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Abstract. We prove that the canonical dimension of an admissible Banach space or a locally
analytic representation of an arbitrary semisimple p-adic Lie group is either zero or at least half
the dimension of a non-zero coadjoint orbit. This extends the results of Ardakov-Wadsley and
Schmidt in the split semisimple case.

1. Introduction

This paper can be regarded as a postscript to [AW1]. Its purpose is to record an argument that
extends [AW1, Theorem A] to compact semisimple p-adic analytic groups whose Lie algebra is not
necessarily split (p is a prime number). An analogue of [AW1, Theorem A] for distribution algebras
was proved by Schmidt in [Sch2, Theorem 9.9]; our argument works to extend his result as well. For
simplicity, we mostly focus on the setting of Iwasawa algebras in this introduction. Let us recall that
ifG is a compact p-adic analytic group andKG is its completed group ring (or Iwasawa algebra) with
respect to a finite field extension K/Qp, then the categoryM of finitely generated KG-modules is
an abelian category antiequivalent to the category of admissible K-Banach space representations of
G ([ST1]). M, and related categories of p-adic representations of (locally) compact p-adic analytic
groups have received a lot of attention in the last decades, motivated by research in the Langlands
programme and Iwasawa theory. Each object M inM has a non-negative integer d(M) = dKG(M)
attached to it called its canonical dimension. This notion gives rise to a natural filtration ofM

M =Md ⊇Md−1 ⊇ ... ⊇M0

by Serre subcategories, where d = dim G and M ∈ Mi if and only d(M) ≤ i. The canonical
dimension d(M) may be taken as a measure of the “size” of M ; for example it is known that
d(M) = 0 if and only M is finite dimensional as K-vector space, and d(M) < d if and only if M is
torsion. It may also be regarded as a noncommutative analogue of the dimension of the support of a
module in the commutative setting. The following result, together with its analogue for distribution
algebras (Theorem 2) is the main result of this note:

Theorem 1. Let G be a compact p-adic analytic group whose Lie algebra L(G) is semisimple, and
let GC denote a complex semisimple algebraic group with the same root system as L(G) ⊗Qp Qp.
Let M be a finitely generated KG-module which is infinite dimensional as a K-vector space, and
assume that p is an odd very good prime for G. Then dKG(M) ≥ r, where r is half the smallest
possible dimension of a nonzero coadjoint GC-orbit.
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For the definition of a very good prime see [AW1, §6.8]. We recall that Theorem A of [AW1]
proves the same conclusion under the additional hypothesis that L(G) is split semisimple. Since
the Langlands programme often deals with groups that are not split, it seemed natural to wish to
remove this assumption from the theorem. Examples of such nonsplit groups are G = G(K), where
G/K is an anisotropic semisimple algebraic group.

The proof is a variation of that of the split case. Let us first give a short rough description of
the split case and refer to the introduction of [AW1] for more details. A short argument reduces
the problem to the case when G is a uniform pro-p group. This implies we may associate to
G a certain Zp-Lie algebra h. The algebra KG comes with a morphism into an inverse system
(Dw = Dp−1/w(G,K))w=pn of distribution algebras of G, whose inverse limit is the locally analytic
distribution algebra D(G,K) with coefficients in K studied in detail by Schneider and Teitelbaum.
For large enough w = pn, Dw ⊗KG M 6= 0. The algebra Dw turns out to be a crossed product
Un ∗ G/Gp

n

, where Un = Û(pnh)K is an affinoid enveloping algebra, and it turns out that it is
enough to prove the analogous result for the algebras Un. The proof of this analogue relies on some
technical work: analogues of Beilinson-Bernstein localisation, Quillen’s Lemma and Bernstein’s
Inequality. The assumption that L(G) is split comes up in the localisation theory, which works
for affinoid enveloping algebras of OL-Lie algebras that are of the form πmg, with L/Qp a finite
extension, π a uniformizer in L and g a split Lie algebra over OL.

