REFLEXIVE IDEALS IN IWASAWA ALGEBRAS

K. ARDAKOV, F. WEI AND J. J. ZHANG

ABSTRACT. Let G be a torsionfree compact p-adic analytic group. We give
sufficient conditions on p and G which ensure that the Iwasawa algebra Qg of
G has no non-trivial two-sided reflexive ideals. Consequently, these conditions
imply that every nonzero normal element in Q¢ is a unit. We show that these
conditions hold in the case when G is an open subgroup of SL2(Z;) and p is
arbitrary. Using a previous result of the first author, we show that there are
only two prime ideals in Q¢ when G is a congruence subgroup of SLa(Zp): the
zero ideal and the unique maximal ideal. These statements partially answer
some questions asked by the first author and Brown.

0. INTRODUCTION

0.1. Motivation. The Iwasawa theory for elliptic curves in arithmetic geometry
provides the main motivation for the study of Iwasawa algebras Ag, for example
when G is a certain subgroup of the p-adic analytic group GL2(Z,) [CSS, Section 8].
Homological and ring-theoretic properties of these Iwasawa algebras are useful for
understanding the structure of the Pontryagin dual of Selmer groups [OV, V3] and
other modules over the Iwasawa algebras. Several recent papers [A, AB1, AB2, V1,
V2] are devoted to ring-theoretic properties of the Iwasawa algebras. One central
question in this research direction is whether there are any non-trivial prime ideals
in Qg = Ag/pAg, when G is an open subgroup of SLs(Z,), see [A, Question,
p.197]. The aim of this paper is to answer this question and a few other related
open questions.

An Iwasawa algebra over any uniform subgroup of SLa(Z,) is local and extremely
noncommutative since the only nonzero prime ideal is the maximal ideal by one of
our main results, Theorem C. These algebras give rise to a class of so-called just
infinite-dimensional algebras. On the other hand, their associated graded rings
are commutative polynomial rings and hence Iwasawa algebras share many good
properties with commutative rings. This class of algebras is very interesting from
the ring-theoretic point of view and deserves further investigation.

0.2. Definitions. Throughout we fix a prime integer p. Let Z, be the ring of p-
adic integers and let F,, be the field Z/(p). We refer to the book [DDMS] for the
definition and basic properties of a p-adic analytic group and related material. Let
G be a compact p-adic analytic group. The Iwasawa algebra of G (or the completed
group algebra of G over Z,) is defined to be

A¢ = limZ,[G/N],
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where the inverse limit is taken over the open normal subgroups N of G [La, p.443],
[DDMS, p.155]. A closely related algebra is Qg := Ag/pAg, whose alternative
definition is

Qg :=lmF,[G/N].

For simplicity, the algebra ¢ is also called the Jwasawa algebra of G (or the
completed group algebra of G over F,,). We refer to [AB1] for some basic properties
of Ag and Q¢ and to the articles [CSS, CFKSV, V1, V2] for general readings about
Iwasawa algebras and their modules.

In this paper, we deal entirely with Q. For a treatment of the implications of
our results for the Iwasawa algebra Ag, see [A2].

0.3. Reflexive ideals. Let A be any algebra and M be a left A-module. We call
M reflexive if the canonical map

M — Hom g (Hom 4 (M, A), A)

is an isomorphism. A reflexive right A-module is defined similarly. We will call a
two-sided ideal I of A reflexive if it is reflexive as a right and as a left A-module.

For the rest of the introduction we assume that G is torsionfree, in which case
Q¢ is an Auslander regular domain. Here is our first main result.

Theorem A. Let G be a torsionfree compact p-adic analytic group whose Qp-Lie
algebra L(G) is split semisimple over Q,. Suppose that p > 5 and that p{n in the
case when s1,,(Q)) occurs as a direct summand of L(G). Then Q¢ has no non-trivial
two-sided reflexive ideals.

The proof of Theorem A is based on a result from [AWZ]. For a few small p,
there are some extra difficulties to be dealt with; hence we exclude these primes
from consideration. We believe that these restrictions on p are not really necessary.

0.4. Normal elements. Recall that an element w of a ring A is said to be normal
if wA = Aw. The first author and Brown [AB1, Question K] asked whether under
hypotheses on G similar to the ones in Theorem A any nonzero normal element of
Q¢ must be a unit. Because every nonzero normal element w € Q¢ gives rise to a
nonzero reflexive two-sided ideal wq, Theorem A implies

Theorem B. Under the same hypotheses as in Theorem A, every nonzero normal
element of Q¢ is a unit.

Theorem B partially answers the open question [AB1, Question K].
0.5. Iwasawa algebras over subgroups of SLy(Z,). Another open question
[AB1, Question J] is, under hypotheses similar to those in Theorem A, whether

there are any non-trivial prime ideals in 7 This question is particularly interest-
ing when G an open subgroup of SLy(Z,). Using [A, Theorem A] we can prove

Theorem C. Let G be an open torsionfree subgroup of SLa(Z,). Then every prime
ideal in Qg is either zero or maximal.

The proof of Theorem C is independent of [AWZ].
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0.6. A key step in proof. To prove the theorems above we have to overcome
several technical difficulties which seem unrelated to the main theorems. The proof
is divided into several steps and we only mention one key step: a control theorem
for reflexive ideals.

Theorem (Theorem 5.3). Let (A, A1) be a Frobenius pair satisfying the derivation
hypothesis, such that gr A and gr A1 are UFDs. Let I be a reflexive two-sided ideal
of A. Then I N Ay is a reflexive two-sided ideal of Ay and I is controlled by A :

I=(INA)- A

All undefined terms will be explained later. As an example we may take (A4, A1)
to be (Qg,Qgr). We will verify that the derivation hypothesis holds for certain
groups G, and the main theorems then follow from the control theorem and induc-
tion. This control theorem is in fact the heart of the paper, on which all our main
results are dependent. The control theorem should be useful for studying Iwasawa
algebras over other classes of groups, such as the nilpotent or solvable groups.

0.7. A field extension. An algebra A over a field is called just infinite-dimensional
if it is infinite-dimensional and every nonzero ideal in A is finite codimensional. This
is analogous to the notion of just infinite groups, also known as the almost simple
groups. Theorem C assures us of a large class of just infinite-dimensional algebras
with good homological properties.

Several researchers are interested in just infinite-dimensional algebras over an al-
gebraically closed field (or an infinite field in general) [BFP, FS]. For ring-theoretic
considerations we introduce another algebra closely related to 2. Let K be a field
of characteristic p (in particular, K could be the algebraic closure of F,). Define

KG := K[[G]] := lim K[G/N],

where the inverse limit is taken over the open normal subgroups N of G. This
algebra can be obtained by taking a completion of the algebra Q¢ ®@r, K with
respect to the filtration {m™ ®p, K [ n > 0} where m is the Jacobson radical of Q¢.
Under the same hypotheses, Theorems A, B and C hold for KG.

