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Abstract. Let K be a field of characteristic zero complete with respect
to a non-trivial, non-Archimedean valuation. We relate the sheaf ÛD of
infinite order differential operators on smooth rigid K-analytic spaces to
the algebra E of boundedK-linear endomorphisms of the structure sheaf.
In the case of complex manifolds, Ishimura proved that the analogous
sheaves are isomorphic. In the rigid analytic situation, we prove that
the natural map ÛD → E is an isomorphism if and only if the ground field
K is algebraically closed and its residue field is uncountable.
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1. Introduction

Ishimura proved in [11] that the continuous endomorphisms of the struc-
ture sheaf of a complex manifold X, viewed as a sheaf of Fréchet spaces over
C in the classical topology correspond precisely with the infinite order differ-
ential operators on X. That is to say, he identified this sheaf of continuous
endomorphisms with the sheaf of formal differential operators, whose total
symbol in a small enough local chart U ⊂ X around any point, can be used to
define a holomorphic function on U×CdimX . Some recent work: [3], [4], sug-
gests defining a type of analytic geometry that would work in the same way
over a general valuation field K (Archimedean or not) or even a Banach ring.
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In this type of geometry, one constructs various Grothendieck topologies on
the “affine” objects. The structure sheaf then becomes a sheaf on the site
defined by an analytic space and one can try, inspired by Ishimura’s theorem,
to define infinite order differential operators as the bounded endomorphisms
of the structure sheaf over K. The structure sheaf in this case is consid-
ered in some category of sheaves with extra structure over K. This was the
treatment used for complex manifolds by Prosmans and Schneiders in [15]
who used this to partially interpret the Riemann-Hilbert correspondence as a
derived Morita equivalence: see below for a more thorough discussion. This
treatment uses their general technology of sheaves with values in a quasi-
abelian category. Their work is closely related to works of Mebkhout and
Kashiwara on infinite order differential operators over complex manifolds;
see for example [13].

In this article, we look for an analogue of Ishimura’s result for smooth
rigid analytic spaces over a characteristic zero field K which is complete
with respect to a non-trivial non-Archimedean valuation. Our main result
(Theorem 3.8) gives further evidence that this “endomorphisms” definition
of differential operators is sensible (at least when the ground field K is large
enough). Specifically, we prove that when K is a (complete) non-trivially
valued non-Archimedean field which is algebraically closed and whose residue
field is uncountable, then the sheaf of bounded endomorphisms of the struc-
ture sheaf agrees with the sheaf of infinite order differential operators defined
by Wadsley and the first author in [1].

To reassure the reader that in the non-Archimedean setting there are many
examples of such ‘large’ fields, we give the example of the field of Hahn series

C((Q)) = {f =
∑
γ∈Q

aγx
γ |aγ ∈ C, support of f well ordered}.

The non-Archimedean valuation v on C((Q)) is given by

v

Ñ∑
γ∈Q

aγx
γ

é
= min{γ : aγ 6= 0},

and the residue field of C((Q)) with respect to this valuation is C. A mixed
characteristic example can be found by starting with an arbitrary perfect
field k of characteristic p > 0 and taking K to be the completion of the
algebraic closure of the field of fractions of its ring of p-typical Witt vectors.
The residue field of K is then the algebraic closure of k, which is uncountable
whenever k is. The field of Puiseux series over the algebraic closure of a finite
field gives an example of an uncountable, algebraically closed field of positive
characteristic.

In order to provide some context for these results, we would like to point
out that the current article is part of an overall goal to understand the
Riemann-Hilbert correspondence in non-Archimedean geometry. The most
standard version of the Riemann-Hilbert correspondence is an equivalence of
two triangulated categories associated to a complex manifoldX: the opposite
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category of the bounded derived category of regular holonomic modules over
the sheaf of (finite-order) differential operators DX , and the bounded derived
category of constructible sheaves of complex vector spaces. This equivalence
is given by the solution functor RHomDX (−,OX). In fact, this functor
factors through the bounded derived category of D∞X -modules, where D∞X is
the sheaf of infinite order differential operators:

RHomDX (−,OX) ∼= RHomD∞X (D∞X ⊗DX −,OX)

Prosmans and Schneiders [15] were able to generalise the Riemann-Hilbert
correspondence to arbitrary perfect complexes of D∞X -modules, as follows.
The idea is to view OX as a bimodule-object for two different ring objects in
an appropriate derived category: RX := RHomK(OX ,OX) and the constant
sheafKX . One then has two natural functors between triangulated categories

Db(RX)op → Db(KX), M 7→ RHomRX (M,OX).

and a functor in the opposite direction

Db(KX)→ Db(RX)op, M 7→ RHomKX (M,OX).

Their key technical result is that the ring objectRX is in fact concentrated in
degree zero, and that its zeroth cohomology object is naturally isomorphic to
D∞X . Using this result, Prosmans and Schneiders prove that the first functor
defines for any complex manifold X, a fully faithful embedding from the
derived category of sheaves of perfect D∞X -modules into an appropriately-
defined derived category of sheaves of complex vector spaces on X. For
the sake of clarity, we have suppressed in this short summary the necessary
functional-analytic details: Prosmans and Schneiders in fact work with the
derived category of the quasi-abelian category of sheaves on X with values
in the category Ind(BanC) of Ind-Banach spaces over C.

The main result of this article can be viewed as a computation of the
zeroth cohomology object of the natural non-Archimedean analogue of the
ring-object RX : the result is the sheaf ÙDX of analytic differential operators
provided the ground field K is sufficiently large. This article is part of a
larger project with Kobi Kremnizer for replicating the work of Prosmans
and Schneiders in the non-Archimedean context: if successful, this will yield
the vanishing of the higher cohomologies of the non-Archimedean version
of RX and consequently provide a fully faithful embedding of the bounded
derived category of perfect complexes of ÙDX -modules into an appropriate
derived category of sheaves of K-vector spaces on X.

1.1. Acknowledgements. We would like to thank Kobi Kremnizer for sug-
gesting that the kind of results contained in this article could exist and for
explaining the connection to Riemann-Hilbert. We would also like to thank
Simon Wadsley and Thomas Bitoun for their interest in this work.
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2. Background

2.1. Sheaves of Banach spaces on rigid analytic varieties. Let X be a
smooth rigid analytic variety over a field K complete with respect to a non-
trivial non-Archimedean valuation. We denote by Xw the category whose
objects are the affinoid subdomains of X and whose morphisms are the in-
clusions. This category is equipped with a Grothendieck topology (the weak
topology) whose covers are given by collections of affinoid subdomains of X
which cover X set-theoretically, and which locally on affinoid subdomains
admit finite subcoverings. This topology on the category Xw defines the
rigid site of X.

Let L be another field which is complete with respect to a non-trivial
non-Archimedean valuation. Recall the category BanL of non-Archimedean
Banach spaces over L discussed at length in [5]. The morphisms between
two such spaces V,W are the bounded L-linear maps, that is, the L-linear
maps f : V →W for which there exists C > 0 such that |f(v)|W 6 C · |v|V
for all v ∈ V . We denote the L-vector space of such maps by HomL(V,W ).
The category of pre-sheaves of L-Banach spaces on the rigid site of X is
simply the category of functors Xop

w → BanL. The category of sheaves of
L-Banach spaces on the rigid site of X is the full category of pre-sheaves
of L-Banach spaces consisting of objects P such that for any V ∈ BanL,
U 7→ HomL(V, P (U)) is a sheaf of sets on the rigid site of X. This is
equivalent to the following condition: for any finite admissible affinoid cover∐
Ui → U of an admissible affinoid U of X, there is a strict exact sequence

0→ P (U)→
∏

P (Ui)→
∏

P (Uij).