In this paper we follow the same reduction steps to get nonzero Un-modules Dpn ⊗KG M for
sufficiently large n. Since the techniques of [AW1] are not strong enough to deduce a canonical
dimension estimate for the affinoid enveloping algebra Un in this case, we base change to a finite
extension L/Qp such that the Lie algebra L(G) ⊗Qp

L is split and hence has a split lattice g in
addition to the lattices pnh ⊗Zp OL. We then sandwich a p-power multiple of g in between two
sufficiently large p-power multiples of h⊗Zp OL in order to base change one of the Dpn ⊗KGM to
an affinoid enveloping algebra for which the theory of [AW1] applies.

As remarked earlier, Schmidt gave an analogue of [AW1, Theorem A] for coadmissible modules of
the distribution algebra D(G,K), using the methods of [AW1]. Here we may now allow G to be
a locally L-analytic group for some intermediate extension K/L/Qp. Our argument works equally
well in this setting to remove the splitness hypothesis of [Sch2, Theorem 9.9], giving us the following
theorem:

Theorem 2. Let G be a locally L-analytic group whose Lie algebra L(G) is semisimple, and let GC
denote a complex semisimple algebraic group with the same root system as L(G)⊗L Qp. Let M be
a coadmissible D(G,K)-module such that dD(G,K)(M) ≥ 1 and assume that p is an odd very good
prime for G. Then dD(G,K)(M) ≥ r, where r is half the smallest possible dimension of a nonzero
coadjoint GC-orbit.

We remark that Theorem 1 follows from Theorem 2 by the faithful flatness of the distribution algebra
over the Iwasawa algebra ([ST2, Theorem 5.2]). Nevertheless we have opted to give independent
arguments, keeping the proof of Theorem 1 independent of [Sch2, Corollary 5.13] (in the case
L = Qp), which was conjectured in [AW1] but neither proved nor needed. We also remark that,
for a coadmissible D(G,K)-module M , dD(G,K)(M) = 0 if and only if Dw ⊗D(G,K) M is a finite-
dimensional K-vector space for all w.

Let us now describe the contents of this paper. Section 2 proves the necessary flatness results
needed make the sandwich argument work and recalls some generalities on crossed products. The
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flatness result is a consequence of a general result of Berthelot and Emerton. Section 3 introduces
the main players, discusses some complements to results in [AW1], and then proves Theorem 1,
fleshing out the strategy described above. Finally, section 4 proves Theorem 2.

The second author was supported by National Science Foundation grants 093207800 and DMS-
1128155 during the work on this paper whilst a member of MSRI and the IAS respectively, and
would like to thank both institutions for their hospitality. The first author was supported by EPSRC
grant EP/L005190/1.

2. Flatness and Crossed Products

Fix a prime number p and let K be a finite extension of Qp. In this section we give a condition for
the natural map between affinoid enveloping algebras induced from an inclusion of finite free OK-
Lie algebras of the same rank to be left and right flat. All completions arising in this paper are p-
adic completions. We use a technique due to Berthelot, abstracted by Emerton in [Em, Proposition
5.3.10].

Lemma 3. Let h ⊆ g be OK-Lie algebras, both finite free of rank d. Assume that [g, h] ⊆ h. Then
Û(g)K is a flat left and right Û(h)K-module.

Proof. The proof is very close to that of [SS, Proposition 3.4], which contains the case h = pg
as a special case. First we prove right flatness. Put A = U(h) and B = U(g) and let F•A resp.
F•B denote the usual Poincaré-Birkhoff-Witt filtrations on A and B respectively. A and B are
well known to be p-torsion-free and p-adically separated left Noetherian Zp-algebras. Define a new
increasing filtration on B by the Zp-submodules

F ′iB = A · FiB =
∑
j≤i

Agj .