1. PRELIMINARIES

1.1. Fractional ideals. . Let R be a noetherian domain. It is well-known that R
has a skewfield of fractions @. Recall that a right R-submodule I of @ is said to
be a fractional right R-ideal if I is nonzero and I C uR for some nonzero u € Q.
When the ring R is understood, we simply say that I is a fractional right ideal.
Fractional left R-ideals are defined similarly. If I is a fractional right ideal, then

IV ={qeQ:qI CR}

is a fractional left ideal and there is a similar definition of I~! for fractional left
ideals I. Let I* := Hompg(I, R). This is a left R-module and there is a natural iso-
morphism 57 : I~! — I* that sends ¢ € I~! to the right R-module homomorphism
induced by left multiplication by gq.
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1.2. Reflexive right ideals. Let I be a fractional right ideal and let T := (I=1)~!
be the reflexive closure of I. This is also a fractional right ideal which contains I.
Recall that I is said to be reflezive if I = I, or equivalently if the canonical map
I — I** is an isomorphism.

Proposition. Let R — S be a ring extension such that R is noetherian and S is
flat as a left and right R-module. Then there is a natural isomorphism

Wi, S @p Exth (M, R) — Exty(M ®g S, S)
for all finitely generated right R-modules M and all i > 0. A similar statement
holds for left R-modules. If in addition S is a noetherian domain, then
(a) J-S =J-8 for all right ideals J of R,
(b) if I is a reflexive right ideal of S, then I N R is a reflexive right ideal of R.
Proof. Let M be a finitely generated right R-module and define

Yy 2 S g Homp(M, R) — Homg(M ®g S, S)
by the rule Y (s® f)(m®1t) = sf(m)t for all s € S, f € Hompr(M, R),m € M and
t € R. This gives a natural transformation

¥ : S ®r Homp(—, R) — Homg(— ®r S, S)

such that ¥z~ is an isomorphism for all n > 0. Now let P, — M — 0 be a projective
resolution of M consisting of finitely generated free R-modules. Using the flatness
assumptions on S, we see that

Extg(M ®g S,5) = H (Homg(Ps ®5 S,5)) = H'(S @r Homg (P, R)) =
= S®@r H'(Homg(Ps,R)) = S®gExth(M,R),

for all 7, as required.

(a) The division ring of fractions @ of R embeds naturally into the division
ring of fractions of S. Let I be a fractional right R-ideal, so that I C uR for some
u € Q\0. Then IS C uS, so IS is a fractional right S-ideal. Now I~ ! is a fractional
left R-ideal and I—'I C R, so

(SI™Y)(1S) C SRS C S
and hence ST~ C (I1S)~!. Consider the following diagram of left S-modules:

L

Sepl ' —2— g1 (1s)~!

1®ml ims

S®pI* T> (I@R S)* -T (IS)*

Here ¢ denotes the inclusion of ST~! into (I5)~! and « and 3 are the obvious maps.
A straightforward check shows that this diagram commutes. By the remarks made
in §1.1 the maps 77 and ;g are isomorphisms. Since S is a flat left R-module, « is
an isomorphism and similarly § is an isomorphism. Now 7 is an isomorphism by
the first part, so ¢ must also be an isomorphism. We deduce that SI-1 = (15)~!
for all fractional right R-ideals I. By symmetry, I=1S = (SI)~! for all fractional
left R-ideals I.

We may assume that J is nonzero, so that .J is a fractional right ideal, and hence

JS=((J8) )T =(ssT)T =) IS =T 8
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as required.
(b) Again, we may assume that I N R is a nonzero, so that I N R is a fractional
right ideal. Clearly I N R C I N R. Using part (a) we have

INRC(INR)-SCI=1,
but IN R C R = R and hence IN R C I N R. The result follows. O

1.3. Pseudo-null modules. Let R be an arbitrary ring and M be an R-module.
We denote Ext% (M, R) by E/(M) . Recall [CSS, Lemma 2.1 and Definition 2.5]
that an R-module M is said to be pseudo-null if E°(N) = E'(N) = 0 for any
submodule N of M. Part (b) of the Proposition below shows that this extends the
notion of pseudo-zero modules in the sense of [BCA, Chapter VII, §4.4, Definition
2].

Lemma. Let 0 = X — Y — Z — 0 be an exact sequence of R-modules. Then 'Y
is pseudo-null if and only if X and Z are pseudo-null.

Proof. This appears in [CSS, §2] and follows easily from the long exact sequence of
cohomology. [

The following alternative characterisation of pseudo-null modules over noether-
ian domains is well-known, but we include a proof for the convenience of the reader.

Proposition. Let R be a noetherian domain and let M be a finitely generated
R-module.

(a) M is pseudo-null if and only if ann(z)~t = R for all z € M.

(b) If R is commutative then M is pseudo-null if and only if Anmgr(M)~! = R.

Proof. (a) Suppose M is pseudo-null and let z € M. The short exact sequence
0 — ann(z) — R — xR — 0 induces the long exact sequence

0 — E°(zR) — E°(R) — E°(ann(z)) — E'(zR) — 0

and E°(zR) = E'(zR) = 0 since M is pseudo-null. Hence ann(z)™! = R~' = R
by the remarks made in §1.1.

Conversely, suppose that ann(z)~! = R for all x € M. It will be enough to
show that E°(M) = E*(M) = 0. Let N = yR be a quotient of a cyclic submodule
xR of M. Then ann(z) C ann(y), so R C ann(y)~! C ann(z)~! = R. Hence
ann(y)~! = R and the above long exact sequence shows that E°(N) = E*(N) = 0.

Because M is finitely generated, M is an extension of finitely many modules
M, ..., My such that each M; is isomorphic to a quotient of a cyclic submodule of
M. The result now follows from a long exact sequence.

(b) Suppose that Anng(M)~! = R. Since Anng(M) C ann(z) for all z € M,
part (a) implies that M must be pseudo-null.

Conversely, suppose that M is pseudo-null and let z1,...,z; be a generating
set for M. Since M is pseudo-null, ann(z;)~! = R for all 4. Since R is commuta-
tive, Anng (M) contains the product ann(zq)---ann(xy) and it follows easily that
Amng(M)~! = R. O

1.4. Unique factorisation domains.

Lemma. Let R be a commutative noetherian unique factorisation domain (UFD)
and I be a nonzero ideal of R. Then I = xR for some x € R and xR/I is pseudo-
null. Moreover, if R is a graded ring and I is a graded ideal, then x is homogeneous.
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Proof. By [BCA, Chapter VII, §4.2, Example 2 and §3.1, Definition 1], every re-
flexive ideal of R is necessarily principal. Hence I = zR for some z € R.