The category of Banach spaces is not abelian, instead it is quasi-abelian.
We do not enter here into a general description of the category of sheaves on
a site with values in quasi-abelian category, as we will need only the most
basic structures in this article. A study of sheaves valued in quasi-abelian
categories over topological spaces was initiated by Schneiders in [17].

The morphisms in the category of sheaves of L-Banach spaces on Xw

between S and T are given by HomXw(S, T ) = ker(r), where

r :
∏

U∈Xw
HomL(S(U), T (U)) −→

∏
V,W∈Xw,W⊂V

HomL(S(V ), T (W ))

sends f = (fU )U∈Xw to the object r(f) whose components are given by

r(f)V,W = σW⊂V ◦ fV − fW ◦ τW⊂V .

Here σW⊂V : S(V ) → S(W ) and τW⊂V : T (V ) → T (W ) are the restriction
maps. We often think of an element ψ ∈ HomXw(S, T ) in terms of its “tuple
of components" (ψU )U∈Xw , which commute with the restriction maps:

σW⊂V ◦ ψV = ψW ◦ τW⊂V

whenever W ⊂ V are objects of Xw.



BOUNDED LINEAR ENDOMORPHISMS OF RIGID ANALYTIC FUNCTIONS 5

2.2. Bornological spaces. Motivated by the possible applications hinted
at in the introduction, we would like to find a closed, symmetric, monoidal,
quasi-abelian category which contains the category of L-Banach spaces fully
faithfully, and is large enough to contain objects like HomXw(S, T ) described
above. The category of complete locally convex topological L-vector spaces
is not appropriate, because its natural symmetric monoidal structure does
not extend to a closed symmetric monoidal structure — see [14, Example
2.7]. Instead, we will work with the category of complete, convex, bornological
vector spaces because it satisfies all of these desiderata, as well as being fairly
easy to work with. The nice thing about this category is that the categorical
limit over a diagram is described as an explicit simple bornological structure
on the limit of the same diagram in the category of vector spaces: see [3,
Remark 3.44] for more details.

A bornological space is a set together with the data of a collection of
distinguished subsets which are called the bounded subsets. They are required
to cover the underlying set, to be stable under passing to subsets and to be
stable under finite unions. Any Banach space over K can be considered a
complete, convex, bornological space by taking the bounded subsets to be
those which are bounded with respect to the metric defined by the Banach
structure. Any Fréchet space over K can be considered a complete, convex,
bornological space by taking the bounded subsets to be those which are
bounded with respect to each of any countable family of seminorms defining
the topology on the Fréchet space. This gives a definition of bounded set
not depending on the choice of the countable family of seminorms. The
resulting bornology is called the von Neumann bornology. We will not give
more details here, and instead refer the interested reader to [3], [4] and
the references given therein, but we will explain the natural bornological
structure on the set HomXw(S, T ).

If V and W are L-Banach spaces, then the space of bounded L-linear
maps HomL(V,W ) is again an L-Banach space, equipped with its operator
norm. We will denote the induced bornological structure on this space by
HomL(V,W ). This construction globalises easily as follows: if X is a smooth
rigid analytic space over K, then whenever S and T are sheaves of L-Banach
spaces on Xw we have a complete convex bornological space HomXw(S, T ) =
ker(r) where

(1)
∏

U∈Xw
HomL(S(U), T (U))

r→
∏

V,W∈Xw,W⊂V
HomL(S(V ), T (W ))

and the products and kernels are calculated in the category of complete con-
vex bornological spaces over L. The bounded subsets HomXw(S, T ) (which
define the bornology of HomXw(S, T )) are those subsets of HomXw(S, T )
whose image under the projection to HomL(S(U), T (U)) are bounded in
the operator norm, for each U ∈ Xw. The underlying sets of such prod-
ucts and kernels in this category agree with those calculated in the cat-
egory of vector spaces and so the underlying set of HomXw(S, T ) is just
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HomXw(S, T ). Explicitly, HomXw(S, T ) is the set of collections of bounded
linear maps from S(U) to T (U) indexed by U ∈ Xw that are compatible
with the restrictions. In other words, HomXw(S, T ) is the set HomXw(S, T )
equipped with the bornology that is defined by letting the bounded subsets
of HomXw(S, T ) be those subsets for which the projection to each Banach
space HomL(S(U), T (U)) is bounded.

Define HomL(S, T ) to be the sheaf of bounded L-linear morphisms be-
tween S and T . This is a sheaf of complete convex bornological spaces over
L, whose value on an affinoid U is given by

HomL(S, T )(U) = HomUw(S|U , T |U ).
Define EndL(S) = HomL(S,S)— this is a sheaf of complete convex bornolog-
ical algebras over L. The category of sheaves of L-Banach algebras (not-
necessarily commutative) is similarly defined to be the full subcategory of
functors from Xop

w to the category of L-Banach algebras which satisfy the
same sheaf requirement.

The rest of this paper will be concerned with the following explicit ex-
ample. Whenever X is a smooth rigid analytic space over K and U is an
affinoid subdomain of X, the affinoid algebra O(U) carries a natural K-
Banach algebra structure with respect to the supremum seminorm on U ,
given by

|f |U := sup{|f(x)| : x ∈ U}.
In this way, the structure sheaf OX naturally becomes a sheaf of K-Banach
spaces on Xw, and we therefore have at our disposal the sheaf

EX := EndK(OX)
of complete convex bornological K-algebras on Xw.

2.3. Infinite order differential operators. We now summarize some of
the paper [1]. In that article it was assumed that the valuation on the ground
field K was discrete, whereas in this article we weaken this hypothesis and
only demand that the valuation is non-trivial. As stated in [1] many of the
results in that article hold in this greater generality and this includes the
results which we need.

Fix a non-zero element π ∈ K such that |π| < 1. We assume that the
reader is familiar with the definition of a Lie-Rinehart algebra or more pre-
cisely an (R,A)-Lie algebra where R is a commutative ring and A is a com-
mutative R-algebra. It is a pair (L, ρ) where L is an R-Lie algebra and an
A-module, and ρ : L → DerR(A) is an A-linear R-Lie algebra homomor-
phism satisfying a natural axiom. For each (R,A)-Lie algebra L there is an
associated associative R-algebra U(L) generated by A and L subject to some
obvious relations, called the enveloping algebra of L.

Let X be a smooth K-affinoid variety so that T (X) denotes the space
DerK O(X) of K-linear derivations of O(X). The unit ball of the Banach
algebra O(X) is the subring of power-bounded elements of O(X), denoted
O(X)◦. We say that L is an O(X)◦-lattice in T (X) if it is finitely generated
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as an O(X)◦-module, and spans T (X) as a K-vector space. We say that
L is an O(X)◦-Lie lattice if in addition it is a sub-(K◦,O(X)◦)-Lie algebra
of T (X); it is not hard to see that O(X)◦-Lie lattices always exist. For
any O(X)◦-Lie lattice L, we write ’U(L) to denote the π-adic completion
of U(L) and we write ◊�U(L)K to denote the Noetherian K-Banach algebra
K ⊗K◦ ’U(L). The algebra of infinite order differential operators on X isÙD(X) := lim←−

⁄�U(πnL)K

for any choice of O(X)◦-Lie lattice L in T (X). Note that ÙD(X) is natu-
rally a K-Fréchet algebra, with the Banach norms of the Banach K-algebras⁄�U(πnL)K providing a countable family of seminorms on ÙD(X) that define
its Fréchet topology. It is shown in [1, Section 6.2] that this does not depend
on the choice of L.