In order to apply [Em, Proposition 5.3.10], we need to verify conditions (i)-(iii) in the statement of
[Em, Lemma 5.3.9]. Condition (ii), that F ′0B = A, is clear. Condition (i) asks that F ′iB · F ′jB ⊆
F ′i+jB. To see this, note that because g normalises h, we have [g, A] ⊆ A, so gA ⊆ Ag +A. Hence
giA ⊂ F ′iB by an easy induction, so AgiAgj ⊂ F ′i+jB as required. Condition (iii) asks that GrF

′

• B
is finitely generated over A by central elements. Since F•B ⊆ F ′•B, the identity map induces a
natural map f : GrF• B → GrF

′

• B and since GrF
′

0 B = A we see that GrF
′

• B is generated (as a
ring) by f(GrF• B) and A. Now GrF• B = Sym(g), thus we may find X1, ..., Xd ∈ g whose symbols
grF

′
Xk ∈ GrF

′

1 B generate GrF
′

• B over A. Thus we have shown finite generation and to show
that the grF

′
Xk are central it suffices to prove that for any X ∈ g, grF

′
X commutes with A in

GrF
′

• B. Since A is generated by h it suffices verify this for Y ∈ h ⊆ GrF
′

0 B. Computing, we see
that (grF

′
X)(grF

′
Y )− (grF

′
Y )(grF

′
X) is equal to the image of the bracket [X,Y ] inside GrF

′

1 B.
By assumption [X,Y ] ∈ h, so it becomes 0 in GrF

′

1 B. Having verified the assumptions of [Em,
Proposition 5.3.10] we may conclude that B̂K is a flat right ÂK-module.

To prove left flatness we remark that it is well known that U(h)op → U(g)op is canonically isomor-
phic to U(hop)→ U(gop), where we recall that the opposite Lie algebra hop of h is the OK-module h
together with a new bracket [−,−]′ defined by [X,Y ]′ = [Y,X]. Thus, having proved right flatness
of U(hop)→ U(gop) above we may deduce left flatness of U(h)→ U(g). �
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Next let us recall the notion of a crossed product from e.g. [Pa, §1]. Let S be a ring and let H be a
group. A crossed product S ∗H is a ring containing S as a subring and a subset H = {h̄ | h ∈ H}
of units bijective with H, that satisfies the following conditions:

• S ∗H is a free right S-module with basis H.
• We have h̄S = Sh̄ and ghS = ḡh̄S for all g, h ∈ H.

Given a crossed product S ∗H we obtain functions σ : H → Aut(S) and τ : H ×H → S×, called
the action and the twisting, defined by

σ(h)(s) := (h̄)−1sh̄,

τ(g, h) = (gh)−1ḡh̄.

The associativity of S ∗ H is equivalent to certain relations between σ and τ ([Pa, Lemma 1.1] )
and conversely, given S, H, σ and τ satisfying these relations we may construct S ∗H as the free
right S-module on a set H = {h̄ : h ∈ H} which is in bijection with H, and multiplication being
defined by extending the rule

(ḡr)(h̄s) = ghτ(g, h)rσ(h)s

additively (g, h ∈ H, r, s ∈ S). Here we use the notation sf to denote the (right) action of
f ∈ Aut(S) on s ∈ S. Let us record how crossed products behave with respect to taking opposites.

Lemma 4. Let S ∗H be a crossed product of ring S by a group H, with action σ : H → Aut(S)
and twisting τ : H ×H → S×.

1) (S ∗H)op = Sop ∗Hop, with action σop and twisting τop on the right hand side given by

σop(h) = σ(h)−1,

τop(g, h) = τ(h, g)σ(g)−1σ(h)−1

.

2) Let T be another ring with a homomorphism φ : S → T and let Γ ⊆ Aut(S) be a subgroup
of the automorphisms of S that contains the inner automorphisms defined by τ(g, h) for g, h ∈ H
and the σ(h) for h ∈ H. We assume that there is a compatible homomorphism ψ : Γ → Aut(T ),
where by compatible, we mean that for f ∈ Γ, φ ◦ f = ψ(f) ◦ φ, and additionally that ψ sends the
inner automorphism defined by τ(g, h) ∈ S× to the inner automorphism defined by φ(τ(g, h)) for
all g, h ∈ H. Then we may form a crossed product T ∗ H with action ψ ◦ σ and twisting φ ◦ τ .
Moreover φ extends naturally to a homomorphism Φ : S ∗H → T ∗H.

