. We call objects M ∈ CSX/G coadmissible G-equivariant

D-modules on X supported on S.

Definition 2.1.8. Let G be a group acting on a set X and let Y be a subset of
X. We say that the G-orbit of Y is regular in X if distinct G-translates of Y are
disjoint: gY ∩ Y 6= ∅ ⇒ gY = Y for all g ∈ G.

Lemma 2.1.9. Suppose that the G-orbit of Y is regular in X and let H be a normal
subgroup of G. Then the G-orbit of HY is also regular in X, and GHY = HGY .

Proof. Let g ∈ G be such that gHY ∩ HY 6= ∅. Then we can find hi ∈ H and
yi ∈ Y such that gh1y1 = h2y2, which implies gh1Y = h2Y . Because H is normal,
we obtain gHY = gHh1Y = Hgh1Y = Hh2Y = HY .

For the second statement, we may assume that Y is nonempty. Let g ∈ GHY .
Then ∅ 6= gY ⊆ ∪h∈HhY so gY ∩ hY 6= ∅ for some h ∈ H. But then h−1g ∈ GY
as the G-orbit of Y is regular and hence g = h(h−1g) ∈ HGY . On the other hand,
HGY ·HY = HGY Y = HY shows that HGY 6 GHY . �
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To motivate the constructions that will follow, let us recall the following basic
Lemma about cohomology with supports.

Lemma 2.1.10. Let X be a topological space, and let {C1, . . . , Cn} be closed
subsets of X which admit pairwise disjoint open neighbourhoods {U1, . . . , Un}.
Then the canonical map

⊕
i ΓCi(X,F) −→ Γ∪Ci(X,F) is an isomorphism for any

abelian sheaf F on X.

Proof. Consider the following commutative diagram with exact rows

0 // Γ∪Ci(∪Ui,F) //

��

Γ(∪Ui,F) //

��

Γ(∪(Ui\Ci),F)

��
0 // ⊕ΓCi(Ui,F) // ⊕Γ(Ui,F) // ⊕Γ(Ui\Ci,F).

The solid vertical arrows in this diagram are isomorphisms because the Ui are
pairwise disjoint and because F is a sheaf. Therefore the induced dotted vertical
arrow on the left is an isomorphism by the Five Lemma. This map fits into the
following commutative square:

Γ∪Ci(X,F) // Γ∪Ci(∪Ui,F)

��
⊕ΓCi(X,F) //

OO

⊕ΓCi(Ui,F)

whose horizontal maps are isomorphisms by the excision formula, [14, Proposition
1.3]. It follows that the vertical restriction map on the left that we are interested
in is also an isomorphism. �

We now return to rigid analytic geometry. Recall from [28, p.100] that associated
to every morphism β : X → Y of rigid analytic spaces there is a continuous map
β∗ : P(X) → P(Y) given by β∗(p) = {admissible open V ⊂ Y : β−1(V) ∈ p}.
This map respects the maximal filters: β∗(p) ∈M (Y) for every p ∈M (X).

Lemma 2.1.11. Let X be a rigid analytic space and let β : Y ↪→ X be the
inclusion of a Zariski closed subspace. Define

Y := {a ∈M (X) : X\Y /∈ a} ⊂M (X) and

Ỹ := {p ∈P(X) : X\Y /∈ p} ⊂P(X).

Then

(a) r−1(Y) = Ỹ,
(b) Y is a closed subset of M (X),

(c) Ỹ is the closure Y of Y in P(X),
(d) β∗(M (Y)) = Y,
(e) Y ∩ Z = Y ∩ Z if Z is another Zariski closed subspace of X,
(f) gY = gY for any g ∈ Aut(X).

Proof. (a) It follows from [28, Lemma 5.3] and [23, Proposition 3.3(iii)] that the

Zariski open subset X\Y of X is wide open. Hence r−1(X\Y) = X̃\Y by [28,

Lemma 5.7]. Taking complements in P(X) gives r−1(Y) = Ỹ.
(b) Because r is a quotient map, it is enough to show that r−1(Y) is closed.

However, its complement in P(X) is the open set X̃\Y, by (a).
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(c) By definition, Ỹ = P(X)\X̃\Y. Now X\Y is an admissible open subset of

X by [23, Proposition 3.3(iii)] so P(X)\X̃\Y = Y by Lemma 2.1.4.
The remaining parts of the Lemma are straightforward. �

We will henceforth identify M (Y) with its image Y in M (X). Lemma 2.1.11
immediately implies the following

Corollary 2.1.12. Suppose that a group G acts on a qcqs rigid analytic space
X by automorphisms, and Y is a Zariski closed subspace of X whose G-orbit is
regular in X. Then the G-orbit of Y is regular in M (X).

Lemma 2.1.13. Let G be a topological group acting continuously on a rigid ana-
lytic space X. Then the induced action map a : G×P(X)→P(X) is continuous.

Proof. Let U be an affinoid subdomain of X; then its stabiliser GU in G is open
by [1, Definition 3.1.8]. Now if T is a set of right coset representatives for GU in

G, then a−1(Ũ) =
∐
t∈T

GUt× t−1Ũ is open in G×P(X). �

Corollary 2.1.14. Let G be a topological group acting continuously on the rigid
analytic space X, and let Y be a Zariski closed subset of X. Suppose that M (X)

is Hausdorff and that GY is co-compact. Then GY is closed in M (X) and GỸ is
closed in P(X).

Proof. Because r is surjective, it follows from Lemma 2.1.11(a) that Y = r(Ỹ).
Now GY is the image of the quasi-compact space G/GY ×P(Y) under the map
r ◦ a, which is continuous by Lemma 2.1.13. It is therefore quasi-compact. Since
M (X) is Hausdorff, we see that GY is closed in M (X). Hence GỸ = r−1(GY) is
closed in P(X). �

Remark 2.1.15. The hypothesis that M (X) is Hausdorff is automatic in many
cases of interest, e.g. when X is quasi-compact, or more generally when X satisfies
the condition from [28, Proposition 5.4].

Corollary 2.1.16. With the notation of Corollary 2.1.14, GY = GỸ.

Proof. Note that Y = Ỹ by Lemma 2.1.11(c). Since GỸ is closed by Corollary
2.1.14 and contains GY, it also contains GY. On the other hand, GY is a G-stable
closed subset of P(X) containing Y, so it contains Ỹ = Y as well as GỸ. �

Theorem 2.1.17. Let G be a topological group acting continuously on the qcqs
rigid analytic space X. Let Y1, . . . ,Ym be Zariski closed subsets of X such that
the sets GY1, . . . , GYm are pairwise disjoint and such that GYi

is co-compact for
each i. Then there exist pairwise disjoint open neighbourhoods of their closures
GYi in P(X).

Proof. Each GYi is closed in M (X) by Corollary 2.1.14 and Remark 2.1.15. If
p ∈ GYi ∩ GYj then there is some g ∈ G such that p ∈ Yi ∩ gYj . But this
intersection equals Yi ∩ gYj by Lemma 2.1.11(d,e) which is empty unless i = j by

our assumption. So, the closed subsets GYi of M (X) are pairwise disjoint.
Because M (X) is quasi-compact and Hausdorff, it is a normal topological space

by [9, Chapter I, §9.3, Proposition 2]. Hence we can find pairwise disjoint open
neighbourhoods Vi of the GYi’s. Then Ui := r−1(Vi) is an open neighbourhood of

r−1(GYi) = Gr−1(Yi) = GỸi = GYi by Lemma 2.1.11 and Corollary 2.1.16, and
the U1, . . . , Um are pairwise disjoint. �
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2.2. Construction of the induction functor. Let G be a p-adic Lie group acting
continuously on a smooth rigid analytic space X, in the sense of [1, Definition 3.1.8],
and let B be a closed subgroup of G such that G/B is compact. Our goal here is
to construct an induction functor

indGB : CX/B −→ CX/G
from B-equivariant coadmissible D-modules on X to G-equivariant ones. Our first
elementary topological Lemma explains how we use the compactness of G/B.

Lemma 2.2.1. Let H be an open subgroup of G. Then the set of double cosets
|H\G/B| is finite.

Proof. The quotient map π : G → G/B is open because π−1(π(U)) = U · B =⋃
b∈B Ub is a union of B-translates of U whenever U is an open subset of G. Since

H is open in G, the open covering G =
⋃
g∈GHg of G maps to an open covering⋃

g∈GHπ(g) of G/B which by the compactness of G/B has a finite subcovering.
So the H-action on G/B has finitely many orbits, and the preimages of these orbits
in G are precisely the H,B-double cosets in G. �

Recall from [1, Definition 3.4.6(a)] that Xw(T ) denotes the set of affinoid sub-
domains U of X such that T (U) admits a free A-Lie lattice for some affine formal
model A in O(U). Recall also from [1, Definition 3.4.4] that the subgroup H of G
is U-small if the pair (U, H) is small, which in turns means that U is an affinoid
subdomain of X, H is a compact open subgroup of the stabiliser GU of U in G, and
T (U) has an H-stable free A-Lie lattice L for some H-stable affine formal model
A in O(U). Until the end of §2.2 we will fix the following data:

• B is a closed subgroup of G such that G/B is compact,
• N ∈ CX/B ,
• U ∈ Xw(T ),
• H is a U-small compact open subgroup of G.

Whenever J is a subgroup ofG and s ∈ G, we will write sJ := sJs−1 and Js :=
s−1Js. In [1, Lemma 3.4.3] we constructed a continuous isomorphism of K-Fréchet

algebras Ûs−1
U,H : ÙD(U, H) −→ ÙD(s−1U, Hs) induced by the action of s−1 on X and

the conjugation automorphism g 7→ s−1gs of G. In view of [1, Theorem 3.3.12],

this map restricts to an isomorphism ÙD(U, sB∩H) −→ ÙD(s−1U, B∩Hs) which we
will simply denote by Ûs−1. Now B ∩Hs stabilises s−1U, and in fact it is an s−1U-

small subgroup of B, so we see that N (s−1U) is a module over ÙD(s−1U, B ∩Hs)
whenever N ∈ CX/B by [1, Theorem 4.4.3].

Definition 2.2.2. Let N ∈ CX/B and let H be a compact open subgroup of G.
Suppose that (U, H) is small and let s ∈ G. Let [s] be a formal symbol and set

[s]N (s−1U) := {[s]m : m ∈ N (s−1U)}.

This becomes a module over ÙD(U, sB ∩H) via the rule

a · [s]m := [s]Ûs−1(a)m for all a ∈ ÙD(U, sB ∩H) and m ∈ N (s−1U).

We call this ÙD(U, sB ∩H)-module the s-twist of N (s−1U).

Lemma 2.2.3. [s]N (s−1U) is a coadmissible ÙD(U, sBs−1 ∩H)-module.
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Proof. Because N ∈ CX/B , the ÙD(s−1U, B ∩Hs)-module N (s−1U) is in fact coad-

missible, by [1, Theorem 4.4.3]. The result follows because Ûs−1 is an isomorphism

of ÙD(U, sB ∩H) onto ÙD(s−1U, B ∩Hs). �

Proposition 2.2.4. Every s ∈ G defines a twisting functor CX/B → CX/sB given
by N 7→ [s]s∗N .

Proof. Fix U ∈ Xw(T ). Then ([s]s∗N )(U) = [s]N (s−1U) is a coadmissibleÙD(U, sBs−1 ∩ H)-module by Lemma 2.2.3 for any U-small open subgroup H of
G, and therefore in particular is naturally a D(U)-module, as well as a Fréchet
space. These structures do not depend on the choice of H, and [s]s∗N naturally
becomes a sheaf of D-modules on Xw(T ). If c ∈ sB, then cs ∈ B, so we have
at our disposal the morphism of sheaves (cs)N : N → (cs)∗N because N is a B-
equivariant sheaf. We define c[s]s∗N : [s]s∗N → c∗([s]s∗N ) by c[s]s∗N := [s]s∗(c

s)N .
It is straightforward to verify that in this way [s]s∗N becomes a sB-equivariant D-
module on X. The maps c[s]s∗N (U) : [s]N (s−1U) → [s]N (s−1cU) are continuous
because the maps (cs)N (s−1U) : N (s−1U) → N (s−1cU) are continuous for each
c ∈ sB. Finally, we omit the straightforward verification of the fact that the re-

striction of [s]s∗N to U is naturally isomorphic to Loc
ÙD(U,C)
U ([s]N (s−1U)) as a

C-equivariant locally Fréchet D-module on U. Hence, [s]s∗N is coadmissible. The
functorial nature of this construction is clear. �

Definition 2.2.5. We call the object [s]s∗N ∈ CX/sB the s-twist of N ∈ CX/B .

Corollary 2.2.6. Let s ∈ G. The s-twist functor sends objects supported on Y
to objects supported on sY: [s]s∗ : CYX/B −→ C

sY
X/sB .

Suppose (U, H) is small. It follows from Lemma 2.2.3 that we now have at our

disposal the coadmissible ÙD(U, H)-module

M(U, H, s) := ÙD(U, H) Ù⊗ÙD(U,sB ∩ H)

[s]N (s−1U).

We will show that in a precise sense, M(U, H, s) only depends on the double coset
HsB containing s. Let Z ∈ H\G/B be an H,B-double coset; we regard it as a
category as follows. The objects of this category are the elements of Z; for two
elements s, t ∈ Z, the set of morphisms Z(s, t) in this category is defined by

Z(s, t) := {(h, b) ∈ H ×B : hsb−1 = t}

and the composition of arrows maps Z(t, u) × Z(s, t) → Z(s, u) are obtained by
restricting the group operation in H×B. Note that each double coset Z ∈ H\G/B
becomes a groupoid in this way.

Recall from [1, §3.3] that ÙD(U, H) is a certain Fréchet-completion of the skew-

group algebra D(U)oH. Therefore ÙD(U, H) contains a canonical copy of the group

H, and we have a canonical embedding of groups γ : H → ÙD(U, H)×, identifying
H with this copy. See [1, §3.3] for more details.

Proposition 2.2.7. Let Z ∈ H\G/B. The rule s 7→M(U, H, s) defines a functor
M(U, H,−) : Z → CÙD(U,H)

.
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Proof. Let s, t ∈ Z and (h, b) ∈ Z(s, t), so that s = h−1tb. We have to define aÙD(U, H)-linear map ηH(h,b) : M(U, H, s) −→M(U, H, t). We define this map

(1) ηH(h,b) : ÙD(U, H) Ù⊗ÙD(U,sB ∩ H)

[s]N (s−1U) −→ ÙD(U, H) Ù⊗ÙD(U,tB ∩ H)

[t]N (t−1U)

as follows: given a ∈ ÙD(U, H) and m ∈ N (s−1U), we set

ηH(h,b)(a Ù⊗ [s]m) := aγ(h)−1 Ù⊗ [t] bN (m)

To check that this is well-defined, because

ax Ù⊗ [s]m = a Ù⊗ x · [s]m = a Ù⊗ [s] s̃−1(x) ·m

holds whenever x ∈ ÙD(U, sB ∩H), we must show that

(2) ax γ(h)−1 Ù⊗ [t] bN (m) = aγ(h)−1 Ù⊗ [t] bN (s̃−1(x) ·m)

holds whenever x ∈ ÙD(U, sB ∩H). Now xγ(h)−1 = γ(h)−1Ûh(x) implies that

axγ(h)−1 Ù⊗ [t]bN (m) = aγ(h)−1 Ù⊗ Ûh(x) · [t]bN (m) =

= aγ(h)−1 Ù⊗ [t] t̂−1(Ûh(x))bN (m).

We know that t−1h = bs−1 since (h, b) ∈ Z(s, t), so

t̂−1(Ûh(x))bN (m) = Ûb(s̃−1(x)) · bN (m) = γ(b)s̃−1(x)γ(b)−1 · bN (m) = bN (s̃−1(x) ·m)

and equation (2) follows. Thus ηH(h,b) is a well-defined ÙD(U, H)-linear map, and the

verification that ηH respects composition in the category Z is straightforward. �

Definition 2.2.8.

(a) For each Z ∈ H\G/B, we define M(U, H, Z) to be the inverse limit

M(U, H, Z) = lim←−
s∈Z

M(U, H, s)

of the functor M(U, H,−) : Z → CÙD(U,H)
from Proposition 2.2.7.

(b) We define M(U, H) :=
⊕

Z∈H\G/B
M(U, H, Z).

Corollary 2.2.9. Let Z ∈ H\G/B.

(a) The inverse limit M(U, H, Z) exists, and for any s ∈ Z the canonical
projection map M(U, H, Z)→M(U, H, s) is an isomorphism in CÙD(U,H)

.

(b) M(U, H) is a coadmissible ÙD(U, H)-module.

Proof. (a) The double coset Z is naturally a groupoid, that is, a small category
where every morphism is invertible. So, the arrow ηH(h,b) from (1) is automatically

invertible, with inverse ηH(h−1,b−1). Therefore for any choice of element z ∈ Z,

the coadmissible ÙD(U, H)-module M(U, H, z) is isomorphic to the inverse limit of
the functor s 7→ M(U, H, s), which shows the existence of the inverse limit. The
statement about the projection maps is now clear.

(b) Use part (a) together with Lemma 2.2.1. �

Using the above language, we can now establish an analogue of Mackey’s Theo-

rem concerning the restrictions to ÙD(X, H) of modules induced up to ÙD(X, G).
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Proposition 2.2.10. Suppose that (X, G) is small and U = X. Then there is aÙD(X, H)-module isomorphism⊕
Z∈H\G/B

M(X, H, Z)
∼=−→ ÙD(X, G) Ù⊗ÙD(X,B)

N (X)

which is functorial in N ∈ CX/B .

Proof. We begin by observing that it follows from [1, Definition 3.4.9(a) and Propo-

sition 3.4.10] that the canonical map ÙD(X, H) Ù⊗
K[H]

K[G] −→ ÙD(X, G) is an isomor-

phism. Consider the ÙD(X, H)− ÙD(X, B)-bimodule decomposition

(3) ÙD(X, G) =
⊕

Z∈H\G/B

ÙD(X, H) γ(Z) ÙD(X, B).

Fix Z ∈ H\G/B and s ∈ Z. If u ∈ ÙD(X, B ∩ Hs) then Ûs(u) ∈ ÙD(X, sB ∩
H) ⊂ ÙD(X, H), so a γ(s) uγ(b) = aÛs(u) γ(s) γ(b) ∈ ÙD(X, H)γ(s) γ(b) for any

a ∈ ÙD(X, H) and b ∈ B. Since G is compact and B is closed in G, the open
subgroup B ∩Hs of B has finite index in B. We can now see that if T is a (finite)
set of right coset representatives for B ∩Hs in B, then there is an isomorphism of

left ÙD(X, H)-modulesÙD(X, H)γ(s)ÙD(X, B) =
⊕
b∈T

ÙD(X, H) γ(s)γ(b).

Now let a ∈ ÙD(X, H), b ∈ T and m ∈ N (X). We omit the verification of the fact

that a Ù⊗ [s] m 7→ a γ(s) Ù⊗ m defines a ÙD(X, H)-linear isomorphism

(4) ϕs : ÙD(X, H) Ù⊗ÙD(X,sB∩H)

[s] N (X)
∼=−→ ÙD(X, H)γ(s)ÙD(X, B) Ù⊗ÙD(X,B)

N (X)

whose inverse is given by a γ(s) γ(b) Ù⊗ m 7→ a Ù⊗ [s] γ(b) ·m. Recalling the maps
ηH(h,b) from (1), we have ϕt ◦ηH(h,b) = ϕs whenever s, t ∈ Z and (h, b) ∈ Z(s, t). SinceÙD(X, H)γ(s)ÙD(X, B) evidently only depends on the double coset Z, passing to the

limit over all s ∈ Z we obtain a left ÙD(X, H)-module isomorphism

(5) lim←−
s∈Z

ÙD(X, H) Ù⊗ÙD(X,sB∩H)

[s] N (X)
∼=−→ ÙD(X, H) γ(Z) ÙD(X, B) Ù⊗ÙD(X,B)

N (X).

The result follows from (3) and (5) because N (s−1X) = N (X) for all s ∈ G. �

We now use of Proposition 2.2.10 to establish the following important fact.

Proposition 2.2.11. Let H 6 J be U-small subgroups of G. Then there is a

canonical ÙD(U, H)-linear isomorphism αJH : M(U, H)
∼=−→M(U, J).

Proof. Fix Z ∈ J\G/B and s ∈ Z, and write C := sB∩J . LetNs denote the restric-
tion to U of the s-twist [s]s∗N . Then Ns ∈ CU/C by Proposition 2.2.4. Applying

Proposition 2.2.10 to (U, J) and Ns ∈ CU/C gives a ÙD(U, H)-linear isomorphism

αs :
⊕

Y ∈H\J/C

lim←−
y∈Y

ÙD(U, H) Ù⊗ÙD(U,yC∩H)

[y] Ns(y−1U)
∼=−→ ÙD(U, J) Ù⊗ÙD(U,C)

Ns(U).
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However yC ∩H = y(sB ∩J)∩H = ysB ∩ yJ ∩H = ysB ∩H since y ∈ J ⊇ H, and

the ÙD(U, yC ∩H)-module [y]Ns(y−1U) is simply [ys]N (s−1U), so we may rewrite
αs as follows:

(6) αs :
⊕

Y ∈H\J/sB∩J

lim←−
y∈Y

M(U, H, ys)
∼=−→M(U, J, s).

Now suppose that t is some other member of the double coset Z. Then t = jsb−1

for some j ∈ J, b ∈ B. Because tB ∩ J = jsB ∩ J , the rule Y 7→ Y j−1 defines a
bijection H\J/sB ∩ J → H\J/tB ∩ J . As y runs over elements of Y , w := yj−1

runs over elements of W := Y j−1; since wt = ysb−1, we have the isomorphism
ηH(1,b) : M(U, H, ys) → M(U, H,wt) from the proof of Proposition 2.2.7. The

direct sum of these isomorphisms gives the vertical arrow on the left in the following
commutative diagram:⊕

Y ∈H\J/sB∩J
lim←−
y∈Y

M(U, H, ys)

��

αs // M(U, J, s)

ηJ(j,b)

��⊕
W∈H\J/tB∩J

lim←−
w∈W

M(U, H,wt)
αt
// M(U, J, t).

The map θ : H\G/B � J\G/B given by W 7→ JW is surjective because H 6
J , and the function H\J/sB ∩ J −→ θ−1(Z) = H\Z/B given by Y 7→ Y sB

is a bijection. Because Y s is a subgroupoid of Y sB, there is a ÙD(U, H)-linear

isomorphism lim←−
y∈Y

M(U, H, ys)
∼=−→ M(U, H, Y sB). Passing to the limit over all

s ∈ Z in the above commutative diagram we obtain a ÙD(U, H)-linear isomorphism

αZ :
⊕

V ∈θ−1(Z)

M(U, H, V )
∼=−→M(U, J, Z).

Finally, by definition we have the direct sum decompositions

M(U, H) =
⊕

Z∈J\G/B

⊕
V ∈θ−1(Z)

M(U, H, V ) and M(U, J) =
⊕

Z∈J\G/B

M(U, J, Z).

Taking the direct sum of these αZ over all Z ∈ J\G/B produces the requiredÙD(U, H)-linear isomorphism M(U, H)
∼=−→M(U, J). �

Using the connecting maps constructed in Proposition 2.2.11, we can form the
inverse limit lim

←−
H

M(U, H).

Definition 2.2.12. Let N ∈ CX/B and let U ∈ Xw(T ). We define

indGB(N )(U) := lim
←−
H

⊕
Z∈H\G/B

lim←−
s∈Z

ÙD(U, H) Ù⊗ÙD(U,sB ∩ H)

[s] N (s−1U)

where the first limit runs over all U-small compact open subgroups H of G.

For brevity, we will write M to mean indGB(N ) until the end of §2.3.

Corollary 2.2.13. The canonical maps M(U)→M(U, H) are bijections for any
U-small compact open subgroup H of G.
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Proof. This follows immediately from Proposition 2.2.11. �

Our next goal is to define the restriction maps M(U)→M(V).

Lemma 2.2.14. Let V be an H-stable affinoid subdomain of U and let s ∈ G.

(a) There is a ÙD(U, H)-linear map τUV (H, s) : M(U, H, s) −→M(V, H, s).
(b) If W ⊂ V is another H-stable affinoid subdomain, then

τUW(H, s) = τVW(H, s) ◦ τUV (H, s).
(c) For every h ∈ H and b ∈ B there is a commutative diagram

M(U, H, s)
ηH(h,b) //

τU
V (H,s)

��

M(U, H, hsb−1)

τU
V (H,hsb−1)

��
M(V, H, s)

ηH(h,b)

// M(V, H, hsb−1).

Proof. Let the restriction maps ÙD(U, H) → ÙD(V, H) and N (s−1U) → N (s−1V)
be denoted by a 7→ a|V and m 7→ m|s−1V. Then we set

τUV (H, s)(a Ù⊗ [s]m) := a|V Ù⊗ [s]m|s−1V.