The algebra D(X) = U(T (X)) of finite order differential operators is
dense in ÙD(X). These constructions sheafify to define a sheaf of K-algebras
D on Xw which is dense in the sheaf of K-Fréchet algebras ÙD on Xw.

3. Infinite order differential operators as endomorphisms

In the rest of the article,K will be a non-trivially valued, non-Archimedean
valuation field of characteristic zero. The following elementary Lemma is
fundamental to our constructions.

Lemma 3.1. Let X be a K-affinoid variety. Then every K-linear derivation
of O(X) is automatically bounded.

Proof. This follows from the proof of [10, Theorem 3.6.1]; see also the dis-
cussion in [1, Section 2.4]. �

Definition 3.2. Let V be a K-Banach space, and let d > 0. We say that a
family of vectors (aα)α∈Nd in V is rapidly decreasing if

aα/π
r|α| → 0 as |α| → ∞ for any r ∈ N.

Remark 3.3. The following conditions are equivalent:
(a) (aα)α∈Nd is rapidly decreasing,
(b) there exists r0 ∈ N such that aα/πr|α| → 0 as |α| → ∞ for all r ∈ N with

r > r0,
(c) supα∈Nd |aα/πr|α|| <∞ for all r ∈ N,
(d) there exists r0 ∈ N such that supα∈Nd |aα/πr|α|| < ∞ for all r ∈ N with

r > r0.

We will always write Dd := SpK〈x1, . . . , xd〉 to denote the d-dimensional
polydisc over K.
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Lemma 3.4. Let X be a smooth K-affinoid variety equipped with an étale
morphism g : X → Dd. Let ∂i ∈ T (X) be the canonical lifts of the standard
vector fields d

dxi
∈ T (Dd). ThenÙD(X) =

∑
α∈Nd

aα∂
α : aα ∈ O(X) and (aα)α∈Nd is rapidly decreasing

 .
The Fréchet structure on ÙD(X) can be defined by the family of semi-norms∣∣∣∣∣∣ ∑

α∈Nd
aα∂

α

∣∣∣∣∣∣
R

= sup
α∈Nd
|aα|Rα

for sufficiently large real numbers R.

Proof. Since g : X → Dd is étale, {∂1, . . . , ∂d} forms an O(X)-module basis
for T (X). They need not preserve A := O(X)◦ in general, but because they
are bounded by Lemma 3.1, we can find N large enough so that the πN∂i
do all preserve A. Define L as the A-submodule of T (X) generated by the
bounded derivations {∂1, . . . , ∂d}. Then [πNL,A] ⊆ A by construction so we
find that πNL is a (K◦,A)-Lie algebra which is in addition free of finite rank
as an A-module. Therefore, by [1, Definition 9.3, Theorem 9.3, Definition
8.1 and Definition 6.2], we find that ÙD(X) is canonically isomorphic to the
inverse limit (over r > N) of the Banach algebras ⁄�U(πrL)K .

Now, for any r > N , grU(πrL) = S(πrL) by a theorem of Rinehart — [16,
Theorem 3.1] — so grU(πrL) is the commutative polynomial ring in n vari-
ables overA. These variables ζ(r)1 , ..., ζ

(r)
d are compatible in the sense that the

obvious (injective) map S(πsL)→ S(πrL) for s > r will send ζ(s)i to πs−rζ(r)i
for any i = 1, ..., n. It follows that U(πrL) consists of non-commutative poly-
nomials in the πr∂i over A. More precisely, every element of U(πrL) can
be written uniquely as a finite sum

∑
α∈Nd aα(π

r∂1)
α1 · · · (πr∂d)αd with the

aα ∈ A. It also follows from this that the Banach completion⁄�U(πrL)K is the
non-commutative Tate-algebra over O(X) = AK in these variables: every
element of ⁄�U(πrL)K can be written uniquely as a convergent power series∑
α∈Nd aα(π

r∂1)
α1 ...(πr∂d)

αd with the aα now in O(X), tending to zero as
|α| → ∞. By rewriting these sums as formal power series in ∂1, ..., ∂d, we
obtain the statement of the lemma. �

Whenever V is an affinoid subdomain of a K-affinoid variety U , O(V )
is naturally an abstract D(U)-module. Because D(U) is generated as a K-
algebra by O(U) and T (U), and because T (U) acts by bounded derivations
on O(U) by Lemma 3.1, we thus obtain a K-algebra homomorphism

D(U) −→ EndK O(V ).

Lemma 3.5. Let U be a smooth K-affinoid variety, and let V be an affinoid
subdomain of U . Then the K-algebra homomorphism D(U)→ EndK O(V )
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extends uniquely to a continuous K-algebra homomorphism

ρ(U, V ) : ÙD(U)→ EndK O(V )

such that, for any W ∈ Vw and a ∈ ÙD(U), the following diagram commutes:

O(V )

��

ρ(U,V )(a) // O(V )

��
O(W )

ρ(U,W )(a)
// O(W ).

Proof. The operator norm on EndK O(V ) is given by

||φ|| = sup

®
|φ(f)|V
|f |V

: f ∈ O(V )\{0}
´
.

Because the unit ball of O(V ) with respect to the supremum norm is O(V )◦,
the unit ball in EndK O(V ) with respect to the operator norm is

HomK◦(O(V )◦,O(V )◦),

the space of all K◦-linear maps O(V )◦ → O(V )◦. Note that because every
open neighbourhood of zero in O(V )◦ contains a π-power multiple of O(V )◦,
every K◦-linear map O(V )◦ → O(V )◦ is automatically continuous.

Now, using the proof of [1, Lemma 7.6(b)], we can find an O(U)◦-Lie
lattice L in T (U) whose action on O(V ) stabilises O(V )◦. Because O(V )◦

is π-adically complete, it follows that the induced action of U(L) on O(V )◦

extends uniquely to the π-adic completion ’U(L). After tensoring over K◦
with K, we obtain in this way a norm-preserving K-Banach algebra homo-
morphism ◊�U(L)K −→ EndK O(V ),

which extends D(U)→ EndK O(V ). We now define

ρ(U, V ) : ÙD(U)→ EndK O(V )

to be the restriction of this homomorphism to ÙD(U) along the canonical mapÙD(U) → ◊�U(L)K . Because the set of O(U)◦-Lie lattices stabilising O(V )◦ is
stable under intersections, it is easy to see that ρ(U, V ) does not, in fact,
depend on the choice of L.

Finally, choose anO(U)◦-Lie lattice L in T (U) which stabilises both O(V )◦

and O(W )◦; then the restriction map O(V )◦ → O(W )◦ becomes ’U(L)-
linear. Therefore, the restriction map O(V ) → O(W ) is ÙD(U)-linear and
the diagram in the statement of the Lemma commutes. �

Lemma 3.6. Let X be a smooth rigid K-analytic space. Then ÙDX and EX
are sheaves of K-algebras on Xw.
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Proof. The assertion about ÙDX was established in [1, Theorem 8.1] in the
case where the ground field K is discretely valued. However, the proof does
not use this assumption on K and therefore works in the stated generality.
The discussion in §2.1 shows that EX is also a sheaf on Xw. �

Corollary 3.7. For any smooth rigid K-analytic space X, there is a homo-
morphism of sheaves of K-algebras on Xw

ρX : ÙDX → EX
such that if U ∈ Xw, the K-algebra map ρX(U) : ÙD(U)→ E(U) is given by

ρX(U)(a) = (ρ(U, V )(a))V ∈Uw .