3) The constructions in 1) and 2) are compatible: Given the situation in 2), we also have φ : Sop →
T op and Sop ∗Hop; we may form T op ∗Hop and we obtain a natural map Sop ∗Hop → T op ∗Hop.
Under the identification in 1) this agrees with (T ∗H)op and Φ.

Proof. 1) (S ∗H)op contains Sop and as a subring as well as the set H which is bijective with Hop.
To verify that (S ∗H)op is a crossed product Sop ∗Hop it remains to verify that, working in S ∗H,
Sh̄ is a free left S-module and that Sgh = (Sḡ)h̄ for all g, h ∈ H. The first assertion follows from
sh̄ = h̄sσ(h) and that h̄S is a free right S-module and σ(h) is an automorphism of S. The second
follows similarly using the formula

ḡh̄ = τ(g, h)σ(gh)−1

gh.



A CANONICAL DIMENSION ESTIMATE FOR NON-SPLIT SEMISIMPLE P-ADIC LIE GROUPS 5

We may then compute the formulae for σop and τop, using · to distinguish the multiplication in
(S ∗H)op or Hop from that in S ∗H or H:

sσ
op(h) = (h̄)−1 · s · h̄ = h̄s(h̄)−1 = sσ(h)−1

;

τop(g, h) = (g · h)−1 · ḡ · h̄ = h̄ḡ(hg)−1 = τ(h, g)σ(g)−1σ(h)−1

.

This finishes the proof of (1). We now prove (2). First, it is straightforward to verify that ψ ◦ σ
and φ ◦ τ satisfy [Pa, Lemma 1.1] using the compatibility condition. Thus we may form T ∗H as
above, and φ induces an additive group homomorphism Φ : S ∗H → T ∗H given by Φ(h̄s) = h̄φ(s)
which is easily checked to be a ring homomorphism. Finally, to check 3) we note that

(ψ ◦ σ)op(h) = ψ(σ(h))−1 = ψ(σ(h)−1) = ψ(σop(h))

and
(φ ◦ τ)op(g, h) = φ(τ(h, g))ψ(σ(g))−1ψ(σ(h))−1

= φ(τ(h, g))ψ(σ(g)−1σ(h)−1) =

= φ
(
τ(h, g)σ(g)−1σ(h)−1

)
= φ(τop(g, h)).

This shows that (T ∗H)op = T op∗Hop, and checking that the maps agree is another straightforward
computation. �

Remark 5. This Lemma implies that the natural left module analogue of [AB, Lemma 5.4] holds
(this may of course also be proved directly). References to [AB, Lemma 5.4] below will often
implicitly be to its left module analogue.

3. Canonical Dimensions for Iwasawa algebras

Let us first fix some notation and terminology. As in the previous section we let K be a finite
field extension of Qp. In this section we let G denote a compact p-adic analytic group. For the
definition, see [DDMS, §8] ; note that for us a p-adic analytic group is the same as a Qp-analytic
group. Put d = dim G (this is the dimension of G as a Qp-analytic group, so e.g. dim SL2(K) =
3[K : Qp]). As in [DDMS, §9.5] we let L(G) denote the Lie algebra of G; this is a Qp-Lie algebra
of dimension d. We let KG denote the Iwasawa algebra of G with coefficients in K, defined as
KG =

(
lim
←−
OK [G/N ]

)
⊗OK

K, where the inverse limit runs through all open normal subgroups
N ⊆ G. KG is Auslander-Gorenstein with self-injective dimension d (see [AW1, Definition 2.5]
for this notion). This follows for example from [AB, Lemma 5.4] , [AW1, Lemma 10.13] and the
existence of a uniform normal open subgroup of G (see below for this notion). For any Auslander-
Gorenstein ring A, we define the grade jA(M) and canonical dimension dA(M) of any nonzero
finitely generated A-module M by

jA(M) = min
{
j | ExtjA(M,A) 6= 0

}
,

dA(M) = inj dimAA− jA(M).