This is well-defined and satisfies all of the properties stated in the Lemma. �

Corollary 2.2.15. With the notation of Lemma 2.2.14, there is a ÙD(U, H)-linear
map τUV (H) : M(U, H) −→M(V, H) such that τUW(H) = τVW(H) ◦ τUV (H).

Proof. Define τUV (H) :=
⊕

Z∈H\G/B
lim←−
s∈Z

τUV (H, s) and apply Lemma 2.2.14. �

Definition 2.2.16. We define τUV :M(U)→M(V) to be the inverse limit of the
τUV (H) as H runs over all U-small and V-small compact open subgroups of G.

From Corollary 2.2.15 we immediately deduce the following statement.

Corollary 2.2.17. M becomes a presheaf of D-modules on Xw(T ) when equipped
with the restriction maps τUV .

Next, we explain how to define the structure of a G-equivariant D-module
presheaf on M. We omit some straightforward proofs.

Lemma 2.2.18. For every g, s ∈ G there is a continuous K-linear isomorphism

φH(g, s) : M(U, H, s) −→ M(gU, gH, gs)

a Ù⊗ [s]m 7→ Ûg(a) Ù⊗ [gs]m

satisfying the following properties:

(a) φH(g, s)(a · b) = Ûg(a) · φH(b, s) for all a ∈ ÙD(U, H) and b ∈M(U, H, s),
(b) φH(g, gs) ◦ φH(h, s) = φH(gh, s) for all g, h ∈ G, and
(c) φH(g, hsb−1) ◦ ηH(h,b) = η

gH
(gh,b) ◦ φH(g, s) for all (h, b) ∈ H ×B.

Note that there is a bijection H\G/B → gH\G/B given by Z 7→ gZ.

Lemma 2.2.19. For every g ∈ G there is a continuous K-linear isomorphism
φ(g) : M(U, H) −→M(gU, gH) given by

φH(g) :=
⊕

Z∈H\G/B

lim←−
s∈Z

φH(g, s) : M(U, H)→M(gU, gH)
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satisfying the following properties:

(a) φH(g)(a · b) = Ûg(a) · φH(b) for all a ∈ ÙD(U, H) and b ∈M(U, H) and
(b) φH(g) ◦ φH(h) = φH(gh) for all g, h ∈ G.

Corollary 2.2.20. M is a G-equivariant presheaf of D-modules on Xw(T ).

Proof. In view of Corollary 2.2.17 and [1, Definition 2.3.4(a)], we have to define a
K-linear morphism gM :M→ g∗M of presheaves on Xw(T ) for each g ∈ G, such
that gM(a ·u) = gD(a) · gM(u) for all a ∈ D and u ∈M and gM ◦hM = (gh)M for
all g, h ∈ G. Now, let H 6 J be U-small compact open subgroups of G; we claim
that if αJH denotes the isomorphism from Proposition 2.2.11, then we have

(7) φJ(g) ◦ αJH = α
gJ
gH ◦ φH(g) for all g ∈ G.

Let s ∈ G and recall the map αs from (6). Consider the restriction of αs to the
direct summand M(U, H, s) of its domain; then using Corollary 2.2.9(a), we see
that the above equality follows from the commutativity of the following diagram:

M(U, H, s)
αs //

φH(g,s)

��

M(U, J, s)

φJ (g,s)

��
M(gU, gH, gs)

αgs
// M(gU, gJ, gs).

To check this commutativity, we use the following diagram of Fréchet K-algebras:ÙD(U, H) //ÛgU,H
��

ÙD(U, J)ÛgU,J
��ÙD(gU, gHg−1) // ÙD(gU, gJg−1)

which is easily seen to be commutative; see also the proof of [1, Proposition 3.5.7(b)].
Having verified the equality (7), we can now define gM := lim

H
φH(g) and use Lemma

2.2.19 to conclude. �

2.3. Properties of the induction functor. We continue with the notation and
hypotheses of §2.2: thus, G is a p-adic Lie group acting continuously on the smooth
rigid analytic space X, B is a co-compact closed subgroup of G and N is an object
in CX/B . We continue to abbreviate M := indGB(N ).

Proposition 2.3.1. Suppose that (U, J) is small. Then there is an isomorphism

ϕ : PD(U,J)
U (M(U))

∼=−→M|Uw
of J-equivariant presheaves of D-modules on Uw.

Proof. The ÙD(U, J)-moduleM(U) is coadmissible by Corollary 2.2.9(b) and 2.2.13,

so we may form presheaf P := PD(U,J)
U (M(U)) on Uw from [1, Definition 3.5.3].

Let V ∈ Uw, fix a V-small open subgroup H of J and let s ∈ G. Recall from
Proposition 2.2.4 that [s]s∗N ∈ CX/sB . Because the pair (s−1U, B ∩Hs) is small,

it follows from [1, Theorem B] that there is a ÙD(V, sB ∩H)-module isomorphismÙD(V, sB ∩H) Ù⊗ÙD(U,sB∩H)

[s]N (s−1U)
∼=−→ [s]N (s−1V).
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We apply the functor ÙD(V, H) Ù⊗ÙD(V,sB∩H)

− to this isomorphism. Using the asso-

ciativity isomorphism for Ù⊗ from [4, Corollary 7.4] and chasing the definitions, we

deduce from this a ÙD(V, H)-linear isomorphismÙD(V, H) Ù⊗ÙD(U,H)

M(U, H, s)
∼=−→M(V, H, s).

Take the direct sum over all Z ∈ H\G/B of the inverse limits over all s ∈ Z of these

isomorphisms, and use Definition 2.2.8, to obtain a ÙD(V, H)-linear isomorphism

ϕH : ÙD(V, H) Ù⊗ÙD(U,H)

M(U, H)
∼=−→M(V, H).

Now we define ϕ(V) : P(V) → M(V) be the unique dotted arrow which makes
the following diagram commutative:

P(V)

∼=
��

ϕ(V) //M(V)

∼=

��ÙD(V, H) Ù⊗ÙD(U,H)

M(U) ∼=
// ÙD(V, H) Ù⊗ÙD(U,H)

M(U, H)
∼=
ϕH

// M(V, H).

Here the vertical isomorphism on the left comes from [1, Corollary 3.5.6], and the
other two unlabelled isomorphisms come from Corollary 2.2.13. We will show that
ϕ(V) does not depend on the choice of H. To this end, choose another V-small
open subgroup H ′ of J ; by considering the pairs H ′ ∩ H 6 H and H ′ ∩ H 6 H ′

separately, we may assume that H ′ 6 H. The independence on H boils down to
showing that the following diagram is commutative:ÙD(V, H ′) Ù⊗ÙD(U,H′)

M(U, H ′)
ϕH′

∼=
//

1Ù⊗αH′H (U)

��

M(V, H ′)

αH
′

H (V)

��ÙD(V, H) Ù⊗ÙD(U,H)

M(U, H)
ϕH

∼= // M(V, H),

where αH
′

H (V) and αH
′

H (U) are instances of the isomorphisms from Proposition
2.2.11. Fix a double coset Z ′ ∈ H ′\G/B, let Z := H · Z ′ denote its image in
H\G/B, and let s ∈ Z ′. Then the commutativity of this diagram follows in turn
from the commutativity of following diagram, whose horizontal maps are induced by
restrictions in the sheaf N , and whose vertical maps are induced by the functoriality
of −Ù⊗−:ÙD(V, H ′) Ù⊗ÙD(U,sB∩H′)

[s]N (s−1U) //

��

ÙD(V, H ′) Ù⊗ÙD(U,sB∩H′)
[s]N (s−1V)

��ÙD(V, H) Ù⊗ÙD(U,sB∩H)

[s]N (s−1U) // ÙD(V, H) Ù⊗ÙD(U,sB∩H)

[s]N (s−1V).

The commutativity of this diagram is clear, so ϕ(V) is indeed independent of H.
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It remains to show that ϕ : P →M commutes with the restriction maps in the
presheaves P and M, and that it also commutes with the J-equivariant structures
on these presheaves; these verifications are performed in a similar way to the above
and are left to the reader. �

Corollary 2.3.2. M is a sheaf of D-modules on Xw(T ).

Proof. Apply Proposition 2.3.1 and [1, Theorem 3.5.11]. �

Recall that because X is assumed to be smooth, Xw(T ) is a basis for the strong
G-topology Xrig on X. It follows from Corollary 2.3.2 and [4, Theorem 9.1] that

M extends uniquely to a G-equivariant sheaf indGB(N ) of D-modules on Xrig. In
fact, it is easy to see that it is a G-equivariant locally Fréchet D-module on Xrig in
the sense of [1, Definition 3.6.1].

Definition 2.3.3. We call indGB(N ) the induced G-equivariant D-module.

Theorem 2.3.4. For every N ∈ CX/B , the induced G-equivariant D-module

indGB(N ) is coadmissible: indGB(N ) ∈ CX/G.

Proof. Choose any Xw(T )-covering U of X, fix U ∈ U and choose a U-small sub-
group J of G using [1, Lemma 3.4.7]. Using [4, Theorem 9.1], we see that the

isomorphism ϕ : P
ÙD(U,J)
U (M(U))

∼=−→ M|Uw
of J-equivariant presheaves of D-

modules on Uw from Proposition 2.3.1 extends uniquely to a continuous isomor-

phism Loc
ÙD(U,J)
U (M(U))

∼=−→ indGB(N )|Urig
of J-equivariant D-modules on Urig. It

follows from [1, Lemma 3.6.5] that this isomorphism is continuous, so we see that

indGB(N ) is U-coadmissible in the sense of [1, Definition 3.6.7(a)]. �

We have the following observation about supports.

Lemma 2.3.5. indGB defines a functor CYX/B −→ C
GY
X/G.

Proof. By Theorem 2.3.4, indGB(N ) ∈ CX/G whenever N ∈ CX/B . On the other

hand, it follows from Definition 2.2.12 that indGB(N )(U) is zero for any U ∈ Xw(T )
such that U ∩GY = ∅ whenever N is supported on Y only. �

Lemma 2.3.6. If (X, G) is small, there is a canonical ÙD(X, G)-linear isomorphism

Γ(X, indGB(N ))
∼=−→ ÙD(X, G) Ù⊗ÙD(X,B)

N (X).

Proof. Because X ∈ Xw(T ), the map M(X)→ Γ(X, indGB(N )) is an isomorphism
by Corollary 2.3.2. Now apply Corollary 2.2.13 with U = X and H = G. �

Fix an open subgroup H of G. Using Lemma 2.2.1, we can find a finite set of
representatives {s1 = 1, . . . , sm} for the H,B-double cosets in G. Recall the si-
twist [si]si,∗N of N from Definition 2.2.5; this is an object of CX/siB by Proposition

2.2.4, and we define Ni := Res
siB
H∩siB [si]si,∗N be its restriction to H ∩ siB.

We have the following sheaf-theoretic version of Mackey’s restriction theorem.

Lemma 2.3.7. Suppose U is an affinoid subdomain of X such that (U, H) is small.

Then indGB(N )|U ∼=
⊕m

i=1 ind H
H∩siB(Ni|U) in CU/H .
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Proof. By Theorem 2.3.4 and [1, Proposition 3.6.10], both sheaves do lie in CU/H .

Because (U, H) is small, it follows from Lemma 2.3.6 that Γ(U, ind H
H∩siB(Ni|U)) ∼=ÙD(U, H) Ù⊗ÙD(U,H∩siB)

Ni(U). Applying Corollary 2.3.2 and Definition 2.2.12, we

see that Γ(U, indGB(N )) is isomorphic to ⊕mi=1Γ(U, ind H
H∩siB(Ni)) as a ÙD(U, H)-

module. The result now follows from [1, Theorem 4.4.3]. �

Now we specialise to the case B = GY, and define Mi := ind H
H∩siB(Ni).

Lemma 2.3.8. Suppose that the G-orbit of Y is regular in X and thatN ∈ CYX/GY
.

Then H0
HsiY

(Mi) =Mi and H0
HsjY

(Mi) = 0 if j 6= i.

Proof. By Corollary 2.2.6, we know that Supp(Ñi) ⊆ siỸ. Hence Supp(M̃i) ⊆
HsiỸ for each i by Lemma 2.3.5, so H0

HsiY
(Mi) =Mi.

Now, the sets HsiY are pairwise disjoint: if hsiy = h′sjy
′ for some h, h′ ∈ H

and y, y′ ∈ Y then (hsi)
−1(h′sj) ∈ GY because the G-orbit of Y is regular in X,

so HsiGY = HsjGY and hence i = j by our choice of the si’s. It follows from

Lemma 2.1.11(d) that the sets HsiỸ are pairwise disjoint, so we can find pairwise
disjoint open neighbourhoods Ui of these sets in P(X) by Theorem 2.1.17. Now

if j 6= i then M̃i|Uj = 0 because Supp(M̃i) ⊆ HsiỸ and HsiỸ ∩ Uj = ∅ if j 6= i.

Hence H0
HsjY

(Mi) = 0 whenever j 6= i. �

Proposition 2.3.9. Suppose that the G-orbit of Y is regular in X and that N ∈
CYX/GY

. Suppose that (U, H) is small. Then there is an isomorphism in CX/H

H0
H(U∩Y)(indGGY

(N )|U) ∼= indHHY
(ResGY

HY
N|U)

Proof. By Lemma 2.3.7, indGGY
(N )|U is isomorphic to

⊕m
i=1 ind H

H∩siGY
(Ni|U) in

CU/H . Now Ni ∈ CsiYX/H∩siGY
by Corollary 2.2.6, so Ni|U ∈ CsiY∩UU/H∩siGY

. Hence

M′i := ind H
H∩siGY

(Ni|U) ∈ CH(siY∩U)
U/H by Lemma 2.3.5. Because the H(siY ∩U)

are pairwise disjoint, a similar argument to the proof of Lemma 2.3.8 shows that
H0
H(siY∩U)(M

′
i) =M′i and H0

H(sjY∩U)(M
′
i) = 0 whenever j 6= i. Hence

H0
H(siY∩U)(indGGY

(N )|U) ∼=M′i = ind H
H∩siGY

(Ni|U)

for each i, and the result follows by considering the case i = 1. �

2.4. Structure of indGB(N ) and CGY
X/G on small affinoids. Throughout §2.4, we

assume that (X, G) is small. We continue to assume that B is a closed subgroup of
G and that N ∈ CX/B ; note that this automatically implies that G/B is compact
because G is itself compact.

Because (X, G) is small by assumption, we can find a G-stable affine formal
model A in O(X) and a G-stable free A-Lie lattice L in T (X). Using [1, Corollary
3.3.7], we fix a good chain (H•) for L; recall from [1, Definitions 3.2.11 and 3.3.3]
that this means that H0 > H1 > · · · is a descending chain of open normal subgroups
of G with trivial intersection, such that ρ(Hn) 6 exp(pεπnL) for all n > 0, where
ρ : G→ AutK(O(X)) is the action of G on O(X).

Lemma 2.4.1. Let N be a coadmissible ÙD(X, B)-module. Then the canonical

map N −→
⋂∞
n=0
ÙD(X, HnB) Ù⊗ÙD(X,B)

N is bijective.



INDUCTION EQUIVALENCE FOR EQUIVARIANT D-MODULES 21

Proof. Let Dn := ̂U(πnL)K , write Bn := B ∩Hn and consider the following com-
mutative diagram:

N //

��

lim
←−
k

(Dk o
Bk
B) ⊗ÙD(X,B)

N

��
lim
←−
k

(Dk o
Hk

HkB) ⊗ÙD(X,B)

N

��
lim
←−
k

lim
←−
n6k

(Dk o
Hk

HnB) ⊗ÙD(X,B)

N

��
lim
←−
n

ÙD(X, HnB) Ù⊗ÙD(X,B)

N // lim
←−
n

lim
←−
k>n

(Dk o
Hk

HnB) ⊗ÙD(X,B)

N.

The map we wish to show is an isomorphism is the long vertical arrow on the
left. The top horizontal arrow is an isomorphism because N ∈ CÙD(X,B)

by as-

sumption, and because lim←−Dk oBk B = ÙD(X, B) by [1, Lemma 3.3.4]. The first

vertical arrow on the right is induced by the isomorphism B/Bk ∼= HkB/Hk. The
second vertical arrow on the right is an isomorphism because for any fixed k we
have ∩kn=0HnB = HkB. The third vertical arrow on the right is the isomorphism
obtained by interchanging the order of inverse limits. Finally, for each fixed n,ÙD(X, HnB) is isomorphic to lim

←−
k>n

Dk oHk HnB again by [1, Lemma 3.3.4]. The

definition of Ù⊗ given in [4, §7.3] now implies that the bottom horizontal arrow is
an isomorphism. �

Proposition 2.4.2. There is a continuous D(X) oB-linear isomorphism

α : H0
Y(M)

∼=−→ lim←−H
0
HnY(M)

for every G-equivariant locally Fréchet D-module M on X.

Proof. First, we claim that
⋂∞
n=0HnỸ = Ỹ. Suppose for a contradiction that

p ∈
Ä⋂∞

n=0HnỸ
ä
\Ỹ. Because Ỹ is closed in P(X) we can find U ∈ Xw such that

p ∈ Ũ and Ũ ∩ Ỹ = ∅. Since G acts continuously on X, GU is an open subgroup
of G and therefore must contain one of the Hn’s because

⋂∞
n=1Hn is trivial and G

is compact. Since p ∈ HnỸ, we can find some h ∈ Hn such that h−1p ∈ Ỹ. But
then h−1p ∈ Ũ ∩ Ỹ = ∅, a contradiction. Next, in the commutative diagram

0 // H0
Y(M) //

α

��

M(X) // M̃(P(X)\Ỹ)

��
0 // lim←−H

0
HnY

(M) //M(X) // lim←−M̃(P(X)\HnỸ)
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the rightmost vertical arrow is a bijection because M̃ is a sheaf and because the
complements of the closed sets HnỸ form an open covering of the complement of
Ỹ. Therefore α is bijective by the Five Lemma. Now each HnY is B-stable because
Hn is normal in G. The continuity and D(X) o B-linearity of α now follow from
Lemma 2.1.6. �

Lemma 2.4.3. Suppose that the G-orbit of Y is regular in X and thatN ∈ CYX/GY
.

Let H be an open subgroup of G. Then the natural isomorphism from Lemma 2.3.6

identifies H0
HY(indGGY

(N )) with ÙD(X, HGY) Ù⊗ÙD(X,GY)

N (X).

Proof. By Proposition 2.3.9 applied to U = X, we know that H0
HY(indGGY

(N )) ∼=
ind H

H∩GY
Res GY

H∩GY
N in CX/H . Taking global sections and applying Lemma 2.3.6

gives a ÙD(X, H)-linear isomorphism H0
HY(indGGY

(N )) ∼= ÙD(X, H) Ù⊗ÙD(X,H∩GY)

N (X).

The result now follows from the isomorphism (4). �

We can now state and prove the first important result of §2.4.

Theorem 2.4.4. If the G-orbit of Y is regular in X and N ∈ CYX/GY
, then there

is a natural ÙD(X, GY)-linear isomorphism N (X)
∼=−→ H0

Y(indGGY
(N )).

Proof. Consider the following commutative square:

N (X) //

��

∞⋂
n=0

ÙD(X, HnGY) Ù⊗ÙD(X,GY)

N (X)

H0
Y(indGGY

(N )) //
∞⋂
n=0

H0
HnY

(indGGY
(N )).

OO

Because N ∈ CX/GY
, we know that N (X) is a coadmissible ÙD(X, GY)-module by

[1, Theorem 4.4.3]. Hence the top horizontal arrow is an isomorphism by Lemma
2.4.1. The vertical arrow on the right is an isomorphism by Lemma 2.4.3. Now
indGGY

(N ) ∈ CX/G by Theorem 2.3.4, so the bottom horizontal arrow is an iso-
morphism by Proposition 2.4.2. Therefore the vertical arrow on the left is also an
isomorphism as required. �

Next, we begin our study of the objects of CGY
X/G.

Theorem 2.4.5. Let M ∈ CGY
X/G, suppose that the G-orbit of Y is regular in X

and let H be an open normal subgroup of G. Then the natural K[G]-linear map

ϕ : K[G] ⊗
K[HGY ]

H0
HY(M) −→M(X)

is an isomorphism.

Proof. By [1, Proposition 2.3.5], M(X) is a K[G]-module and H0
HY(M) is a

K[HGY]-submodule because HY is a HGY-stable subset of X. The map ϕ is
given by ϕ(g ⊗m) = gM(X)(m) for all g ∈ G and m ∈ H0

HY(M).
Choose g1, . . . , gm ∈ G such that G =

∐m
i=1 giHGY. Then ϕ(gi ⊗H0

HY(M)) =
gMi (X)

(
H0
HY(M)

)
= H0

giHY(M) and we have to show that the direct sum of these

subspaces of M(X) equals M(X). Since M is supported on GY, we know that
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Supp(M̃) ⊆ GY by Lemma 2.1.2, so the restriction of M̃ to the complement of

GY is zero. Because GY = GỸ by Corollary 2.1.16 it follows from Definition 2.1.3
that H0

GY(M) = H0
GỸ

(M̃) = M̃(P(X)) = M(X). Now GY is the union of the

giHY, and these are pairwise disjoint by Lemma 2.1.9. Hence, the closures giHY
in P(X) of the giHY admit pairwise disjoint open neighbourhoods by Theorem
2.1.17. It follows from Lemma 2.1.10 that the canonical map H0

g1HY(M) ⊕ · · · ⊕
H0
gmHY(M) −→ H0

GY(M) is an isomorphism. �

Corollary 2.4.6. With the notation of Theorem 2.4.5,

(a) H0
HY(M) is a coadmissible ÙD(X, HGY)-module, and

(b) the natural ÙD(X, G)-linear map ÙD(X, G) Ù⊗ÙD(X,HGY)

H0
HY(M) −→ M(X) is

an isomorphism.

Proof. (a) By [1, Theorem 4.4.3], M(X) is a coadmissible ÙD(X, G)-module. Be-
cause HGY is open in G and G is compact, HGY has finite index in G soM(X) is

also a coadmissible ÙD(X, HGY)-module. H0
HY(M) is a D(X) oHGY-submodule

of M(X) by Theorem 2.4.5. Now H0
HY(M) is closed in M(X) by Lemma 2.1.6,

so it is a ÙD(X, HGY)-submodule because D(X)oHGY is dense in ÙD(X, HGY) by
construction.

Because H is normal in G, gH0
HY(M) is a ÙD(X, H)-submodule ofM(X) for each

g ∈ G. By Theorem 2.4.5,M(X) is a finite direct sum of such submodules. We see

that H0
HY(M) is in fact a direct summand of M(X) as a ÙD(X, H)-module, and is

hence coadmissible. It is therefore per force coadmissible as a ÙD(X, HGY)-module.
(b) The proof of [1, Proposition 3.4.10(a)] shows that the natural map

(8) K[G] ⊗
K[HGY ]

ÙD(X, HGY) −→ ÙD(X, G)

is an isomorphism of K[G]− ÙD(X, HGY)-bimodules. Now apply part (a). �

Our next result forms the technical heart of the proof of Theorem A.

Theorem 2.4.7. Suppose that (X, G) is small. Let Y be a Zariski closed subset
of X whose G-orbit is regular in X, and let M∈ CGY

X/G. Then

(a) H0
Y(M) is a coadmissible ÙD(X, GY)-module, and

(b) there is a natural ÙD(X, G)-module isomorphismÙD(X, G) Ù⊗ÙD(X,GY)

H0
Y(M)

∼=−→M(X)

which is functorial in M.

We now start working towards the proof of Theorem 2.4.7. We assume that the
G-orbit of Y is regular in X and fix an object M ∈ CGY

X/G until the end of §2.4.

Recall that above we have chosen a G-stable affine formal model A in O(X), a
G-stable free A-Lie lattice L in T (X) and a good chain (H•) for L.

Notation 2.4.8. Let n > 0. We set

(a) B := GY and Gn := BHn,
(b) M :=M(X) and M(n) := H0

HnY
(M),

(c) A := ÙD(X, G) and A(n) := ÙD(X, Gn).
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(d) Rn := ̂U(πnL)K oHn Gn and R := lim←−Rn.

We now need some preliminary Lemmas.

Lemma 2.4.9. The natural A(n)-linear map θn : A(n) ⊗
A(n+1)

M(n+ 1)
∼=−→M(n)

is an isomorphism for each n > 0.

Proof. Because Hn+1Y ⊂ HnY, we have M(n + 1) ⊂ M(n) ⊂ M . Consider the
following commutative diagram:

A ⊗
A(n)

Ç
A(n) ⊗

A(n+1)
M(n+ 1)

å
1⊗θn //

∼=

��

A ⊗
A(n)

M(n)

��
A ⊗
A(n+1)

M(n+ 1) // M.

