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1 Introduction

Let G be a compact p-adic Lie group. In the recent years, there has been an
increased amount of interest in completed group algebras (Iwasawa algebras)

ΛG = Zp[[G]] := lim
←−N/oGZp[G/N ],

for example, because of their connections with number theory and arithmetic
geometry; see the paper by Coates, Schneider and Sujatha ([4]) for more details.

When G is a uniform pro-p group, ΛG is a concrete example of a complete
local Noetherian ring (noncommutative, in general) with good homological prop-
erties: it is known that ΛG has finite global dimension and is an Auslander regu-
lar ring. Thus, ΛG falls into the class of rings studied by Brown, Hajarnavis and
MacEacharn in [1]. There they consider various properties of Noetherian rings
R of finite global dimension, including the Krull(-Gabriel-Rentschler) dimension
K(R) - a module-theoretic dimension which measures how far R is from being
Artinian. They also posed the following question:

Question ([1], Section 5). Let R be a local right Noetherian ring, whose
Jacobson radical satisfies the Artin-Rees property. Is the Krull dimension of R

always equal to the global dimension of R?

In this paper, we address the problem of computing K(ΛG). We establish
lower and upper bounds for K(ΛG) in terms of the Lie algebra g = L(G) of G:

Theorem A. Let λ(g) be the maximum length m of chains 0 = g0 < g1 < . . . <

gm = g of sub-Lie-algebras of g. Then

λ(g) + 1 ≤ K(ΛG) ≤ dim g + 1.

For some groups, the two bounds coincide:

Corollary A. Let r be the solvable radical of g and suppose that the semisimple
part g/r of g is isomorphic to a direct sum of copies of of sl2(Qp). Then K(ΛG) =
dim g + 1.
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We also establish a better upper bound for K(ΛG) when L(G) is simple and
split over Qp:

Theorem B. Let p ≥ 5 and suppose g 6= sl2(Qp) is split simple over Qp with a
Cartan subalgebra t and a Borel subalgebra b. Then

dim b + dim t + 1 ≤ K(ΛG) ≤ dim g < gld(ΛG).

The author believes that dim b + dim t + 1 is the true value of K(ΛG), with
G as above. Applying Theorem B to a particular case allows us to obtain a
negative answer to the question posed above:

Corollary B. Let p ≥ 5 and let G = ker(SL3(Zp) → SL3(Fp)). Then ΛG

is a local right Noetherian ring whose Jacobson radical satisfies the Artin Rees
Property, but

K(ΛG) = 8 < gld(ΛG) = 9.

In addition, we reprove a general result of R. Walker connecting K(R) with
K(R/I) for a certain ring R and a suitable ideal I:

Theorem C (Walker, [10]). Suppose R is right Noetherian and x is a right
regular normal element belonging to the Jacobson radical of R. If K(R) < ∞
then

K(R) = K(R/xR) + 1.

The reader might like to compare this result with the corresponding one on
global dimensions; see Theorem 7.3.7 of [7].

We will denote the completed group algebra of G over Fp by ΩG:

ΩG := lim
←−N/oGFp[G/N ]

Theorem C applies directly to Iwasawa algebras, since it is easy to see that
ΩG

∼= ΛG/pΛG:

Corollary C. K(ΛG) = K(ΩG) + 1.

The author would like to thank his supervisor, C.J.B. Brookes for many
helpful conversations. Financial assistance from the EPSRC is also gratefully
acknowledged.

Notation. All rings are assumed to be associative and to possess a unit, but are
not necessarily commutative. J(R) always denotes the Jacobson radical of the
ring R. All modules are right modules, unless stated otherwise; Mod-R denotes
the category of all right modules over R. The symbol p will always mean a fixed
prime.

2



2 Preliminaries

2.1 Filtrations

We will conform with the definitions and notations used in the book [6] through-
out this paper. In this section, we briefly recall the most relevant concepts.

A filtration on a ring R is a set of additive subgroups FR = {FnR : n ∈ Z},
satisfying 1 ∈ F0R, FnR ⊆ Fn+1R, FnR.FmR ⊆ Fn+mR for all n, m ∈ Z, and
∪n∈ZFnR = R. If R has a filtration, R is said to be a filtered ring. In what
follows, we assume R is a filtered ring.

Let M be an R-module. A filtration on M is a set of additive subgroups of
M , FM = {FnM : n ∈ Z}, satisfying FnM ⊆ Fn+1M , FnM.FmR ⊆ Fn+mM

for all n, m ∈ Z and ∪n∈ZFnM = M . If M has a filtration, M is said to be a
filtered R-module. The filtration on M is said to be separated if ∩n∈ZFnM = 0.

Let I be a two-sided ideal of R. A notable example of a filtration on R is
the I-adic filtration given by FnR := I−n if n ≤ 0 and FnR = R otherwise.