See [AW1, §2.5] for more definitions and details. We will also use the notion of a uniform pro-p
group, for which we refer to [DDMS, §4 and §8.3]. A uniform pro-p groupH has an associated Zp-Lie
algebra LH — see [DDMS, §4.5] — which is free of rank dim H. We also define L(H) = LH⊗Zp

Qp.
The remainder of this section will be devoted to the proof of Theorem 1. First, we record a simple
reduction:

Lemma 6. It suffices to prove Theorem 1 for uniform pro-p groups and for K = Qp.
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Proof. Pick a uniform normal open subgroup H of G. Let M be a finitely generated KG-module.
Then L(G) = L(H), so rG = rH , and [AB, Lemma 5.4] implies that dKG(M) = dKH(M). Hence
we may reduce to uniform pro-p groups. Then [AW1, Lemma 2.6] implies that it suffices to prove
it for K = Qp. �

Before we proceed we need to recall the rings Un ∗Hn, introduced in [AW1, §10.6] . From now on
let us assume that G is uniform and K = Qp. We may then set h = p−1LG; since LG satisfies
[LG, LG] ⊆ pLG, h is a Zp-sub Lie algebra of L(G), finite free of rank d. Recall that, for all
n ∈ Z≥0, the groups Gp

n

are normal uniform pro-p subgroups of G with LGpn = pnLG and we
set Hn = G/Gp

n

. In [AW1, §10.6], Un is defined to be the microlocalisation of ZpGp
n

with
respect to the microlocal Ore set Sn =

⋃
a≥0 p

a + ma+1
n , where mn is the unique (left and right)

maximal ideal of ZpGp
n

. If we need to emphasize the group G we will write Un(G). By [AW1,
Theorem 10.4], Un is isomorphic to Û(pnh)Qp

. ZpG is a crossed product ZpGp
n ∗Hn and since Sn

is invariant under automorphisms we obtain a canonical homomorphism Aut(ZpGp
n

) → Aut(Un).
Note that if f1, f2 ∈ Aut(Un) come from Aut(ZpGp

n

) and agree on ZpGp
n

then they are equal (this
is immediate from the construction). Thus we may form Un ∗ Hn by Lemma 4(2) and we get an
induced homomorphism ZpG→ Un ∗Hn. Since p is invertible in Un ∗Hn, we have a homomorphism
QpG→ Un ∗Hn. We will need some left/right complements to various results in [AW1]:

Proposition 7. 1) The natural map QpG→ Un ∗Hn is left and right flat.

2) If M is a finitely generated left QpG-module, then (Un ∗ Hn) ⊗QpG M = 0 if and only if M is
Sn-torsion.

3) If M is a finitely generated right QpG-module, then M ⊗QpG (Un ∗Hn) = 0 if and only if M is
Sn-torsion.

4) If M is a finitely generated p-torsion free left or right ZpG-module, then there exists an n0 ∈ Z≥0

such that M is Sn-torsion-free for all n ≥ n0.

Proof. 1) Right flatness is [AW1, Proposition 10.6(d)] and from this we also get right flatness
of QpGop → Un(Gop) ∗ Hop

n (i.e. performing the same constructions for the opposite group).
However we have identifications QpGop = (QpG)op and Un(Gop)∗Hop

n = (Un(G)∗Hn)op identifying
QpGop → Un(Gop) ∗Hop

n with (QpG)op → (Un(G) ∗Hn)op using Lemma 4, so we get the desired
left flatness.