Proof. By Lemma 3.5, we see that for any U ∈ Xw and any a ∈ ÙD(U), the
element (ρ(U, V )(a))V ∈Uw lies in the kernel of the map r described in §2.2
and so gives an element in HomUw(OU ,OU ). By the definitions given in §2.1
and §2.2,

HomUw(OU ,OU ) = (EndKOX)(U) = EX(U),

so we have defined a K-algebra homomorphism ρX(U) : ÙD(U) → EX(U).
The construction of the restriction maps in the sheaf ÙD explained in [1, §6.3]
implies that these ρX(U) commute with the restriction maps in the sheavesÙDX and EX . �

Here is our main theorem. The proof will appear in Propositions 4.16 and
4.19.

Theorem 3.8. Let K be a field of characteristic zero, complete with re-
spect to a non-trivial non-Archimedean valuation. Then the following are
equivalent:
(a) The homomorphism of sheaves of K-algebras on Xw

ρX : ÙDX → EX
is an isomorphism for all smooth rigid K-analytic spaces X,

(b) The ground field K is algebraically closed, and its residue field k is
uncountable.

Remark 3.9. (a) If charK = p > 0 then ρX need not be injective: for
example, ρD annihilates ∂p where ∂ := d

dx ∈ T (D), but ∂
p is non-zero inÙD(D). This is why we restrict to the case charK = 0 throughout.

(b) The assumption that K is algebraically closed automatically forces its
residue field k to be algebraically closed as well. This is because any root
of any monic lift of a monic non-constant polynomial in k[X] to K◦[X]
already lies in K◦ because K is algebraically closed and K◦ is integrally
closed, so its image in k is a root of our original polynomial.

(c) The condition in Theorem 3.8 (b) that K is algebraically closed will be
used directly in Lemma 4.12. The implication that its residue field is
algebraically closed will be used in Corollary 4.4, Corollary 4.10, Lemma
4.11, and Theorem 4.9.
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4. Proof of Theorem 3.8

We begin the proof of Theorem 3.8 with four general statements that
should be skipped on a first reading.

Lemma 4.1. Let A be a domain and let M be a non-zero flat A-module.
Then AnnA(M) = 0.

Proof. Suppose a ∈ A is non-zero. Then the multiplication-by-a map aA :
A→ A is injective because A is a domain. SinceM is flat, the multiplication-
by-amap aM :M →M is injective. SinceM is non-zero, aM (M) is non-zero.
Hence a /∈ AnnA(M). �

Proposition 4.2. Let Z be a connected, smooth, K-affinoid variety, and
let Y be a non-empty affinoid subdomain of Z. Then the restriction map
O(Z)→ O(Y ) is injective.

Proof. Since Z is smooth, the local rings OZ,z of its structure sheaf are
geometrically regular by [8, Lemma 2.8]. By [7, Proposition 7.3.2/8] we
know that the (usual) localisations O(Z)m at all maximal ideals m of O(Z)
are regular local rings. Hence these local rings are domains by [2, Theorem
11.22 and Lemma 11.23]. Since O(Z) is Noetherian and since Z is connected,
it follows from [12, Theorem 168] that O(Z) is a domain.

Since Y is non-empty, O(Y ) is non-zero. On the other hand O(Y ) is a
flat O(Z)-module (in the purely algebraic sense) by [7, Corollary 7.3.2/6].
Since O(Z) is a domain, it follows from Lemma 4.1 that AnnO(Z)O(Y ) = 0.
But this annihilator is precisely the kernel of the map O(Z) → O(Y ), and
the result follows. �

Lemma 4.3. Let Y be an irreducible, reduced, affine variety of finite type
over an uncountable, algebraically closed field k, and let a0, a1, a2, . . . be a
sequence of non-zero elements of O(Y ). Then there is t ∈ Y (k) such that
ai(t) 6= 0 for all i > 0.

Proof. Suppose first that Y is the affine n-space An so that O(Y ) is the
polynomial algebra k[y1, . . . , yn]. Proceed by induction on n, the case n = 0
being true vacuously.

Let aij ∈ k[y1, . . . , yn−1] be the coefficient of yjn in ai. By induction, we can
find a point (t1, . . . , tn−1) ∈ kn−1 such that aij(t1, . . . , tn−1) 6= 0 whenever
aij 6= 0. Now ai(t1, . . . , tn−1, yn) is a non-zero polynomial in k[yn] for all i,
so it has only finitely many roots in k. Since k is uncountable, we can find
tn ∈ k such that ai(t1, . . . , tn−1, tn) 6= 0 for all i > 0 as required.

In general, use the Noether normalisation lemma to find a finite surjective
morphism f : Y → An. Since Y is irreducible and reduced, O(Y ) is a
domain. Since O(Y ) is a finitely generated O(An)-module via f ] : O(An)→
O(Y ), O(Y ) is integral over O(An). Hence, the ideal (f ])−1(aiO(Y )) is non-
zero for all i > 0. So we can choose a non-zero element bi in this ideal for all
i > 0 : f ](bi) = aigi for some gi ∈ O(Y ).
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Using the first part, choose t ∈ An(k) such that bi(t) 6= 0 for all i > 0.
Since k is algebraically closed, the fibre f−1(t)(k) is non-empty. Pick any
y ∈ f−1(t)(k). Then ai(y)gi(y) = f ](bi)(y) = bi(f(y)) = bi(t) 6= 0 for all
i > 0. Hence ai(y) 6= 0 for all i > 0. �

Corollary 4.4. Suppose the residue field k of K is uncountable and alge-
braically closed. Let X be a reduced K-affinoid variety whose reduction is
irreducible, and let f0, f1, ... ∈ O(X) be a sequence of non-zero functions in
O(X). Then there exists c ∈ X(K) such that |fi(c)| = |fi|X for all i > 0.

Proof. Let Y = Spec(O(X)◦/O(X)◦◦) be the reduction of X; it satisfies
the hypotheses of Lemma 4.3. Because X is reduced, we can find integers
m0,m1, . . . > 1, and non-zero scalars µ0, µ1, . . . ∈ K, such that |fi|X =

|µi|1/mi for all i > 0. Thus fmii /µi is an element of O(X) whose supremum
norm is precisely 1, and therefore its image ai ∈ O(Y ) is non-zero. Using
Lemma 4.3, choose t ∈ Y (k) such that ai(t) 6= 0 for all i > 0.

Choose a lift c ∈ X(K) of t ∈ Y (k). Thus |fi(c)|mi/|µi| = 1 for all i > 0.
But |fi|miX = |µi|, so we see that |fi|X = |fi(c)| for all i > 0 as required. �

We assume until the end of the proof of Proposition 4.14 be-
low that X is a smooth affinoid K-variety equipped with an étale
morphism

g : X → Dd.
We also assume throughout that K has characteristic zero.

Using [1, Lemma 2.4], we lift the standard vector fields d
dx1

, . . . , d
dxn
∈

T (Dd) along the étale morphism g to obtain ∂1, . . . , ∂d ∈ T (X). Note that
we have

T (X) = O(X)∂1 ⊕O(X)∂2 ⊕ · · · ⊕ O(X)∂d.

For every α ∈ Nd we write ∂α = ∂α1
1 · · · ∂

αd
d , α! = α1! · · ·αd! and

(α
β

)
=(α1

β1

)
· · ·
(αd
βd

)
. We write α 6 β to mean that αi 6 βi for i = 1, . . . , d, and we

define |α| = α1+ · · ·+αd. For any U ∈ Xw we will abuse notation and write
xα denote the image of xα = xα1

1 · · ·x
αd
d in O(U) under the composition

O(Dd) g
#

→ O(X)→ O(U).
Because charK = 0, we can make the following

Definition 4.5. Let U ∈ Xw, ψ ∈ EndK O(U) and α ∈ Nd. Then we write

ηα(ψ) :=
1

α!