The bottom horizontal arrow and the vertical arrow on the right are isomorphisms
by Corollary 2.4.6. Hence 1 ⊗ θn is an isomorphism. Now (8) implies that A
is a free, and hence faithfully flat, right A(n)-module. Therefore θn is also an
isomorphism. �

Lemma 2.4.10. There is an isomorphism ÙD(X, B)
∼=−→ R.

Proof. Because B/B∩Hn
∼= Gn/Hn, there are isomorphisms of K-Banach algebras

̂U(πnL)KoB∩Hn B ∼= Rn, compatible with variation in n. Since (B∩H•) is a good
chain for L in B, it follows from [1, Lemma 3.3.4] that there is an isomorphismÙD(X, B)

∼=−→ lim←−
̂U(πnL)K oB∩Hn B. Hence ÙD(X, B) ∼= lim←−Rn as claimed. �

Definition 2.4.11. Nn := Rn ⊗
A(n)

M(n) for each n > 0, and N := lim←−Nn.

Lemma 2.4.12. N is a coadmissible R-module.

Proof. Note that Nn is a finitely generated Rn-module because M(n) = H0
HnY

(M)
is a coadmissible A(n)-module by Corollary 2.4.6. The inclusion M(n+ 1) ⊂M(n)
together with functoriality induces a connecting Rn+1-linear map Nn+1 → Nn.
This gives an Rn-linear map ψn : Rn ⊗Rn+1

Nn+1 → Nn which features in the
following commutative diagram:

Rn ⊗
Rn+1

Nn+1

ψn

��

Rn ⊗
Rn+1

Ç
Rn+1 ⊗

A(n+1)
M(n+ 1)

å
∼=

��
Nn Rn ⊗

A(n+1)
M(n+ 1)

∼=
��

Rn ⊗
A(n)

M(n) Rn ⊗
A(n)

Ç
A(n) ⊗

A(n+1)
M(n+ 1)

å
1⊗θn

oo
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Here θn : A(n) ⊗
A(n+1)

M(n + 1)
∼=−→ M(n) is the A(n)-linear isomorphism from

Lemma 2.4.9. Hence ψn is an isomorphism and N is a coadmissible R-module. �

Lemma 2.4.13. The natural map β : lim←−M(n)→ lim←−Nn is a continuous ÙD(X, B)-

linear isomorphism.

Proof. For each m > n > 0 we define A(n)m := ̂U(πmL)K oHm Gn so that
lim
←−
m>n

A(n)m = A(n) for each n > 0. Because M(n) is a coadmissible A(n)-module by

Corollary 2.4.6, we have an isomorphism σn : M(n) ∼= lim
←−
m>n

A(n)m ⊗
A(n)

M(n) ofA(n)-

modules. The canonical maps R-linear maps M(n)→ Nn = Rn ⊗
A(n)

M(n) that send

v ∈ Nn to 1⊗ v ∈ Rn ⊗
A(n)

M(n) induce an R-linear map β : lim←−M(n) → lim←−Nn,

appearing in the following commutative diagram:

lim
←−
n

M(n)

∼=lim←−σn

��

β // lim
←−
n

Nn lim
←−
m

Rm ⊗
A(m)

Mm

��
lim
←−
n

lim
←−
m>n

A(n)m ⊗
A(n)

M(n) // lim
←−
m

lim
←−
n6m

A(n)m ⊗
A(n)

M(n).

The bottom horizontal arrow is the isomorphism coming from swapping the order
of limits, and the vertical arrow on the right is an isomorphism because for m
fixed, the partially ordered set {0 6 n 6 m} has n = m as its largest member
and A(m)m = Rm. We conclude that β is an R-linear bijection. It is continuous
because each of the maps M(n)→ Nn is continuous. �

Proof of Theorem 2.4.7. Note that N = lim←−Nn is a coadmissible R-module by

Lemma 2.4.12, so N is a coadmissible ÙD(X, B)-module by Lemma 2.4.10. Consider
the following commutative triangle:

H0
Y(M)

α //

γ

##

lim←−M(n)

β

{{
lim←−Nn.

The maps α and β are continuous D(X) oB-linear bijections by Proposition 2.4.2
and Lemma 2.4.13, respectively. Thus, γ is a continuous bijection between two
Fréchet spaces, so γ−1 is also a continuous bijection by the Open Mapping Theorem
[24, Proposition 8.6]. It now follows from [1, Lemma 4.4.4] that H0

Y(M) is a

coadmissible ÙD(X, B)-module and that γ is a ÙD(X, B)-linear isomorphism.
The definitions given in [4, §7.3] imply that there is an isomorphism

A Ù⊗
R
N ∼= lim←−A ⊗Rn

Nn ∼= lim←−A ⊗
A(n)

M(n).
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But A ⊗A(n) M(n) is isomorphic to M = M(X) by Theorem 2.4.5 for all n > 0.

Thus, the natural A-linear map AÙ⊗
R
N −→M is an isomorphism. �

2.5. Proof of the induction equivalence. We can now start working on the
proof of Theorem A. We will assume throughout §2.5 that:

• X is a smooth rigid analytic space,
• G is a p-adic Lie group acting continuously on X,
• Y is a Zariski closed subset of X whose stabiliser GY is co-compact in G.

Our first aim will be to show that H0
Y(M) ∈ CX/GY

whenever M∈ CGY
X/G and the

G-orbit of Y is regular in X. Recall from Lemma 2.2.1 that the set of double cosets
J\G/GY is finite whenever J is an open subgroup of G.

The next Lemma involves the following notation:

J(sY ∩U) := J · (sY ∩U) = {ju : j ∈ J, u ∈ sY ∩U}.

Lemma 2.5.1. Let M ∈ CGY
X/G and suppose that the G-orbit of Y is regular in

X. Let (U, J) be small and let s1, . . . , sn be representatives for the J,GY-double
cosets in G. Then

(a) GY ∩U = J(s1Y ∩U) ∪ · · · ∪ J(snY ∩U),
(b) there is an isomorphism of locally Fréchet J-equivariant D-modules on U

M|U ∼=
n⊕
i=1

H0
J(siY∩U)(M|U),

(c) H0
J(sY∩U)(M|U) ∈ CJ(sY∩U)

U/J for all s ∈ G.

Proof. (a) This is clear. (b) Since M is supported on GY, its restriction to U
is supported on GY ∩ U. Because the G-orbit of Y is regular in X, the J-orbit
of sY ∩ U is regular in U for any s ∈ G, and J(siY ∩ U) ∩ J(sjY ∩ U) = ∅ if
i 6= j. Applying Theorem 2.1.17 and Lemma 2.1.10 to the Zariski closed subsets
s1Y∩U, · · · , snY∩U of U and the compact group J , we obtain a D(U)oJ-linear
isomorphism

(9) M(U)
∼=−→ H0

GY∩U(M|U)
∼=−→

n⊕
i=1

H0
J(siY∩U)(M|U).

In a similar manner, using Lemma 2.1.6 we obtain a direct sum decomposition

(10) M|U
∼=−→ H0

GY∩U(M|U)
∼=−→

n⊕
i=1

H0
J(siY∩U)(M|U)

of J-equivariant locally Fréchet D-modules on U.
(c) Lemma 2.1.6 implies that the direct summands of the D(U) o J-module

M(U) appearing in equation (9) are closed. SinceM(U) is a coadmissible ÙD(U, J)-

module, they must be coadmissible ÙD(U, J)-submodules of M(U). Because the
functor Γ(U,−) sends (10) to (9), [1, Theorem 3.6.11] implies that the correspond-
ing finitely many direct summandsM|U appearing in equation (10) all lie in CU/J .

Finally, J(sY ∩U) = J(siY ∩U) whenever s ∈ JsiGY, so H0
J(sY∩U)(M|U) =

H0
J(siY∩U)(M|U) ∈ CU/J . By construction, H0

J(sY∩U)(M|U) is supported on

J(sY ∩U) only. �
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Lemma 2.5.2. Suppose that (X, G) is small. Let M ∈ CGY
X/G and suppose that

the G-orbit of Y is regular in X. Then whenever (U, J) is small, there is a naturalÙD(U, JY)-linear isomorphism

ϕ(U, J) : ÙD(U, JY) Ù⊗ÙD(X,JY)

H0
Y(M)

∼=−→ H0
Y∩U(M|U).

Proof. Because J is open in G, it follows from Theorem 2.4.7(a) that H0
Y(M) is

a coadmissible ÙD(X, JY)-module and H0
Y∩U(M|U) is a coadmissible ÙD(U, JY)-

module. Using the universal property of Ù⊗ given in [4, Lemma 7.3], we see that the

restriction map H0
Y(M)→ H0

Y∩U(M|U) induces a ÙD(U, JY)-linear map

ϕ(U, J) : ÙD(U, JY) Ù⊗ÙD(X,JY)

H0
Y(M) −→ H0

Y∩U(M|U).

We must show ϕ(U, J) is an isomorphism. Now H0
J(Y∩U)(M|U) ∈ CJ(Y∩U)

U/J by

Lemma 2.5.1(c), so by Theorem 2.4.7(b) there is a ÙD(U, J)-linear isomorphism

(11) ÙD(U, J) Ù⊗ÙD(U,JY)

H0
Y∩U(M|U)

∼=−→ H0
J(Y∩U)(M|U).

Next, H0
Y(M) is a coadmissible ÙD(X, GY)-module by Theorem 2.4.7(a), so we may

form the localisation N := Loc
ÙD(X,GY)
X (H0

Y(M)) ∈ CX/GY
— see [1, §3.5] for the

definition. Then we have the following commutative diagram:ÙD(U, J) Ù⊗ÙD(X,J)

ÇÙD(X, G) Ù⊗ÙD(X,GY)

H0
Y(M)

å
∼= //

∼=

��

M(U)

∼=

��
n⊕
i=1

ÙD(U, J) Ù⊗ÙD(U,J∩siGY)

[si]N (s−1
i U) //

n⊕
i=1

H0
J(siY∩U)(M|U).

Here the isomorphism on the left comes from the Mackey decomposition, Propo-
sition 2.2.10, whereas the arrow on the right is the decomposition appearing in
equation (9). The top horizontal arrow is obtained by combining the isomorphismsÙD(X, G) Ù⊗ÙD(X,GY)

H0
Y(M)

∼=−→M(X) and ÙD(U, J) Ù⊗ÙD(X,J)

M(X)
∼=−→M(U)

coming from Theorem 2.4.7(b) and [1, Theorem 4.4.3], respectively, and it induces
the bottom horizontal arrow in the diagram. Because this last arrow respects the

direct sum decomposition, we obtain ÙD(U, J)-linear isomorphisms

(12) ÙD(U, J) Ù⊗ÙD(U,J∩siGY)

[si]N (s−1
i U)

∼=−→ H0
J(siY∩U)(M|U)
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for all i = 1, . . . , n. Now, consider the following commutative triangle:ÙD(U, J) Ù⊗ÙD(U,JY)

ÇÙD(U, JY) Ù⊗ÙD(X,JY)

H0
Y(M)

å
∼= //

1 Ù⊗ ϕ(U,J)

��

H0
J(Y∩U)(M|U)

ÙD(U, J) Ù⊗ÙD(U,JY)

H0
Y∩U(M|U).

∼=

44

Here the horizontal isomorphism comes from equation (12) by taking i = 1, and the
diagonal isomorphism comes from equation (11). We can now finally apply Lemma
2.5.3 below to conclude that ϕ(U, J) is an isomorphism. �

We refer the reader to [4, Definition 7.5] for the notion of faithfully c-flatness.

Lemma 2.5.3. Suppose that (X, G) is small, and let H be a closed subgroup of

G. Then ÙD(X, G) is a faithfully c-flat ÙD(X, H)-module on both sides.

Proof. Fix a G-stable affine formal model A in O(X) and a G-stable free A-Lie lat-
tice L in T (X). Choose a good chain (N•) for L in G, so that ρ(Nn) 6 exp(pεπnL)
for all n > 0 where ρ is the action of G on O(X). Then (N•∩H) is a good chain for
L in H, and by [1, Lemma 3.3.4] we have presentations of Fréchet-Stein algebrasÙD(X, H) ∼= lim←−

̂U(πnL)K o
Nn∩H

H and ÙD(X, G) ∼= lim←−
̂U(πnL)K o

Nn
G.

Now ̂U(πnL)K oNn G is a free ̂U(πnL)K oNn NnH-module on both sides, in view
of [1, Lemma 2.2.4(b)]. However this latter algebra is naturally isomorphic to
̂U(πnL)K oNn∩H H, and the result now follows from [4, Proposition 7.5(b,c)]. �

Lemma 2.5.4. Suppose that (X, G) is small. Let Y be a Zariski closed subset of
X whose G-orbit is regular in X and letM∈ CGY

X/G. Then there is an isomorphism

of GY-equivariant locally Fréchet D-modules on X

Loc
ÙD(X,GY)
X (H0

Y(M))
∼=−→ H0

Y(M).

Proof. Note that H0
Y(M) is a coadmissible ÙD(X, GY)-module by Theorem 2.4.7(a).

In view of [1, Definitions 3.5.1, 3.5.3 and 3.5.12], we have to exhibit a D(U)-linear
isomorphism

ϕ(U) : lim
←−
H

H0
Y(M)(U, H) −→ H0

Y(M)(U)

which commutes with the restriction maps and GY-equivariant structure maps on
both sides. Here the inverse limit on the left hand side runs over the set S of
U-small open subgroups H of GY. It follows from [1, Lemma 3.4.5] that the open
subgroups of the form JY where J is a U-small subgroup of G form a cofinal family
in S, so we may take the inverse limit over this smaller family. By [1, Definition
3.5.1], we have

H0
Y(M)(U, JY) = ÙD(U, JY) Ù⊗ÙD(X,JY)

H0
Y(M).

Unwinding the definitions, we can now see that we can take ϕ(U) to be the inverse
limit of the isomorphisms ϕ(U, J) that were constructed in Lemma 2.5.2. �
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We would like to show the local cohomology sheaf H0
Y(M) lies in CX/GY

. To-
wards this, we have the following result.

Proposition 2.5.5. Suppose that the G-orbit of Y is regular in X, and let M ∈
CGY
X/G. Then whenever (U, J) is small, we have

H0
Y(M)|U ∈ CU/JY∩U .

Proof. Define M′ := H0
J(Y∩U)(M|U), an object of CJ(Y∩U)

U/J by Lemma 2.5.1(c).

Since (U, J) is small and since J-orbit of U ∩Y is regular in U, applying Lemma

2.5.4 to M′ ∈ CJ(Y∩U)
U/J gives an isomorphism of JY∩U-equivariant locally Fréchet

D-modules on U

Loc
ÙD(U,JY∩U)
X (H0

Y∩U(M′))
∼=−→ H0

Y∩U(M′).
However, because Y ∩U ⊂ J(Y ∩U), using the definition of M′ we have

H0
Y∩U(M′) = H0

Y∩U(M|U) = H0
Y(M)|U.

The result follows by combining the last two displayed equations. �

At this point, in order to proceed we must introduce the following condition.

Definition 2.5.6. We say that (X,Y, G) satisfies the Local Stabiliser Condition
(LSC) if for all U ∈ Xw(T ) such that Y∩U 6= ∅, there is a U-small compact open
subgroup J of G such that

JY∩U = JY.

Note that in practice it could easily happen that Y ∩ U is the empty set so
JY∩U = J regardless of what J is, and yet JY will in general be a proper subgroup
of J . For an explicit example, take X := P1,an, G := SL2(L) for some finite
extension L of Qp, Y := {∞} and U := SpK〈x〉 the closed unit disc in P1,an.

Theorem 2.5.7. Suppose that (X,Y, G) satisfies the LSC, and that the G-orbit
of Y is regular in X. Then H0

Y defines a functor H0
Y : CGY

X/G → C
Y
X/GY

.

Proof. LetM∈ CGY
X/G. By Lemma 2.1.6, we know thatH0

Y(M) is a GY-equivariant

D-module on X supported only on Y, and the functorial nature of H0
Y is clear. So,

we only have to show that H0
Y(M) ∈ CX/GY

.
Let U ∈ Xw(T ). If Y ∩U = ∅, then there is nothing to do because in this case

H0
Y(M)|U = 0. Assume therefore that Y ∩U 6= ∅. Because (X,Y, G) satifies the

LSC, there exists a U-small subgroup J of G such that JY∩U = JY. Now use [1,
Definition 3.6.7] together with Proposition 2.5.5 to deduce H0

Y(M) ∈ CX/GY
. �

We can now prove the following globalisation of Theorem 2.4.4.

Proposition 2.5.8. Suppose that (X,Y, G) satisfies the LSC, and that the G-orbit
of Y is regular in X. Then there is a natural isomorphism

η : 1CYX/GY

∼=−→ H0
Y ◦ indGGY

.

Proof. Let N ∈ CYX/GY
and let M := indGGY

(N ). Then M is an object in

CGY
X/G by Lemma 2.3.5 and H0

Y(M) is an object in CYX/GY
by Theorem 2.5.7.

Fix U ∈ Xw(T ) and choose a U-small compact open subgroup H of G. Now,

H0
Y(M)(U) = H0

U∩Y(M|U) = H0
U∩Y

Ä
H0
H(U∩Y)(M|U)

ä
. By Proposition 2.3.9,
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we have an isomorphism H0
H(U∩Y)(M|U) ∼= indHHY

Ä
ResGY

HY
N|U
ä

in CU/H . Because

the G-orbit of Y is regular in X, the H-orbit of U ∩Y is regular in U. Applying

Theorem 2.4.4 to ResGY

HY
N|U ∈ CU∩YU/HY

gives a natural ÙD(U, HY)-linear isomor-

phism N (U)
∼=−→ H0

U∩Y(indHHY
(ResGY

HY
N|U)). Combining all these facts gives us a

continuous D(U)-linear isomorphism

ηN (U) : N (U)
∼=−→ H0

Y(M)(U).

It is straightforward to check that this isomorphism does not depend on the choice of
H. We leave to the reader the tasks of verifying that ηN commutes with the restric-
tion maps and the GY-equivariant structure of the sheaves N and H0

Y(indGGY
(N )),

and that ηN is functorial in N . �

Our next goal will be to exhibit a functorial isomorphism

ε : indGGY
◦ H0

Y

∼=−→ 1CGY
X/G

.

We are again unable to do this without the LSC. First we will show that the LSC
implies the following stronger equivariant version.

Proposition 2.5.9. Suppose that (X,Y, G) satisfies the LSC. Then for all U ∈
Xw(T ) there is a U-small compact open subgroup J of G such that whenever
sY ∩U 6= ∅ for some s ∈ G, we have JsY∩U = JsY.

Proof. Let Z := {s ∈ G : sY ∩ U 6= ∅}. Note that Z and G\Z are both stable
under left-multiplication by GU and right-multiplication by GY. Since GU is an
open subgroup of G by [1, Definition 3.1.8], it follows that Z is a clopen subset of
G. Since Z · GY = Z, the image Z/GY of Z in G/GY is also clopen, and hence
compact since we’re assuming that GY is co-compact in G.

For each s ∈ Z, the intersection Y∩s−1U is non-empty. We can therefore apply
the LSC to s−1U ∈ Xw(T ) to find an s−1U-small compact open subgroup H(s)
of G such that H(s)Y∩s−1U = H(s)Y. Then J(s) := sH(s)s−1 is U-small, and
J(s)sY∩U = J(s)sY. Note that J(s)s ⊂ Z for each s ∈ Z because J(s) 6 GU

and GUZ = Z. The images of the open cosets {J(s)s : s ∈ G} in Z/GY form
an open covering, which has a finite subcovering since Z/GY is compact. Choose
s1, · · · , sn ∈ G such that G =

⋃n
i=1 J(si)siGY and let J :=

⋂n
i=1 J(si). Then J is

still a U-small compact open subgroup of G.
Suppose now that s ∈ G is such that sY ∩ U 6= ∅; it will be enough to show

that JsY∩U 6 GsY. Then s ∈ Z, so s ∈ J(si)siGY for some i = 1, . . . , n. Write
s = gsih for some g ∈ J(si) and h ∈ GY; since sY = gsiY we may assume
that h = 1. Suppose x ∈ JsY∩U. Now g ∈ J(si) 6 GU implies that sY ∩ U =
gsiY ∩U = g(siY ∩U), and hence g−1xg preserves siY ∩U. But x ∈ J and g
both lie in J(si), so g−1xg ∈ J(si)siY∩U = J(si)siY by construction. Hence g−1xg
preserves siY and therefore x preserves gsiY = sY as required. �

Theorem 2.5.10. Suppose that (X,Y, G) satisfies the LSC, and that the G-orbit
of Y is regular in X. Then there is a natural isomorphism

ε : indGGY
◦ H0

Y

∼=−→ 1CGY
X/G

.

Proof. LetM∈ CGY
X/G and let N := H0

Y(M), an object in CYX/GY
by Theorem 2.5.7.

Fix U ∈ Xw(T ) and choose a U-small compact open subgroup J of G satisfying
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the conclusion of Proposition 2.5.9. Then indGGY
(N )(U) is a coadmissible ÙD(U, J)-

module by [1, Proposition 3.6.10, Theorem 4.4.3] and Theorem 2.3.4. We will first
construct a continuous D(U)-linear isomorphism

εM(U) : indGGY
(N )(U)

∼=−→M(U).

Let s ∈ G. Then H0
J(sY∩U)(M|U) ∈ CJ(sY∩U)

U/J by Lemma 2.5.1(c), so Theorem

2.4.7(b) gives us a ÙD(U, J)-linear isomorphismÙD(U, J) Ù⊗ÙD(U,JsY∩U)

H0
sY∩U(M|U)

∼=−→ H0
J(sY∩U)(M|U).

Because of our choice of J , Proposition 2.5.9 tells us that if sY ∩U 6= ∅, then

JsY∩U = JsY = sGY ∩ J.

Also, H0
Y(M)(s−1U) = H0

s−1U∩Y(M|s−1U), and there is a natural ÙD(U, sGY ∩J)-

linear isomorphism [s]H0
s−1U∩Y(M|s−1U)

∼=−→ H0
sY∩U(M|U) induced by sM(s−1U) :

M(s−1U)→M(U). Putting all these facts together gives a natural ÙD(U, J)-linear
isomorphism for each2 s ∈ G:

εJ,sM (U) : ÙD(U, J) Ù⊗ÙD(U,sGY∩J)

[s]H0
Y(M)(s−1U)

∼=−→ H0
J(sY∩U)(M|U).

This map is given is by aÙ⊗[s]m 7→ a·sM(m) for a ∈ ÙD(U, J),m ∈ H0
s−1Y∩U(Ms−1U).

Using this description, we can verify that if t = hsb−1 for some h ∈ J and b ∈ GY,

then εJ,sM (U) = εJ,tM(U) ◦ ηJ(h,b) where ηJ(h,b) are the maps appearing in the proof of

Proposition 2.2.7. Thus we can take the limit of these maps to obtain an ÙD(U, J)-
linear isomorphism

εJ,ZM (U) : lim←−
s∈Z

ÙD(U, J) Ù⊗ÙD(U,sGY∩J)

[s]H0
Y(M)(s−1U)

∼=−→ H0
J(ZY∩U)(M|U)

for every J,GY-double coset Z in G. Taking the direct sum over all double cosets

in J\G/GY and using Lemma 2.5.1(b) gives a ÙD(U, J)-linear isomorphism

εJM(U) : M(U, J)
∼=−→M(U)

using the notation from Definition 2.2.8(b). Finally, let J ′ be an open subgroup of J ,

and recall the ÙD(U, J ′)-linear isomorphism αJJ′ : M(U, J ′)→M(U, J) constructed
in Proposition 2.2.11. Once we show that

(13) εJM(U) ◦ αJJ′ = εJ
′

M(U),

it will follow that the maps εJM assemble correctly to give the required continuous
D(U)-linear isomorphism

εM(U) := lim
J
εJM(U) : indGGY

(N )(U)
∼=−→M(U).

2If sY ∩U = ∅ then both terms are zero, and we define εJ,sM to be the zero map.
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To see that (13) holds, after unwinding the definitions we find that it is enough to
check that for each y ∈ J and s ∈ G, the following diagram is commutative:ÙD(U, J ′) Ù⊗ÙD(U,ysGY∩J′)

[ys]N ((ys)−1U)

εJ
′,ys
M (U)

**

αy

��ÙD(U, J) Ù⊗ÙD(U,sGY∩J)

[s]N (s−1U)
εJ,sM (U)

//M(U)

Here the vertical arrow αy comes from the proofs of Propositions 2.2.11 and 2.2.10

and is given by αy(aÙ⊗[ys]m) = aγ(y)Ù⊗[s]m for every a ∈ ÙD(U, J ′) and m ∈
N ((ys)−1U), because y−1U = U since y ∈ J 6 GU. We can compute that

εJ,sM (U)(αy(aÙ⊗[ys]m)) = aγ(y) · sM(m) = a · (ys)M(m) = εJ
′,ys
M (U)(aÙ⊗[ys]m)

which shows that the diagram commutes.
To prove that εM : indGGY

(H0
Y(M))→M is an isomorphism in CX/G, it remains

to show that εM commutes with restriction maps in the sheaves indGGY
(H0

Y(M))
and M, and also that it commutes with the G-equivariant structure on both of
these sheaves. To complete the proof, we must also check that εM is functorial in
M. We leave these three straightforward verifications to the reader. �

Corollary 2.5.11. Let G be a p-adic Lie group acting continuously on the smooth
rigid analytic space X, and let Y be a Zariski closed subset of X. Suppose that

(a) the stabiliser GY of Y is co-compact in G,
(b) the G-orbit of Y is regular in X, and
(c) (X,Y, G) satisfies the LSC.