The associated graded ring of R is defined to be grR = ⊕n∈ZFnR/Fn−1R.
If x ∈ R, the symbol of x in grR is σ(x) := x + Fn−1R ∈ FnR/Fn−1R, where n

is such that x ∈ FnR\Fn−1R. If x ∈ ∩n∈ZFnR, define σ(x) = 0.
The Rees ring of R is defined to be R̃ =

⊕
n∈Z FnR, which we view to be a

subring of the Laurent polynomial ring R[t, t−1].
The associated graded module and Rees module of a filtered R-module M

are defined similarly. We say that the filtration FM on M is good if and only
if M̃ is a finitely generated R̃-module. Note that a finitely generated R-module
M always possesses a good filtration, for example the deduced filtration given
by FnM = M.FnR for n ∈ Z.

2.2 Iwasawa algebras

By a well-known result of Lazard (see, for example, Theorem 8.36 of [5]), any
compact p-adic Lie group G has an open normal uniform pro-p subgroup H.
Since H has finite index in G, any open normal subgroup of H contains an open
normal subgroup of G. Hence

ΛH = lim
←−N∈CZp[H/N ] and ΛG = lim

←−N∈CZp[G/N ],

where C = {N /o G : N ⊆ H}. It follows that ΛG is a free right and left
ΛH -module of finite rank (an appropriate transversal for H in G will serve as a
basis), so K(ΛG) = K(ΛH) by Corollary 6.5.3 of [7].
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Thus restricting ourselves to the class of uniform pro-p groups does not
lose any generality and we will assume that G denotes a uniform pro-p group
throughout this paper. For more information about these groups, see the excel-
lent book [5].

Following [5], we will write LG for the Zp-Lie algebra of G ([5], 4.29) and
L(G) = g for the Qp-Lie algebra of G ([5], 9.5).

The following properties of ΛG and ΩG are more or less well known:

Lemma 2.1. Let R = ΛG or ΩG and let d = dim G. Then:

(i) R is a local right Noetherian ring with maximal ideal J = ker(R � Fp).

(ii) R is complete with respect to the J-adic filtration.

(iii) grJ ΩG
∼= Fp[X1, . . . , Xd].

(iv) gld(ΛG) = gld(ΩG) + 1 = dim G + 1.

(v) J satisfies the right (and left) Artin Rees Property.

Proof. Proofs of (i),(ii) and (iii) can be found in Chapter 7 of [5]. Part (iv) is
established in [2]. By Theorem 2.2 of Chapter II of [6], the J-adic filtration has
the Artin Rees property, which is easily seen to imply that the ideal J has the
Artin Rees Property in the sense of 4.2.3 of [7].

Henceforth, JG will always denote the maximal ideal of ΩG. We will require
the following characterization of Artinian modules of ΩG:

Proposition 2.2. Let G be a uniform pro-p group with lower p-series {Gn, n ≥
1}. Let M = ΩG/I be a cyclic ΩG-module. The following are equivalent:

(i) M is Artinian.

(ii) Jn
G ⊆ I for some n ∈ N.

(iii) JGm ⊆ I for some m ≥ 1.

(iv) M is finite dimensional over Fp.

Proof. Note that by Theorem 3.6 of [5], Gn is uniform for each n ≥ 1.
(i) ⇒ (ii). As ΩG is Noetherian, M has finite length. Also ΩG/JG is the

unique simple ΩG-module, as ΩG is local. Hence MJn
G = 0.

(ii) ⇒ (iii). Suppose Jn
G ⊆ I. Choose m such that pm−1 ≥ n. Then

gpm−1 − 1 = (g − 1)pm−1 ∈ Jn
G ⊆ I for all g ∈ G. As Gm = Gpm−1

, we see that
Gm − 1 ⊆ I so JGm

⊆ I as required.
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(iii) ⇒ (iv). If JGm ⊆ I, JGmΩG ⊆ I as I is a right ideal of ΩG. Hence
Fp[G/Gm] ∼= ΩG/JGm

ΩG � ΩG/I = M . Since |G : Gm| is finite, the result
follows.

(iv) ⇒ (i). This is clear.

2.3 Krull dimension

The definitions and basic facts about the Krull(-Gabriel-Rentschler) dimension
can be found in Chapter 6 of [7]. Recall that an R-module M is said to be
n-critical if K(M) = n and K(M/N) < n for all nonzero submodules N of M ;
thus a 0-critical module is nothing other than a simple module.

The following (well known) Lemma is the basis for many arguments involving
the Krull dimension. Since we shall not require the general case of ordinal-valued
Krull dimensions, we restrict ourselves to the case when the dimension is finite.
We write Lat(R) for the lattice of all right ideals of a ring R.

Lemma 2.3. Let R and S be rings, with R Noetherian of finite Krull dimension.
Let f : Lat(R) → Lat(S) be an increasing function and let k, n ∈ N, with
KR(R) ≥ n. Let X and Y be right ideals of R with Y ⊆ X and suppose
KR(X/Y )+k ≤ KS(f(X)/f(Y )) whenever X/Y is n-critical. Then KR(X/Y )+
k ≤ KS(f(X)/f(Y )) whenever KR(X/Y ) ≥ n.

In particular, KR(R) + k ≤ KS(S).

Proof. This follows from [7], 6.1.17.

3 Main Results

We now proceed to prove the main theorems stated in the introduction. We
prove Theorem C in Section 3.1; the argument is a straightforward induction
based on Nakayama’s Lemma and is different to the one used by Walker in [10].