∑
β6α

ψ(xβ)

Ç
α

β

å
(−x)α−β ∈ O(U).

Now, for every ϕ ∈ E(U) we can define the formal expression

(2) ηX(U)(ϕ) :=
∑
α∈Nd

ηα(ϕ(U))∂α ∈
∞∏
α=0

O(U)∂α.

With these notations, we can formulate the following
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Lemma 4.6. For every U ∈ Xw, every ϕ ∈ E(X) and every α ∈ Nd we have

ηα(ϕ(X))|U = ηα(ϕ(U)).

Proof. This is immediate because ϕ is a morphism of presheaves, and the
restriction map O(X) → O(U) is a K-algebra homomorphism that carries
xβ ∈ O(X) to xβ ∈ O(U) whenever U ∈ Xw. �

Lemma 4.7. Let ψ : O(X)→ O(X) be a K-linear map, let c1, . . . , cd ∈ K
and define yi := xi − ci for all i. Then∑

β6α

ψ(xβ)

Ç
α

β

å
(−x)α−β =

∑
β6α

ψ(yβ)

Ç
α

β

å
(−y)α−β.

Proof. Consider the K-linear map

Q := mult ◦(ψ ⊗ 1O(X)) : O(X)⊗O(X)→ O(X).

The left, respectively, right, hand side of the equality we propose to show
can be identified with Q((x⊗ 1− 1⊗ x)α), respectively, Q((y⊗ 1− 1⊗ y)α).
However,

xi ⊗ 1− 1⊗ xi = (yi + ci)⊗ 1− 1⊗ (yi + ci) = yi ⊗ 1− 1⊗ yi
and hence (x⊗ 1− 1⊗ x)α = (y ⊗ 1− 1⊗ y)α for any α ∈ Nd. �

Lemma 4.8. There is a real number 0 < $ 6 1 depending only on K such
that $|α| 6 |α!| for all α ∈ Nd.

Proof. Consider the prime subfield Q ⊂ K. If the induced valuation on Q is
trivial then we may take $ = 1 as in this case |α!| = 1 for any α ∈ Nd.

Otherwise, by Ostrowski’s Theorem there is a unique prime number p such
that |p| < 1 and |p′| = 1 for every prime p′ 6= p, so that the topology induced
by K on Q is the p-adic topology. Define

$ := |p|
1
p−1 .

Now, for the p-adic valuation vp on Q we have the estimate vp(m!) 6 m
p−1

by [9, Chapter II, Section 8.1, Lemma 1]. Since |p| < 1 we deduce that

|m!| = |p|vp(m!) > $m for any m ∈ N.

Hence |α!| = |α1!| · · · |αd!| > $α1 · · ·$αd = $|α| as claimed. �

Theorem 4.9. Suppose that the residue field k of K is algebraically closed
and uncountable. Then for every ϕ ∈ E(X), the family

(ηα(ϕ(X)))α∈Nd ⊂ O(X)

is rapidly decreasing.

Proof. Write ξα := ηα(ϕ(X)) ∈ O(X), and let S = {α ∈ Nd|ξα 6= 0}. The
case when S is finite is clear, so assume that S is countably infinite.
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Assume first that the reduction Y = Spec(O(X)◦/O(X)◦◦) is irreducible.
Note that X is reduced because it is assumed to be smooth, so using Corol-
lary 4.4, we may choose c ∈ X(K) such that

|ξα|X = |ξα(c)| for all α ∈ S.
Choose a non-zero element π ∈ K with |π| < 1, and fix n > 0. Consider the
affinoid subdomain

Xn := Sp

Ç
O(X)

Æ
x1 − g(c)1

πn
,
x2 − g(c)2

πn
, . . . ,

xd − g(c)d
πn

∏å
of X, and let yi := xi − g(c)i for i = 1, . . . , d. Then

ξα|Xn = ηα(ϕ(X))|Xn = ηα(ϕ(Xn)) =
1

α!

∑
β6α

(−y)α−β
Ç
α

β

å
ϕ(Xn)(y

β)

by Lemma 4.6 and Lemma 4.7. Now |yi|Xn 6 |πn| for each i = 1, . . . , d, and
c ∈ Xn(K) for all n > 0. Therefore

|ξα|X = |ξα(c)| 6 |ξα|Xn 6
1

|α!|
max
β6α
|yα−β|Xn · ||ϕ(Xn)|| · |yβ|Xn

6
||ϕ(Xn)|| · |πn|α||

|α!|

(3)

for all n > 0 and all α ∈ S. Choose N ∈ N large enough so that |π|N 6 $.
Then by Lemma 4.8,

|πN |α|| = |π|N |α| 6 $|α| 6 |α!|.
Therefore, applying (3) with n replaced by n+N + 1, we obtain

|ξα|X
|πn|α||

6
||ϕ(Xn+N+1)|| · |πN |α|| · |π||α|

|α!|
6 ||ϕ(Xn+N+1)|| · |π||α|

for any α ∈ S, and therefore also for any α ∈ Nd since |ξα|X = 0 if α /∈ S.
Because |π| < 1, the family of elements (ξα) in O(X) is rapidly decreasing:

ξα
πn|α|

→ 0 as |α| → ∞, for any n > 0.

Returning to the general case, let {| · |1, | · |2, . . . , | · |r} be the Shilov boundary
of the Berkovich space associated to X. It follows from [6, Proposition 2.4.4]
that

|a|X = max
16i6r

|a|i for any a ∈ O(X).

Furthermore, we can find elements g1, . . . , gr ∈ O(X) of supremum norm
1 such that if Xi denotes the Laurent subdomain X(1/gi) of X and ρi :
O(X)→ O(Xi) is the restriction map, then |ρi(a)|Xi = |a|i for all a ∈ O(X),
and Xi has irreducible reduction for each i = 1, . . . , r.

Now, ρi(ξα) = ηα(ϕ(X))|Xi = ηα(ϕ(Xi)) by Lemma 4.6, and ϕ|Xi is an
element of E(Xi). So by the above, we know that

|ρi(ξα)/πn|α||Xi → 0
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for all i = 1, . . . , r, and for all n > 0. Hence, for any n > 0,

|ξα/πn|α||X = max
16i6r

|ρi(ξα)/πn|α||Xi → 0

as α→∞ also. �

Corollary 4.10. Suppose that the residue field of K is algebraically closed
and uncountable. Then

(a) for any ϕ ∈ EX(U), the expression

ηX(U)(ϕ) :=
∑
α∈Nd

ηα(ϕ(U))∂α

defines an element of ÙD(U),
(b) there is a well-defined morphism of OX -modules

ηX : EX → ÙDX ,
(c) for every ϕ ∈ E(X), the total symbol

T (ϕ) :=
∑
α∈Nd

ηα(ϕ(X)) ζα ∈ O(X)[[ζ1, ζ2, . . . , ζd]]

defines a rigid analytic function on X × Ad,

Proof. (a) This follows from Theorem 4.9 and Lemma 3.4.
(b) By part (a), for every U ∈ Xw there is an O(U)-linear morphism

ηX(U) : EX(U)→ ÙDX(U).

Since ϕ is a morphism of sheaves over Uw we have ϕ(U)(xβ)|V = ϕ(V )(xβ)
for any V ∈ Uw. Therefore, Definition 4.5 shows that the ηX(U) are com-
patible with restriction and so define a morphism of sheaves.