Then the functors

H0
Y : CGY

X/G → C
Y
X/GY

and indGGY
: CYX/GY

→ CGY
X/G

are mutually inverse equivalences of categories.

Proof. The functor H0
Y sends CGY

X/G into CYX/GY
by Theorem 2.5.7, and the func-

tor indGGY
sends CYX/GY

into CGY
X/G by Lemma 2.3.5. The result now follows from

Proposition 2.5.8 and Theorem 2.5.10. �

It seems to the author that the three conditions in Corollary 2.5.11 are close to
being necessary in order for this equivalence to hold. Here is an example which
shows that the LSC condition from Definition 2.5.6 is not vacuous.

Example 2.5.12. Let X = SpK〈x, y〉, let Y := V (xy) and G = 〈g〉 ∼= Zp be a
pro-p-cyclic group acting on X by the rule

gλ · (a, b) = (a+ p2λ, b) for all λ ∈ Zp.
Then (X,Y, G) does not satisfy the LSC.

Proof. Let U := X(p/x); this is an affinoid subdomain of X. The group G preserves
the locus {(a, b) ∈ X : |a| < |p|} and therefore it also preserves U. We can compute
that Y ∩ U = SpK〈x, y, p/x〉/(xy) is the locus {(a, 0) ∈ U}, and this is again
preserved by G. Therefore JY∩U = J for any open subgroup J of G. However if
gλ ∈ JY for some λ ∈ Zp, then since (0, 1) ∈ Y, we must have gλ(0, 1) = (p2λ, 1) ∈
Y, which is only possible if λ = 0. Thus JY is trivial and never equal to JY∩U. �
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Note that the Zariski closed subset Y is connected in this example, so we need
to impose a stronger condition on Y in order to be able to show that the LSC
condition holds. Recall the notion of irreducible rigid analytic spaces from [10,
Definition 2.2.2], and note that the subset Y in Example 2.5.12 is not irreducible.
In the remainder of §2.5, all rigid analytic varieties are understood to be reduced.

Lemma 2.5.13. Let Z be an irreducible rigid analytic variety.

(a) Every non-empty connected affinoid subdomain of Z is irreducible.
(b) Suppose that Z is affinoid. Then O(Z) is an integral domain.

Proof. (a) Suppose for a contradiction that V is an affinoid subdomain of Z which
is not irreducible. Let A be the Noetherian algebra O(V) and let P1, · · · , Pn be
the distinct minimal primes of A. It follows from [10, Lemma 2.2.3] that n > 2.
Now P1 ∩ · · · ∩ Pn is the zero ideal in A because V is reduced. Let P := P1 and
Q := P2 ∩ · · · ∩ Pn; then one checks easily that AnnA(P ) = Q and AnnA(Q) = P .
Let V1 and V2 be the Zariski closed subsets of X defined by the vanishing of the
ideals P and Q, respectively. Because V is connected, the intersection V1 ∩V2 is
non-empty. Take x ∈ V1 ∩V2 and let m be its maximal ideal in A; we will show
that the local ring Am is not a domain. If the localisation Pm is zero, then we can
find s ∈ A\m such that P · s = 0 and then s ∈ AnnA(P ) = Q. Since Q vanishes on
V2 3 x, Q is contained in m which implies s ∈ m, a contradiction. Similarly, the
ideal Qm of Am is non-zero because AnnA(Q) = P . Now Pm ·Qm = (PQ)m is zero
because PQ ⊆ P ∩Q = P1 ∩ · · · ∩ Pn = 0, so Am has zero-divisors as claimed.

By [7, Proposition 7.3.2/3], there is an injective map Am ↪→ OV,x, so OV,x

is not a domain. Because V is an affinoid subdomain of Z, the restriction map
OZ,x → OV,x is an isomorphism. However, it was observed in the paragraph
following [10, Definition 2.2.2] that [10, Lemma 2.1.1] implies that Spec(OZ,x) is
irreducible if and only if there is a unique irreducible component of Z passing
through x. Since Z is reduced and irreducible by assumption, this implies that
OZ,x is an integral domain, which gives the required contradiction.

(b) This follows from [10, Lemma 2.2.3]. �

Lemma 2.5.14. Suppose that X is affinoid and that Y is irreducible. Let U be
an affinoid subdomain of X such that Y ∩U 6= ∅. Then

GY∩U ∩ GU 6 GY.

Proof. Since Y is Zariski closed in the affinoid variety X, it is itself affinoid. Since
it is also irreducible, its coordinate ring O(Y) is an integral domain by Lemma
2.5.13(b). Since Y ∩U is a non-empty affinoid subdomain of Y, the proof of [2,
Proposition 4.2] now shows that the restriction map O(Y)→ O(Y∩U) is injective.

Let I be the coherent subsheaf of OX consisting of rigid analytic functions van-
ishing on Y; it follows that the kernel of the restriction map O(X)→ O(Y ∩U) is
equal to I(X). Now if g ∈ GY∩U∩GU then the action of g on O(X) must preserve
this kernel. Hence g preserves I(X) and therefore also Y. �

We can now give some sufficient conditions on (X,Y, G) that ensure that the
LSC is satisfied.

Proposition 2.5.15. Suppose that the following conditions hold:

(a) X is separated,
(b) Y is irreducible,
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(c) there is an admissible affinoid covering {Xi} of X such that
(i) Yi := Y ∩Xi is connected for each i, and
(ii)

⋂
Yi 6=∅

GXi is open in G.

Then (X,Y, G) satisfies the LSC.

Proof. Note that the assumptions (b) and (c)(i) together with Lemma 2.5.13(a)
imply that every non-empty Yi is irreducible.

Let U ∈ Xw(T ) be such that Y ∩U 6= ∅. Choose any U-small open subgroup
H of G, and define

J := H ∩
⋂

Yi 6=∅

GXi
.

Assumption (c)(ii) ensures that J is still an open subgroup of G; it is therefore
also U-small by [1, Lemma 3.4.5]. With this choice of J , every member Xi of our
covering for which Yi 6= ∅ is J-stable.

We have to show that gY ⊆ Y for every g ∈ JY∩U. Write Ui := U∩Xi for each
i; this is an affinoid subdomain of Xi because X is assumed to be separated. Since
Y ∩U is non-empty by assumption, there is some index i such that Yi ∩Ui 6= ∅.
Since Xi is J-stable, g also preserves Yi∩Ui = Y∩U∩Xi. Since Yi is irreducible,
g preserves Yi by Lemma 2.5.14 applied to Xi,Yi and Ui.

Because Y is assumed to be irreducible, it is connected. Since Y = ∪iYi, it will
now suffice to show whenever gYj ⊆ Yj and Yj ∩Yk 6= ∅, we also have gYk ⊆ Yk.
Now Yk is also irreducible and Xj ∩Xk is an affinoid subdomain of Xk because X
is separated. We may apply Lemma 2.5.14 to Xk, Yk and Xj ∩Xk to deduce that
g preserves Yk, because Yk ∩ (Xj ∩Xk) = Yj ∩Yk 6= ∅ by assumption. �

Before we can give the proof of Theorem A, we need two results from rigid
analysis that are probably well-known but for which we could not find a reference.

Lemma 2.5.16. Suppose that X is affinoid. Then there is a finite admissible
affinoid covering {Xi} of X such that each Y ∩Xi is connected.

Proof. Since Y is Zariski closed in the affinoid variety X, it is also affinoid, and
therefore admits a decomposition Y = Y1∪· · ·∪Yn into pairwise disjoint connected
components. By induction on n, we will now construct an affinoid covering {Xi}
of X such that Y ∩Xi = Yi for each i.

Fix 0 6= π ∈ K such that |π| < 1. Let e ∈ O(X) be such that its image e in O(Y)
is an idempotent which is 0 on Y1 and 1 on Y\Y1. Then X = X(e/π)∪X(π/e) is
an affinoid covering of X, X(e/π) ∩Y = Y(e/π) = Y1 and X(π/e) ∩Y = Y\Y1.
By induction, we can find an affinoid covering {X2, . . . ,Xn} of X(π/e) such that
Xi ∩Y = Yi for each i > 2. Letting X1 := X(e/π) completes the induction. �

Lemma 2.5.17. Suppose that the Zariski closed subspace Y of X is quasi-compact.
Then there is a quasi-compact admissible open subspace U of X containing Y such
that {U,X\Y} is an admissible open covering of X.

Proof. By considering the restriction of an admissible affinoid covering of X to
the quasi-compact subspace Y, we see that Y is contained in a finite union U of
affinoid subdomains of X. Certainly X\Y is an admissible open subset of X; this
follows from [7, Corollary 9.1.4/7]. We must show that {U,X\Y} is an admissible
covering. Let X′ be an affinoid subdomain of X, let U′ := X′∩U and Y′ := X′∩Y;
it will be enough to show that {U′,X′\Y′} is an admissible covering of X′. Now
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U′ is an admissible open subspace of X′ containing the Zariski closed subspace Y′

of X′; in this situation, [18, Lemma 2.3] implies that the covering {U′,X′\Y′} of
X′ admits a finite affinoid refinement and is therefore admissible. �

Combining these two results we obtain the following sufficient condition.

Corollary 2.5.18. (X,Y, G) satisfies the LSC whenever X separated, and Y is
irreducible and quasi-compact.

Proof. It is enough to verify condition (c) of Proposition 2.5.15.
By Lemma 2.5.17, we can find a quasi-compact admissible open subspace U of

X containing Y such that {U,X\Y} is an admissible covering of X. Choose a
finite admissible affinoid covering {U1, · · · ,Un} of U; by Lemma 2.5.16, we may
replace this covering by a finite affinoid refinement and thereby assume that each
Ui ∩Y is connected. Choose an admissible affinoid covering {Vj} of X\Y so that
{U1, . . . ,Un}∪{Vj} is an admissible affinoid covering of X. Then the intersection
of Y with every member of this covering is connected (and possibly empty) by
construction, showing that this covering satisfies condition (c)(i). Because only
finitely many intersections Ui ∩Y are possibly non-empty and because each GUi

is open in G by [1, Definition 3.1.8], we conclude that this covering also satisfies
condition (c)(ii). �

Proof of Theorem A. Combine Corollary 2.5.11 with Corollary 2.5.18. �

In practice, the quasi-compactness condition on Y is still too strong to be nec-
essary, and we can establish the LSC in certain other cases, as follows.

Lemma 2.5.19. Suppose that (X,Y, G) satisfies the LSC and that X′ is a G′-
stable admissible open subset of X for some open subgroup G′ of G. If Y′ := X′∩Y,
then (X′,Y′, G′) also satisfies the LSC.

Proof. Let U ∈ X′w(T ) be such that U ∩Y′ 6= ∅. Then also U ∈ Xw(T ) because
X′ is an admissible open subset of X, so because (X,Y, G) satisfies the LSC,
we can find a U-small compact open subgroup J of G such that JY∩U = JY.
Since G′ is open in G by assumption, J ′ := J ∩ G′ is open in J . Then J ′ is
U-small by [1, Lemma 3.4.5], and it will be enough to show that J ′Y′∩U 6 J ′Y′ .
Let g ∈ J ′Y′∩U; then g ∈ J ′ 6 G′ stabilises X′ by assumption, and g stabilises
Y′∩U = Y∩X′∩U = Y∩U since U ⊆ X′. So g also stabilises X′∩Y = Y′. �

3. The equivariant Kashiwara equivalence CYX/G ∼= CY/G

3.1. Side-switching operations. Here we extend the material in [3, §3] and show
that there is a canonical equivalence of categories between the categories of coad-
missible G-equivariant left D-modules and of coadmissible G-equivariant right D-
modules on any smooth rigid analytic space X equipped with a continuous G-action.

We begin with some algebraic generalities. Let R → A be a homomorphism of
commutative rings, let L be an (R,A)-Lie algebra, and let G be a group. Suppose
that we are given an action of G on L as defined at [1, Definition 2.1.5]. Then by
[1, Corollary 2.1.9], G acts on U(L) by R-algebra automorphisms and we may form
the skew-group ring U(L) oG.

Lemma 3.1.1. Suppose that L is a finitely generated and projective as an A-
module of constant rank d. Then ΩL := HomA(

∧d
A L,A) a right U(L)oG-module.
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Proof. Recall that for any n > 0, the Lie derivative gives a left action x 7→ Liex of
the R-Lie algebra L on the R-module HomA(

∧n
A L,A) of alternating n-forms on L

with values in A. This action is given explicitly as follows:
(14)

Liex(φ)(v1 ∧ · · · ∧ vn) = x · φ (v1 ∧ · · · ∧ vn)− φ

(
n∑
i=1

v1 ∧ · · · ∧ [x, vi] ∧ · · · ∧ vn

)
whenever φ ∈ HomA(∧nAL,A) and x, v1, . . . , vn ∈ L. Now if in addition L is finitely
generated and projective as an A-module of constant rank d, then

ω · a := aω and ω · x := −Liex(ω) for all a ∈ A, x ∈ L, ω ∈ ΩL

defines a right U(L)-module structure on ΩL. See [16, Proposition 2.8] for more
details. On the other hand, there is a right R[G]-module structure on ΩL given by

(ω · g)(v1 ∧ · · · ∧ vd) := g−1 · ω(g · v1 ∧ · · · ∧ g · vd)
where ω ∈ ΩL, g ∈ G and v1, . . . , vd ∈ L. A straightforward calculation shows that

((ω · g) · x) · g−1 = ω · (g · x) and ((ω · g) · a) · g−1 = ω · (g · a)

hold whenever ω ∈ ΩL, g ∈ G, x ∈ L and a ∈ A. These formulas mean that the
right actions of U(L) and R[G] on ΩL combine into a right U(L) oG-action. �

We will assume from now on that L is a finitely generated projective A-module
of constant rank d, and write S := U(L) o G for brevity. We can now use ΩL to
convert left S-modules into right S-modules, and vice versa, as follows.

Lemma 3.1.2. Let M be a left S-module, and let N be a right S-module.

(a) ΩL ⊗AM is a right S-module, with the right actions of L and G given by

(15) (ω ⊗m) · x = ωx⊗m− ω ⊗ xm and (ω ⊗m) · g = ωg ⊗ g−1m

for all ω ∈ ΩL,m ∈M,x ∈ L and g ∈ G.
(b) HomA(ΩL, N) is a left S-module, with the left actions of L and G given by

(16) (x · φ)(ω) = φ(ωx)− φ(ω)x and (g · φ)(ω) = φ(ωg)g−1

for all φ ∈ HomA(ΩL, N), ω ∈ ΩL, x ∈ L and g ∈ G.
(c) The canonical A-linear evaluation and co-evaluation maps, namely

ΩL ⊗A HomA(ΩL, N)→ N and M → HomA(ΩL,ΩL ⊗AM), are S-linear.

Proof. Note that the actions of U(L) agree with the standard ones from [3, §3.1,
(6) and (5)]; note also that ΩL is a projective A-module of constant rank 1, i.e. an
invertible A-module, so the two maps appearing in part (c) are in fact isomorphisms.
We have to show that formulas (15) and (16) define actions of the R-Lie algebra
L and the group G on ΩL ⊗A M and HomA(ΩL, N), and that these actions are
compatible: whenever ω ∈ ΩL,m ∈M,φ ∈ HomA(ΩL, N), x ∈ L and g ∈ G,

(((ω ⊗m) · g) · x) · g−1 = (ω ⊗m) · (g · x) and g · (x · (g−1 · φ)) = (g · x) · φ.
These are straightforward verifications so we omit the details. �

Armed with this result, we immediately obtain the following

Corollary 3.1.3. The functors M 7→ ΩL ⊗A M and N 7→ HomA(ΩL, N) are
mutually inverse exact equivalences of categories between the category of left S-
modules and the category of right S-modules.
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We will next need to know what these side-switching functors do to finitely
presented S-modules; to that end, we study ΩL⊗AS closely. There are two natural
ways to view ΩL⊗A S as a right S-module: one of these comes from the left action
of S on itself and Lemma 3.1.2(a); the other, which we’ll denote by ◦, comes from
the right action of S on itself. Following [3, §3.2], we will write ΩL �A S to denote
the right A-module ΩL ⊗A S equipped with the ◦-action of S on the right.

Lemma 3.1.4. There is an S-linear isomorphism α : ΩL �A S
∼=−→ ΩL ⊗A S given

by α(ω ⊗ s) = (ω ⊗ 1)s for all ω ∈ ΩL, s ∈ S, which satisfies α2 = 1.

Proof. The canonical filtration on U(L) is G-stable. It follows that there is a
natural exhaustive positive filtration F• on S such that F0 = A o G and Fn =
L · Fn−1 + Fn−1 for all n > 1. Let ω ∈ ΩL, s ∈ S, a ∈ A and g ∈ G. Using (15) we
see that α((ω⊗ s)(ag)) = α((ωa⊗ s) · g) = α((ωa)g⊗ g−1s) = ((ωa)g⊗ 1) · g−1s =
(ωa⊗g) ·s = (ω⊗ag)s. Now the proof of [3, Lemma 3.2] works with straightforward
modifications. �

Corollary 3.1.5. The functors appearing in Corollary 3.1.3 preserve the categories
of finitely presented S-modules.

Proof. The cokernel of a morphism between two finitely generated projective mod-
ules is finitely presented. Because F := ΩL⊗A− and G := HomA(ΩL,−) are exact,
it will be enough to verify that F (S) and G(S) are finitely generated and projective.

Since ΩL is a finitely generated projective A-module, ΩL �A S is a finitely gen-
erated projective right S-module. Hence the right S-module F (S) = ΩL ⊗A S is
finitely generated projective by Lemma 3.1.4.

Since HomA(ΩL, A) is a finitely generated projective A-module, it is a direct
summand of a finitely generated free A-module. Tensoring by ΩL and using the
fact that ΩL is an invertible A-module, we can find an A-module Q and an integer
m > 0 such that A⊕Q ∼= ΩmL . Hence S ⊕ (Q�A S) ∼= (ΩL �A S)m and therefore
G(S) is a direct summand of G(ΩL �A S)m. Since F and G are mutually inverse
and F (S) ∼= ΩL �A S by Lemma 3.1.4, we see that G(S) is a direct summand of
Sm. Hence the left S-module G(S) is finitely generated and projective. �

We now return to rigid analytic geometry, and suppose that (X, G) is small. Thus
the group G is compact p-adic analytic and we can find a G-stable affine formal
model A in O(X) as well as a G-stable free A-Lie lattice L in T (X), of rank d say.

Let ΩL := HomA(
∧d L,A). This is a free A-module of rank 1 as well as a right

U(L) o G-module, by Lemma 3.1.1 above. Recall also the open normal subgroup
GL = ρ−1(exp(pεL)) of G from [1, Definition 3.2.11], where ρ : G→ AutK O(X) is

the action of G on O(X), and the crossed product Û(L) oN G from [1, §3.2].

Lemma 3.1.6. Let H be an open normal subgroup of G contained in GL. Then

ΩL is a right Û(L) oH G-module.

Proof. Because ΩL is π-adically complete, it follows from Lemma 3.1.1 that it is
naturally a right module over the π-adic completion of U(L) o G. The canonical

map from Û(L) to this π-adic completion factors through Û(L) o G, hence ΩL is

also a right Û(L) o G-module. It remains to show that this action of Û(L) o G

factors through Û(L) oH G. To that end, let g ∈ H and let x ∈ L be such that
ρ(g) = exp(pεx); we must show that exp(pει(x)) − g kills ΩL on the right, where
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ι : L → Û(L) is the canonical map. Let m > 0, ω ∈ ΩL and v1, . . . , vd ∈ L; then it
follows from (14) that (ω · ι(x)m)(v1 ∧ · · · ∧ vd) is equal to∑Ç

m

i0, i1, i2, . . . , id

å
(−x)i0 · ω

(
ad(x)i1(v1) ∧ · · · ∧ ad(x)id(vd)

)
where the sum is taken over all (d + 1)-tuples (i0, . . . , id) of non-negative integers
such that i0 + · · ·+ id = m. Now ρ(g−1) = exp(−pεx), and

exp(pε ad(x))(v) = exp(pεx) v exp(−pεx) = ρ(g) v ρ(g)−1 = g · v
for any v ∈ L by [11, Exercise 6.12]. It follows from these facts that

(ω · exp(pει(x))(v1 ∧ · · · ∧ vd) =

=
∞∑
m=0

pεm

m!

∑∑
ij=m

(
m

i0,i1,i2,...,id

)
(−x)i0 · ω

(
ad(x)i1(v1) ∧ · · · ∧ ad(x)id(vd)

)
=

=
∑

i∈Nd+1

(−pεx)i0

i0! · ω
(

ad(pεx)i1

i1! (v1) ∧ · · · ∧ ad(pεx)id

id! (vd)
)

=

= g−1 · ω(g · v1 ∧ · · · ∧ g · vd) = (ω · g)(v1 ∧ · · · ∧ vd).
Thus ΩL · (exp(pει(x))− g) = 0, as required. �

Lemma 3.1.7. LetM be a π-adically complete Û(L)oG-module. Then ΩL⊗AM
is a right Û(L) oG-module, and whenever x ∈ L, ω ∈ ΩL and m ∈M, we have

(ω ⊗m) · exp(pει(x)) = ω · exp(pει(x))⊗ exp(−pει(x)) ·m.

Proof. Note that ΩL⊗AM is π-adically complete by [3, Lemma 3.3]. Now the first
statement follows from Lemma 3.1.1 and Lemma 3.1.2(b). Using (15), we have

(ω ⊗m) · exp(pει(x)) =
∞∑
n=0

pεn

n! (ω ⊗m) · ι(x)n =

=
∞∑
n=0

pεn

n!

n∑
j=0

(
n
j

)
ω · ι(x)j ⊗ (−ι(x))n−j ·m =

=
∞∑
j=0

∞∑
i=0

ω · (pει(x))j

j! ⊗ (−pει(x))i

i! ·m =

= ω · exp(pει(x))⊗ exp(−pει(x)) ·m. �

Let H be an open subgroup of G contained in GL, and write S := Û(L) oH G.

Corollary 3.1.8. Let M be a π-adically complete S-module.

(a) If M is a left S-module, then ΩL ⊗AM is a right S-module.
(b) If N is a right S-module, then HomA(ΩL,N ) is a left S-module.

Proof. Let g ∈ H and let x ∈ L be such that ρ(g) = exp(pεx). By Lemma 3.1.6, we
have ω ·exp(pει(x)) = ω ·g for all ω ∈ ΩL. On the other hand, exp(pει(x))·m = g ·m
for all m ∈M because M is a left S-module. Using Lemma 3.1.7, we have

(ω⊗m)·exp(pει(x)) = ω ·exp(pει(x))⊗exp(−pει(x))·m = ω ·g⊗g−1 ·m = (ω⊗m)·g.

Hence the Û(L) oG-action on ΩL ⊗AM factors through S, and part (a) follows.
Part (b) is proved in a similar manner. �

Recall the trivialisation β : H → Û(L)
×

of the action of H on Û(L) from [1,
Theorem 3.2.12]. Recall also from [1, §2] that R denotes the ring of integers of
the non-archimedean ground field K. Our next technical result will help us to
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identify the image of S = Û(L) oH G under the side-switching functor ΩL ⊗A −
from Corollary 3.1.8(b).

Proposition 3.1.9. Let R be any proper homomorphic image of R, write A :=
R⊗RA, let L be the (R, A)-Lie algebra R⊗RL, and write S := U(L)oHG. Then
there is a right S-linear isomorphism ΩL �A S ∼= ΩL ⊗A S.

Proof. Write T := U(L) o G, and let I be the kernel of the canonical surjection
T � S. It follows from the proof of [1, Lemma 2.2.4] that {β(g)g−1 − 1 : g ∈ H}
generates I as a right T -module, and also that {gβ(g)−1−1 : g ∈ H} generates I as
a left T -module. For each g ∈ H, let rβ(g)g−1 denote the left T -linear endomorphism

of T given by right-multiplication by β(g)g−1, and let `gβ(g)−1 denotes the right

T -linear endomorphism of T given by left-multiplication by gβ(g)−1. This gives us
the following presentations of S as a left, respectively, right, T -module:⊕

g∈H
T

∑
g∈H

rβ(g)g−1−1

−→ T −→ S → 0, and
⊕
g∈H

T

∑
g∈H

`gβ(g)−1−1

−→ T −→ S → 0.