Theorem A is proved in Section 3.2, where we also consider the length func-
tion λ(g) of a finite dimensional Lie algebra g. It is also shown that Corollary
A follows from Theorem A.

The remainder of the paper is devoted to proving Theorem B.

3.1 Reduction to ΩG

Let R be a ring. Suppose x is a normal element of R and M is an R-module.
It’s clear that Mx is an R-submodule of M ; recall that M is said to be x-torsion
free if mx = 0 ⇒ m = 0 for all m ∈ M .
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The following result summarizes various elementary properties of modules.

Lemma 3.1. Let x be a normal element of a ring R and let B ⊆ A be right
R-modules with Krull dimension. Then:

(a) If A/B and B are x-torsion free then A is also x-torsion free.

(b) If A/B is x-torsion free then Ax ∩B = Bx and K(B/Bx) ≤ K(A/Ax).

(c) If A is x-torsion free then K(A/Ax) = K(Axn−1/Axn) = K(A/Axn) for all
n ≥ 1.

The main step comes next.

Lemma 3.2. Let R be a right Noetherian ring, x a normal element of J(R).
Suppose M is a finitely generated x-torsion free R-module with finite Krull di-
mension. Then K(M/Mx) ≥ K(M)− 1.

Proof. Proceed by induction on K(M) = β. Note that β ≥ 1 since M is x-
torsion free. Since x ∈ J(R), the base case β = 1 follows from Nakayama’s
Lemma. We can find a chain M = M1 > M2 > . . . > Mk > . . . such that
Mi/Mi+1 is (β − 1)-critical for all i ≥ 1.

Case 1: ∃i ≥ 1 such that Mi/Mi+1 is not x-torsion free.
Pick a least such i. Let N/Mi+1 be the x-torsion part of Mi/Mi+1; thus

Mi/N is x-torsion free.
As each Mj/Mj+1 is x-torsion free for all j < i, M/N is also x-torsion free

by Lemma 3.1(a). Hence, by Lemma 3.1(b), K(M/Mx) ≥ K(N/Nx).
Since M is x-torsion free and 0 < N ⊆ M , N is also x-torsion free. Hence,

by Lemma 3.1 (c), K(N/Nx) = K(N/Nxn) for all n ≥ 1.
As M is Noetherian and N/Mi+1 is x-torsion, there exists n ≥ 1 such

that (N/Mi+1)xn = 0. Hence Nxn ⊆ Mi+1, so N/Nxn � N/Mi+1 and
K(N/Nxn) ≥ K(N/Mi+1).

Since N/Mi+1 is a nonzero submodule of the (β − 1)-critical Mi/Mi+1, we
deduce that K(N/Mi+1) = β − 1 = K(M)− 1. The result follows.

Case 2: Mi/Mi+1 is x-torsion free ∀i ≥ 1.
Consider the chain

M = Mx + M1 ≥ Mx + M2 ≥ . . . ≥ Mx. (†)

Now, Mi/Mi+1 is x-torsion free and has Krull dimension β−1, so by induction,
K((Mi/Mi+1)/(Mi/Mi+1).x) ≥ β − 2. But

Mi/Mi+1

(Mi/Mi+1).x
=

Mi/Mi+1

(Mix + Mi+1)/Mi+1

∼=
Mi

Mix + Mi+1
, and
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Mi + Mx

Mi+1 + Mx
∼=

Mi

(Mi+1 + Mx) ∩Mi
=

Mi

Mi+1 + (Mi ∩Mx)
.

Since M/Mi is x-torsion free by Lemma 3.1 (a), Mi∩Mx = Mix by Lemma
3.1(b), so every factor of (†) has Krull dimension ≥ β − 2. Hence K(M/Mx) ≥
β − 1 = K(M)− 1.

Proof of Theorem C. Since x is right regular, RR is x-torsion free. By Lemma
3.1 (c), the chain R > xR > . . . > xkR > . . . has infinitely many factors with
Krull dimension equal to K(R/xR), so K(R) > K(R/xR). The result follows
from Lemma 3.2.

We remark that as x is normal, xR is an ideal of R and so the Krull dimen-
sions of R/xR over R and over the ring R/xR coincide.

3.2 A lower bound for the Krull dimension

Proposition 3.3. Let G be a uniform pro-p group and let H be a closed uniform
subgroup such that |G : H| = ∞. Then:

(i) The induced module M = Fp ⊗ΩH
ΩG is not Artinian over ΩG.

(ii) K(ΩH) < K(ΩG).

Proof. (i) Since Fp
∼= ΩH/JH and since −⊗ΩH

ΩG is flat by Lemma 4.5 of [2],
we see that M ∼= ΩG/JHΩG as right ΩG-modules.

Suppose M is Artinian. Then JGm
⊆ JHΩG for some m ≥ 1, by Proposition

2.2. It is easy to check that (1 + JHΩG)∩G = H for any closed subgroup H of
any profinite group G. Hence

Gm = (1 + JGm
ΩG) ∩G ⊆ (1 + JHΩG) ∩G = H

which forces |G : H| to be finite, a contradiction.
(ii) Consider the increasing function f : Lat(ΩH) → Lat(ΩG), given by

I 7→ I ⊗ΩH
ΩG. Suppose X and Y are right ideals of R such that Y ⊆ X

and such that X/Y is simple. Since ΩH is local, X/Y ∼= Fp so f(X)/f(Y ) ∼=
Fp ⊗ΩH

ΩG
∼= M as ΩG is a flat ΩH -module. As M is not Artinian by part (i),

K(f(X)/f(Y )) ≥ 1, so by Lemma 2.3 K(ΩH) + 1 ≤ K(ΩG), as required.