(c) For any n > 0, T (ϕ) converges on O(X × SpK〈πnζ1, . . . πnζd〉) if
and only if ξα

πn|α|
→ 0 as |α| → ∞. So, by Theorem 4.9, T (ϕ) converges

everywhere on X × Ad ∼= T ∗X. �

Lemma 4.11. Suppose that the residue field of K is algebraically closed
and uncountable. Then ηX ◦ ρX = idÛD.
Proof. We have show that ηX(U) ◦ ρX(U) = 1ÛD(U)

for any U ∈ Xw. Since

the restriction of g : X → Dd to U ⊂ X is still étale, it will be sufficient to
consider the case U = X only.

Let a =
∑
α∈Nd aα∂

α ∈ ÙD(X) so that (aα)α∈Nd is a rapidly decreas-
ing family of elements in O(X), and let ψ := ρX(X)(a) = ρ(X,X)(a) ∈
EndK O(X). We must show that

ηγ(ψ) = aγ for all γ ∈ Nd.
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Now ψ(xβ) = ρ(X,X)(a)(xβ) =
∑
α6β

aα
β!

(β−α)!x
β−α for any β ∈ Nd. Hence

γ!ηγ(ψ) =
∑
β6γ

ψ(xβ)

Ç
γ

β

å
(−x)γ−β =

=
∑
β6γ

Ñ∑
α6β

aα
β!

(β − α)!
xβ−α

éÇ
γ

β

å
(−x)γ−β =

=
∑
α6γ

Ñ ∑
α6β6γ

β!

(β − α)!

Ç
γ

β

å
(−1)γ−β

é
aαx

γ−α.

(4)

For fixed α 6 γ and β in the range α 6 β 6 γ, make the change of variable
ε := β − α. Then

β!

(β − α)!
·
Ç
γ

β

å
=

γ!

(β − α)!(γ − β)!
=

γ!

ε!(γ − α− ε)!
=

Ç
γ − α
ε

å
· γ!

(γ − α)!
.

Therefore, for any α 6 γ we have∑
α6β6γ

β!

(β − α)!

Ç
γ

β

å
(−1)γ−β =

γ!

(γ − α)!
∑

ε6γ−α

Ç
γ − α
ε

å
(−1)γ−α−ε = γ!δα,γ ,

and therefore γ!ηγ(ψ) =
∑
α6γ γ!δα,γaαx

γ−α = γ!aγ . Since charK = 0, we
conclude that ηγ(ψ) = aγ as required. �

Recall that we are assuming thatX is a smoothK-affinoid variety, equipped
with an étale morphism g : X → Dd.

Lemma 4.12. Suppose that K is algebraically closed. Then there exists an
affinoid subdomain t : Y ↪→ X such that (g ◦ t)# : O(Dd)→ O(Y ) has dense
image.

Proof. Pick any point b ∈ X and let a = g(b) ∈ Dd. SinceK = K, Fa = Fb =
K. See [10, Definition 7.4.4] for the notation Fa. By [10, §8.1.3] there exists
a wide open neighbourhood U of a ∈ Dd such that g−1(U) = V

∐
W where

V and W are affinoid, V is a wide open neighborhood of b and g|V : V → U
is an open immersion. Choose any polydisk T ⊂ g(V ) which contains a, and
let Y = (g|V )

−1(T ) ⊂ V . Then we have the commutative diagram

(5) Y
⊂ //

∼=g|Y

��

V

g|V
��

⊂ //

$$

V
∐
W

⊂ //

��

X

g
��

T
⊂ // g(V )

⊂ // U
⊂ // Dd.

Because T is a Weierstrass subdomain of Dd, [7, Proposition 7.3.4/2] implies
that the image of the restriction map θ : O(Dd) → O(T ) is dense. On the
other hand, (g|Y )] : O(T )→ O(Y ) is an isomorphism because g|V : V → U

is an open immersion. Therefore, the image of (g ◦ t)] = t] ◦ g] = (g|Y )
] ◦ θ

is dense, as claimed. �
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Proposition 4.13. Suppose that K is algebraically closed and that X is
connected. Let ϕ ∈ E(X) be such that ηα(ϕ(X)) = 0 for all α ∈ Nd. Then
ϕ(X) = 0.

Proof. We will first show by induction on |α| that ϕ(X)(xα) = 0 for all
α ∈ Nd. This is true when α = 0 because ϕ(X)(1) = η0(ϕ(X)) = 0. Now

ηα(ϕ(X)) =
1

α!

∑
β6α

ϕ(X)(xβ)

Ç
α

β

å
(−x)α−β

and |β| < |α| whenever β 6 α and β 6= α. Therefore ϕ(X)(xβ) = 0 for
any β 6 α with β 6= α by induction, and we deduce that ϕ(X)(xα) =
α!ηα(ϕ(X)) = 0. This completes the induction.

Next, applying Lemma 4.12 to g : X → Dd gives us an affinoid subdomain
t : Y ↪→ X such that (g ◦ t)] : O(Dd) → O(Y ) has dense image. Consider
the following commutative diagram:

(6) O(Dd)

(g◦t)] $$

g] // O(X)

t]

��

ϕ(X) // O(X)

t]

��
O(Y )

ϕ(Y )
// O(Y ).

Since ϕ(X) : O(X) → O(X) is bounded, it is continuous. The restriction
map g] is also continuous, by [10, Theorem 3.2.1(7)]. Because the polynomial
algebra K[x1, . . . , xd] is dense in O(Dd) = K〈x1, . . . , xd〉 and because we saw
above that ϕ(X) kills K[x1, . . . , xd], we deduce that ϕ(X) ◦ g] is zero.

The commutativity of the diagram implies that ϕ(Y )◦(g◦t)# = 0. Because
(g◦t)# has dense image and ϕ(Y ) is continuous we can conclude that ϕ(Y ) =
0. Therefore t] ◦ ϕ(X) = ϕ(Y ) ◦ t] = 0, but t] : O(X) → O(Y ) is injective
by Proposition 4.2 because X is connected, so ϕ(X) = 0 as required. �

IfK is not algebraically closed, then Proposition 4.13 breaks down: takeX
to be SpL for some non-trivial finite field extensionK of L; then any non-zero
K-linear endomorphism of L that is zero onK will provide a counterexample.

Proposition 4.14. Suppose that K is algebraically closed and that its
residue field k is uncountable. Then ρX ◦ ηX = 1EX .

Proof. Note that k is automatically algebraically closed by Remark 3.9(b).
By Lemma 4.11 we see that ηX ◦ (ρX ◦ ηX − 1) = (ηX ◦ ρX − 1) ◦ ηX = 0.
Thus it will be enough to show that ηX is injective.

Suppose that ηX(U)(ϕ) = 0 for some U ∈ Xw and some ϕ ∈ E(U).
Let V be a connected affinoid subdomain of U ; then also ηX(V )(ϕ|V ) =

ηX(U)(ϕ)|V = 0 and hence ηα(ϕ(V )) = 0 for all α ∈ Nd. Because the
restriction of g : X → Dd to V is étale, it follows from Proposition 4.13 that
ϕ(V ) = 0. Now ϕ can be regarded as a morphism of sheaves O → O on Uw;
since every V ∈ Uw a finite disjoint union of its connected components, we



18 KONSTANTIN ARDAKOV AND OREN BEN-BASSAT

deduce that ϕ(V ) = 0 for all V ∈ Uw. Hence ϕ = 0 and ηX(U) is injective
for every U ∈ Xw. �

We now return to full generality, and begin our proof of Theorem 3.8.