Because β is a trivialisation of the G-action of U(L), gβ(g)−1 − 1 commutes with
U(L) inside T , and hence `gβ(g)−1−1 is also left U(L)-linear. Therefore the second
presentation can be regarded as an exact sequence ofA−T -bimodules. Now consider
the following diagram:

⊕
g∈H

ΩL �A T

∑
g∈H

1�`gβ(g)−1−1

//

α

��

ΩL �A T //

α

��

ΩL �A S //

��

0

⊕
g∈H

ΩL ⊗A T ∑
g∈H

1⊗rβ(g)g−1−1

// ΩL ⊗A T // ΩL ⊗A S // 0

Here the top row is obtained by applying the twisting functor ΩA �A − to the
presentation of S as a right T -module, and the bottom row is obtained by applying
the side-switching functor ΩL ⊗A − to the presentation of S as a left T -module.
We will show that the diagram commutes.

Let g ∈ H and write β(g) = exp(pει(x)) where pεx = log ρ(g) ∈ pεL. Let ω ∈ ΩL
and u ∈ T , and define z := β(g)g−1. Then using Lemma 3.1.7, equation (15) and
Lemma 3.1.6 we see that

(ω ⊗ u) · z = (ω · β(g)⊗ β(g)−1u) · g−1 = ω · β(g)g−1 ⊗ gβ(g)−1u = ω ⊗ z−1u.

Using this equation together with Lemma 3.1.4, we calculate

((1⊗ rz−1) ◦ α) (ω ⊗ u) = α(ω ⊗ u) ◦ (z − 1) = α((ω ⊗ u) · (z − 1)) =
= α(ω ⊗ (z−1 − 1)u) = (α ◦ (1⊗ `z−1−1)) (ω ⊗ u).

Hence the diagram commutes. Because its rows are exact and because α is an
isomorphism by Lemma 3.1.4, by the Five Lemma the map α descends to a right
T -module isomorphism ΩL �A S ∼= ΩL ⊗A S, appearing as a dotted arrow in the
diagram. Since the action of T on these modules factors through S, it is in fact a
right S-linear isomorphism. �

Corollary 3.1.10. There is a right S-module isomorphism ΩL �A S ∼= ΩL ⊗A S.
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Proof. Fix n > 0, and write Rn := R/πnR, An := A ⊗R Rn, Ln := L ⊗R Rn
and Sn = S ⊗R Rn = U(Ln) oH G. Proposition 3.1.9 gives an isomorphism
αn : ΩLn �An Sn ∼= ΩLn ⊗An Sn of right S-modules. Because the R-module
ΩL⊗A S is π-adically complete by [3, Lemma 3.3] and the αn’s are compatible, the
result follows by passing to the inverse limit. �

Proposition 3.1.11. Suppose that [L,L] ⊆ πL and L·A ⊆ πA. Then the functors
M 7→ ΩL ⊗AM and N 7→ HomA(ΩL,N ) are mutually inverse equivalences of
categories between the categories of finitely presented left S-modules and finitely
presented right S-modules.

Proof. Because ΩL is a finitely generated projective A-module, the given functors
are exact mutually inverse equivalences between the categories of left A-modules
and right A-modules. It follows from [3, Lemma 3.3] that the functors send π-
adically complete left A-modules to π-adically complete right A-modules. Corol-
lary 3.1.3 and Corollary 3.1.8 now imply that the functors restrict to exact mutu-
ally inverse equivalences between π-adically complete left S-modules and π-adically
complete right S-modules.

By construction, S = UoH G is a free U := Û(L)-module of finite rank, so every
finitely generated S-module is also finitely generated as a U-module. Under the
given assumptions on L, it follows from [1, Lemma 4.1.9 and Proposition 4.1.6(c)]
that every finitely generated S-module is π-adically complete. Now, ΩL ⊗A S is
a finitely generated projective right S-module by Corollary 3.1.10. Following the
proof of Corollary 3.1.5, we see that HomA(ΩL,S) is a finitely generated projective
left S-module. The result now follows from the exactness of the two functors. �

Recall that Ω(X) denotes the O(X)-module HomO(X)(
∧d
O(X) T (X),O(X)), and

that A denotes some fixed G-stable affine formal model in O(X). If U is a left
(respectively, right) Noetherian ring, we will write Coh(U) (respectively, r Coh(U))
to denote the abelian category of finitely generated left (respectively, right) U -
modules.

Theorem 3.1.12. Let X be a smooth K-affinoid variety. Suppose that

(a) T (X) admits a free A-Lie lattice L for some affine formal model A ⊂ O(X)
which satisfies [L,L] ⊆ πL and L · A ⊆ πA, and

(b) G is a compact p-adic Lie group which acts on X continuously and preserves
A ⊂ O(X) and L ⊂ T (X).

Let H be an open normal subgrop of G contained in GL, and let U := Û(L)KoHG.
Then there is an equivalence of categories

Coh(U) ∼= r Coh(U)

given by the functors Ω(X) ⊗
O(X)

− and HomO(X)(Ω(X),−).

Proof. Note first that under the given assumptions on L, S := Û(L)K oH G is
left and right Noetherian, by [1, Lemma 4.1.9 and Theorem 4.1.4], so every finitely
generated S-module is automatically finitely presented.

Let M be a finitely generated left S-module. Then there is an S-linear map
ε : Sb → M for some b > 1 whose image M spans M as a K-vector space. Note

that Sb is a free Û(L)-module of finite rank, so ker ε is a finitely generated S-
module by [1, Lemma 4.1.9 and Theorem 4.1.4], because of the given assumptions
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on L. Thus M is a finitely presented left S-module, so ΩL ⊗AM is a finitely
presented right S-module by Proposition 3.1.11. It follows that Ω(X) ⊗O(X) M =
K ⊗R (ΩL ⊗AM) is a finitely generated right S-module. The same argument
shows that HomO(X)(Ω(X), N) is a finitely generated left S-module whenever N
is a finitely generated right S-module. Because Ω(X) is a free O(X)-module of
rank 1, the two functors are mutually inverse adjoint equivalences of categories
between left O(X)-modules and right O(X)-modules, and it follows from Lemma
3.1.2(c) that the unit and counit morphisms for the adjunction are in fact S-linear
on finitely generated S-modules. So the restrictions of these functors to finitely
generated S-modules are mutually inverse equivalences. �

Lemma 3.1.13. Let L2 6 L1 be two G-stable free A-Lie lattices in T (X). Suppose
that H2 6 H1 are open normal subgroups of G such that Hi 6 GLi for i = 1, 2.

Then there is a commutative diagram of right Û(L2)K oH2
G-modules

Ω(X) �
O(X)

(
Û(L2)K oH2

G
)

//

αK ∼=
��

Ω(X) �
O(X)

(
Û(L1)K oH1

G
)

αK∼=
��

Ω(X) ⊗
O(X)

(
Û(L2)K oH2

G
)

// Ω(X) ⊗
O(X)

(
Û(L1)K oH1

G.
)

Proof. The vertical arrows come from Corollary 3.1.10, and the horizontal arrows
come from [1, Proposition 3.2.15] and functoriality. �

Theorem 3.1.14. The pair Ω(X)⊗O(X)− and HomO(X)(Ω(X),−) define mutually

inverse equivalences of categories between coadmissible left ÙD(X, G)-modules and

coadmissible right ÙD(X, G)-modules.

Proof. Let L be a G-stable free A-Lie lattice in T (X) such that [L,L] ⊆ π2L and
L·A ⊆ πA and note that each π-power multiple of L also satisfies these conditions.
Choose a good chain (H•) for L in G, in the sense of [1, Definition 3.3.3]. Write

Sn = ̂U(πnL)K oHn G and S = ÙD(X, G), so that we have a standard presentation
S = lim←−Sn as a Fréchet-Stein algebra, by the proof of [1, Theorem 3.4.8].

Suppose that (M•) is a family of finitely generated left S•-modules and let N• :=
Ω(X) ⊗O(X) M•. By Theorem 3.1.12, (N•) is a family of finitely generated right
S•-modules. We will verify that (N•) is coherent if and only if (M•) is coherent,
that is, that there are isomorphisms Nn+1 ⊗Sn+1

Sn ∼= Nn for each n > 0 if and
only if there are isomorphisms Sn ⊗Sn+1 Mn+1

∼= Mn for each n > 0. If Q is a
finitely generated left Sn+1-module, define a right Sn-linear map

θQ : (Ω(X)⊗O(X) Q)⊗Sn+1
Sn → Ω(X)⊗O(X) (Sn ⊗Sn+1

Q)

by setting θQ ((ω ⊗m)⊗ r) = (ω ⊗ 1 ⊗m)r. Then θ is a natural transformation
between two right exact functors, and it follows from Lemma 3.1.13 that θSn+1

is
an isomorphism. Hence θQ is an isomorphism for all Q by the Five Lemma. Thus
Nn+1 ⊗Sn+1 Sn

∼= Ω(X) ⊗O(X) (Sn ⊗Sn+1 Mn+1). So Nn ∼= Nn+1 ⊗Sn+1 Sn if and
only if Mn

∼= Sn ⊗Sn+1 Mn+1.
It now follows from Theorem 3.1.12 that (M•) 7→ (N•) is an equivalence of

categories between coherent sheaves of left S•-modules and coherent sheaves of
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right S•-modules. Finally, since Ω(X) is a direct summand of a free A-module, for
every coadmissible left S-module M there are canonical isomorphisms

Ω(X) ⊗
O(X)

M ∼= Ω(X) ⊗
O(X)

( lim←−Sn ⊗S M) ∼= lim←−Ω(X) ⊗
O(X)

(Sn ⊗S M)

of left O(X)-modules. Using these isomorphisms we can define a right S-module
structure on Ω(X)⊗O(X) M . Similarly, the canonical isomorphisms

HomO(X)(Ω(X), N) ∼= HomO(X)(Ω(X), N ⊗S Sn) ∼= Sn ⊗S HomO(X)(Ω(X), N)

induce a left S-module structure on HomO(X)(Ω(X), N) for every coadmissible right
S-module N . The result now follows from [27, Corollary 3.3]. �

We now come to the main result of §3.1: it is an equivariant generalisation of
[3, Theorem 3.5]. Let G be a p-adic Lie group acting continuously on the smooth
rigid analytic variety X; we will write rCX/G to denote the category of right G-
equivariant coadmissible D-modules on X.

Theorem 3.1.15. The functors ΩX⊗OX
− and HomOX

(ΩX,−) are mutually inverse
equivalences of categories between CX/G and rCX/G.

Proof. By working locally and using Lemma 3.1.2, we see that if M is a left G-
D-module on X, then ΩX ⊗OX

M is a right G-D-module on X; similarly if M
is a right G-D-module on X then HomOX

(ΩX,M) is a left G-D-module on X.
It is straightforward to verify that these functors convert locally Fréchet left G-
equivariant D-modules into locally Fréchet right G-equivariant D-modules, and vice
versa. Because these functors are naturally quasi-inverse on the level of sheaves of
OX-modules, it remains to check that they preserve coadmissibility. We will show
that ifM∈ CX/G, then ΩX⊗OX

M∈ rCX,G, and leave the corresponding statement
about HomOX

(ΩX,−) to the reader.

Let (X, G) be small and let M be a coadmissible left ÙD(X, G)-module, so that

Ω(X) ⊗O(X) M is a coadmissible right ÙD(X, G)-module by Theorem 3.1.14. In
view of [1, Definition 3.6.7], it remains to verify that there is a continuous right
G-D-linear isomorphism

(17) Loc
ÙD(X,G)
X

Ç
Ω(X) ⊗

O(X)
M

å
∼= ΩX ⊗

OX
Loc

D(X,G)
X (M).

Let Y be an affinoid subdomain of X, and let H be a Y-small open subgroup of

G. We will first exhibit an isomorphism of right ÙD(Y, H)-modules

τ(Y, H) :

Ç
Ω(X) ⊗

O(X)
M

å Ù⊗ÙD(X,H)

ÙD(Y, H)
∼=−→ Ω(Y) ⊗

Ω(Y)

Ç
M Ù⊗ÙD(X,H)

ÙD(Y, H)

å
which is natural in Y and H. To this end, fix an H-stable affine formal model A
in O(X) and an H-stable A-Lie lattice L in T (X). By rescaling L if necessary and
applying [4, Lemma 7.6(b)] together with [1, Lemma 4.3.5], we may assume that
O(Y) admits an L-stable and H-stable affine formal model B. We may also assume
that [L,L] ⊆ πL and L · A ⊆ πA. Choose a good chain (H•) in H for L using [1,

Lemma 3.3.6], and write Un := ̂U(πnL)KoHnH and Vn := ̂U(B ⊗A πnL)KoHnH,

so that ÙD(X, H) = lim←−Un and ÙD(Y, H) = lim←−Vn by [1, Lemma 3.3.4]. For each
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finitely generated left Un-module Q, define a right Vn-linear map

τQ :

Ç
Ω(X) ⊗

O(X)
Q

å
⊗
Un
Vn → Ω(Y) ⊗

O(Y)

Å
Vn ⊗

Un
Q

ã
by setting τQ ((ω ⊗m)⊗ v) = (ω|Y ⊗ (1 ⊗m))v. Then τ is a natural transforma-
tion between two right exact functors, and we see that τUn is an isomorphism using
Corollary 3.1.10 together with the proof of [3, Lemma 3.5]. Hence τQ is an isomor-
phism for all Q by the Five Lemma. Passing to the limit as n → ∞, we obtain

the required ÙD(Y, H)-linear isomorphism τ(Y, H) as the limit of the isomorphisms
τMn where Mn := Un⊗ÙD(X,H)

M for each n > 0. We leave it to the reader to verify

that τ(Y, H) is natural in both Y and H.
Finally, let g ∈ G and write N := Ω(X) ⊗O(X) M . Using the definitions given

above, we can check that the following diagram is commutative:

N Ù⊗ÙD(X,H)

ÙD(Y, H)
τ(Y,H) //

gNY,H

��

Ω(Y) ⊗
Ω(Y)

ÇÙD(Y, H) Ù⊗ÙD(X,H)

M

å
gΩ(Y)⊗gMY,H
��

N Ù⊗ÙD(X,H)

ÙD(gY, gHg−1)
τ(gY,gHg−1)

// Ω(gY) ⊗
Ω(gY)

ÇÙD(gY, gHg−1) Ù⊗ÙD(X,H)

M

å
where the vertical maps come from [1, Proposition 3.5.7(a)]. Now the maps τ(Y, H)
assemble together to form the continuous G-D-linear isomorphism in (17). �

3.2. Microlocal Kashiwara equivalence. In §3.2, we will extend the results
from [3, §4] to our setting, where the ground field K is no longer assumed to be
discretely valued, or equivalently, when its valuation subring R is not Noetherian.
As in [3, §4.2], we begin by fixing an affine formal model A in a K-affinoid algebra
A and a (R,A)-Lie algebra L which is finitely generated and projective as an A-

module. We will work with right Û(L)K-modules throughout §3.2.
Whenever M is an A-module and F is a subset of A, we denote the submodule

of F -victims in M by M [F ] := {m ∈M : mf = 0 ∀f ∈ F}. If, in addition, M is a
Banach A-module, we have at our disposal the A-submodule

Mdp(F ) := {m ∈M : lim
n→∞

m
fn

n!
= 0 ∀f ∈ F}

of divided-power topological F -torsion in M . This is the case whenever M is a

finitely generated Û(L)K-module, as M then is naturally a Banach A-module.
When F = {f1, . . . , fr} is finite, we write L · (f1, . . . , fr) for the A-submodule

{(y · f1, . . . , y · fr) : y ∈ L} of Ar and CL(F ) := {y ∈ L : y · f = 0 for all f ∈ F} for
the centraliser of F in L. The main result of §3.2 is

Theorem 3.2.1. Let F = {f1, . . . , fr} ⊂ A be such that L · (f1, . . . , fr) = Ar,
and let C := CL(F ). Suppose that [L,L] ⊆ πL and L · A ⊆ πA. Then there is an
equivalence of categories{

N ∈ r Coh(Û(C)K) : N · F = 0
}
∼=

{
M ∈ r Coh(Û(L)K) : M = Mdp(F )

}
given by the functors N 7→ N ⊗

Û(C)K
Û(L)K and M 7→M [F ].
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Note that in general F is not contained in A. Note also that the hypothesis that
L · (f1, . . . , fr) = Ar is equivalent to the existence of elements x1, . . . , xr ∈ L with
the property that xi · fj = δij for all i, j = 1, . . . , r. Theorem 3.2.1 is a direct gen-
eralisation of [3, Theorem 4.10] to the setting where K is not necessarily discretely
valued and L satisfies the additional restrictions [L,L] ⊆ πL and L ·A ⊆ πA. Note
that these restrictions are particularly mild because π is an unspecified non-zero
non-unit element of R, whose valuation, whilst positive, could be arbitrarily small.

For our next result, Lemma 3.2.3, we recall the following purely algebraic fact.

Proposition 3.2.2. Let B be a filtered ring with filtration F•B. Let A be another
filtered ring with filtration F•A and f : A → B a filtered ring homomorphism of
degree zero (hence there is the associated graded ring homomorphism gr f : grA→
grB). Assume that the filtered rings B and A satisfy the following conditions:

(a) good filtrations on filtered left B-modules are separated,
(b) F•A has the left Artin-Rees property,
(c) the right grA-module grB is faithfully flat, and
(d) F−1A ⊆ J(F0A).

Then B is a faithfully flat right A-module.

Proof. This is [20, p. 75, Chapter II, Proposition 1.2.2]. �

Lemma 3.2.3. Let F = {f1, . . . , fr} ⊂ A be such that L · (f1, . . . , fr) = Ar, and

let C = CL(F ). Suppose that [L,L] ⊆ πL and L · A ⊆ πA. Then Û(L)K is a

faithfully flat Û(C)K-module on both sides.

Proof. Note that when K is discretely valued, this is precisely [3, Corollary 4.3].
We will explain how to remove this assumption on K; also, we will only deal with

the faithful flatness of Û(L)K as a right Û(C)K-module, because the argument for
the other side is entirely similar.

We equip Û(L)K with the π-adic filtration F•Û(L)K : explicitly we have

FnÛ(L)K = π−nÛ(L) for all n ∈ Z.

We give Û(C)K a similar filtration. With respect to these filtrations we have

(18) gr Û(L)K ∼= k[t, t−1]⊗k U(Lk) and gr Û(C)K ∼= k[t, t−1]⊗k U(Ck)

where Lk = L ⊗R k, and Ck and Ak are defined similarly, and t maps to the
principal symbol of π. The inclusion C ↪→ L induces by functoriality a filtered ring

homomorphism Û(C)K → Û(L)K of degree zero. The required faithful flatness now
follows from Proposition 3.2.2, once we’ve verified its hypotheses.

Since L · (f1, . . . , fr) = Ar, there exist x1, · · · , xr ∈ L such that xi · fj = δij for
all i, j = 1, · · · , r. Now [3, Lemma 4.1] implies that these elements generate a free
A-submodule of L that forms an A-module complement to C in L:

L =
r⊕
i=1

Axi ⊕ C.

(a,b) Our hypotheses on L imply that C also satisfies [C, C] ⊆ πC and C ·A ⊆ πA.
Now in view of [1, Lemma 4.1.9], we see that both (a) and (b) in Proposition 3.2.2
have already been verified in the proof of [1, Proposition 4.1.7(a)].
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(c) Since L is assumed to be a finitely generated projective A-module, it follows
that theA-module C also has this property. Hence Lk and Ck are both finitely gener-
ated projective Ak-modules. Hence grU(Lk) ∼= Sym(Lk) and grU(Ck) ∼= Sym(Ck)
by [22, Theorem 3.1]. Moreover, since we have the Ak-module decomposition

Lk =
r⊕
i=1

Akxi ⊕ Ck

we see that Sym(Lk) ∼= Sym(Ck)[x1, · · · , xr] is isomorphic to a polynomial algebra
over Sym(Ck) in r variables. It is therefore a gr-free and faithfully flat Sym(Ck)-
module. Now, using [20, Chapter I, Lemma 6.2(3)], we see that U(Lk) is a filt-free
right U(Ck)-module. Therefore U(Lk) is a faithfully flat right U(Ck)-module, and

using (18) we see that gr Û(L)K is a faithfully flat right gr Û(C)K-module.

(d) This is clear, because F0Û(Ck)K = Û(C) is π-adically complete. �

Until the end of §3.2, we will assume that [L,L] ⊆ πL and L · A ⊆ πA, and

define U := Û(L), U := Û(L)K and V := Û(C)K . Unfortunately, the next step in
the proof of [3, Theorem 4.10], namely [3, Proposition 4.4] seems unlikely to hold
as stated. The problem is that the definition of U-lattice used in [3] seems to be
too strong. Fortunately, we do not need the full strength of [3, Proposition 4.4] to
continue with the proof.

Recall from [1, Corollary 4.1.10] that U is a Noetherian ring, and it is by con-
struction a K-Banach algebra. Therefore, by [27, Proposition 2.1], any finitely
generated U -module M carries a canonical Banach space topology.

Definition 3.2.4. Let M be a finitely generated U -module, and let M be a U-
submodule of M . We say that M is a weak U-lattice if it is the unit ball in M
with respect to some Banach norm on M which induces the canonical Banach
topology on M . If f ∈ A, then we say that M is stable under divided powers of f
if M · fn/n! ⊆M for all n > 0.

In more algebraic terminology, we require M to span M as a K-vector space,
to satisfy M0 ⊆ M ⊆ π−tM0 for some t > 0 and for some finitely generated
U-submodule M0 of M , and to be closed in the π-adic topology on M defined by
M0. Note that any such weak U-lattice is automatically π-adically separated and
complete as an R-module. Our modified version of [3, Proposition 4.4] now reads
as follows.

Proposition 3.2.5. Let f ∈ A be such that L · f ⊆ A and let M be a finitely
generated U -module. Then there is at least one weak U-lattice M in Mdp(f) · U
which is stable under divided powers of f .

Proof. Note that Mdp(f) · U is a finitely generated submodule of M because U is
Noetherian by [1, Corollary 4.1.10]. The proof of [3, Proposition 4.4] now carries
over in a straightforward manner. �

Proposition 3.2.6. Suppose that F ⊆ A is such that L · F ⊆ A, and M is a
finitely generated U -module. Then Mdp(F ) is a U -submodule of M .

Proof. The proof of [3, Proposition 4.5] works, provided we use Proposition 3.2.5
to construct and use a weak U-lattice M in Mdp(f) for any f ∈ F . �
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Note that if M is a finitely generated U -module then M [f ] is a closed V :=

Û(C)K-submodule of M , where C := CL(f).

Lemma 3.2.7. Let f ∈ A and x ∈ L satisfy x · f = 1, and let M be a U -module.

Then for every q0, . . . , qn ∈M [f ], we have
∑n
j=0 qjx

j · f
n

n! = qn.

Proof. This was shown in the proof of [3, Lemma 4.6]. �

Our next statement agrees precisely with [3, Proposition 4.7] whenK is discretely
valued. Unfortunately the proof of [3, Proposition 4.7] as written relies heavily
on the Noetherianity of U and therefore does not extend to our current setting.
Fortunately, it is possible to rewrite the proof in a different way that does extend.

Proposition 3.2.8. Let f ∈ A be such that L · f = A and let M be a finitely
generated U -module. Then the natural U -linear map εM : M [f ] ⊗V U → M is
injective, and hence M [f ] is finitely generated as a V -module.

Proof. Let ξ =
∑d
i=1 ξi ⊗ ui lie in the kernel of εM for some ξi ∈M [f ] and ui ∈ U .

Choose x ∈ L such that x · f = 1. Now, L = C ⊕ Ax by [4, Lemma 4.1], so
U(L) is isomorphic to U(C)[x] as a left U(L)-module. Therefore we can write
ui =

∑∞
j=0 vijx

j for some vij ∈ V such that vij → 0 as j →∞ for all i = 1, . . . , d.

Define qj :=
∑d
i=1 ξivij ∈ M [f ] for each j > 0, and note that qj → 0 as j → ∞.

Then
∑n
j=0 qjx

j =
∑d
i=1 ξi ·

∑n
j=0 vijx

j →
∑d
i=1 ξi ·ui = εM (ξ) = 0 as n→∞. We

will show that qk = 0 for any k > 0.
Using Proposition 3.2.6 we see that the image M [f ] · U of εM is contained in

the U -module Mdp(f). Using Proposition 3.2.5, choose a weak U-lattice M in
Mdp(f) = Mdp(f) ·U which is stable under divided powers of f . Fix r > 0; because
limn→∞

∑n
j=0 qjx

j = 0, we can find n > k such that
∑n
j=0 qjx

j ∈ πrM. Since
πrM is stable under divided powers of f and the action of x, we see that

n∑
j=0

qjx
j ·
Å

1− fn

n!
xn
ã
· · ·
Ç

1− fk+1

(k + 1)!
xk+1

å
· f

k

k!
∈ πrM.