Note that the analogous proposition for universal enveloping algebras is false:
for example, the Verma module of highest weight zero for g = sl2(C) is Artinian,
and indeed, K(U(g)) = K(U(b)) = 2, where b is a Borel subalgebra of g.

We can now give a proof of the first result stated in the Introduction:
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Proof of Theorem A. By Theorem C, it is sufficient to show λ(g) ≤ K(ΩG) ≤ d,
where d = dim g. First, we show that λ(g) ≤ K(ΩG).

Proceed by induction on λ(g). Let 0 = g0 < g1 < . . . < gk = g be a chain of
maximal length k = λ(g) in g.

We can find a closed uniform subgroup H of G with Lie algebra gk−1. Since
gk−1 < g, |G : H| = ∞.

By the inductive hypothesis, k−1 = λ(gk−1) ≤ K(ΩH). By Proposition 3.3,
K(ΩH) < K(ΩG), so k = λ(g) ≤ K(ΩG).

By Lemma 2.1, we see that ΩG is a complete filtered ring with grΩG
∼=

Fp[X1, . . . , Xd]. It follows from Proposition 7.1.2 of Chapter I of [6] and Corol-
lary 6.4.8 of [7] that K(ΩG) ≤ K(grΩG) = d, as required.

Theorem A stimulates interest in the length λ(g) of a finite dimensional Lie
algebra g. The following facts about this invariant are known:

Proposition 3.4. Let g be a finite dimensional Lie algebra over a field k.

(i) If h is an ideal of g, λ(g) = λ(h) + λ(g/h).

(ii) If g is solvable, λ(g) = dimk(g),

(iii) If g is split semisimple, λ(g) ≥ dim b + dim t, where t and b are some
Cartan and Borel subalgebras of g, respectively.

(iv) λ(sl2(k)) = 3.

Proof. (i)Putting together two chains of maximal length in h and g/h shows
that λ(g) ≥ λ(h) + λ(g/h). The reverse inequality follows by considering the
chains 0 = g0∩h ⊆ . . . ⊆ gi∩h ⊆ . . . ⊆ h and h ⊆ g1+h ⊆ . . . ⊆ gi +h ⊆ . . . ⊆ g

whenever 0 = g0 < . . . < gi < . . . < gn = g is a chain of subalgebras of maximal
length in g.

(ii) This follows directly from (i).
(iii) Let l = dim t. Given a Borel subalgebra b, there are exactly 2l parabolic

subalgebras containing it, corresponding 1-1 with the subsets of the set of simple
roots of g. This correspondence preserves inclusions, so we can find a chain of
subalgebras of length l starting with b. Combining this together with a maximal
chain of length dim b in b gives the result.

(iv) This follows from (iii), since for g = sl2(k), dim t = 1,dim b = 2 and
dim g = 3.

Proof of Corollary A. This now follows directly from Theorem A and Proposi-
tion 3.4.
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3.3 An upper bound

The method of proof of Theorem B is similar in spirit to that used by S. P. Smith
in his proof of the following theorem, providing an analogous better upper bound
for K(U(g)) when g is semisimple:

Theorem 3.5 (Smith). Let g be a complex semisimple Lie algebra. Let 2r +1
be the dimension of the largest Heisenberg Lie algebra contained in g. Then
K(U(g)) ≤ dim g− r − 1.

Proof. See Corollary 4.3 of [8], bearing in mind the comments contained in
section 3.1 of that paper.

Definition 3.6. Let k be a field. The Heisenberg k-Lie algebra of dimension
2r + 1 is defined by the presentation

h2r+1 = k < w, u1, . . . , ur, v1, . . . , vr : [ui, vj ] = δijw, [w, ui] = [w, vi] = 0,

[ui, uj ] = [vi, vj ] = 0 > .

Here δij is the Kronecker delta.
First we establish a useful fact about uniform pro-p groups H with Qp-Lie

algebra isomorphic to a Heisenberg Lie algebra.

Lemma 3.7. Let H be a uniform pro-p group such that L(H) is isomorphic to
h2r+1. Let the centre Z(H) of H be topologically generated by z. Then there
exist x, y ∈ H and k ∈ N such that [x, y] = zpk

.

Proof. By Theorem 9.10 of [5], we may assume that the group law on H is given
by the Campbell-Hausdorff formula on LH . Let (, ) denote the Lie bracket on
L(H) = h2r+1.