Proposition 4.15. Let X be a smooth rigid analytic space. Then X admits
an admissible covering by a collection of affinoids Xi, such that there exist
étale morphisms gi : Xi → Dni to disks of various dimensions.

Proof. This follows from [8, Proposition 2.7]. �

We now prove the central result of this article. The (a) ⇒ (b) part of
Theorem 3.8 is proven in Proposition 4.19.

Proposition 4.16. (b) ⇒ (a) from Theorem 3.8 holds.

Proof. By Lemma 3.6, ÙDX and EX are sheaves on Xw. Therefore, the mor-
phism ρX is an isomorphism if and only if its restriction to each member
of an admissible affinoid covering of X is an isomorphism. By Proposition
4.15, we may therefore assume that X is an affinoid variety which admits an
étale morphism g : X → Dd to some d-dimensional polydisc.

Assume that K is algebraically closed, and that its residue field k is un-
countable. Then k is also algebraically closed by Remark 3.9(b). Therefore
ηX is a well-defined OX -linear morphism EX → ÙDX by Corollary 4.10(b),
and it is a two-sided inverse to ρX by Lemma 4.11 and Proposition 4.14. �

Let us now fix an algebraically closed non-Archimedean field K with non-
trivial valuation whose residue field k is countable, for example K could be
the field Cp of p-adic complex numbers whose residue field is Fp. Let

X := D = SpK〈x〉
be the closed unit disc. Because k is assumed to be countable, we may
choose a set {λα|α ∈ N} ⊂ K◦ of additive coset representatives for the
maximal ideal m in K◦. So we have

K◦ =
∞∐
α=0

(λα +m).

Now, define ∂(α) := ∂α

α! for any α ∈ Nd, and consider the formal power series

ξ :=
∞∑
α=0

ξαπ
α∂(α)x ∈

∞∏
α=0

K〈x〉∂(α)x

where
ξα := (x− λ0)α

2 · · · (x− λα)α
2
.

We make two claims.

Claim 4.17. For all Y ∈ Xw, (ξαπα∂
(α)
x|Y )

∞
α=0 tends to zero in the Banach

algebra EndK(O(Y )) of bounded K-linear endomorphisms of O(Y ). There-
fore, ξ defines a global section of E .
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Claim 4.18.

ξ /∈ Im

(ÙD(X)→
∞∏
α=0

K〈x〉∂(α)x

)

Together, these claims show that the map ρ : ÙD → E is not an isomorphism
over the one dimensional closed unit disk, whenK has countable residue field.

We start with the proof of Claim 4.17. First of all, we can assume that Y
is connected. Otherwise, Y has a finite number of connected components Yi
and (ξαπ

α∂
(α)
x )∞α=0 being a zero sequence in EndK(O(Y )) is equivalent to its

image in EndK(O(Yi)) being a zero sequence for each i. The next step is to
prove it in the case that Y is contained in a closed disk Z of radius strictly
less than 1.

Thus, assume that there exist a, ρ ∈ K◦ with |ρ| < 1 such that Y ⊆ Z :=
SpK〈z〉, where z := x−a

ρ . There exists a unique integer γ > 0 such that

|ε| < 1 where ε := a− λγ .

Because x = a+ ρz and because |z|Z 6 1, we see that

|x− λγ |Z = |ε+ ρz|Z 6 max{|ε|, |ρ|} < 1.

Now let β ∈ N. Because |λγ − λβ| = δβ,γ by construction,

|x− λβ|Z = |λγ − λβ + (x− λγ)|Z =

®
|ε+ ρz|Z if β = γ
1 otherwise.

Hence, whenever α > γ we see that

|ξα|Z =
α∏
β=0

|x− λβ|α
2

Z = |ε+ ρz|α2

Z 6 (max{|ε|, |ρ|})α2
.

Therefore, (ξα|Z) is rapidly decreasing: for any N > 0, whenever α > γ we
see that

log(|ξα|Z/|π|Nα) 6 −(log |π|)Nα+ log(max{|ε|, |ρ|})α2

which tends to −∞ as α→∞ because log(max{|ε|, |ρ|}) < 0. Therefore

lim
α→∞

|ξα|Z
|π|Nα

= 0 whenever N > 0

as claimed. Next, let R > 0 be the operator norm of the restriction of ∂x to
O(Y ). Then the operator norm of the restriction of ∂(α)x = ∂αx

α! to O(Y ) is at
most Rα/|α!|. Choose a positive integer N such that |π|N < $/R. Then

Rα

|α!|
6
Rα

$α
<

1

|π|Nα
for all α ∈ N

by Lemma 4.8. The restriction map O(Z) → O(Y ) is contracting, and we
deduce that

||ξα∂(α)x ||Y 6 |ξα|Y
Rα

|α!|
6
|ξα|Z
|π|Nα

→ 0
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as α→∞. Therefore (ξαπα∂
(α)
x|Y )

∞
α=0 is a zero sequence in the Banach algebra

EndK(O(Y )), as claimed.
Suppose now there does not exist a closed disk as above containing Y ∈

Xw. Because K is algebraically closed, we may apply [10, Proposition 2.2.6],
which classifies the objects in Xw and tells us that since Y is not contained
in any closed disc of radius strictly less than one, we have

Y = X − (B(a1, |τ1|) ∪ · · · ∪B(an, |τn|))

for some a1, . . . , an ∈ X(K) and 0 < |τ1|, . . . , |τn| 6 1. Here B(ai, |τi|)
denotes the open rigid analytic disc of radius |τi| around a. We proceed by
induction on n > 0. First, we observe that

(7) sup
δ>0

∣∣∣ξα∂(α)x (xδ)
∣∣∣
Y
= sup

δ>0

∣∣∣∣∣
Ç
δ

α

å
ξαx

δ−α
∣∣∣∣∣
Y

6 1

where the last inequality follows from the facts that ξα is a monic polynomial
in K◦[x], and that |x|Y = 1. This already implies that when n = 0 (and
therefore, when Y = X), the operator norm of ξα∂

(α)
x on Y is bounded above

by 1 for any α. Since |πα| → 0 as α → ∞, it follows that (ξαπ
α∂

(α)
x|Y )

∞
α=0

tends to zero in the Banach algebra EndK(O(Y )) in this case.
Next, suppose that n = 1, and write Y := SpK〈x, τ

x−a〉. Then

{xδ | δ > 0} ∪ {zβ :=

Å
τ

x− a

ãβ+1

| β > 0}

is a topological basis for O(Y ) = K〈x, τ
x−a〉, consisting of elements of supre-

mum norm 1. Because |zβ|Y = 1 and zβ ∈ O(Y )×, we see that

|ξα∂(α)x (zβ)|Y = |zβz−1β ξα∂
(α)
x (zβ)|Y 6 |z−1β ξα∂

(α)
x (zβ)|Y .

Next, notice that

z−1β ∂(α)x (zβ) = (x− α)β+1

Ç
α+ β

α

å
(−1)α(x− α)−β−1−α

= (−1)α
Ç
α+ β

α

å
(x− a)−α.

(8)

Let y = x − a and let γ be the unique non-negative integer such that a ∈
λγ +m. Define ρ as a− λγ , so that |ρ| < 1. ThenÇ

(y + ρ)α

y

åα
=

Ç
ραy−1 +

Ç
α

1

å
ρα−1 +

Ç
α

2

å
ρα−2y + · · ·+ yα−1

åα
which, recalling that z0 = τ

x−a = τ
y , we can rewrite as

(9)
Ç
(y + ρ)α

y

åα
= (

ρα

τ
z0 + fα(x))

α for some fα(x) ∈ K◦[x].