2) is [AW1, Proposition 10.6(e)] and 3) follows from 2) applied to Gop with the identifications in
the proof of 1). Similarly the left part of 4) is [AW1, Corollary 10.11] and the right part follows as
above. �

Before we get to the proof of the main theorem we will abstract a short calculation from the proof:

Lemma 8. Let A, B, S and T be rings and assume that we have a commutative diagram

A //

��

B

��
S // T
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where A → S makes S into a crossed product A ∗ G for some finite group G. Let M be a finitely
generated left S-module and assume that ExtiS(M,S)⊗S T 6= 0 for some i. Then

ExtiA(M,A)⊗A B 6= 0.

Proof. Assume that ExtiA(M,A) ⊗A B = 0. Then ExtiA(M,A) ⊗A T = 0. However, by Remark 5
ExtiA(M,A) = ExtiS(M,S) as right A-modules. Thus ExtiS(M,S)⊗A T = 0. But ExtiS(M,S)⊗A T
surjects onto ExtiS(M,S)⊗S T , a contradiction. �

We now come to the proof of Theorem 1. Recall from [AW1, Theorem 3.3, Proposition 9.1(b)] and
the paragraph below it that Un is Auslander-Gorenstein with self-injective dimension d (in fact it
is Auslander regular). By [AB, Lemma 5.4] Un ∗Hn is also Auslander-Gorenstein of self-injective
dimension d (Un ∗Hn is also Auslander regular). We will use this freely in the proof (in particular
the fact that the self-injective dimensions agree).

Proposition 9. Theorem 1 is true when G is uniform and K = Qp.

Proof. Let M be a finitely generated QpG-module which is not finite dimensional as a Qp-vector
space. Let j = jQpG(M) and set N := ExtjQpG

(M,QpG), this is a finitely generated right QpG-
module. By Proposition 7 we can find t ≥ 0 such that N is Sn-torsion-free for all n ≥ t. Now
N = ExtjQpGpn (M,QpGp

n

) and dQpG(M) = dQpGpn (M) for any n ≥ 0 by [AB, Lemma 5.4], so by

replacing G by Gp
t

if necessary we may assume t = 0. Thus we can assume that N is S0-torsion-free.

Let F be a finite extension of Qp such that L(G) ⊗Qp F is a split F -Lie algebra. Then we may
find a split semisimple simply connected algebraic group G/OF whose OF -Lie algebra g satisfies
g⊗OF

F ∼= L(G)⊗Qp
F . We fix this isomorphism throughout and consider g as a subset of g⊗OF

F .
Recall that h = p−1LG; we can find integers n,m ≥ 0 such that

pn(h⊗Zp OF ) ⊆ pmg ⊆ h⊗Zp OF .
Now because N is S0-torsion-free, N ⊗QpG U0 is non-zero, and therefore N ⊗QpG (Un ∗Hn) is also
non-zero. By applying Proposition 7 together with [AW1, Proposition 2.6] we deduce that

dQpG(M) = dU0(M0) = dUn∗Hn(Mn)

where Mn := (Un ∗Hn)⊗QpGM . We may now again apply [AB, Lemma 5.4] to deduce that

dUn∗Hn
(Mn) = dUn(Mn).

Furthermore [AW1, Lemmas 2.6 and 3.9] give us that

dUn(Mn) = dF⊗QpUn(F ⊗Qp
M) and F ⊗Qp

Un = ̂U(pnh⊗Zp
OF )

F
.

Since F ⊗Qp
Un → F ⊗Qp

U0 factors through Û(pmg)F , there is a commutative diagram

F ⊗Qp
Un //

��

Û(pmg)F

��
(F ⊗Qp Un) ∗Hn

// F ⊗Qp U0.

Let S = (F ⊗Qp
Un) ∗Hn and T = F ⊗Qp

U0, and note that F ⊗Qp
Mn = S ⊗QpGM , so that

ExtjS(F ⊗Qp
Mn, S)⊗S T ∼= ExtjS(S⊗QpGM,S)⊗S T ∼= ExtjQpG

(M,QpG)⊗QpG T = N ⊗QpG T 6= 0
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because N ⊗QpG U0 6= 0 by construction. Hence Lemma 8 implies that

ExtjF⊗QpUn
(F ⊗Qp

Mn, F ⊗Qp
Un)⊗F⊗QpUn Û(pmg)F 6= 0.