It follows from Lemma 3.2.7 that the expression on the left hand side equals qk.
Hence qk ∈ πrM for all k, r > 0. Since M is π-adically separated, qk = 0 for all
k > 0 as claimed.

Let N be the U-submodule of M [f ]⊗V U generated by {ξ1⊗1, . . . , ξd⊗1}. Then
for any n > 0 we have

ξ =
d∑
i=1

ξi⊗ui =
d∑
i=1

ξi⊗

(
n∑
j=0

vijx
j +

∑
j>n

vijx
j

)
=

n∑
j=0

qj ⊗xj +
n∑
i=1

ξi⊗
∑
j>n

vijx
j .

Since qj = 0 for all j and since
∑
j>n vijx

j → 0 in U as n→∞, we conclude that
ξ ∈ πrN for all r > 0. Because N is a finitely generated U-module, it is π-adically
separated by [1, Proposition 4.1.6(b)]. Hence ξ = 0 and εM is injective as claimed.

Finally, if N1 6 N2 6 · · · is an ascending chain of V -submodules of M [f ], then
εM (N1 ⊗V U) 6 εM (N2 ⊗V U) 6 · · · is an ascending chain of U -submodules of
M . This chain must terminate because M is a finitely generated module over the
Noetherian ring U — see [1, Corollary 4.1.10]. Since εM is U -linear and injective
by the above, and since U is a faithfully flat V -module by Proposition 3.2.3, we see
that the original chain N1 6 N2 6 · · · must terminate. Hence the V -module M [f ]
is finitely generated. �



INDUCTION EQUIVALENCE FOR EQUIVARIANT D-MODULES 47

Proof of Theorem 3.2.1. The remaining proofs in [3, §4.7, §4.8, §4.9, §4.10] do not
rely on the Noetherianity of U . The proof of [3, Theorem 4.10] now works: no
further changes are required. �

3.3. Kashiwara equivalence for small (X, G). In §3.3, we specialise slightly
to the setting of untwisted D-modules, and extend the material in §3.2 to the
equivariant setting. Thus, let X be a smooth K-affinoid variety and let Y be a
smooth, Zariski closed subvariety of X defined by a coherent ideal sheaf I ⊂ OX.
We assume that T (X) admits a free A-Lie lattice L = A∂1 ⊕ · · · ⊕ A∂d for some
affine formal model A ⊂ O(X), and that I := I (X) admits a generating set
F := {f1, . . . , fr} such that ∂i(fj) = δij whenever 1 6 i 6 d and 1 6 j 6 r.

Let I := I ∩ A and let NL(I) := {v ∈ L : v · I ⊆ I} be its normaliser in L.

Lemma 3.3.1. We have NL(I) = I∂1 ⊕ · · · ⊕ I∂r ⊕A∂r+1 ⊕ · · · ⊕ A∂d.

Proof. If a ∈ I, then a =
∑r
j=1 ajfj for some aj ∈ O(X) so ∂i(a) =

∑r
j=1 ∂i(aj)fj ∈

I whenever i > r. Since a ∈ A and ∂i ∈ L, we see that ∂i(a) ∈ A. So, ∂i ∈ NL(I)
whenever i > r. On the other hand, I∂i(I) ⊂ IA = I for all i, and we have

established the ⊇ inclusion. Now let v ∈ NL(I) and write v =
∑d
i=1 ai∂i for some

ai ∈ A. Choose a sufficiently large integer n such that πnfj ∈ I for all j = 1, . . . , r.
Then v(πnfj) ∈ I implies that πnaj ∈ I for all j = 1, . . . , r. Since I is a K-vector
space, we conclude that a1, . . . , ar ∈ I ∩ A = I, as required for ⊆ inclusion. �

We write A := A/I and N for the quotient (R,A)-Lie algebra NL(I)/IL. Note
that it follows from Lemma 3.3.1 that the image of {∂r+1, . . . , ∂d} in N forms a
basis for this A-module.

Now let G be a compact p-adic Lie group acting continuously on X, and assume
that Y ⊂ X, A ⊂ O(X) and L ⊂ T (X) are all G-stable. Note that A is a G-
stable formal model in O(Y) = O(X)/I, and by the functoriality of the normaliser
construction, N is a G-stable A-Lie lattice in T (Y) = O(Y)∂r+1 ⊕ · · · ⊕ O(Y)∂d.
We note in passing that even given the explicit description of normaliser NL(I)
by Lemma 3.3.1, it is not particularly nice as an A-module so the structure of its
enveloping algebra is not clear. However, it does admit a G-action which induces
a well-defined G-action on N . In contrast, because it is not reasonable to expect
the generating set F for I to be G-stable in general, there is no G-action on the
centraliser CL(F ) which played a key role in §3.2.

Let ρ : G → AutK(O(X)) denote the action of G on O(X), and recall the sub-
group GL = ρ−1(exp(pεL)) from [1, Definition 3.2.11]. By [1, Theorem 3.2.12], the
map β : GL → U× given by β(g) = exp(ι(log ρ(g))) for g ∈ GL is a G-equivariant

trivialisation of the G-action on U := Û(L)K ; here ι denotes the inclusion of L into
the K-Banach algebra U . Let ρ : G→ AutK O(Y) denote the action of G on O(Y),

let W := Û(N )K and let β : GN → W× denote the corresponding G-equivariant
trivialisation; if a ∈ O(X) we will write a to denote its image in O(Y).

Lemma 3.3.2. We have GL 6 GN . If g ∈ GL and a ∈ O(X), then

β(g) · a = β(g) · a.

Proof. Let g ∈ GL and let u ∈ L be such that log ρ(g) = pεu. Because Y is G-
stable by assumption, the automorphism ρ(g) : O(X) → O(X) stabilises the ideal
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I. Since this ideal is closed, it follows that

pεu =
∞∑
m=1

(−1)m+1

m
(ρ(g)− 1)m

also stabilises I. Since I is a K-vector space, we conclude that u · I ⊆ I, and hence
u ∈ NL(I). Now, the kernel of the natural map NL(I)→ T (Y) is equal to IL, so
the image of NL(I) in T (Y) is isomorphic to N = NL(I)/IL. Hence the image

u of u in T (Y) lies in N , and on the other hand it satisfies log ρ(g) = pεu. So,

log ρ(g) = log ρ(g) ∈ pεN which implies that g ∈ GN . Finally, if g ∈ GL and

a ∈ O(X) then β(g) · a = ρ(g)(a) = ρ(g)(a) = β(g) · a as required. �

We will use the following abbreviations.

Notation 3.3.3. Fix an open normal subgroup H of G contained in GL.

(a) W = Û(N )K ↪→ S := W oβH G, and

(b) U = Û(L)K ↪→ T := U oβH G.

Note that it follows from [3, Lemma 5.1(d)] that O(Y) ⊗
O(X)

U = U/IU is an

W − U -bimodule; hence

O(Y) ⊗
O(X)

T ∼= (U/IU)⊗U T ∼= T/IT

is naturally a W − T -bimodule.

Proposition 3.3.4. The left W -action on (U/IU) ⊗U T by right T -linear endo-
morphisms extends to a left S-action.

Proof. Recall that by [1, Definition 2.2.3 and Lemma 2.2.4], T is a factor ring of the
skew-group ring U oG. The group G acts on U oG by left multiplication, and this
action therefore descends to a left G-action on T by right T -module endomorphisms.
The ideal IT is stable under this action because g · (ft) = (g · f)gt for all g ∈ G,
f ∈ I and t ∈ T , and because the ideal I in O(X) is G-stable by assumption. Thus
we obtain a left G-action on T/IT by right T -module endomorphisms. On the
other hand, the left W -action on U/IU is G-equivariant, in the sense that

g · (w · u) = (g · w) · g · u for all g ∈ G,w ∈W,u ∈ U.
An easy calculation now implies that the right T -linear W and G-actions on T/IT
combine to form a right T -linear W oG-action. It remains to check that this action

descends to the factor ring S = W oβH G of W oG.

Fix h ∈ H, choose v ∈ NL(I) such that log ρ(h) = pεv so that β(h) =
exp(pει(v)) ∈ W and β(h) = exp(pει(v)) ∈ U . The v-action on T/IT is given
by v · (t+ IT ) = [ι(v), t] + t ι(v) + IT . An easy induction then implies that

vm · (t+ IT ) =
m∑
i=0

Ç
m

i

å
ad(ι(v))i(t) ι(v)m−i + IT

for all m > 0 and all t ∈ T , and therefore

exp(pει(v)) · (t+ IT ) =
∞∑
m=0

m∑
i=0

pεm

m!

(
m
i

)
ad(ι(v))i(t) ι(v)m−i + IT =

=
∞∑
i=0

∞∑
j=0

(pε ad(ι(v)))i

i! (t) (pει(v))j

j! + IT =

= exp(pε ad(ι(v)))(t) exp(pει(v)) + IT.
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Now if t = a ∈ O(X), then ad(ι(v))(a) = v(a) and exp(pε ad(ι(v)))(a) = ρ(h)(a) =
h · a, so β(h) · (a + IT ) = (h · a)β(h) + IT = h(a + IT ). We conclude that
β(h)− h ∈W oG kills (O(X) + IT )/IT for all h ∈ H. Because this set generates
T/IT as a right T -module, and because the action of W oG on T/IT is right T -
linear, we see that β(h)− h kills all of T/IT . It follows that the left W oG-action

on T/IT descends to a well-defined S = W oβH G-action, as required. �

It follows immediately from Proposition 3.3.4 that T/IT is naturally an S − T -
bimodule. Next, recall from [1, §2.2] that γ : G→ S× denotes the canonical group
homomorphism, and that by construction, S is a free left and right W -module with
basis {γ(c) : c ∈ C} whenever C is a set of coset representatives for the open normal

subgroup H of G. Similar statements hold for the crossed product T = U oβH G.

Proposition 3.3.5. There is an isomorphism of S − U -bimodules

ξ : S ⊗
W

U

IU

∼=−→ T

IT

given by ξ(wγ(g)⊗ u) = w · (g · u)γ(g).

Proof. By Proposition 3.3.4, there is a well-defined S − T -bilinear action map S ×
T/IT → T/IT , given by (wγ(g), uγ(h)) 7→ w · (g · u) γ(gh) for w ∈ W, g, h ∈ H
and u ∈ U . By considering this formula in the case g = h = 1, we see that
the restriction of this map to S × U/IU descends to S ⊗W U/IU , and induces an
S − U -bilinear map

ξ : S ⊗
W

U

IU

∼=−→ T

IT

as claimed. Let C be a set of coset representatives for H in G. If we again identify
T/IT with U/IU ⊗U T , then it follows from [1, Lemma 2.2.4(b)] that

S ⊗
W

U

IU
=
⊕
c∈C

γ(c)⊗ U

IU
and

T

IT
=
⊕
c∈C

U

IU
⊗ γ(c).

For each c ∈ C, the restriction of ξ to γ(c)⊗ U
IU sends it bijectively onto U

IU ⊗ γ(c).
Therefore ξ is a bijection. �

Now, the S − T -bimodule T/IT from Proposition 3.3.4 induces a functor N 7→
N ⊗S T/IT from finitely generated right S-modules to finitely generated right
T -modules. Using the identification of the restriction of this bimodule to an S−U -
bimodule given by Proposition 3.3.5, we can prove the main result of §3.3.

Theorem 3.3.6. Let X be a smooth K-affinoid variety and let Y = SpO(X)/I
be a smooth, Zariski closed subvariety of X. Assume that:

(a) T (X) admits a free A-Lie lattice L = A∂1⊕· · ·⊕A∂d for some affine formal
model A ⊂ O(X), satisfying [L,L] ⊆ πL and L · A ⊆ πA,

(b) the ideal I admits a generating set F := {f1, . . . , fr} such that ∂i(fj) = δij
whenever 1 6 i 6 d and 1 6 j 6 r,

(c) G is a compact p-adic Lie group which acts continuously on X and which
preserves Y ⊂ X, A ⊂ O(X) and L ⊂ T (X).

Let H be an open normal subgroup of G contained in GL and write

S := Û(N )K oβH G and T := Û(L)K oβH G,
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where N = NL(I∩A)
(I∩A)L ⊂ T (Y). Then there is an equivalence of categories

r Coh(S) ∼= {M ∈ r Coh(T ) : M = Mdp(F )}

given by the functors N 7→ N ⊗
S
T/IT and M 7→ HomT (T/IT,M).

Proof. Because G/H is a finite group, it follows from [1, Lemma 2.2.4(b)] that S
is a finitely generated W -module on both sides, and T is a finitely generated U -
module on both sides. Hence we obtain the following diagram of abelian categories
and right-exact functors, where the vertical arrows are the restriction maps along
the inclusion of rings W ↪→ S and U ↪→ T :

r Coh(S)
−⊗ST/IT //

��

r Coh(T )

��
r Coh(W )

−⊗WU/IU
// r Coh(U).

It follows from Proposition 3.3.5 and the Five Lemma that this diagram commutes
up to natural isomorphism: for every finitely generated right S-module N , there is
a right U -linear isomorphism

N ⊗
S

T

IT
∼= N ⊗

W

U

IU

which is natural in N . Let C := CL(F ) = A∂r+1 ⊕ · · · ⊕ A∂d; it follows from
Lemma 3.3.1 that the natural map C/IC → N is an isomorphism. Let V denote

the K-Banach algebra Û(C)K from §3.2; by the proof of [3, Lemma 5.8], there is
a natural isomorphism V/IV ∼= W . So, if N ∈ r Coh(S) then we may regard its
restriction to W as a finitely generated V -module killed by I, and then the right
U -module

M := N ⊗
S

T

IT
∼= N ⊗

W

U

IU
∼= N ⊗

V
U

lies in r Coh(U) and satisfies M = Mdp(F ) by Theorem 3.2.1.
Now suppose that M ∈ r Coh(T ) satisfies M = Mdp(F ). On the one hand, its

restriction to U satisfies the same condition because it is phrased entirely in terms
of the action of F ⊂ O(X) ⊂ U on M , and therefore HomT (T/IT,M) = M [I] is
a finitely generated right V -module killed by I by Theorem 3.2.1. In other words,
it is a finitely generated right W -module. On the other hand, it is a right S-
module because T/IT is a left S-module; hence it is per force finitely generated
as an S-module. So, the functors −⊗S (T/IT ) and HomT (T/IT,−) restrict to an
adjunction between r Coh(S) and {M ∈ r Coh(T ) : M = Mdp(F )}, and it remains
to show that the unit and counit morphisms of this adjunction are isomorphisms.

To this end, let M ∈ r Coh(T ) satisfy M = Mdp(F ) and let M denote its
restiction to U . In the commutative diagram

M [I] ⊗
W

U
IU

εM //

∼=
��

M

M [I]⊗
S

Å
S ⊗
W

U
IU

ã
1M[I]⊗ξ

// M [I]⊗
S

T
IT

εM

OO
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the bottom horizontal arrow is an isomorphism by Proposition 3.3.5, whereas the
top horizontal arrow is an isomorphism by Theorem 3.2.1. So the counit morphism
εM is an isomorphism; and a similar argument using Proposition 3.3.5 and Theorem
3.2.1 shows that the unit morphism ηN : N → (N ⊗S T

IT )[I] is also an isomorphism
for each N ∈ r Coh(S). �

For future use, we record that the functor M 7→M [I] is compatible with locali-
sation to appropriately invariant affinoid subdomains X′ ⊂ X.

Proposition 3.3.7. Suppose that X,Y, I,A,L, G satisfy the hypotheses of Theo-
rem 3.3.6. Let X′ be a G-stable affinoid subdomain of X such that O(X′) admits
a G-stable and L-stable affine formal model A′, and let L′ := L ⊗A A′.

Let H be an open normal subgroup of G contained in GL, let S, T be defined

as in Theorem 3.3.6 and define S′ := ̂U(N ′)K oβ
′

H G and T ′ := Û(L′)K oβ
′

H G.
Then the natural map

α : M [I]⊗
S
S′ −→ (M ⊗

T
T ′)[I]

is an isomorphism for every M ∈ r Coh(T ) such that M = Mdp(F ).

Proof. Note that L′ is an A′-Lie lattice in O(X′) and GL 6 GL′ by [1, Proposition
4.3.6]. Let I ′ = I (X′) ∩ A′ and N ′ = NL′(I ′)/I ′L′; then it follows from Lemma
3.3.1 that N ′ ∼= (A′/I ′)⊗A/IN so again GN 6 GN ′ by [1, Proposition 4.3.6]. This
means that the crossed products S′ and T ′ are well defined.

Write W := Û(N )K , W ′ := ̂U(N ′)K , U := Û(L)K and U ′ := Û(L′)K . By
the right-module version of [1, Proposition 4.3.11], there are natural isomorphisms
T ′ ∼= T ⊗U U ′ of T − U ′-bimodules and S′ ∼= S ⊗W W ′ of S − W ′-bimodules.

These give isomorphisms γ : M [I] ⊗S S′
∼=−→ M [I] ⊗W W ′ right W ′-modules and

δ : M ⊗T T ′
∼=−→M ⊗U U ′ of right U ′-modules. Now the map α in question appears

in the following commutative diagram:Å
M [I]⊗

S
S′
ã
⊗
W ′

U ′

IU ′
α⊗1 //

γ⊗1

��

Å
M ⊗

T
T ′
ã

[I] ⊗
W ′

U ′

IU ′

δ⊗1

��Å
M [I] ⊗

W
W ′
ã
⊗
W ′

U ′

IU ′

∼=
��

Å
M ⊗

U
U ′
ã

[I] ⊗
W ′

U ′

IU ′

εM⊗UU′

��Å
M [I] ⊗

W

U
IU

ã
⊗
U
U ′

εM⊗1
// M ⊗

U
U ′.

Here the second vertical arrow on the left is an isomorphism obtained by contract-
ing tensor products. Let M ′ := M ⊗U U ′; because M = Mdp(F ), it follows from
Proposition 3.2.6 that also M ′ = M ′dp(F ). So the maps εM and εM ′ are isomor-
phisms by Theorem 3.3.6. Since γ and δ are also isomorphisms, we conclude that
the top horizontal map α⊗1 is an isomorphism. Finally, the functor −⊗W ′ U ′/IU ′

is isomorphic to −⊗V ′ U ′ where V ′ = ̂U(CL′(F ))K , and −⊗V ′ U ′ reflects isomor-
phisms because U ′ is a faithfully flat left V ′-module by Proposition 3.2.3. So α is
an isomorphism as required. �
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Now let Un := ̂U(πnL)K and Wn := ̂U(πnN )K , and choose a good chain H• for
H using [1, Lemma 3.3.6], so that Hn is an open normal subgroup of G contained
in GπnL for all n > 0. Then also Hn 6 GπnN for all n > 0 by Lemma 3.3.2, so we
may form the crossed products

Tn := Un oHn G and Sn := Wn oHn G

as in Notation 3.3.3 above; we have omitted the trivialisations βn : Hn → U×n and
βn : Hn →W×n in the notation in the interests of clarity. Then by [1, Lemma 3.3.4]
we have Fréchet-Stein presentationsÙD(X, G) ∼= lim←−Tn and ÙD(Y, G) ∼= lim←−Sn.

Lemma 3.3.8. O(Y) ⊗
O(X)

ÙD(X, G) is a ÙD(X, G)-coadmissible (ÙD(Y, G), ÙD(X, G))-

bimodule.

Proof. Note that O(Y) ⊗
O(X)

ÙD(X, G) = ÙD(X, G)/IÙD(X, G) is finitely presented as a

right ÙD(X, G)-module, because the ideal I ⊂ O(X) is finitely generated. Hence it is

coadmissible as a right ÙD(X, G)-module by [27, Corollary 3.4v]. We saw in the proof
of [3, Proposition 5.3] that πnN is naturally isomorphic to NπnL(I)/(I(πnL)).

Hence Tn/ITn is a (Sn, Tn)-bimodule by Proposition 3.3.4. Since
ÙD(X,G)

I ÙD(X,G)
=

lim←−Tn/ITn, we conclude as in the proof of [3, Proposition 5.3] that it is a ÙD(X, G)-

coadmissible (ÙD(Y, G), ÙD(X, G))-bimodule in the sense of [4, Definition 7.3]. �

Lemma 3.3.8 together with [4, Lemma 7.3] allows us to write down the equivari-
ant pushforward functor

ι+ : rCÙD(Y,G)
−→ rCÙD(X,G)

, N 7→ N Ù⊗ÙD(Y,G)

Ç
O(Y) ⊗

O(X)

ÙD(X, G)

å
.

For future use, we record the following statement.

Proposition 3.3.9. Let N be an open normal subgroup of G. Then there is an

isomorphism of ÙD(Y, G)− ÙD(X, N)-bimodules

(19) ÙD(Y, G) Ù⊗ÙD(Y,N)

ÙD(X, N)

I(X)ÙD(X, N)

∼=−→
ÙD(X, G)

I(X)ÙD(X, G).

Proof. Let H be an open normal subgroup of G contained in N ∩ GL, and write

W := Û(N )K , U := Û(L)K and I := I(X) as above.
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Note that (UoHN)/I(UoHN) is naturally a sub (W oHN,UoHN)-bimodule
of (U oH G)/I(U oH G). This gives us a natural map θH,G of (W oH G,U oH N)-
bimodules which appears as the top horizontal map of the following diagram:

(W o
H
G) ⊗

Wo
H
N

Å
Uo
H
N

ã
I

Å
Uo
H
N

ã θH,G //

Å
Uo
H
G

ã
I

Å
Uo
H
G

ã
(W o

H
G) ⊗

Wo
H
N

Å
(W o

H
N) ⊗

W

U
IU

ã
∼=

//

∼=1⊗ξH,N

OO

(W o
H
G) ⊗

W

U
IU .

∼= ξH,G

OO

Here the vertical isomorphism on the left comes from Proposition 3.3.5 applied to
the groups H 6 N , the vertical isomorphism on the right comes from Proposition
3.3.5 applied to the groups H 6 G and the horizontal isomorphism on the bottom
comes from contracting tensor products. It is straightforward to verify that the
diagram is commutative, and therefore θH,G is an isomorphism.

Next, because N is an open subgroup of G, we can assume that the open normal
subgroups Hn of G that were chosen above just before Lemma 3.3.8 are all contained
in N , by passing to a subsequence. Then the above produces isomorphisms of
(Wn oHn G,Un oHn N)-bimodules

θHn,G : (Wn o
Hn

G) ⊗
Wn o

Hn

N

(Un o
Hn

N)

I(Un o
Hn

N)

∼=−→
(Un o

Hn
G)

I(Un o
Hn

G)

that are compatible with variation in n. Passing to the limit as n→∞ we obtain
the required isomorphism (19). �

Next, we extend [3, Definition 5.5] to an appropriate more general setting.

Definition 3.3.10. Let A be a commutative Fréchet algebra, let M be a Fréchet
A-module and let m ∈M . We say that s ∈ A acts topologically nilpotently on m if
msk → 0 as k →∞. If S ⊆ A, we let M∞(S) denote the subset of M consisting of
all vectors m ∈M such that each s ∈ S acts topologically nilpotently on m.

With this definition, [3, Lemma 5.5, Corollary 5.5 and Proposition 5.6] are in
fact valid for any Fréchet O(X)-module.

Proposition 3.3.11. Let M be a coadmissible right ÙD(X, G)-module. Then

M∞(I) is also a coadmissible right ÙD(X, G)-module.

Proof. This is a direct generalisation of [3, Corollary 5.6]. The key point is that
if Mn = M ⊗ÙD(X,G)

Tn, then M∞(I) = lim←−Mn[I] by [3, Proposition 5.6], and

each Mn[I] ∼= HomTn(Tn/ITn,Mn) is a Tn-submodule of Mn by Proposition 3.3.4.
Now Mn is a finitely generated Tn-module because M is coadmissible, and Tn is
Noetherian, being a crossed product of the Noetherian ring Un — see [1, Corollary
4.1.10] — with the finite group G/Hn. So Mn[I] is a closed submodule of Mn by
[12, Lemma 1.2.3] for each n > 0, and therefore M∞(I) is a closed submodule of
M . It is hence coadmissible by [27, Lemma 3.6]. �
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Our next result, a generalisation of [3, Theorem 5.7], allows us to write down a
right adjoint ι\ to the pushforward functor ι+.

Proposition 3.3.12. Let M be a coadmissible right ÙD(X, G)-module. Then M [I]

is a coadmissible right ÙD(Y, G)-module.