BOUNDED LINEAR ENDOMORPHISMS OF RIGID ANALYTIC FUNCTIONS 21

We have |zβ|Y = 1 and |x − λβ|Y = 1 for all β > 0. Hence, combining
equations (8) and (9), we see that for any α > γ and any β > 0 we have

|z−1β ξα∂
(α)
x (zβ)|Y =

∣∣∣∣∣
Ç
α+ β

α

å
(x− λ0)α

2 · · · (x− λα)α
2
(x− a)−α

∣∣∣∣∣
Y

6

∣∣∣∣∣(x− λγ)α
2

(x− a)α

∣∣∣∣∣
Y

=

∣∣∣∣∣
Ç
(y + ρ)α

y

åα∣∣∣∣∣
Y

= |ρ
α

τ
z0 + fα(x)|αY .

Since |z0|Y = 1 and |fα(x)|Y 6 1, we see that for any α > γ and any β > 0
we have

|z−1β ξα∂
(α)
x (zβ)|Y 6 (max{|ρ|

α

|τ |
, 1})α.

However, since |ρ| < 1, |ρ|α/|τ | tends to zero as α→∞. Hence

C := sup
α>0

(max{|ρ|
α

|τ |
, 1})α

is finite, and we deduce that

(10) |ξα∂(α)x (zβ)|Y 6 C whenever α > γ and β > 0.

Because {xδ, zβ : δ, β ∈ N} forms a topological basis for O(Y ) consisting of
elements of supremum norm 1, we combine estimates (7) and (10) to obtain
the bound

||(ξα∂(α)x )|Y || 6 sup{|ξα∂(α)x (xδ)|Y , |ξα∂(α)x (zβ)|Y : β, δ ∈ N} 6 max{1, C} = C

whenever α > γ. Since |πα| → 0 as α → ∞, we see that (ξαπ
α∂

(α)
x|Y )

∞
α=0

tends to zero in EndK(O(Y )), as claimed.
Finally, suppose that n > 2. Recall that

Y = X − (B(a1, |τ1|) ∪ · · · ∪B(an, |τn|)) ,
where the open discs B(ai, |τi|) are pairwise disjoint for i = 1, . . . n. Let

T := X −B(an, |τn|) and Z := X − (B(a1, |τ1|) ∪ · · · ∪B(an−1, |τn−1|)) .
Because these affinoid subdomains of X satisfy

Z ∪ T = X and Z ∩ T = Y,

we have the exact sequence of D(X)-modules

0→ O(X)→ O(Z)⊕O(T )→ O(Y )→ 0

by Tate’s Acyclicity Theorem [10, Theorem 4.2.2]. The operators ξαπα∂
(α)
x

converge to zero as α → ∞ with respect to the operator norm on O(X),
O(Z) and O(T ) by induction. Therefore they also do so on O(Y ). �
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Proof of Claim 4.18. By Lemma 3.4, it is enough to show that the family
(ξαπ

α/α!)α∈N is not rapidly decreasing. Now |x − λ|X = 1 for any λ ∈ K◦
because | · |X is the Gauss norm on K〈x〉, so

|ξα|X = |(x− λ0)α
2 · · · (x− λα)α

2 |X = 1, for all α > 0.

Now take n = 2. Since |α!| 6 1 for all α > 0, we obtain∣∣∣∣ ξαπαα!π2α

∣∣∣∣ > |π|−α for all α ∈ N.

Since |π|−1 > 1, this tends to +∞ as α→∞. �

We now finish the second part of the proof of Theorem 3.8, having proven
the first part in Proposition 4.16.

Proposition 4.19. (a) ⇒ (b) from Theorem 3.8 holds.

Proof. Let L be a finite field extension of K, and let X = SpL, a smooth
rigid K-analytic variety of dimension zero. Then ÙD(X) = L and E(X) =
EndK(L), and the map ρ(X) : L→ EndK(L) is the natural inclusion given
by the action of L on itself by left multiplication. If ρ(X) is an isomor-
phism then this forces dimK L = 1, so L = K and K must be algebraically
closed. Now Claims 4.17 and 4.18 show that the residue field of K has to be
uncountable, otherwise ρX is not surjective when X is the closed unit disc
D = SpK〈x〉. �

Lemma 4.20. The maps ρ and η take bounded sets to bounded sets. There-
fore, when X is a smooth rigid analytic variety over a non-trivially valued,
non-Archimedean field which is algebraically closed and has uncountable
residue field, we have established an isomorphism of bornological (and hence
Fréchet) sheaves E ∼= ÙD over Xw.

Proof. In order to show that η preserves bounded sets, we should prove
that for any U ∈ Xw and B bounded in E(U) that η(U)(B) is bounded inÙD(U). Choose an admissible cover of U by affinoids Ui together with étale
morphisms gi : Ui → Dni . It is enough to show that {η(U)(ϕ)|Ui} is bounded
in ÙD(Ui). We need to show that for each i and real number r > 0, there is
a constant C = C(i, r) such that

sup
α∈Nni

|ηα(Ui)(ϕ)|rα 6 C

for all ϕ ∈ B. Now {ϕ(Ui)|ϕ ∈ B} is a bounded subset of EndK(O(Ui)) and
so because the map

EndK(O(Ui))→ R>0
defined by

ϕ 7→ sup
α∈Nni

|ηα(Ui)(ϕ)|Uirα = sup
α∈Nni

∣∣∣∣∣∣∑β6α
Ç
α

β

å
(ϕ(Ui)(x

β))(−x)α−β
∣∣∣∣∣∣
Ui

rα
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is bounded (this map is well defined by Proposition 4.16), the image of
{ϕ(Ui)|ϕ ∈ B} is bounded and so we can find C as needed.

In order to show that ρ preserves bounded sets, it is enough according to
Equation (1) to prove that any U ∈ Xw and for any bounded set B ⊂ ÙD(U)
that the projection ρ(U, V )(B) of ρ(U)(B) to EndK(O(V )) is bounded in
the operator norm for any V ∈ Uw. Now, [1, Lemma 7.6(a)] gives us an
O(U)◦-Lie lattice L in T (U) such that L · O(V )◦ ⊆ O(V )◦. Expressed
in a different way, ρ(U, V )(L) is contained in the unit ball, C say, of the
Banach algebra EndK(O(V )). It follows that ρ(U, V )(’U(L)) ⊆ C, also. The
map ÙD(U) → ◊�U(L)K is bounded by the definition of the bornology on the
Fréchet algebra ÙD(U), so we can find a scalar λ ∈ K such that B ⊆ λ’U(L).
Therefore

ρ(U, V )(B) ⊆ ρ(U, V )(λ’U(L)) ⊆ λC
and hence ρ(U, V )(B) is a bounded subset of EndK(O(V )) as required. �

5. Conclusions and outlook

In future work we plan to investigate non-Archimedean contexts other
than the rigid analytic one for which it may be possible to show the equiva-
lence of the two sheaves in greater generality. We believe there is an interest-
ing statement to be made for non-Archimedean fields that are non-necessarily
algebraically closed or with uncountable residue field. We also intend to
study the Riemann-Hilbert correspondence in the non-Archimedean context,
hoping to view it as an instance of derived Morita equivalence. This requires
proving that the higher sheaf-Ext groups of the structure sheaf with itself
vanish. This was the point of view taken in the context of complex manifolds
in [13] and [15] based in part on ideas of Kashiwara.
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