Since (LH , (LH , LH)) ⊆ (h2r+1, (h2r+1, h2r+1)) = 0, the group law on LH

given by the Campbell-Hausdorff series reduces to

α ∗ β = α + β +
1
2
(α, β)

for α, β ∈ LH . It’s then easily checked that the group commutator satisfies

[α, β] = α−1 ∗ β−1 ∗ α ∗ β = (α, β). (†)

Now as QpLH = h2r+1 there exists n ∈ N such that pnu1, p
nv1 ∈ LH ,

whence (pnu1, p
nv1) ∈ LH ∩ Qpw = Zpz. Hence (pnu1, p

nv1) = pkλz for some
unit λ ∈ Zp and some k ∈ N, an equation inside LH . We may now take
x = pnλ−1u1, y = pnv1 and apply (†).
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Next we develop some dimension theory for finitely generated ΩG-modules,
where G is an arbitrary uniform pro-p group. Recall that the JG-adic filtration
on ΩG gives rise to a polynomial associated graded ring.

Definition 3.8. Let M be a finitely generated ΩG-module, equipped with some
good filtration FM . The characteristic ideal of M is defined to be

J(M) :=
√

Ann grM.

The graded dimension of M is defined to be

d(M) := K(grΩG/J(M)).

Lemma 4.1.9 of Chapter III of [6] shows that J(M) and hence d(M) does
not depend on the choice of a good filtration for M . It is easy to prove that
d(M) = K(grM) for any good filtration FM on M .

Let h be a Qp-Lie subalgebra of g, the Qp-Lie algebra of G. Let H = h∩LG;
since LG/H injects into g/h which is torsion-free, we see that H is actually a
closed uniform subgroup of G, by Theorem 7.15 of [5].

We will call H the isolated uniform subgroup of G with Qp-Lie algebra h.
The following proposition is the main step in our proof of the upper bound

for K(ΩG). Recall that JG denotes the maximal ideal of ΩG.

Proposition 3.9. Let G be a uniform pro-p group with Qp-Lie algebra g such
that h3 ⊆ g. Let H be the isolated uniform subgroup of G with Lie algebra h3.
Let Z = Z(H) = < z >, say. Let M be a finitely generated ΩG-module such
that d(M) ≤ 1. Then σ(z − 1) ∈ J(M).

Proof. Let A be a uniform subgroup of G with torsion-free LG/LA. Using
Theorem 7.23(ii) of [5] it is easy to check that the subspace filtration on ΩA

induced from the JG-adic filtration on ΩG coincides with the JA-adic filtration.
It follows that the Rees ring Ω̃A of ΩA embeds into Ω̃G and that Ω̃A∩ tΩ̃G =

tΩ̃A, so this embedding induces a natural embedding of graded rings

grΩA = Ω̃A/tΩ̃A ↪→ Ω̃G/tΩ̃G = grΩG.

It’s easy to see that LH/LZ is torsion-free. Since LG/LH is torsion-free by
assumption on H, LG/LZ is also torsion-free so the above discussion applies to
both Z and H.

Now, equip M with a good filtration FM and consider the Rees module M̃ .
This is an Ω̃G-module, so we can view it as an Ω̃H -module by restriction.
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Let S = Ω̃Z − tΩ̃Z . This is a central multiplicatively closed subset of the do-
main Ω̃H , so we may form the localisations Ω̃ZS−1 ↪→ Ω̃HS−1 and the localised
Ω̃H .S−1-module M̃S−1.

Let R = lim
←−

Ω̃ZS−1/tn.Ω̃ZS−1 and let N = lim
←−

M̃S−1/tn.M̃S−1.

It’s clear that N is an R-module. Also, as t is central in Ω̃HS−1, N has the
structure of a Ω̃HS−1-module. In particular, as H embeds into Ω̃HS−1, N is
an H-module.

Now, consider the t-adic filtration on R. It’s easy to see that

R/tR = Ω̃ZS−1/tΩ̃ZS−1 ∼= grΩZ .S̄−1,

where S̄ = gr ΩZ − {0}. Thus R/tR ∼= k, the field of fractions of grΩZ .
As t acts injectively on Ω̃ZS−1, tnR/tn+1R ∼= k for all n ≥ 0. Hence the

graded ring of R with respect to the t-adic filtration is

grt R =
∞⊕

n=0

tnR

tn+1R
∼= k[s],

where s = t + t2R ∈ tR/t2R.
We can also consider the t-adic filtration on N . Again, we see that N/tN ∼=

tnN/tn+1N ∼= grM.S̄−1. Hence

grt N =
∞⊕

n=0

tnN/tn+1N ∼= (grM.S̄−1)⊗k k[s].

Now, because d(M) ≤ 1, grM.S̄−1 is finite dimensional over k. It follows
that grt N is a finitely generated grt R-module.

Because N is complete with respect to the t-adic filtration, this filtration on
N is separated. Also R is complete, so by Theorem 5.7 of Chapter I of [6], N is
finitely generated over R.

Now Ω̃ZS−1 is a local ring with maximal ideal tΩ̃ZS−1. Hence R is a
commutative local ring with maximal ideal tR; since ∩∞n=0t

nR = 0, the only
ideals of R are {tnR : n ≥ 0}.

Hence R is a commutative PID and N is a finitely generated t-torsionfree
R-module. This forces N to be free over R, say N ∼= Rn, for some n ≥ 0.