Now let J = Anng(xR/I) = x~'I and suppose that ¢ € J~1. Then ¢J =
gr™'I C Randso gz~ ' € [7! = 7' = x7'R. Therefore ¢ € R and J~! = R.
Hence zR/I is pseudo-null by Proposition 1.3 (b).

Suppose finally that R and I are graded. Then we can find a nonzero homo-
geneous element y € I. Since I C xR we see that z is a factor of y. Because R
is a domain, homogeneous elements can only have homogeneous factors, so x is
necessarily homogeneous. ([

1.5. Filtered rings. A filtered ring is a ring R with a filtration FR = {F,R :
n € Z} consisting of additive subgroups of R such that R = (J, ., FuR, 1 €
R, F,RC Fp1R and F,RF,, R C Fp 1, R for all n,m € Z. Our filtrations will
always be separated, meaning that (), ., F;, R = 0. If x is a nonzero element of R,
there exists a unique n € Z, which is called the degree of x and written n = deg =,
such that z € F,,R — F,,_1R.

The abelian group gr R := @, czF,R/F,-1R becomes a graded ring with mul-
tiplication induced by that of R and is called the associated graded ring of R with
respect to F'R. The principal symbol of a nonzero element x of R of degree n is

gre:=x+F, 1Re€ F,R/F,_ 1R CgrR.

If gr R is a domain then gr(zy) = gr(x) gr(y) for any nonzero z,y € R.
The Rees ring of R (with respect to the filtration FR) is the following subring
of the Laurent polynomial ring R[t, ¢~ ]:

R:=Pt"F.R.
nez
The Rees ring comes equipped with two natural surjective ring homomorphisms

m : R — R and 7y : R — gr R which send the indeterminate ¢ to one and zero,
respectively. The map m; is sometimes called dehomogenisation.

2. FROBENIUS PAIRS

2.1. The classical Frobenius map. Let K be a field of characteristic p and
let B be a commutative K-algebra. Then the Frobenius map z — aP is a ring
endomorphism of B and gives an isomorphism of B onto its image

BIFl .= {3 : b e B}

in B provided B is reduced. We remark at this point that any derivationd : B — B
is BlPl-linear:

d(a?b) = aPd(b) + pa?~td(b) = aPd(b)
for all a,b € B.

2.2. Frobenius pairs. Let ¢ be a positive integer. Whenever {y1,...,y:} is a ¢-
tuple of elements of B and « = (avq, ..., ;) is a t-tuple of nonnegative integers, we
define

yoz — yih .. y?f
Let [p— 1] denote the set {0,1,...,p—1} and let [p — 1]* be the product of ¢ copies

of [p—1].
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Definition. Let A be a complete filtered K -algebra and let Ay be a subalgebra of A.
We always view A1 as a filtered subalgebra of A, equipped with the subspace filtration
F, A1 = F,ANA;. We say that (A, A1) is a Frobenius pair if the following azioms
are satisfied:

(1) Ay is closed in A,

(ii ) grA is a commutative noetherian domain, and we write B =gr A,
(iii ) the image By of gr Ay in B satisfies B! C By, and

(v ) there exist homogeneous elements y1,. ..,y € B such that
B= EB Biy*“.
a€lp—1]*

Remark. Tt is easy to see that A; is closed in A if and only if the subspace filtration
{F,A1}nez on A; is complete.

The canonical example to keep in mind is given by Iwasawa algebras of uniform
pro-p groups G. We will show in §6.6 that (KG, KGP) is always a Frobenius pair.
We will now deduce some consequences of the axioms.

2.3. The structure of A as an Aj;-module. Let (A4, A1) be a Frobenius pair.
We can view A as an Aj-bimodule. Let us choose elements uq,...,u; € A such
that gru; = y; for all i and set u® := uf* ---u® for all @ € N*.

Lemma. The A is a free left and right Aj-module with basis {u®: «a € [p—1]'}:

A= @ A -u® = @ u® - A

a€p—1]t a€p—1]t

Proof. By symmetry it is sufficient to prove the statement about left modules, say.
Suppose for a contradiction that » .. aqu® = 0, where {a, € A1 : a € T} is
some collection of nonzero elements and T C [p — 1] is a nonempty indexing set.
Let n denote the maximum of the degrees of the a,u® and let S denote the subset
of T consisting of those indices o where this maximum is attained. Then

(Z aauo‘> + Fn—lA = Z grag - yo‘ = O,

a€eT a€EsS
which is contradictory to Definition 2.2(iv). Thus the sum M := > A -u”
is direct.
Now M is a filtered A;-submodule of A and gr M coincides with gr A. Since A,

is complete, M is equal to A and the result follows. O

a€lp—1]*

2.4. Derivations. Let By C B be commutative rings of characteristic p, such that

BPI C By and
D By"

aglp—-1]*
for some elements y1,...,y; of B.
Fix j = 1,...,t and let ¢; denote the t-tuple of integers having a 1 in the j-th
position and zeros elsewhere. We define a B;-linear map 0; : B — B by setting

0; Z uy® | = Z Uy .

a€p—1]t a€clp—1]t
S0
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Let D := Derp, (B) denote the set of all Bj-linear derivations of B. We now
collect some very useful results about D and its natural action on B. In particular,
we can give a complete characterisation of the D-stable ideals of B.

Proposition. (a) The map 0; is a Bi-linear derivation of B for each j.
(b) D=@@;_, BY;.

(c) For any x € B, D(z) =0 if and only if x € By.

(d) An ideal I C B is D-stable if and only if it is controlled by B :

I=(INB,)B.

Proof. (a) Because the y;’s generate B as a Bj-algebra and 0; is Bj-linear by
definition, to show that 0; is a derivation it is sufficient to check that
9i(y* - i) = 9;(y")yi + ¥y - 9;(vi)

for all « € [p— 1]t and all 4 = 1,...,¢. This can be easily verified, using the fact
that y, € By forall k=1,...,t.

(b) If b; € B are such that Z§'=1 b;0; = 0, then b; = (Z;=1 b;0;)(y;) = 0 for
all 7, so the sum above is direct. Finally, if f € D, then it is easy to see that f
and Z;=1 f(y;)0; agree on every element of B with the form w - y® for u € By, so

f= Z;zl f(y;)0; and the result follows.
(c) Suppose z ¢ By and write x =} c(,_1): TaY". Then x4 # 0 for some o # 0

and so a; # 0 for some j. Hence 9;(z) # 0. The converse is trivial.
(d) (<) Let J =1N By. For any f € D we have

fI)=f(JB)=Jf(B)CJB=1I

so I is D-stable.

(=) Let I be a D-stable ideal and let J = I N B;. Note that the extension
By/J C B/JB satisfies the same conditions as By C B, and the image of I in
B/JB is stable under every Bj/J-linear derivation of B/JB by part (b). Without
loss of generality we may therefore assume that I N B; = 0, and it will be enough
to show that I = 0.