Since pnh ⊗Zp OF ⊆ pmg and [pmg, pnh ⊗Zp OF ] ⊆ pnh ⊗Zp OF , Lemma 3 implies that the top
arrow in the above commutative diagram F ⊗Qp

Un → Û(pmg)F is left and right flat. Thus [AW1,
Proposition 2.6] applied to the top arrow in the commutative diagram above gives

dQpG(M) = dF⊗QpUn(F ⊗Qp
Mn) = d

Û(pmg)F
(V )

where V := Û(pmg)F ⊗F⊗QpUn (F ⊗Qp
Mn). Here we have used the fact that Û(pmg)F is Auslander

regular of self-injective dimension d. Now [AW1, Lemma 10.13] implies that dQpG(M) ≥ 1 since M
is not finite dimensional as a Qp-vector space (we note here that of [AW1, Lemma 10.13] does not
require G to satisfy the assumptions of of [AW1, §10.12]). Finally, [AW1, Theorem 9.10] implies
that d

Û(pmg)F
(V ) ≥ r, so dQpG(M) ≥ r as desired. �

4. Canonical dimensions for distribution algebras

In this section we let L ⊆ K be finite extensions of Qp and let G be a locally L-analytic group. We
let D(G,K) denote the algebra of K-valued distributions on G, studied in depth in [ST2], which
we refer to for more details and some terminology.

Following the notation of [ST2] we let G0 denote the underlying Qp-analytic group obtained from
G by forgetting the L-structure. Recall (see e.g. [Sch2, §5.6]) that G is said to be L-uniform if G0 is
uniform and LG0

⊆ L(G) is an OL-lattice. If this holds we will write LG for LG0
with its OL-module

structure. When G is L-uniform, D(G,K) carries a Fréchet-Stein structure given by the inverse
system (Dr(G,K))r∈[p−1,1)∩pQ (see e.g. [Sch2, §5.17]). We put rn = p−1/pn and will from now on
only consider the inverse system (Drn(G,K))n∈Z≥0

, which is final in the previous inverse system.
The rings Drn(G,K) are Auslander regular of self-injective and global dimension d = dimLG when
n ≥ 1 by [Sch2, Proposition 9.3]. Thus, the category of coadmissible D(G,K)-modules ([ST2, §6])
has a well defined dimension theory ([ST2, §8]). Note that if G is L-uniform then so is Gp

n

for all
n ≥ 0, and we have Dr0(Gp

n

,K) ∗Hn = Drn(G,K) by [Sch2, Corollary 5.13] with Hn = G/Gp
n

as
in the previous section.

When G is a general locally L-analytic group, G has at least one (and hence many) open L-
uniform subgroup(s); indeed any compact open locally L-analytic subgroup of G has a basis of
neighbourhoods of the identity consisting of open normal L-uniform subgroups by [Sch1, Corollary
4.4]. Thus the category of coadmissible D(G,K)-modules has a well defined dimension theory
using the formalism of [ST2, §8], defined by restriction to an arbitrary open L-uniform subgroup.
Therefore it suffices, by definition, to prove Theorem 2 for L-uniform groups.

We recall the link between affinoid enveloping algebras and distribution algebras. The first part of
the following version of the Lazard isomorphism is essentially proved in [Sch2, §6.6] but stated only
in a special case; it was then proven (in somewhat more generality) in [AW2, Lemma 5.2]. We give
a brief sketch of the proof for the convenience of the reader.

Proposition 10. Assume that G is L-uniform. Then there is an isomorphism ΨG : Û(g)K →
Dr0(G,K), where g = p−1LG. It is compatible with morphisms α : G → H in the sense that the
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diagram

Û(g)K
U(α) //

ΨG

��

Û(h)K

ΨH

��
Dr0(G,K)

D(α) // Dr0(H,K)

commutes where U(α) and D(α) are the natural maps induced by α.