Now, Z embeds into R and the action of R commutes with the action of H

on N . Hence we get a group homomorphism

ρ : H → GLn(R)

such that ρ(z) = zI, where I is the n× n identity matrix.
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But H is a uniform pro-p group with Qp-Lie algebra h3, so by Lemma 3.7
we can find elements x, y ∈ H such that [x, y] = zpk

for some k ≥ 1.
Hence [ρ(x), ρ(y)] = ρ(z)pk

= zpk

.I. Taking determinants yields znpk

= 1.
Since Z = < z > ∼= Zp, this is only possible if n = 0.

Therefore N = 0 and so N/tN = grM.S̄−1 = 0. Hence Q ∩ S̄ 6= ∅, where
Q = Anngr ΩG

grM . Because Q is graded and because gr ΩZ
∼= Fp[σ(z− 1)], we

see that σ(z − 1)m ∈ Q for some m ≥ 0. Hence σ(z − 1) ∈ J(M) =
√

Q.

The above result should be compared to the Bernstein inequality for finitely
generated modules M for the Weyl algebra A1(C), which gives a restriction on
the possible values of the dimension of M . When g is itself a Heisenberg Lie
algebra, a stronger result has been proved by Wadsley ([9], Theorem B):

Theorem 3.10. Let G be a uniform pro-p group with Qp-Lie algebra h2r+1 and
let M be a finitely generated ΩG-module. If d(M) ≤ r, then AnnΩG

(M)∩ΩZ 6=
0, where Z = Z(G).

We are tempted to conjecture that the following generalization of Proposition
3.9 holds:

Conjecture. Let G be a uniform pro-p group with Qp-Lie algebra g such that
h2r+1 ⊆ g. Let H be the isolated uniform subgroup of G with Lie algebra h2r+1

and let Z = Z(H) = < z >, say. Let M be a finitely generated ΩG-module such
that d(M) ≤ r. Then σ(z − 1) ∈ J(M).

This is a more general analogue of Lemma 3.2 of [8] corresponding to the
Bernstein inequality for Ar(C). If this conjecture is correct, we would be able
to sharpen the upper bound on K(ΩG) from dim g− 1 to dim g− r, when G is
as in Theorem B.

Let G be a uniform pro-p group, and consider the set G/G2, where G2 =
P2(G) = Gp. We know that G/G2 is a vector space over Fp of dimension d =
dim(G). The automorphism group Aut(G) of G acts naturally on G/G2; this
action commutes with the Fp-linear structure on G/G2. Because [G, G] ⊆ G2

the action of Inn(G) is trivial, so we see that G/G2 is naturally an Fp[Out(G)]-
module.

Similarly, we obtain an action of Aut(G) on J/J2 where J = JG/ΩG; it’s easy
to see that Inn(G) again acts trivially, so J/J2 is also an Fp[Out(G)]-module.

Lemma 3.11. The map ϕ : G/G2 → J/J2 given by ϕ(gG2) = σ(g − 1) =
g − 1 + J2 is an isomorphism of Fp[Out(G)]-modules.
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Proof. It is easy to check that ϕ is an Fp-linear map preserving the Out(G)-
structure.

Now {g1G2, . . . , gdG2} is a basis for G/G2, if {g1, . . . , gd} is a topological
generating set for G. By Theorem 7.24 of [5], {X1, . . . , Xd} is a basis for J/J2,
where Xi = σ(gi − 1) = ϕ(giG2). The result follows.

Theorem 3.12. Let G, H, z be as in Proposition 3.9. Suppose zG2 generates
the Fp[Out(G)]-module G/G2. Then

(i) ΩG has no finitely generated modules M with d(M) = 1

(ii) K(ΩG) ≤ dim g− 1.

Proof. Let M be a finitely generated ΩG-module with d(M) ≤ 1. By Lemma
3.11, G/G2

∼= J/J2 as Fp[Out(G)]-modules. Because zG2 generates G/G2,
ϕ(zG2) = σ(z − 1) ∈ J/J2 generates J/J2. In other words, Fp.{σ(z − 1)α : α ∈
Out(G)} = J/J2.

Let θ ∈ Aut(G). By Proposition 3.9 applied to Hθ, σ(zθ − 1) = σ(z − 1)θ̄ ∈
J(M), where¯: Aut(G) → Out(G) is the natural surjection.

Hence J/J2 = Fp.{σ(z − 1)α : α ∈ Out(G)} ⊆ J(M). This forces

(X1, . . . , Xd) ⊆ J(M) ⊆ Fp[X1, . . . , Xd] = grΩG,

whence d(M) = 0 and part (i) follows.
Consider the increasing map gr : Lat(ΩG) → Lat(grΩG), where we endow

each right ideal of ΩG with the subspace filtration from the JG-adic filtration
on G. If X, Y /r ΩG are such that M = X/Y is 1-critical, then K(grM) =
K(grX/ grY ) ≥ 1, giving M the subquotient filtration from ΩG.

Now, by Proposition 1.2.3 of Chapter II of [6], this subquotient filtration
is good, since ΩG is a complete filtered ring with Noetherian gr ΩG. Hence
K(grM) = d(M) ≥ 1 by the remarks following Definition 3.8. By part (i),
K(grX/ grY ) ≥ 2 so part (ii) follows from Lemma 2.3.

We will use this result to deduce Theorem B.