Suppose for a contradiction that I # 0. If u =)
element, define

a€lp—1]t us,y* € B is a nonzero

m(u) := max{ag + -+ s 1 uq # 0}
and choose u € I\O such that m(u) is minimal. If 9;(u) # 0 for some j then
m(9;(u)) < m(u) and 9;(u) € I\O contradicting the minimality of m(u). Hence
0;(u) =0 for all j and therefore w € B; by parts (b) and (c). But then I N B; # 0,
a contradiction. Hence I = 0 as required. (]

3. A CONTROL THEOREM FOR NORMAL ELEMENTS
3.1. Main result. The purpose of this section is to prove the following

Theorem. Let (A, A1) be a Frobenius pair satisfying the derivation hypothesis,
suppose that By is a UFD and let w € A be a normal element. Then the two-sided
ideal wA of A is controlled by Ay :

wA = (wAN 4y) - A.

The derivation hypothesis is explained below in §3.5 and the proof is given in
§3.6.
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3.2. Inducing derivations on gr A. Let A be a filtered ring with associated
graded ring B and let a € A. Suppose that there is an integer n > 0 such that

[a, FkA] g Fk,nA

for all k£ € Z. This induces linear maps

) FLA Fr_nA
{a,~}n y Fa—

b+F,_ 1A — [a,b]+Fk_n_1A
for each k € Z which piece together to give a graded derivation
{a,—}n: B— B.

The idea of inducing derivations of gr A in this way was first suggested to the
first author by Chris Brookes and later independently by Ken Brown.

Definition. A source of derivations for a Frobenius pair (A, A1) is a subset a =
{ag,a1,az2,...} of A such that there exist functions 6,01 : a — N satisfying the
following conditions:

(i) lar, FrA] C Fy_g(a,)A for allr >0 and all k € 7Z

(i) [ar, FrA1] C F_g,(a,)A for all v >0 and all k € Z,
(iii ) 01(a,) —0(a,) — 00 as r — co.
Let S(A, A1) denote the set of all sources of derivations for (A, Ay).

The reason behind this definition will hopefully become clear after Proposition
3.4 below. By (i), any source of derivations a generates a sequence of graded
derivations {a,, —}g(a,) of B = gr A. These derivations are B;-linear for sufficiently

The subset {0} is clearly an example of a source of derivations. Somewhat less
trivially, we will show in Corollary 6.7 that if G is a uniform pro-p group and g € G,
then {g, g7, .. .} is a source of derivations for the the Frobenius pair (K G, KG?).

3.3. The delta function. Let (A, A;) be a Frobenius pair and n be an integer.
Each filtered part F,, A; is closed in A; by definition of the filtration topology, and
Aq is closed in A by assumption. Hence F), A1 is closed in A, which can be expressed
as follows:
FoAy = () (FuAy + F,_4A).
k>0

We can now define a key invariant of elements of A.

Definition. For any w € A, let n = degw. Define

5(w) = max{k:w € F,,A; + F,_, A} if wé¢ A
w)= 00 if we A

Clearly §(w) > 0. Note that if w € F,, A\ Ay, then w ¢ F, Ay + F,,_;A for some
k > 0 by the above remarks, so the definition makes sense and d(w) is finite. The
number §(w) measures how closely the element w can be approximated by elements
of Ay. It should be remarked that §(w) > 0 if and only if grw € By, since both
conditions are equivalent to w € F, Ay + F,,_1A.
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Now suppose that w € A\A;. By the definition of §, we can find elements
x € F,A; and y € F,,_sA such that w =z + y; if § = 0 we take x to be zero. Note
that y ¢ F,_5—1A by the maximality of ¢ and hence

Yy =gry=y+ Fs-14.
In view of our assumption on x, we have Y,, = grw when § = 0.

3.4. a-closures. If w is an element of a right ideal I of A, then the symbol of w,
grw always lies in the associated graded ideal gr I of B. Naturally there are many
elements w having the same symbol, so some information is lost when one passes
to the symbol of w. It turns out that if the ideal I is two-sided, there is a way to
save some of this information.

Definition. Let a be a source of derivations for a Frobenius pair (A, A;) and I
be a graded ideal of B. We say that the homogeneous element Y of B lies in the
a-closure of I if {a,,Y }g(q,) lies in I for all v>> 0.

Proposition. Let (A, A1) be a Frobenius pair, I be a two-sided ideal of A and
w € I\Ay. Then'Y,, lies in the a-closure of grI for any source of derivations a.

Proof. Let us write w = x 4 y as in the previous subsection. Since a is a source
of derivations, we can find an integer ro > 1 such that 6;(a,) — 6(a,) > ¢ for all
r > rg. Therefore

[ar, 2] € F_g,(a,)A € Fr5_6(a,)—1 A and
[ar,y] € Frs-0(anA,
for all r > ro. Hence
lar,w] € F_5_¢(a,)A, and
lar,w] =[a,y] mod F 5 p(a,)-14
for all r > rg. We can rewrite the above as follows:
[ar, W] + Fr_5_g(a,)—1A = [ar, Y] + Fr_s5-6(a,)—14 = {ar, Yu }o(a,)

for r > rg. Since w € I and [ is a two-sided ideal, this element must always lie in
the ideal gr I of B, and hence Y,, lies in the a-closure of gr I as required. O

Each source of derivations a gives rise to a sequence of derivations {a,, —}9(%) of
B, and some or all of these could well be zero. To ensure that we get an interesting
supply of derivations of B, we now introduce a condition which holds for Iwasawa
algebras of only rather special uniform pro-p groups.

3.5. Derivation hypothesis. Recall that D denotes the set of all B;-linear deriva-
tions of B and S(A, A1) denotes the set of all sources of derivations for (A, A;). Our
derivation hypothesis is really concerned with the action of the derivations induced
by S(A, A1) on the graded ring B.

Definition. Let (A, A1) be a Frobenius pair and X € B be an arbitrary homoge-
neous element. We say that (A, A1) satisfies the derivation hypothesis if whenever
a homogeneous element Y € B lies in the a-closure of X B for alla € S(A, A;), we
must have D(Y') C XB.

Assuming the derivation hypothesis, it is possible to “clean” a normal element
by multiplying it by a unit. The following Proposition forms the inductive step in
the proof of Theorem 3.1.
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Proposition. Let (A, A1) be a Frobenius pair satisfying the derivation hypothesis
and let w € A\ Ay be a normal element. Then there exists a unit u € A such that
d(wu) > §(w). Moreover, if 6(w) > 0 then u =1~ c for some c € F_s(,,)A.

Proof. Write w = x+y asin §3.3, let X = grw and Y =Y, = gry. By Proposition
3.4, Y lies in the a-closure of grwA = X B for all a € S(A, A1) and hence D(Y) C
X B because (A, A;) satisfies the derivation hypothesis.