Proof. Since M∞(I) ⊆M , we see that M∞(I)[I] ⊆M [I]. On the other hand, any
v ∈ M [I] lies in M∞(I) because any f ∈ I kills v and therefore acts topologically
nilpotently on v. Hence M [I] = M∞(I)[I]. Since M∞(I) ∈ CÙD(X,G)

by Proposition

3.3.11, we may therefore assume that M = M∞(I). Let Mn = M ⊗ÙD(X,G)
Tn for

each n > 0. As in the proof of [3, Theorem 5.7], using Proposition 3.2.6 we see
that M = M∞(I) implies that Mn = (Mn)dp(F/πn). Therefore by Theorem 3.3.6
applied to F/πn and πnL, the right Sn-module Mn[I] is finitely generated, and the
counit morphism

εn : Mn[I] ⊗
Sn

Tn
ITn

−→Mn

is an isomorphism for all n > 0. Next, the Tn+1-linear map Mn+1 → Mn induces
an Sn+1-linear map Mn+1[I]→Mn[I] and an Sn-linear map

ϕn : Mn+1[I] ⊗
Sn+1

Sn −→Mn[I]

which features in the following commutative diagram:

(Mn+1[I] ⊗
Sn+1

Sn) ⊗
Sn

Tn
ITn

∼= //

ϕn⊗1

��

(Mn+1[I] ⊗
Sn+1

Tn+1

ITn+1
) ⊗
Tn+1

Tn

εn+1⊗1

��
Mn+1 ⊗

Tn+1

Tn

αn

��
Mn[I] ⊗

Sn

Tn
ITn εn

// Mn.

The map αn is an isomorphism because M is a coadmissible ÙD(X, G)-module, so
ϕn ⊗ 1 is also an isomorphism since εn and εn+1 are isomorphisms. The functor
−⊗
Sn

Tn
ITn

is an equivalence on r Coh(Sn) by Theorem 3.3.6, so ϕn is an isomorphism.

Therefore M [I] = lim←−Mn[I] is a coadmissible right ÙD(Y, G) = lim←−Sn-module. �

We can now state and prove the second main result of §3.3.

Theorem 3.3.13. Let X be a smooth K-affinoid variety and let Y = SpO(X)/I
be a smooth, Zariski closed subvariety of X. Assume that:

(a) T (X) admits a free A-Lie lattice L = A∂1⊕· · ·⊕A∂d for some affine formal
model A ⊂ O(X), satisfying [L,L] ⊆ πL and L · A ⊆ πA,

(b) the ideal I admits a generating set F := {f1, . . . , fr} such that ∂i(fj) = δij
whenever 1 6 i 6 d and 1 6 j 6 r,

(c) G is a compact p-adic Lie group which acts continuously on X and which
preserves Y ⊂ X, A ⊂ O(X) and L ⊂ T (X).
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Then the equivariant pushforward functor

ι+ : rCÙD(Y,G)
−→

¶
M ∈ rCÙD(X,G)

: M = M∞(I)
©

N 7→ N Ù⊗ÙD(Y,G)

Ç
O(Y) ⊗

O(X)

ÙD(X, G)

å
is an equivalence, with inverse ι\ : M 7→M [I].

Proof. The functor ι\ preserves coadmissibility by Proposition 3.3.12, and using
the proof of [3, Theorem 5.9(c)] together with Theorem 3.3.6, we see that ι+N =
(ι+N)∞(I) for any N ∈ rCÙD(Y,G)

. Now we can use the proof of [3, Theorem 5.9(b)]

and the universal property of Ù⊗ to see that ι\ is right adjoint to ι+. To show that
this adjunction is in fact an equivalence, by [3, Proposition 4.10] it will suffice to
show that the counit is an isomorphism and that ι+ reflects isomorphisms. But
both of these statements follow from Theorem 3.3.6. �

For future use, we record the equivariant analogue of [3, Theorem 6.9].

Proposition 3.3.14. Let X,Y,A,L, F and G be as in Theorem 3.3.13. Let X′ be
a G-stable affinoid subdomain of X and let Y′ := Y ∩X′. Then the natural map

M [I (X)] Ù⊗ÙD(Y,G)

ÙD(Y′, G) −→
Ç
M Ù⊗ÙD(X,G)

ÙD(X′, G)

å
[I (X′)]

is an isomorphism for every M ∈ rCÙD(X,G)
such that M = M∞(I (X)).

Proof. By applying [4, Proposition 7.6] and [1, Lemma 4.3.5], we may assume that
O(X′) contains an L-stable and G-stable affine formal model A′; then L′ := A′⊗AL
is a G-stable A′-Lie lattice in T (X′). Let Un := ̂U(πnL)K and U ′n := ̂U(πnL′)K for
each n > 0 and note that GπnL 6 GπnL′ by [1, Proposition 4.3.6(b)]. Choose a good
chain (H•) for L in H and for each n > 0 consider the ring maps Tn := UnoHnH →
T ′n := U ′n oHn H, so that T := ÙD(X, G) = lim←−Tn and T ′ := ÙD(X′, G) = lim←−T

′
n by

[1, Lemma 3.3.4]. Define S := ÙD(Y, G) and S′ := ÙD(Y′, G) so that S = lim←−Sn and

S′ = lim←−S
′
n for appropriate crossed products Sn and S′n as in Proposition 3.3.7.

Let I := I (X). Then (MÙ⊗
T
T ′)[I (X′)] = (MÙ⊗

T
T ′)[I] because I (X′) = O(X′) · I,

and the map in question

M [I]Ù⊗
S
S′ −→ (MÙ⊗

T
T ′)[I]

is the inverse limit of the natural maps

Mn[I] ⊗
Sn
S′n −→ (Mn ⊗

Tn
T ′n)[I]

where Mn := M ⊗T Tn for each n > 0. As in the proof of [3, Theorem 5.7], using
Proposition 3.2.6, our assumption M = M∞(I) implies that Mn = (Mn)dp(F/πn)
for each n > 0. So these maps are isomorphisms by Proposition 3.3.7. �
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3.4. The equivariant Kashiwara equivalence. Let Y be a smooth, Zariski
closed subset of the smooth rigid analytic space X defined by the vanishing of a
radical, coherent ideal I of OX, and let ι : Y ↪→ X be the inclusion of Y into X.
Let G be a p-adic Lie group acting continuously on X and stabilising Y.

We begin by constructing the equivariant pushforward functor

ι+ : rCY/G −→ rCX/G
for G-equivariant right D-modules. We will work with the following slightly more
restrictive version of the basis for the topology on X introduced at [3, §6.3].

Definition 3.4.1.

(a) Let B denote the set of connected affinoid subdomains U of X such that
(i) T (U) admits a free A-Lie lattice L = A∂1 ⊕ · · · ⊕A∂d for some affine

formal model A ⊂ O(U), satisfying [L,L] ⊆ πL and L · A ⊆ πA,
(ii) either I(U) = I(U)2, or I(U) admits a generating set {f1, . . . , fr}

such that ∂i(fj) = δij whenever 1 6 i 6 d and 1 6 j 6 r.
(b) For each U ∈ B we say that a compact open subgroup H of G is U-good

if for some choice of the data A ⊂ O(U) and L ⊂ T (U) satisfying the
conditions in (a), H stabilises U ⊂ X, A ⊂ O(U) and L ⊂ T (U).

It is clear that if U ∈ B then gU ∈ B for all g ∈ G.

Lemma 3.4.2.

(a) B is a basis for the topology on X.
(b) For each U ∈ B we can find at least one U-good subgroup H of G.
(c) Let U ∈ B and let H be U-good. Then N (U ∩Y) is a coadmissible rightÙD(U ∩Y, H)-module for every N ∈ rCY/G.

Proof. (a) Because X and Y are both smooth, the second fundamental sequence
is exact by [8, Proposition 2.5] so the normal bundle NY/X is locally free and the
canonical map ι∗T → NY/X is surjective. Now [3, Theorem 6.2] tells us that we
can find an admissible affinoid covering {Xα} for X such that for each α, either
I(Xα) = I(Xα)2 or there is an O(Xα)-module basis {∂1, . . . , ∂d} for T (Xα) and
a generating set {f1, . . . , fr} for I(Xα) with 1 6 r 6 d such that ∂i · fj = δij
whenever 1 6 i 6 d and 1 6 j 6 r. Because X is smooth, we can replace each
Xα by its finite set of connected components and thereby arrive at an admissible
covering with the same properties, but where in addition every Xα is connected.
Let Aα := O(Xα)◦ for each α and let Lα := ⊕di=1πAα∂i. Then both conditions (i)
and (ii) above are satisfied.

(b) Because G acts continuously on X, the stabiliser H1 of U in G is open by
[1, Definition 3.1.8(a)] and any affine formal model A ⊂ O(U)◦ is stabilised by
an open subgroup H2 of H1 by [1, Definition 3.1.8(b)]. Then every A-Lie lattice
L ⊂ T (U) is stabilised by an open subgroup H3 of H2 by [1, Lemma 3.2.8(b)], and
we may take H to be any compact open subgroup of H3.

(c) It follows from Lemma 3.3.1 that the pair (U∩Y, H) is small in the sense of
[1, Definition 3.4.4]. Now apply the right-module version of [1, Theorem 4.4.3]. �

Using Lemma 3.4.2(c), Lemma 3.3.8 and the right-module version of [4, Lemma
7.3], we can now make the following construction.
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Definition 3.4.3. Let N ∈ rCY/G, let U ∈ B and let H be U-good. We define

M [U, H] := N (U ∩Y) Ù⊗ÙD(U∩Y,H)

ÙD(U, H)

I(U)ÙD(U, H)
,

this is a coadmissible right ÙD(U, H)-module.

This construction is functorial in the following sense.

Lemma 3.4.4. Let V ⊆ U be members of B and let H 6 N be compact open
subgroups of G which are U-good and V-good.

(a) There is a natural commutative diagram of right ÙD(U, H)-modules

(20) M [U, H] //

��

M [U, N ]

��
M [V, H] // M [V, N ].

(b) For every g ∈ G there is a K-linear map

gMU,H : M [U, H] −→M [gU, gHg−1]

such that for every a ∈ ÙD(U, H) and every m ∈M [U, H], we have

gMU,H(m · a) = gMU,H(m) · ÛgU,H(a).

(c) The following diagram is commutative for all g ∈ G:

(21) M [U, H]
gMU,H // M [gU, gHg−1]

M [U, N ]
gMU,N //

��

OO

M [gU, gNg−1]

��

OO

M [V, N ]
gMV,N

// M [gV, gNg−1].

Proof. We give the construction of gMU,H and leave the rest to the reader. By

construction, the K-algebra homomorphism ÛgU,H : ÙD(U, H) → ÙD(gU, gHg−1)
from [1, Lemma 3.4.3] restricts to gO(U) : O(U) → O(gU) which sends I(U) to
I(gU) because Y is assumed to be G-stable. So the mapÛgU,H :

ÙD(U, H)

I(U)ÙD(U, H)
−→

ÙD(gU, gHg−1)

I(gU)ÙD(gU, gHg−1)

is well-defined and we can set gMU,H := gN (U ∩Y) Ù⊗ ÛgU,H . �

Using the connecting maps M [U, H]→M [U, N ], we can make the following

Definition 3.4.5. Let N ∈ rCY/G and let U ∈ B. We define

(ι+N )(U) := lim
H
M [U, H]

where the limit is taken over all U-good subgroups H of G.
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Lemma 3.4.6. ι+N is a G-equivariant presheaf of D-modules on B.

Proof. This follows from Lemma 3.4.4 — see the proof of [1, Theorem 3.5.8] for
more details in a similar situation. �

Proposition 3.4.7. Let U ∈ B, let H be a U-good subgroup of G and let N be
an open normal subgroup of H. Then for every N ∈ rCY/G, the canonical map
M [U, N ]→M [U, H] is an isomorphism.

Proof. Let V := U ∩Y. By Proposition 3.3.9, there is an isomorphismÙD(V, H) Ù⊗ÙD(V,N)

ÙD(U, N)

I(U)ÙD(U, N)

∼=−→
ÙD(U, H)

I(U)ÙD(U, H)

of ÙD(V, H)− ÙD(U, N)-bimodules. Now apply the functor N (V)Ù⊗ÙD(V,H)
− to this

isomorphism to see that the arrow M [U, N ]→M [U, H] is bijective. �

Corollary 3.4.8. Let U ∈ B, let H be a U-good open subgroup of G and let
N ∈ rCY/G. Then the canonical map (ι+N )(U) → M [U, H] is an isomorphism,

and (ι+N )(U) is a coadmissible right ÙD(U, H)-module.

Proof. Let J be an open subgroup of H and choose an open normal subgroup N
of H contained in J . The maps M [U, N ] → M [U, H] and M [U, N ] → M [U, J ]
are isomorphisms by Proposition 3.4.7. Therefore M [U, J ] → M [U, H] is also an
isomorphism for every open subgroup J of H, and the result follows. �

Proposition 3.4.9. Let N ∈ rCY/G, let U ∈ B and let H be a U-good open
subgroup of G. Then there is a natural continuous H-D-linear isomorphism

P
ÙD(U,H)
U ((ι+N )(U))

∼=−→ (ι+N )|Uw
.

Proof. Note that (ι+N )(U) ∼= M [U, H] is a coadmissible right ÙD(U, H)-module by
Corollary 3.4.8, so it will be enough to exhibit a continuous H-D-linear isomorphism

ϕ : P
ÙD(U,H)
U (M [U, H])

∼=−→ (ι+N )|Uw
.

Let V be an open affinoid subdomain of U and let J be an open subgroup of HV.

Then there are natural right ÙD(V, J)-linear isomorphisms

M [U, J ] Ù⊗ÙD(U,J)

ÙD(V, J) ∼= N (U ∩Y) Ù⊗ÙD(U∩Y,J)

Ç ÙD(U,J)

I(U)ÙD(U,J)
Ù⊗ÙD(U,J)

ÙD(V, J)

å
∼= N (U ∩Y) Ù⊗ÙD(U∩Y,J)

ÙD(V,J)

I(V)ÙD(V,J)

∼=
Ç
N (U ∩Y) Ù⊗ÙD(U∩Y,J)

ÙD(V ∩Y, J)

å Ù⊗ÙD(V∩Y,J)

ÙD(V,J)

I(V)ÙD(V,J)

∼= N (V ∩Y) Ù⊗ÙD(V∩Y)

ÙD(V,J)

I(V)ÙD(V,J)
= M [V, J ]

where the isomorphism on the last line follows from the isomorphism

r Loc
ÙD(U∩Y)
U∩Y (N (U ∩Y)) ∼= N|U∩Y
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given by the right-module version of [1, Theorem 4.4.3] and by the fact that N ∈
rCY/G. Because the canonical map M [U, J ] → M [U, H] is an isomorphism by

Proposition 3.4.7, we obtain a right ÙD(V, J)-linear isomorphism

ϕ(V, J) : M [U, H] Ù⊗ÙD(U,J)

ÙD(V, J)
∼=−→ M [V, J ].

Denote the left hand side by M [U, H](V, J) following [1, Definition 3.5.1]. We
leave it to the reader to verify that the following diagram

M [U, H](gV, gJg−1)
ϕ(V,gJg−1) // M [gV, gJg−1]

M [U, H](V, J)
ϕ(V,J) //

))

**

55

M [V, J ]

ff

xx

tt

M [U, H](W, J)
ϕ(W,J)

// M [W, J ]

M [U, H](V, N)
ϕ(V,N)

// M [V, N ]

is commutative, for any H-stable open affinoid subdomain W of V, any open
subgroup N of HV containing J , and any g ∈ G. In view of the right-module
version of [1, Definition 3.5.1] and Definition 3.4.3, passing to the inverse limit over
all open J 6 HV induces a continuous right D(V)-linear isomorphism

ϕ(V) : P
ÙD(U,H)
U (M [U, H])(V)

∼=−→ (ι+N )(V).

The commutativity of the diagram above implies that these maps patch together
to define the required continuous H-D-linear isomorphism

ϕ : P
ÙD(U,H)
U (M [U, H])

∼=−→ (ι+N )|Uw
. �

Corollary 3.4.10. ι+N is a sheaf on B whenever N ∈ rCY/G.

Proof. Use [1, Theorem 3.5.11], Corollary 3.4.8 and Proposition 3.4.9. �

Using [4, Theorem 9.1], we can make the following

Definition 3.4.11. We define ι+N to be the unique extension of the sheaf ι+N
on B to a G-equivariant sheaf of D-modules on Xrig.

We can now record the equivariant generalisation of [3, Proposition 6.4].

Proposition 3.4.12. N 7→ ι+N defines a functor ι+ : rCY/G −→ rCYX/G.

Proof. By Lemma 3.4.2(a) we can find an admissible covering {Xj} for X by mem-
bers of B, and by Lemma 3.4.2(b), for each j we can choose a Xj-good subgroup
Gj of G. Let Yj := Xj ∩Y; then (Yj , Gj) is small so by [1, Theorem 4.4.3] for
each j there is a continuous right D −Gj-linear isomorphism

N|Yj
∼= r Loc

ÙD(Yj ,Gj)
Yj

N (Yj).
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Proposition 3.4.9 now implies that for each j there is an isomorphism of locally
Fréchet Hj-equivariant right D-modules

(ι+N )|Xj
∼= r Loc

ÙD(Xj ,Gj)
Xj

((ι+N )(Xj))

In view of Lemma 3.4.6, Corollary 3.4.10 and Definition 3.4.11, this means that
ι+N ∈ rCX/G. The functorial nature of ι+ is clear. Finally, note that if U is
an affinoid subdomain of X such that U ∩ Y = ∅, then I(U) = O(U) and it
follows directly from Definition 3.4.3 that M [U, H] = 0 for any U-good subgroup
H. Therefore (ι+N )(U) = 0 for any such U by Definition 3.4.5, which means that
the restriction of ι+N to X−Y is zero. Hence ι+N ∈ rCYX/G as claimed. �

Next, we construct the equivariant pullback functor

ι\ : rCYX/G −→ rCY/G.

Recall from [3, §A.1] that ι−1 denotes the pullback functor from abelian sheaves on
Xrig to abelian sheaves on Yrig.

Definition 3.4.13. Let M ∈ rCYX/G. We define ι\M := ι−1(ι\∗M) where ι\∗M is

the extension to Xrig of the sheaf ι\∗M on B given by

(ι\∗M)(U) :=M(U)[I (U)] for all U ∈ B.

Note that ι\∗M is a presheaf of ι∗DY-modules on B; the proof of [3, Lemma 6.5]

shows that it is in fact a sheaf. Because ι∗DY is supported on Y, ι\∗M is also
supported on Y and by [3, Theorem A.1] there is a natural isomorphism

ι∗(ι
\M)

∼=−→ ι\∗M.

We will need the following generalisation of [3, Theorem 6.7].

Proposition 3.4.14. Suppose that X ∈ B and that G is X-good. Then the
following are equivalent for M∈ rCX/G:

(a) M is supported on Y,
(b) M(X) =M(X)∞([I (X)]).

Proof. The proof of [3, Theorem 6.7] reduces us 3 to showing that for any non-zero
f ∈ I (X), the moduleM(X(1/f)) is zero if and only if f acts locally topologically
nilpotently onM(X). Our assumptions on X and G allow us to choose a G-stable
affine formal model A ⊂ O(X) and a G-stable A-Lie lattice L ⊂ T (X). By rescaling
L and applying [4, Lemma 7.6(a)], we may assume that L · f ⊂ A.

Let X′ := X(1/f), let H := GX′ , write T := ÙD(X, H) and T ′ := ÙD(X′, H).

Let M := M(X) ∈ rCT and M ′ := M(X′) ∈ rCT ′ so that M ′ ∼= MÙ⊗TT ′ by [1,

Theorem 4.4.3]. Let A′ := A〈1/f〉 and L′ := A′⊗A L and set Un := ̂U(πnL)K and

U ′n := ̂U(πnL′)K for each n > 0. Choose a good chain (H•) for L in H and set
Tn := Un oHn H and T ′n := U ′n oHn H for each n > 0, so that T = lim←−Tn and

T ′ = lim←−T
′
n by [1, Lemma 3.3.4]. Let Mn := M ⊗T Tn and M ′n := M ′ ⊗T ′ T ′n for

3use [1, Theorem 4.4.3] in place of [4, Theorem 9.4]
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each n > 0. Using the isomorphism T ′n
∼= Tn ⊗Un U ′n of Tn −U ′n-bimodules coming

from the right-module version of [1, Proposition 4.3.11], we obtain

M ′n
∼= (MÙ⊗

T
T ′) ⊗

T ′
T ′n = M ⊗

T
T ′n
∼= Mn ⊗

Tn
T ′n
∼= Mn ⊗

Un
U ′n for all n > 0.

Now we argue as in the proof of [3, Corollary 6.6]: M ′ =M(X(1/f)) is zero if and
only if M ′n

∼= Mn ⊗Un U ′n is zero for all n > 0, if and only if f acts locally topolog-
ically nilpotently on Mn

4 for all n > 0, if and only if f acts locally topologically
nilpotently on lim←−Mn. But M(X) = M ∼= lim←−Mn by [27, Corollary 3.3]. �

We can now construct our equivariant pullback functor.

Theorem 3.4.15. LetM∈ rCYX/G. Then ι\M∈ rCY/G, and this defines a functor

ι\ : rCYX/G −→ rCY/G.

Proof. The proof of [3, Lemma 6.5] shows that (ι\∗M)(U) := M(U)[I (U)] holds
for every affinoid subdomain U of X. Because M ∈ rCX/G is locally Fréchet,
M(U) is a Fréchet space for each U ∈ Xw(T ). Since I (U) is finitely generated

as an O(U)-module, it follows that (ι\∗M)(U) is a closed subspace of M(U) and

therefore itself carries a natural Fréchet topology; thus ι\∗M is a locally Fréchet
D-module on X in the sense of [1, Definition 3.6.1] applied with G = 1.

Let g ∈ G and let U ∈ Xw(T ). If a ∈ I (gU) then (gO)−1(a) ∈ I (U) because Y
is G-stable, so a ·gM(m) = gM((gO)−1(a) ·m) = 0 for all m ∈M(U)[I (U)]. Thus

gM mapsM(U)[I (U)] intoM(gU)[I (gU)], and we can therefore define gι
\
∗M(U)

to be the restriction of gM(U) to (ι\∗M)(U) ⊂M(U). Being the restriction of the

continuous map gM(U), gι
\
∗M(U) is continuous. We leave it to the reader to check

that in this way ι\∗M becomes a G-equivariant ι∗D-module on X. It follows that
ι\M is a locally Fréchet G-equivariant D-module on Y.

Because of the local nature of rCX/G — see [1, Definition 3.6.7] — as in the
proof of [3, Theorem 6.10(a)], we can now reduce to the case where X ∈ B and G

is X-good in order to show that ι\M ∈ rCY/G. Let T := ÙD(X, G), S := ÙD(Y, G),
M := M(X) and I := I (X); then M ∈ rCT by [1, Theorem 4.4.3] and therefore
M [I] ∈ rCS by Proposition 3.3.12. Let X′ be an affinoid subdomain of X, write
Y′ := X′∩Y and choose any open subgroup H of GX′ . BecauseM is supported on
Y, we know that M = M∞(I) by Proposition 3.4.14. Then by Proposition 3.3.14,

the natural right ÙD(Y′, H)-linear map

M [I (X)] Ù⊗ÙD(Y,H)

ÙD(Y′, H) −→
Ç
M Ù⊗ÙD(X,H)

ÙD(X′, H)

å
[I (X′)]

is an isomorphism. These maps are compatible with variation in H 6 GX′ ; passing
to the limit over all such open subgroups H induces a D(X′)-linear isomorphism

rPSY(M [I])(Y′)
∼=−→ rPTX(M)(X′)[I (X′)]

which is automatically continuous by [1, Lemma 3.6.5]. We leave it to the reader
to verify that these maps are in turn compatible with restrictions to affinoid sub-
domains X′′ ⊂ X′ as well as with the G-action. They therefore assemble to give a

4by [3, Proposition 6.6]
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right D-G-linear isomorphism of sheaves on Xw

ι∗
rPSY(M [I])

∼=−→ rPTX(M)[I (−)],

and then by [4, Theorem 9.1], to a continuous right DX-G-linear isomorphism

ι∗
r LocSY(M [I])

∼=−→ ι∗ι
\ r LocTX(M)

and hence by [3, Theorem A.1], to a continuous right DY-G-linear isomorphism

LocSY(M [I])
∼=−→ ι\

Ä
r LocTX(M)

ä
.

Because M ∼= r LocTX(M) by [1, Theorem 4.4.3], we conclude that ι\M ∈ rCY/G.

The functorial nature of M 7→ ι\M is clear. �

The classical definition of the direct image for D-modules is easier to define for
right D-modules — see, for example, [15, p. 22]. It is for this reason that we
establish the Kashiwara equivalence for right D-modules in the first instance, and
then deduce the Kashiwara equivalence for left D-modules.

Here is our Kashiwara equivalence for equivariant right D-modules.

Theorem 3.4.16. Let ι : Y ↪→ X be the inclusion of a smooth, Zariski closed
subset Y into the smooth rigid analytic space X. Let G be a p-adic Lie group
acting continuously on X and stabilising Y. Then the functors

ι+ : rCY/G → rCYX/G and ι\ : rCYX/G →
rCY/G

are mutually inverse equivalences of categories.