3.4 Chevalley groups over Zp

We recall some facts from the theory of Chevalley groups:
Let X ∈ {Al, Bl, Cl, Dl, E6, E7, E8, F4, G2} be an indecomposable root sys-

tem and let R be a commutative ring. Let B = {hr : r ∈ Π} ∪ {er : r ∈ X} be
the Chevalley basis for the R-Lie algebra XR.
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Let X(R) = < xr(t) : r ∈ X, t ∈ R > ⊆ Aut(XR) be the adjoint
Chevalley group over R. Here xr(t) ∈ Aut(XR) is given by

xr(t).er = er

xr(t).e−r = e−r + thr − t2er

xr(t).hs = hs −Asrter

xr(t).es =
∑b

i=0 Mr,s,it
ieir+s

where s ∈ X is a root linearly independent from r, a ∈ N is the largest integer
such that s − ar ∈ X, b ∈ N is the largest integer such that s + br ∈ X,
Asr = 2(s,r)

(r,r) and Mr,s,i = ±
(
a+i

i

)
.

Let R∗ denote the group of units of R. When t ∈ R∗ and r ∈ X, define

nr(t) = xr(t)x−r(−t−1)xr(t) and
hr(t) = nr(t)nr(−1).

The actions of hr(t) and nr = nr(1) on XR are as follows:

hr(t).hs = hs, s ∈ Π
hr(t).es = tArses, s ∈ X

nr.hs = hwr(s)

nr.es = ηr,sewr(s)

Here wr is the Weyl reflection on X corresponding to the root r and ηr,s = ±1.
The Steinberg relations hold in X(R):

hr(t1)hr(t2) = hr(t1t2), t1, t1 ∈ R∗, r ∈ X

xr(t)xs(u)xr(t)−1 = xs(u).
∏

i,j>0 xir+js(Cijrst
iuj), t, u ∈ R, r, s ∈ X

hs(u)xr(t)hs(u)−1 = xr(uAsr t), t ∈ R, u ∈ R∗, r, s ∈ X.

Here Cijrs are certain integers such that Ci1rs = Mr,s,i.
For more details on the above, see [3].
Now, consider the Zp-Lie algebra XZp . Since [pXZp , pXZp ] = p2[XZp , XZp ] ⊆

p.pXZp
, we see that pXZp

is a powerful Zp-Lie algebra. Let Y = (pXZp
, ∗) be

the uniform pro-p group constructed from pXZp
using the Campbell-Hausdorff

formula.
We have a group homomorphism Ad : Y → GL(pXZp

) given by Ad(g)(u) =
gug−1. It is shown in Exercise 9.10 of [5] that

Ad = exp ◦ ad

where exp : gl(pXZp
) → GL(pXZp

) is the exponential map.
It’s clear that kerAd = Z(Y ). Since the Lie algebra XQp

of Y is simple,
it’s easy to see that L(Z(Y )) = Z(L(Y )) = 0; hence kerAd = 1 and Ad is an
injection.
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Lemma 3.13. Let N = Ad(Y ) and G = X(Zp). Then N / G.

Proof. First we show that N ⊆ G. It’s clear that the Zp-linear action of N

on pXZp extends naturally to a Zp-linear action of N on XZp . Now, direct
computation shows that

Ad(ter) = xr(t), t ∈ pZp, r ∈ X and
Ad(thr) = hr(exp(t)), t ∈ pZp, r ∈ Π.

Hence Ad(puZp) ⊆ G for all u ∈ B. The set pB is a Zp-basis for pXZp and hence
a topological generating set for Y by Theorem 9.8 of [5]. By Proposition 3.7 of
[5], Y is equal to the product of the procyclic subgroups puZp as u ranges over
B. Hence N ⊆ G.

Now, let r, s ∈ X, t ∈ Zp and u ∈ pZp. By the Steinberg relations, we have

xr(t)xs(u)xr(t)−1 = xs(u).
∏

i,j>0

xir+js(Cijrst
iuj) ∈ N

and

xr(t)hs(exp(u))xr(t)−1 = hs(exp(u))xr(exp(−Asru)t)xr(−t) ∈ N

since Cijrst
iuj ∈ pZp and exp(−Asru)− 1 ∈ pZp, whenever u ∈ pZp.

Hence N / G, as required.

Theorem 3.14. Let G, N be as in Lemma 3.13. There exists a commutative
diagram of group homomorphisms:

G
α−−−−→ X(Fp)

ι−−−−→ Aut(XFp)

β

y yϕ∗

Aut(N) −−−−→
π

Out(N) −−−−→
γ

Aut(N/N2)

Proof. We begin by defining all the relevant maps. Any automorphism f of XZp

must fix pXZp
and hence induces an automorphism α(f) of XFp

∼= XZp
/pXZp

.
It’s clear from the definition of the Chevalley groups that α(xr(t)) = xr(t̄) where
¯: Zp → Fp is reduction mod p and that α is a surjection.