Suppose first that ¢ := d(w) = 0, so that Y = X. Then the ideal X B of B is
D-stable and is hence controlled by By by Proposition 2.4(d):

XB=(XBNB)-B.

Because B is a free Bi-module, X BN By is a reflexive ideal of B; by Proposition
1.2(b). Since By is a UFD by assumption, X BN B; = X B; for some homogeneous
element X; € By by Lemma 1.4.

Hence XB = X1 B and we can therefore find a homogeneous unit U € B such
that X; = XU. Choose u,v € A such that gru = U and grv = U~!; then uv = 1
mod F_1A. But A is complete so 1 + F_1 A consists of units in A and hence u is a
unit. Since gr(wu) = XU = X; € By, it follows that §(wu) > 0 = §(w) as required.

Now suppose that § > 0; then X must lie in B;. Applying Proposition 2.4(c) to
the image of Y in B/X B yields that

Y € XB + B;.

Since X and Y are homogeneous, we can find homogeneous elements C' € B and
Z € By such that

Y = XC + Z;

moreover degY = deg XC if XC # 0 and degY = deg Z if Z # 0.
Suppose for a contradiction that C = 0. Then Y = Z € B;. Hence we can find
' € F,,_sA; such that

' =y mod F,_s_1 A.

Thus w — (z + 2') € F,,_s5—14, which is contradictory to the maximality of 4. So
C # 0 and hence deg C = degY — deg X = —§. Note that degC' < 0.
We can find ¢ € A such that gre = C. Then

wl—c)=(x+y)(l—c)=x+y—xzc mod F,_5_1A
since deg(yc) < n —¢. But
y—xc+ F,_ 5 1A=Y —XC =7 € By,
so we can find z € A; such that y — xc =2z mod F,_5_1A and hence
w(l——c)— (x+2) € Fh_s5_1A.
Since deg Z = degY if Z # 0, z € F,,_5A and hence x + z € F,,A;. This implies
that 6(w(1 —¢)) > § = o(w).

Finally, since ¢ € F_s(,)A € F_1A and A is complete, u := 1 — ¢ is a unit in A
and d(wu) > §(w) by construction. O
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3.6. Proof of Theorem 3.1.

Proof. Tt will be enough to construct a unit u € A such that wu € A;.

If w already happens to lie in A; then we can take v = 1, so assume that w ¢ A;.
By Proposition 3.5 there exists a unit ug € A such that 6(wug) > 0.

Let wg := wug. Using Proposition 3.5 we can inductively construct a sequence
of normal elements wy,ws, ... of A and a sequence of elements ¢y, cs, ... of A, such
that for all i > 0,

® Ci11 € F—é(wi)Aa

o w1 =w;i(l—ciq1),

[ (5(w1‘+1) > 5(’[01) if w; ¢ Aj.
Here we interpret F_. A as the zero subspace of A. With this convention, the
sequence ¢; converges to zero as ¢ — 0o by construction, so the limit

w:= lim ug(l —c¢1)--- (1 —¢)

exists in A by the completeness of A. Note that u is unit because we can write
down an inverse having the same form as u, and that wu = lim;_, o w;.

We will now show that wu lies in A;. Since A1 is closed in A, it will be sufficient
to show that wu € Ay + FyA for all k € Z. Let n = degwy and note that
degw; = n for all i« > 0 by construction. Since w; — wu and d(w;) — oo as
i — 0o, we see that for ¢ > 0, wu — w; € FyA and w; € F, A1 + FyA. Hence
wu € F,A1 + F, A C A1 + Fi A, as required. ([l

4. MICROLOCALISATION

4.1. Notation. We briefly recall some basic facts about the theory of algebraic
microlocalisation, following [Li] and [AVV]. Our notation will be slightly non-
standard. Throughout §4 we will make the following assumptions:

e R is a filtered ring whose Rees ring R is noetherian,

e T is a right Ore subset of gr R consisting of homogeneous regular elements.
Since R and gr R are homomorphic images of R by §1.5, these rings must also be
noetherian. We should remark at this point that if the filtration on R is complete
and gr R is noetherian, then the filtration on R is zariskian: see [LV, Chapter II,
§2.1, Definition 1 and §2.2, Proposition 1]. In particular R is necessarily noetherian.

4.2. Lifting Ore sets. Let T denote the homogeneous inverse image of T' in R:
T :={r € R : r is homogeneous and 7,(r) € T'}.

It can be shown that 7 is a right Ore set in R [Li, Corollary 2.2], so we may form
the Ore localisation Rz. This is still a Z-graded ring.
Let S :=m(T) C R. This is a right Ore set in R and in fact

S={reR:grreT}

Note that S consists of regular elements in R, since every element of T is assumed
to be regular. It follows that R embeds into the Ore localisation Rg.
The surjection 71 : R — R extends to surjection 7y : Rz — Rg. The grading on

ITBT induces a filtration on Rg, as in [Li, Proposition 2.3(1)]:

FrRs = m((Rf)n)-
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Here (Ef)n denotes the nth-graded part of ]?2:;

Lemma. The filtration on Rg is given explicitly by the formula
F.Rs={rs"':re€R,s€S and degr—degs<n}
for all integers n. This filtration is zariskian.

Proof. Before we begin the proof, let us observe that if x € R is nonzero and
y € S then (grz)(gry) # 0 (because grz # 0 and gry € T is regular) and hence
deg(zy) = degx + degy.

Let L, = {rs':r € R,s € S and degr — degs < n}. Decoding the definition
of F,,Rg, we see that F}, Rg is in fact the additive subgroup of Rg generated by L,,.
It will therefore be sufficient to show that L,, is closed under addition.

So let 7'151_1 and 7"252_1 be elements of L, for some r; € R and s; € S. We
can find u; € S and us € R such that s;u; = ssus = s say; then rlsfl + T2851 =
(r1uq +r2u2)s_1. Since s1, s2 € S, we have deg s = deg s1 +degu; = deg sy +degus
by the first paragraph. Now

deg(riuy 4+ rous) — degs < max{degry + deguy,degry + degus} — degs =
= max{degr; — degsy,degrs —degsa} < n
so (riug + roug)s—! € L, as required.
The last assertion follows from [Li, Proposition 2.8]. O

4.3. Microlocalisation of rings.

Definition. The microlocalisation of R at T is the completion Qr(R) of Rs with
respect to the filtration on Rg described in §4.2.

We record some useful properties enjoyed by microlocalisation.

Proposition. (a) Qr(R) is a complete filtered ring,
(b) F,Qr(R) is the closure of F,Rs in Qr(R),

(¢) R embeds into Qr(R),

(d) Qr(R) is a flat right R-module,

(e) there are natural isomorphisms

grQr(R) = gr(Rs) = (gr R)r.