Proof. We let g0 denote g thought of as a Zp-Lie algebra by forgetting the OL-structure. Recall
that there is a natural morphism L(G0)→ Dr0(G0,K) factoring through D(G0,K) defined by

Xf =
d

dt
(f(exp(−tX))) |t=0

for f ∈ Cla(G0,K) and X ∈ L(G0) (see e.g. [Sch2, §5.2]); it gives an inclusion g→ Dr0(G,K). By
e.g. [Sch2, Proposition 6.3] there is an isomorphism

ΨG0
: Û(g0)K = ̂U(g0 ⊗Zp

OL)
K
→ Dr0(G0,K)

which is compatible with the embeddings of g0 on both sides. Put k = ker(g0 ⊗Zp
OL → g) where

the map is given by a ⊗ X 7→ aX. Then Dr0(G,K) is the quotient of Dr0(G0,K) by the ideal
generated by k by [Sch1, Lemma 5.1]. Similarly, Û(g)K is the quotient of ̂U(g0 ⊗Zp

OL)
K

by the
ideal generated by k by a straightforward argument: using the PBW filtration one sees that the
sequence

0→ k.U(g0 ⊗Zp
OL)→ U(g0 ⊗Zp

OL)→ U(g)→ 0

is an exact sequence of finitely generated U(g0 ⊗Zp OL)-modules. Now use the Artin-Rees Lemma
and tensor with K to conclude. Thus ΨG0 induces the desired isomorphism ΨG by quotienting out
by the ideal generated by k on the source and target. Finally, the compatibility with morphisms
follows from the functoriality of the morphism L(G0) → Dr0(G0,K), which is straightforward to
check from the defining formula. �

With these preparations we may now prove Theorem 2 (which, we recall, one only needs to show
for L-uniform groups).

Proposition 11. Theorem 2 holds for L-uniform groups G.

Proof. The proof is very similar to that of Proposition 9. First of all note that without loss of
generality L = K by [AW1, Lemma 2.6]. For the purposes of this proof we put D := D(G,L)

and Dn := Drn(G,L). Let M be a coadmissible left D-module and put N = ExtjD(M,D) with
j = jD(M). By [ST2, Lemma 8.4] we may find an integer t ≥ 0 such that Nn := N ⊗D Dn =
ExtDn(Mn, Dn) 6= 0 for all n ≥ t, where Mn := Dn ⊗D M . Because of the bimodule iso-
morphisms Dn

∼= Dr0(Gp
n

, L) ⊗D(Gpn ,L) D and Dn
∼= D ⊗D(Gpn ,L) Dr0(Gp

n

, L), we see that
Mn
∼= Dr0(Gp

n

, L) ⊗D(Gpn ,L) M and Nn ∼= N ⊗D(Gpn ,L) Dr0(Gp
n

, L) for any n ≥ 0. Therefore
we may, as in the proof of Proposition 9, replace G by Gp

t

and without loss of generality assume
that t = 0.

Pick a finite extension F/L such that L(G)⊗LF is split and let g ⊆ L(G)⊗LF be a split OF -sub-Lie
algebra. Write h := p−1LG and pick positive integers m and n such that

pnh⊗OL
OF ⊆ pmg ⊆ h⊗OL

OF .
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We have that dD(M) = dDn(Mn) and from here on we argue exactly as in the proof of Proposition
9, using that Dn = Dr0(Gp

n

, L) ∗ G/Gpn = Û(pnh)L ∗ G/Gp
n

using Proposition 10. Note that
the compatibility statement in Proposition 10 ensures that the diagram that Lemma 8 has to be
applied to, namely

Dr0(Gp
n

, F ) //

��

Û(pmg)F

��

Drn(G,F ) // F ⊗L Û(h)L

is commutative. �
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