Since Ad is an isomorphism of Y onto N , N is a uniform pro-p group, and
we have an Fp-linear bijection ϕ : XFp → N/N2 given by ϕ(x̄) = Ad(px)N2,
where ¯ : XZp → XFp is the natural map. This induces an isomorphism ϕ∗ :
Aut(XFp

) → Aut(N/N2) given by ϕ∗(f) = ϕfϕ−1.
We have observed in the remarks preceding Lemma 3.11 that Out(N) acts

naturally on N/N2; we denote this action by γ. By Lemma 3.13 N is normal in
G, and we denote the conjugation action of G on N by β.
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Finally, ι is the natural injection of X(Fp) into Aut(XFp) and π is the natural
projection of Aut(N) onto Out(N).

It remains to check that ϕ∗ια = γπβ. It is sufficient to show ϕ∗ια(xr(t)) =
γπβ(xr(t)) for any r ∈ X and t ∈ Zp. We check these maps agree on the basis
{Ad(pu).N2 : u ∈ B} of N/N2. On the one hand, we have

ϕ∗ια(xr(t))(Ad(pes)N2) = ϕ∗(xr(t̄))(Ad(pes)N2) = ϕ(xr(t̄)(es)) =

= ϕ(
b∑

i=0

Mr,s,it̄
ieir+s) =

=
b∏

i=0

Ad(pMr,s,it
ieir+s)N2 =

=
b∏

i=0

xir+s(pMr,s,it
i)N2, (†)

using the definition of the action of xr(t̄) on XFp
. On the other hand,

γπβ(xr(t))(Ad(pes)N2) = xr(t)xs(p)xr(−t)N2 =

= xs(p)
∏

i,j>0

xir+js(Cijrst
ipj)N2,

using the Steinberg relations.
Since xα(p2) ∈ N2 for any α ∈ X, we see that the all the terms in the above

product with j > 1 vanish, and the remaining expression is equal to the result
of (†), since Ci1rs = Mr,s,i.

A similar computation shows that ϕ∗ια(xr(t)) also agrees with γπβ(xr(t))
on Ad(phs)N2 for any s ∈ Π, and the result follows.

The above theorem shows that the action of Out(N) on N/N2 which was of
interest in the preceding section is linked to the natural action of X(Fp) on XFp .
Since α is surjective, we see that if ēr generates XFp as an Fp[X(Fp)]-module,
then Ad(per)N2 generates N/N2 as an Fp[Out(N)]-module. We drop the bars
in the following proposition.

Proposition 3.15. Suppose p ≥ 5 and let R = Fp[X(Fp)]. Then XFp
= R.er

for any r ∈ X.

Proof. This is probably well known and is purely a matter of computation. Let
W denote the Weyl group of X.
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Note that (x−r(1) + ηr,rnr − 1).er = h−r ∈ R.er, whence hr = −h−r ∈ R.er

also.
By Proposition 2.1.8 of [3], we can choose w ∈ W such that w(r) ∈ Π. Hence

nw.hr = hw(r) ∈ R.er.
Let α, β be adjacent fundamental roots. Then nα.hβ = hwα(β) = hβ−Aβαhα

where Aβα = −1,−2 or −3. The condition on p implies that if hβ ∈ R.er then
hα ∈ R.er also.

Since X is indecomposable, hα ⊆ R.er for any α ∈ Π. Since the fundamental
coroots span the Cartan subalgebra, hs ∈ R.er for any s ∈ X.

Finally. xs(1).hs = hs − 2es, whence es ∈ R.er for any s ∈ X, since p 6= 2.
Since {es, hr : s ∈ X, r ∈ Π} is a basis for XFp

, the result follows.

The condition on p in the above proposition can be relaxed somewhat - it
might even be the case that it can be dropped altogether. Since this is a small
detail of no interest to us, we restrict ourselves to the case p ≥ 5.

We can finally provide a proof of our main result.

Proof of Theorem B. In view of Theorem C and Lemma 2.1, it is sufficient to
prove that

dim b + dim t ≤ K(ΩG) ≤ dim g− 1.

Note that the lower bound on K(ΩG) follows from Proposition 3.4 and Theorem
A.

Let X be the root system of g; thus g = XQp
. Since X is not of type A1

by assumption on g, we can find two roots r, s ∈ X such that r + s ∈ X but
r + 2s, 2r + s /∈ X; it’s then easy to see that the root spaces of r and s generate
a subalgebra of g isomorphic to h3 with centre Qper+s.

Let N be the uniform pro-p group appearing in the statement of Theo-
rem 3.14. By construction, g is the Lie algebra of N . By Proposition 3.15
and the remarks preceding it, we see that Ad(per+s)N2 ∈ N/N2 generates the
Fp[Out(N)]-module N/N2. Hence K(ΩN ) ≤ dim g− 1 by Theorem 3.12.

Since the Lie algebra of G is g = QpLG = QpLN , we see that N ∩ G is
an open subgroup of both N and G, whence K(ΩG) = K(ΩN ) ≤ dim g − 1, as
required.

Proof of Corollary B. It is readily seen that G is a uniform pro-p group with Qp-
Lie algebra sl3(Qp) which is split simple over Qp. We have observed in Lemma
2.1 that ΛG is a local right Noetherian ring whose Jacobson radical satisfies the
right Artin Rees Property, and that gld(ΛG) = dim g + 1 = 9.
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If b and t denote the Borel and Cartan subalgebras of g, then dim b = 5 and
dim t = 2. The result follows from Theorems B and C.
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