Proof. Parts (a) and (b) are clear from the definition. We have seen in §4.2 that
R embeds into Rg, and the filtration on Rg is separated by Lemma 4.2 and [LV,
Chapter II, §2.1, Theorem 2]. Hence Rg embeds into Q7 (R) and part (c) follows.
Parts (d) and (e) follow from [AVV, Corollary 3.20(1) and Proposition 3.10]. O

4.4. Microlocalisation of modules. Let M be a finitely generated right R-
module. We define the microlocalisation of M at T to be

Qr(M):=M ®r Qr(R).

This is naturally a right Q7 (R)-module. Recall that a filtration on M is said to be
good if the associated Rees module is finitely generated over R.

Lemma. Let M be a finitely generated R-module equipped with some good filtration,
and N be a submodule of M. Then

(a) grQr(M) = (gr M)r,
(b) the Ore localisation Mg is a dense Rg-submodule of Qr(M),
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(¢c) Qr(N) can be identified with a Q7 (R)-submodule of Qr (M),
(d) the tensor filtration on Qr(N) coincides with the subspace filtration induced

from Qr(M),
(e) if L is another submodule of M, then Qr(N)NQr(L) = Qr(N N L).

Proof. We should remark that the filtration on Qr(M) = M ®r Qr(R) is the
tensor filtration in the sense of [LV, Chapter I, §6]. Part (a) follows from [AVV,
Proposition 3.10 and Corollary 3.20(2)] and part (b) follows from [Li, Corollary
2.5(3)], whereas parts (c) and (d) follow from [AVV, Corollary 3.16(3)].

Finally, Q7 (R) is a flat R-module by Proposition 4.3(d), so the microlocalisation
functor M — M ®p Qr(R) preserves pullbacks, and in particular, intersections.
Part (e) follows. O

4.5. Constructing normal elements. Let I be a right ideal of R. Using Lemma
4.4(c), we can and will identify Qr(I) with a right ideal of @7 (R). By Lemma
4.4(d) this identification respects filtrations, and by Lemma 4.4(a) the associated
graded ideal gr Q7 (I) is just the localised right ideal (gr I)r of gr Qr(R) = (gr R) .

Proposition. Let I be a two-sided of R and suppose that there exists a central reg-
ular homogeneous element X € gr R such that the localised ideal (gr It of (gr R)r
is generated by X :

(grl)r = X - (gr R)r.
Then there exists a normal element w € Qr(R) such that Qr(I) = w - Qr(R).

Proof. Choose any w € Qr(I) such that grw = X. Then the right ideal w- Q7 (R)
is contained in Q7 (I) and their graded ideals are equal by assumption. Because
the filtration on Q7 (R) is complete, it follows that Q7 (1) = w - Q7 (R).

The Ore localisation Ig is a two-sided ideal of Rg because R is noetherian [MR,
Proposition 2.1.16]. By Lemma 4.4(b), Qr(I) is the closure of Is inside Q7 (R) and
is hence a two-sided ideal of Q7 (R).

Since X = grw is central and regular in (gr R)r, and the filtration on Q7 (R) is
complete, the fact that w is a normal element in R will follow from the following
rather general lemma. O

Lemma. Let R be a complete filtered ring and w € R. Suppose that wR is a two-
sided ideal of R and that grw is a central reqular element of gr R. Then w is a
reqular normal element in R.

Proof. Because grw is a regular element of gr R, w must be a regular element of
R. Since Rw C wR, for every r € R there exists o(r) € R such that rw = wo(r).
Since w is regular, 7 — o(r) is an injective ring endomorphism of R. We will show
that o is surjective, which will complete the proof.

Let r € R be nonzero, so that o(r) is nonzero. Since grw is central and regular,

grrgrw = gr(rw) = gr(wo(r)) = grwero(r) = gro(r) grw

and therefore gro(r) = grr for any nonzero r € R. Now let s € R be a nonzero
element of degree n. Set r, := s, so that

s=o(r,) mod F,_1R.
Set r,—1 = s —o(ry) € F,—1R, so that

s—o(rp) =0(rn—1) mod F, sR.
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Continuing this process, we can construct a sequence of elements r,,7,-1,7n—_2, .. .
of R such that r; € F;R for all i < n. Because R is complete, the infinite sum
> heon—k converges to an element r of R and o(r) = s by construction. The
result follows. O

5. A CONTROL THEOREM FOR REFLEXIVE IDEALS

In this section we state and prove our main result.

5.1. Microlocalisation of Frobenius pairs. Let (A, A;) be a Frobenius pair.
Because B = gr A is noetherian and the filtration on A is complete, the remarks
made in §4.1 show that we may apply the theory developed in §4.

If Z is a nonzero homogeneous element of B, then T := {1, 7,22 ...} is an Ore
set in B consisting of regular homogeneous elements, since B is a commutative
domain by assumption. By abuse of notation, we will denote the corresponding
microlocalisation Q7 (A) by Qz(A).

It turns out that Frobenius pairs are stable under microlocalisation.

Proposition. Let (A, A1) be a Frobenius pair and Z € B be a nonzero homogeneous
element.

(a) Then (Qz(A),Qzr(A1)) is also a Frobenius pair.
(b) If ais a source of derivations for (A, A1), then it is also a source of derivations

for (Qz(A), Qz»(A1)).
(c) Suppose B is a UFD. If (A, A1) satisfies the derivation hypothesis, then so does

(Qz(A),Qzr(A1)).

Proof. (a) By Proposition 4.3(c), we can identify A with its image in Qz(A). We
will also identify gr A; with its image By in B. By Definition 2.2(iii), Z? lies in B
so the microlocalisation @ z» (A1) makes sense.

Let T and T denote the multiplicatively closed sets in B and B; generated by Z
and Z? and let S and S7 be the corresponding right Ore sets in A and A;. Clearly
S1 C S, so the Ore localisation (A4;)g, naturally embeds into Ag. Moreover, using
Lemma 4.2 we see that

(FrAs) N (Ar)s, = Fu(Ar)s,

for all n € Z, which means that the filtration on (A;)g, induced from A; coincides
with the subspace filtration induced from Ag. Passing to completions we see that
Qzr (A1) can be identified with a closed subalgebra of Qz(A). Moreover, one can
easily check that

(F,QzA)NQzr (A1) = Fr,Qzr (A7)
for all n. Hence Definition 2.2(i) is satisfied for the new pair (Qz(A), @z»(A1)).
Next, grQz(A) = Bz and grQz»(A1) = (B1)zr by Proposition 4.3(e). Since
By is a commutative noetherian domain and (By)P! = B[Zpl C (B1)zr, Definitions

Finally, Bz = Bzr because Z is becomes a unit when ZP gets inverted. Hence
Bz =Bz = P (B)zoy* = P (B2)y",
aeNy aeNy

which shows that Definition 2.2(iv) is inherited by Byz.