Proof. The functors ι+ and ι\ were constructed in Proposition 3.4.12 and Theorem
3.4.15, respectively. We will first show that ι+ is left adjoint to ι\; to this end, fix
N ∈ rCY/G and M ∈ rCX/G, and using Lemma 3.4.2(b), for each U ∈ B choose a
U-good open subgroup H(U) of G. [4, Theorem 9.1] gives us an inclusion

HomrCX/G(ι+N ,M) ↪→
∏
U∈B

Homcts
D(U)oH(U) ((ι+N )(U),M(U))

whose image consists of all tuples (αU)U∈B that commute with the restriction and
G-equivariant maps in ι+N andM. Similarly, by [3, Theorem A.1] and [4, Theorem
9.1] there is an inclusion

HomrCY/G(N , ι\M) ↪→
∏
U∈B

Homcts
D(U∩Y)oH(U)

(
N (U ∩Y), (ι\∗M)(U)

)
whose image consists of all tuples (βU)U∈B that commute with the restriction and

G-equivariant maps in ι∗N and ι\∗M.
Fix U ∈ B, write V := U ∩ Y, N := N (V), M := M(U), H := H(U) and

I := I(U) so that (ι\∗M)(U) = M [I]. By Corollary 3.4.8, there is a bijection

(22) Homcts
D(U)oH ((ι+N )(U),M(U)) ∼= Homcts

D(U)oH (M [U, H],M) .

Now M [U, H] is a coadmissible right ÙD(U, H)-module by Definition 3.4.3, whereas

M is a coadmissible right ÙD(U, H)-module by [1, Theorem 4.4.3], so

(23) Homcts
D(U)oH (M [U, H],M) = HomÙD(U,H)

(M [U, H],M)

and similarly it follows from Proposition 3.3.12 that

(24) Homcts
D(U∩Y)oH

(
N (U ∩Y), (ι\∗M)(U)

)
= HomÙD(V,H)

(N,M [I]) .
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Now, as in the proof of [3, Theorem 6.10(b)], we can define

ΦU : HomÙD(U,H)
(M [U, H],M) −→ HomÙD(V,H)

(N,M [I])

by the formula ΦU(α)(x) = α(xÙ⊗1) for all x ∈ N . Then ΦU is injective because

M [U, H] is generated by the image of N as a right ÙD(U, H)-module, and the

universal property of Ù⊗ implies that it is in fact bijective. Combining ΦU with the
bijections (22), (23) and (24) gives us a canonical bijection

Homcts
D(U)oH(U) ((ι+N )(U),M(U))

∼=−→
ΨU

Homcts
D(U∩Y)oH(U)

(
N (U ∩Y), (ι\∗M)(U)

)
and therefore a bijection∏

U∈B
Homcts

D(U)oH(U) ((ι+N )(U),M(U))

∼=Ψ:=
∏

U∈B
ΨU

��∏
U∈B

Homcts
D(U∩Y)oH(U)

Ä
N (U ∩Y), (ι\∗M)(U)

ä
.

We leave it to the reader to check that Ψ and Ψ−1 send morphisms of G-equivariant
sheaves to morphisms of G-equivariant sheaves. Thus we obtain a bijection

Ψ : HomrCX/G(ι+N ,M)
∼=−→ HomrCY/G(N , ι\M).

It can also be checked that Ψ does not depend on the choice of U-good open
subgroups H(U), and that it is functorial in N ∈ rCY/G and M∈ rCX/G.

We can now use [3, Proposition 4.10] to conclude that in fact these two functors
are mutually inverse equivalences of categories. To do this, follow the proof of [3,
Theorem 6.10(c)], replacing [3, Theorem 6.7] by Proposition 3.4.14 and [3, Theorem
5.9(c)] by Theorem 3.3.13. �

We can now finally prove the Kashiwara equivalence, Theorem B, for equivariant
D-modules on rigid analytic spaces.

Theorem 3.4.17. Let ι : Y ↪→ X be the inclusion of a smooth, Zariski closed
subset Y into the smooth rigid analytic space X. Let G be a p-adic Lie group
acting continuously on X and stabilising Y. Then the functors

ι+ : CY/G → CYX/G, N 7→ HomOX

Å
ΩX, ι+(ΩY ⊗

OY

N )

ã
and

ι\ : CYX/G → CY/G, M 7→ HomOY

Å
ΩY, ι

\ (ΩX ⊗
OX

M)

ã
are mutually inverse equivalences of abelian categories.

Proof. This follows from Theorem 3.1.15 and Theorem 3.4.16, once we observe that
the side-switching functors preserve the condition of being supported on Y. �

We conclude §3 by using various parts of the proof of Theorem B to give the
following interesting example.

Example 3.4.18. Theorem A may fail if the regularity assumption (c) on the
G-orbit of Y is omitted.
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Proof. Let X = SpK〈x, y〉 be the two-dimensional affinoid polydisc, let Y :=
V (y) ⊂ X be a Zariski closed subset of dimension 1 and let Z := V (x, y) ⊂ Y be a

closed point inside Y, so that we have Z ⊂ Y ⊂ X. Let G := 〈g〉 be a pro-p-cyclic
group acting on X via the rule

gλ · (a, b) = (a, b+ pλa) for all λ ∈ Zp.

Z is a G-stable subset of X, however Y is not G-stable and in fact its stabiliser GY

is trivial: if gλ stabilises Y then gλ ·(1, 0) = (1, pλ) must lie in Y which forces λ = 0.
All conditions of Theorem A are satisfied for (X,Y, G), except for (c): since Z ⊂ Y
is G-stable, it is contained in the intersection of any two distinct G-translates of Y.

Let k : Z ↪→ X be the closed embedding. Since Z is just a single G-stable point,

the algebra ÙD(Z, G) is isomorphic to the algebra of smooth distributions D∞(G,K).
Using Proposition 3.4.12 we can now form the object

M := k+

(
r Loc

ÙD(Z,G)
Z

)
∈ rCZX/G.

Since Z ⊂ Y ⊂ GY, we can also view M as being an object of rCGY
X/G. We claim

that H0
Y(M) fails to lie in CYX/GY

.

SinceM is already known to be supported on Z ⊂ Y, we haveH0
Y(M) =M as a

locally Fréchet D-module on X. Suppose for a contradiction thatH0
Y(M) ∈ CYX/GY

.

Then M ∈ CX because GY = 1, and M := M(X) has to be a coadmissible rightÙD(X)-module by the right-module version of [1, Theorem 4.4.3]. Let I := I (X) =
〈x, y〉 be the ideal of Z in O(X). Because M is supported on Z, we know that
M = M∞[I] by Proposition 3.4.14. Then M [I] has to be a coadmissible rightÙD(Z)-module, by Proposition 3.3.12 applied with G = 1 and with Z in place of Y.

Since Z is a single point, ÙD(Z) = K and coadmissible ÙD(Z)-modules are necessarily
finite-dimensional K-vector spaces. However, by Definitions 3.4.5 and 3.4.3,

M ∼= M [X, G] ∼= ÙD(Z, G) Ù⊗ÙD(Z,G)

ÙD(X, G)

I · ÙD(X, G)
∼=
ÙD(X, G)

I · ÙD(X, G)
.

We can now use Theorem 3.3.13 to see that M [I] ∼= ÙD(Z, G), which is not a finite-
dimensional K-vector space because G is an infinite group. �

Note that in this example the triple (X,Y, G) satisfies the LSC by Corollary
2.5.18. Since H0

Y(M) fails to lie in CYX/GY
, this shows that the G-regularity condi-

tion on Y cannot be omitted from either Theorem 2.5.7 or Theorem 2.4.7.

Remark 3.4.19. In fact, the induction functor indGB : CX/B → CX/G is not an
equivalence of categories in general, because it fails to preserve simple objects. In
the above example, the side-switch M′ of M is isomorphic to indG1 (k+K), where

k+K is the non-equivariant delta-function supported at Z. Writing R := ÙD(X) and

S := ÙD(X, G), we have (k+K)(X) ∼= R/(Rx + Ry) is a simple R-module by the
Kashiwara equivalence, Theorem B. However, M′(X) ∼= S ⊗R (R/(Rx + Ry)) ∼=
S/(Sx + Sy) admits S/ (S(g − 1) + Sx+ Sy) as a proper non-zero quotient and
therefore fails to be a simple S-module.
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4. Examples of regular orbits of positive dimension

4.1. The twisted cubic. Throughout §4.1, all algebraic varieties are assumed to
be defined over an algebraically closed base field k. Following the traditional abuse
of notation, we will confuse them with their corresponding sets of k-points.

We assume throughout that G is an affine algebraic group acting morphically on
a projective variety X, and that Y is a Zariski closed subset of X.

Definition 4.1.1. We define the intersection obstruction of Y to be

ZY := {g ∈ G : Y ∩ gY 6= ∅}.

It is clear that ZY contains the stabiliser StabG(Y ) of Y in G, and ZY =
StabG(Y ) if and only if the G-orbit of Y is regular in X in the sense of Defini-
tion 2.1.8.

Lemma 4.1.2. ZY is a Zariski closed subset of G.

Proof. Let a : G×X → X be the action map, and let Ỹ := (G×Y )∩a−1(Y ). Then

Ỹ is a Zariski closed subset of G ×X, and since Ỹ = {(g, y) ∈ G × Y : g · y ∈ Y }
we see that the image p(Ỹ ) of Ỹ in X under the projection map p : G × X → G
is exactly ZY . Since X is a projective variety, its structure map X → Spec(k) is
proper by [13, Theorem II.4.9], so in particular it is universally closed. So by [13,
Definition on p.100], the projection map p : G × X → X is closed, and therefore

p(Ỹ ) = ZY is closed in X. �

Definition 4.1.3. We define the core of the intersection obstruction to be

Z◦Y :=
⋂
g∈G

gZY g−1.

This is a union of conjugacy classes in G and one might hope this core to be just
{1}, at least when the group G is simple. Unfortunately, this is not true in general
as our next results show.

Proposition 4.1.4. Suppose that G = GLn+1(k) acting naturally on X = Pn(k)
and that dimY > 1. Then h ∈ ZY whenever h ∈ G and rk(h− 1) 6 1.

Proof. By passing to an irreducible component of Y of positive dimension, we
may assume that Y is irreducible. Let W = kn+1 and A = Symk(W ), so that
Pn = Proj(A) and G acts naturally on A. The closed subvariety Y of X is the
vanishing set V (I) of some radical homogeneous ideal I of A; since Y is irreducible
and dimY > 1, we see that A/I is a domain of Krull dimension at least 2. Let
h ∈ G be such that rk(h − 1) 6 1 and let f ∈ W span the image of h − 1. Then
(h − 1)A ⊆ Af , and therefore I + hI = I + (h − 1)I ⊆ I + Af. The image of f
in A/I is a homogeneous element of degree one in this N-graded domain. Hence
Kdim(A/(I + Af)) > Kdim(A/I) − 1 > 1 by [5, Proposition 11.3]. Therefore the
non-empty set V (I +Af) is contained in Y ∩ hY = V (I + hI). �

Corollary 4.1.5. With the notation of Proposition 4.1.4, the core of the intersec-
tion obstruction Z◦Y always contains {h ∈ G : rk(h− 1) 6 1}.

Proof. By Proposition 4.1.4, {h ∈ G : rk(h− 1) 6 1} ⊆ ZgY for every g ∈ G. But
h ∈ ZgY ⇔ gY ∩ hgY 6= ∅ ⇔ g−1hg ∈ ZY ⇔ h ∈ gZY g−1, so ZgY = gZY g−1. �
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We will now explicitly compute the core of the intersection obstruction Z◦Y in
the case where Y is the twisted cubic curve in P3(k). Recall that Y can be defined
as the image of the degree 3 Veronese embedding P1(k)→ P3(k) given by [a, b] 7→
[a3, a2b, ab2, b3], or equivalently as the closed subvariety of P3(k) cut out by the
equations x0x2 = x2

1, x1x3 = x2
2, x0x3 = x1x2. Our first task will be to show

that for sufficiently many matrices in x ∈ G := GL4(k) in Jordan normal form,
xC ∩ C = ∅ for some G-translate C of Y .

Let a, b, c ∈ {0, 1}, α, β, γ ∈ k×, and d, r ∈ k be parameters. For these we define
the following matrices in G:

x :=

Ü
1 0 0 0
a α 0 0
0 b β 0
0 0 c γ

ê
and hd,r :=

Ü
1 0 0 r
0 1 0 0
0 0 1 0
0 0 d 1

ê
Lemma 4.1.6. Let Y be the twisted cubic in P3(k). Suppose that

(a) c = 1 whenever β = γ, and
(b) either a 6= 0, or b 6= 0, or α 6= 1 or β 6= 1.

Then there exist d ∈ k× and r ∈ k such that

xhd,rY ∩ hd,rY = ∅.

Proof. Fix a coordinate t on P1(k). Let ψd,r : P1(k)→ P3(k) be given by ψd,r(t) =
[1, t, dt3 + t2, t3 + r] if t 6= ∞, and ψd,r(∞) = [0, 0, d, 1]. Then hd,rY is the im-
age of ψd,r. Note that xψd,r(∞) = [0, 0, βd, cd + γ]; this can only lie in hd,rY
if [0, 0, βd, cd + γ] = [0, 0, d, 1], or equivalently, if βd = d(cd + γ). Since c = 1
whenever β 6= γ by assumption (a), by restricting d to satisfy d 6= 0, β − γ, we
see that xψd,r(∞) /∈ hd,r(Y ). Thus, if d 6= 0, β − γ and v ∈ xψd,rY ∩ ψd,rY , then
v = xψd,r(t) = ψd,r(s) for some t, s 6=∞.

We now have to show that under the given hypotheses on a, b, c, α, β, γ, the
system of simultaneous equations in s, t ∈ k

s = αt+ a
ds3 + s2 = β(dt3 + t2) + bt
s3 + r = c(dt3 + t2) + γ(t3 + r)

has no solutions for at least one value of (d, r). Substituting the first of these
equations into the second gives us a polynomial equation in t of degree at most 3,
whose leading coefficient is d(α3 − β). If α3 6= β, choose any d ∈ k\{0, β − γ} to
see that t can take at most three values. Since γ 6= 0, we can choose r in such a
way that the third equation does not hold for any of these values of t.

Thus we can assume that α3 = β; in this case the coefficient of t2 in the second
equation is 3dα2a−α3 +α2. As long as 3a 6= 0, we can choose d to ensure that this
coefficient is non-zero. Then t can take at most two values, and again as γ 6= 0 we
can choose r so that the third equation fails for either of those values of t. So, we
may assume that 3a = α3 − α2 = 0, i.e. 3a = 0 and α = 1. Then β = α3 = 1 also.

In the case char(k) 6= 3 we must have a = 0, so our assumption (b) implies that
b = 1 and the second equation reduces to t = 0. In the case char(k) = 3, the second
equation reduces to (2a − b)t + da3 + a2 = 0. If a = 0 then b = 1 by assumption
and 2a − b 6= 0, and if a = 1 then 2a − b 6= 0 for either value of b. In all of these
cases, the values of s and t are uniquely determined by the first two equations. We
can now again choose r to ensure that the third equation does not hold. �
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Proposition 4.1.7. Let g ∈ G be such that that rk(µ−1g− 1) > 2 for any µ ∈ k×.
Then we can find a, b, c ∈ {0, 1} and α, β, γ ∈ k× satisfying conditions (a) and (b)
of Lemma 4.1.6, and µ ∈ k×, such that µ−1g is G-conjugate to

x =

Ü
1 0 0 0
a α 0 0
0 b β 0
0 0 c γ

ê
.

Proof. Amongst all possible eigenvalues of g with largest possible algebraic mul-
tiplicity, choose µ to be an eigenvalue of largest possible geometric multiplicity.
Let y be the Jordan normal form of µ−1g so that y is G-conjugate to µ−1g. Let
a, b, c ∈ {0, 1} be the subdiagonal entries of y and let 1, α, β, γ be the eigenvalues of
y. We can take x = y unless either condition (a) or condition (b) of Lemma 4.1.6
fails. Suppose for a contradiction that condition (b) fails. Then α = β = 1 and
a = b = 0. Because y is in Jordan normal form, either γ = 1, or γ 6= 1 and c = 0.
In both of these cases, rk(y − 1) 6 1, and hence rk(µ−1g − 1) 6 1, a contradiction.

We are left to consider the case where condition (a) fails. In this case, β = γ and
c = 0. Because 1 is the eigenvalue of y with largest possible algebraic multiplicity
by construction, the diagonal entries of y are necessarily 1, 1, β, β.

Suppose first that β = 1. Because rk(y − 1) > 2 and c = 0, we must have
a = b = 1. Then µ−1g is G-conjugate toÜ

1 0 0 0
0 1 0 0
0 1 1 0
0 0 1 1

ê
and this matrix satisfies the conditions of Lemma 4.1.6.

Suppose now that β 6= 1. Then b = 0 because y is in Jordan normal form.
Because c = 0, the geometric multiplicity of β is 2, and because the geometric
multiplicity of µ was chosen to be largest possible, we must also have a = 0. But
then y is G-conjugate to Ü

1 0 0 0
0 β 0 0
0 0 1 0
0 0 0 β

ê
which also satisfies the conditions of Lemma 4.1.6. �

Theorem 4.1.8. Let G = GL4(k) acting naturally on P3(k) and let Y ⊂ P3(k) be
the twisted cubic. Then the core of the intersection obstruction of Y is

Z◦Y = {g ∈ G : rk(g − 1) 6 1} · k×.

Proof. Let g ∈ G be such that rk(g − 1) 6 1, and let µ ∈ k×. The actions of µg
and g on P3(k) coincide, and g ∈ Z◦Y by Corollary 4.1.5. Hence µg ∈ Z◦Y also.

Conversely, suppose rk(µ−1g−1) > 2 for any µ ∈ k×. Then by Proposition 4.1.7,
µ−1g is G-conjugate to a matrix x in Jordan normal form which satisfies conditions
(a) and (b) of Lemma 4.1.6. So, by Lemma 4.1.6, xhY ∩ hY = ∅ for some h ∈ G.
This means that x /∈ Z◦Y . Because Z◦Y is stable under G-conjugation as well as
multiplication by scalars inside G, we conclude that g /∈ Z◦Y . �
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4.2. Avoiding intersections for groups of units of p-adic division algebras.
Throughout §4.2 we assume that we are given field extensions of Qp as follows:

Qp ⊆ L ⊂ k ⊂ K
where L/Qp is finite, k is an algebraic closure of L, and K is a complete non-
archimedean field extension of k.

Let G be an affine group scheme over L. We will first establish some notation
involving the functorial conjugation representation [17, I.2.6] of the affine group
scheme G on its coordinate ring A := O(G).

For every L-algebra R, the group of R-points G(R) of G acts on itself by conju-
gation, and hence also on A⊗LR = O(G⊗LR) by functoriality: for each L-algebra
R, r ∈ R, f ∈ A and g, h ∈ G(R) we have

(25) (g · (f ⊗ r)) (h) = rf(g−1hg)

Let ρ : A → A ⊗L A be the corresponding comodule map, and let {ci} be a basis
for A := O(G) as an L-vector space. Then for every f ∈ A and every i ∈ I there is
a unique ρi(f) ∈ A such that for all f ∈ A we have

ρ(f) =
∑
i

ρi(f)⊗ ci.

With this notation in place, formula [17, I.2.8(1)] now implies that

(26) g · (f ⊗ 1) =
∑
i

ρi(f) ci(g)

for each L-algebra R, g ∈ G(R) and each f ∈ A. Combining (25) and (26), we
obtain

(27) (f ⊗ r)(g−1hg) = (g · (f ⊗ r)) (h) = r
∑
i

ρi(f)(h) ci(g)

for each f ∈ A, each L-algebra R, each r ∈ R and g, h ∈ G(R).

Definition 4.2.1. We say that x ∈ G(K) is generic if the L-algebra homomorphism
x : O(G)→ K is injective.

Generic points exist only when G is connected, however this is not a serious
restriction to impose in practice. Our next result explains why we are interested in
the core of the intersection obstruction.

Theorem 4.2.2. Suppose that G is connected and of finite type over L and that
G := G(k) acts morphically on the projective algebraic variety X over k. Let Y be
a Zariski closed subset of X. Then for every generic x ∈ G(K), we have

x ZY (K) x−1 ∩ G(L) ⊂ Z◦Y .

Proof. Because G is an algebraic affine group scheme over the field L of character-
istic zero, it follows from [29, Theorems 6.6 and 11.4] that A⊗L k is a domain. The
L-algebra homomorphism x : A → K extends uniquely to an k-algebra homomor-
phism x : A⊗L k → K. Suppose for a contradiction that kerx 6= 0. Since A⊗L k
is integral over A, and since it is a domain, it follows that kerx = A ∩ kerx 6= 0.
This contradicts our assumption on x, so in fact kerx = 0.

Let h ∈ x ZY (K) x−1 ∩ G(L); we must show that h ∈ Z◦Y . Let J be the
ideal of functions in O(G ⊗L k) = A ⊗L k vanishing on ZY and fix f ∈ J . Then
f(x−1hx) = 0 because x−1hx ∈ ZY (K). Choose a basis {ζj} for k over L. Then



INDUCTION EQUIVALENCE FOR EQUIVARIANT D-MODULES 69

{1 ⊗ ζj} is a basis for O(G ⊗L k) = A ⊗L k as an A-module and we can write
f =

∑
j fj ⊗ ζj for some unique fj ∈ A. Applying (27) we obtain

0 = f(x−1hx) =
∑
j(fj ⊗ ζj)(x−1hx) =

=
∑
i,j ζj ρi(fj)(h) ci(x) = x

(∑
i,j ρi(fj)(h) ci ⊗ ζj

)
.

Because h ∈ G(L) and ρi(fj) ∈ A for each i, j, we see that ρi(fj)(h) ∈ L for all i, j.
Since kerx = 0 and {ci ⊗ ζj} is linearly independent over L, it follows that

ρi(fj)(h) = 0 for all i, j.

Substituting this information back into (27) we deduce that

f(g−1hg) = 0 for all f ∈ J, g ∈ G = G(k).

By Lemma 4.1.2, ZY is a Zariski closed subset of G, so V (J) = ZY . Thus g−1hg ∈
ZY for all g ∈ G, which means h ∈ Z◦Y . �

We can now present our main method of constructing examples of regular orbits
of analytic subvarieties of positive dimension.

Corollary 4.2.3. Let G be an affine algebraic group over L, let G := G(k) act
morphically on the projective algebraic k-variety X and let Y be a Zariski closed
subset of X. Let X and Y be the rigid analytifications of the base change of X
and Y to K, respectively. Suppose further that

(a) G is connected and of finite type over L, and
(b) Z◦Y ∩G(L) acts trivially on X.

Then for every generic x ∈ G(K), the G(L)-orbit of xY is regular in X.

Proof. Suppose that h ∈ G(L) is such that hxY ∩ xY 6= ∅. Then x−1hxY (K) ∩
Y (K) 6= ∅, so x−1hx ∈ ZY (K) and h ∈ xZY (K)x−1∩G(L). Assumption (a) allows
us to apply Theorem 4.2.2, which implies that h ∈ Z◦Y ∩ G(L). Now assumption
(b) tells us that h acts trivially on X and hence also on X, so necessarily we must
have hxY = xY. �

We will now give an example where condition (b) of Corollary 4.2.3 holds.

Lemma 4.2.4. Let D be a division algebra of degree 4 over L. Fix an isomorphism
D ⊗L k ∼= M4(k) and regard D× as a subgroup of GL4(k). Then(

{g ∈ GL4(k) : rk(g − 1) 6 1} · k×
)
∩D× = L×.

Proof. Suppose that g ∈ D× and µ ∈ k× are such that rk(µ−1g − 1) 6 1. Let
χg(t) be the reduced characteristic polynomial of g. Since rk(g − µ) 6 1, we see
that χg(t) = (t − µ)3(t − λ) for some λ ∈ k×. Now χg(t) has coefficients in L by
[6, Lemma IV.2.1], and its irreducible factors in L[t] have no repeated roots in k
because char(L) = 0. Therefore at least one of these factors must be t − µ which
forces µ ∈ L. Looking at the constant term of χg(t), we deduce that λ ∈ L also.
Since χg(g) = 0 by the Cayley-Hamilton Theorem [6, Lemma IV.2.3(5)], g ∈ D
satisfies the equation (g − µ)3(g − λ) = 0. Because D is a division algebra by
assumption, it follows that g = µ or g = λ. In either case, g ∈ L× as required. �

Proof of Theorem D. It is easy to see that ZY = ZC . Now Theorem 4.1.8 tells us
that Z◦Y = Z◦C = {g ∈ G : rk(g− 1) 6 1} · k× , so Z◦Y ∩D× = L× by Lemma 4.2.4.
Scalars in D× act trivially on the flag variety X, so condition (b) of Corollary 4.2.3
is satisfied. Condition (a) is also satisfied because D× is known to be the group
L-points of a connected L-form G of GL4. Now apply Corollary 4.2.3. �
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