16 K. ARDAKOV, F. WEI AND J. J. ZHANG

(b) Let a € A and let the integers k,n be such that [a, Fy A] C Fy_,A. For any
y € A and s € § we have

[a,ys™] = [a,yls ™ —ys™ a, s]s ™,

which together with Lemma 4.2 implies that
la, FyAs] C Fi—nAs.

Now FQz(A) is the closure of FyAg in Qz(A) by Proposition 4.3(b) and the
bracket operation [a, —] is continuous, so

la, F,Qz(A)] C Fr—nQz(A).
A similar argument shows that if [a, FyA1] C Fx_, A, then

[a, FrQz» (A1)] C Fr—nQz(A).
Part (b) follows.

(¢) Let X,Y be homogeneous elements of Bz and suppose that Y lies in the
a-closure of X By for all a € S(Qz(A4), Qz»(A1)).

Let a be a source of derivations for (A, A;). Note that the derivation D, of
grQz(A) = By induced by the element a, € Qz(A) coincides with the extension
to Bz of the derivation {a,, —}g(a,) of B induced by a, € A.

Because Y lies in the a-closure of XBz, D.(Y) € XBy for all r > 0. We can
find an integer n such that Z?"Y € B. Then

D.(Z""Y)e XBzNB

for all » > 0. Since By is a flat B-module, X Bz N B is a reflexive ideal of B by
Proposition 1.2(b). Since B is a UFD, Lemma 1.4 implies that XBz N B = X'B
for some homogeneous element X’ € B. Hence

D.(ZP"Y) e X'B

for all 7 > 0 and therefore ZP"Y lies in the a-closure of X’'B for any source of
derivations a for (A, A;). Because (A, A;) satisfies the derivation hypothesis, it
follows that D(ZP"Y) C X'B. By Proposition 2.4(b), the localised Bz-module
Dy can be identified with the set of all (Bp)z»-linear derivations of Byz. But
Dz(Y) C XByz and part (c¢) follows. O

5.2. Applying Theorem 3.1. We can now use the Control Theorem for normal
elements to deduce some information about arbitrary two-sided ideals. Recall the
definition of pseudo-null modules from §1.3.

Theorem. Let (A, A1) be a Frobenius pair satisfying the derivation hypothesis,
such that B and By are UFDs. Let I be a two-sided ideal of A and J = (INA)-A;.
Then gr1/gr.J is pseudo-null.

Proof. The right ideal J is clearly contained in I, and we have the following chain
of inclusions of graded ideals in B:

grJ Cerl Cgrl CgrR,

where gr I denotes the reflexive closure of grI in B defined in §1.2. Since B is a
UFD, gr I = X B for some homogeneous element X € B by Lemma 1.4.

Let Z be a nonzero homogeneous element of B such that ZX € grl, and con-
sider the microlocalisations A’ := Qz(A) and A} := Qz»(A1). By construction,
(erI)z = X - By, so the two-sided ideal I’ := Qz(I) of A’ is generated by a normal
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element w of A" by Proposition 4.5. Because the Frobenius pair (A’, A]) satisfies
the derivation hypothesis by Proposition 5.1(c), the ideal I’ = wA’ is controlled by
A by Theorem 3.1:

I'=(I"nA})-A.
By Lemma 2.3, A = @ ,¢(,_1r u*41 and A" = P

same generators occur in both expressions. Hence

A=A-A and I'=1-A=1-A A =14,

a€lp—1]t u®A’; note that the

Because A is a finitely generated A;-module, Lemma 4.4(e) implies that
Qzr (NN Qzr(A1) = Qzr(IN Ay)
or equivalently, (I - Aj)N A = (INA;)- A}, Hence
I'=I'nA))-A=INnAy)-Al-A=(InNnA)A- A

and hence [- A’ = J- A’. Passing to the graded ideals and using Lemma 4.4(a), we
obtain (grI)z = (grJ)z, which means that Z" grI C grJ for some integer n.
This holds for any Z € X! gr I, a finitely generated ideal in B. Hence

(X tgr)™ C Annp(grl/grJ)

for some integer m. But B/X 'grl = XB/I is pseudo-null by Lemma 1.4, so
C := B/(X'grI)™ is also pseudo-null by Lemma 1.3. Since gr I/ grJ is a finitely
generated B-module, it must be a quotient of a direct sum of finitely many copies
of C' and is therefore pseudo-null, again by Lemma 1.3. O

5.3. A control theorem for reflexive ideals. We can now prove our main result.
Recall from §0.3 that a reflexive two-sided ideal is a two-sided ideal which is reflexive
as a right and left ideal. See also the remark below.

Theorem. Let (A, A1) be a Frobenius pair satisfying the derivation hypothesis,
such that B and By are UFDs. Let I be a reflexive two-sided ideal of A. Then
1IN A; is a reflezive two-sided ideal of A1 and I is controlled by Ay :

I=(INAp)- A

Proof. Retain the notation of §5.2. Note that A is a free right and left A;-module
by Lemma 2.3. It follows from Proposition 1.2 that I N A; is a reflexive ideal of A,
and J = (I N Ap)A is a reflexive right ideal of A. It will clearly be enough to show
that I C J.

Let N be a right submodule of I/J. If we equip N with the subquotient filtration,
then gr NV is a submodule of gr I/ gr J and is hence pseudo-null by Theorem 5.2 and
Lemma 1.3. In particular, E°(gr N) = E'(gr N) = 0.

Since the filtration on A is zariskian by the remarks made in §4.1, there is a
good filtration on E'(N) such that gr E1(N) is a subquotient of E'(gr N) by [Bj,
Proposition 3.1]. Hence gr E*(N) = 0. It now follows from [LV, Chapter II, §1.2,
Lemma 9] that E'(N) = 0. Similarly E°(N) = 0, and so I/J is a pseudo-null right
A-module.

Let x € I and (J : x) := {a € A : za € J} be the annihilator of the image of
in I/J. By Proposition 1.3(a) we know that (J : )=t = A. Now J'z(J : z) C
J 1T C AsoJ 1z C (J: x)_l = A. Hence z € J = J, as required. |
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Remark. If B is a UFD, then B is completely integrally closed. In other words, B
is a maximal order [MR, Proposition 5.1.3]. It follows from [MaR, X.2.1] that A is
also a maximal order. Now it is well known that a two-sided ideal I of a maximal
order A is reflexive as a right ideal if and only if it is reflexive as a left ideal [MR,
Proposition 5.1.8].

6. IWASAWA ALGEBRAS
6.1. The Campbell-Hausdorff series. Following [DDMS], we define

(2 it p=2
€731 1 otherwise.

Recall [DDMS, §9.4] that a Z,-Lie algebra L is said to be powerful if L is free of
finite rank as a module over Z, and [L,L] C p°L.
Let ®(X,Y) be the Campbell-Hausdorff series [DDMS, Definition 6.26].

Lemma. Let L be a powerful Z,-Lie algebra, v,w € L and k > 0. Then

®(—v + p*w,v) = p*w  mod p* L.

Proof. By the definition of the Campbell-Hausdorff series,

PX,Y)=X+Y + %[X;Y] Y ge(X,Y)e

n=3 (e)=n—1

where e = (eq,...,es) ranges over all possible sequences of positive integers such
that (e) :=e1 +...+es =n — 1, ge is a certain rational number and

(X, V)e=[[[[XY] - Y],X], -, X], ]

is a repeated Lie commutator depending on e of length n. Fix the integer n > 3
and the sequence e for the time being.

Substitute X = —v+pFw and Y = v into this repeated commutator and expand:
this gives a Zy-linear combination of repeated commutators of v and p*w of length
n. With the exception of [v,v,...,v] = 0, each one of these involves at least one
pFw and hence is contained in p*L", where L' = L, L? = [L, L], L = [[L, L], L], ...
is the lower central series of L.

Using the fact that L is powerful, we deduce that

(—v + pFw, V)e € pFL™ C phtetn=p,
Now as n > 3, p<" Vg, € p°Z, by [DDMS, Theorem 6.28], so
Qe(_v +pkw7 v)e € kaEpe(n_l)L c pk+EL

for all n > 3 and all e such that (e) =n — 1. Hence
ok
®(—v + pFw,v) = p*w + ?[w, v] mod pFTeL.

Now %[w, v] € pP+LL since [w,v] € p°L and the result follows. O
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6.2. The exponential map. Recall that there is an isomorphism between the
category of uniform pro-p groups and group homomorphisms and the category of
powerful Z,-Lie algebras and Lie homomorphisms [DDMS, Theorem 9.10].

If L is a powerful Z,-Lie algebra and G is the corresponding uniform pro-p group,
then there is a bijection

exp: L — G
which allows us to write every element of G in the form exp(u) for some v € L.
The Campbell-Hausdorff series allows us to recover the group multiplication in G
from the Lie structure on L [DDMS, Proposition 6.27]:
exp(u) - exp(v) = exp ®(u, v)
for all u,v € L. We collect together some useful properties of exp in the following
Lemma. Let L be a powerful Z,-Lie algebra, u,v € L and G be the corresponding
uniform pro-p group. Then
(a) exp(mu) = exp(u)™ for all m € Z,
(b) exp(pFL) = G*" for all k >0,
(c) ifu=v mod p*L for some k > 0, then exp(u) = exp(v) mod Gr,
(d) exp induces an F,-linear isomorphism L/pL — G/GP:
exp(u + v) = exp(u) exp(v) mod GP.
Proof. For parts (a), (b) and (d) see the proof of [DDMS, Theorem 9.8]. Now
Lemma 6.1 implies that ®(—u,v) € pFL, so
exp(u)~ exp(v) = exp(—u) exp(v) = exp ®(—u,v) € exp(p*L) = ar*

and part (c) follows. O

Let (g,h) = g~ th~1gh denote the group commutator of g,h € G.
Proposition. Let u € L be such that [u, L] C p*L for some k > €. Then

(exp(u), exp(v)) = exp([u,v]) mod '

for all v € L. In particular, (exp(u),G) C ar.

Proof. We can compute the conjugate exp(—u) exp(—v) exp(u) in G using [DDMS,
Exercise 6.12]: exp(—u) exp(—v) exp(u) = exp(—=z), where
1 1
z:=v.exp(ad(u)) = v+ [v,u] + S[[v,ul, u] + £(l[v, u], u], u] + - € L.
Now exp(p) =1+ p* + 3p** +... =14 p" mod p*™'Z, and L - ad(u) C p*L, so
n kn
v - ad(U) c LL g pk+1L
n! n!

for all n > 2. Hence z = v+p”*w for some w € L such that p*w = [v,u] mod p*+1L.
Applying Lemma 6.1, we deduce that
O(—2z,v) = ®(—v — p*w,v) = —p"w = [u,v] mod p*1L.
Using Lemma 6.2(c), we finally obtain
(exp(u), exp(v)) = exp(—=z) - exp(v) = exp P(—z,v) = exp([u,v]) mod ar

as required. (I
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6.3. Subalgebras and subgroups. From now on, we will assume that L is a
powerful Z,-Lie algebra of rank d and we will fix a subalgebra L; of L which
contains pL. We can find a subset {vy,...,v4} of L such that

o {v;+pL:1<i<d}isanlF,-basis for L/pL, and

o {v;+ Ly :1<i<t}isan F,-basis for L/L; for some t.
In many interesting cases, L, will in fact be equal to pL.

Lemma. Let G = exp(L) be the uniform pro-p group corresponding to L, let G1 =
exp(Ly1) and let g; = exp(v;) for all i. Then
(a) Gp is a subgroup of G,
(b) {g1,--.,9a} is a topological generating set for G, and
(c) {d¥, .., 9%, gi+1,---, 94} is a topological generating set for Gj.
Proof. (a) This is not entirely trivial, since exp(M) doesn’t have to be a subgroup of
G for arbitrary subalgebras M of L — see [I]. However, exp(u) exp(v) = exp(u+v)
mod GP? for all u,v € L by Lemma 6.2 and G = exp(pL) C exp(L1) = Gy, so
zy € Gy for all x,y € G; and G is a subgroup.

(b) Let M be the Z,-submodule of L generated by {v1,...,vq}. Because

M+pL=1L

by assumption, M = L by Nakayama’s Lemma and hence {v1,...,v4} is a Z,-basis
for L since L has rank d. Part (b) now follows from [DDMS, Theorem 9.8].

(c) By [DDMS, Theorem 3.6(iii)] and part (b), {g},...,¢5} is a topological
generating set for GP. Since {g:+1GP?,...,94GP} is a basis for G1/GP by Lemma
6.2(d), {¢7,...,9¢,9t+1,-..,94} must be a topological generating set for Gy, as
required. (Il

6.4. The group algebra of a uniform pro-p group. Let G is a uniform pro-p
group and let K be a field of characteristic p. Let J be the augmentation ideal of
the group algebra K[G] of G. If {g1,...,g94} is a topological generating set for G
and set b; :=¢g; — 1 for all i =1,...,d, then these elements all lie in J.

Proposition. The associated graded ring of K[G] with respect to the J-adic filtra-
tion is isomorphic to the polynomial algebra Klyi, ..., ya.

Proof. As in the proof of [DDMS, Theorem 7.22], the b;’s commute modulo J3. We
can therefore define a K-algebra homomorphism ¢ : Klyi,...,yq4] — gr K[G] by
setting ¢(y;) = b; + J*>. When the field K is F,, [DDMS, Theorem 7.24] implies
that ¢ is an isomorphism. The general case now follows, using a simple “extension
of scalars” argument. O

From now on we will identify Ky, ...,yq] with gr K[G] via the map ¢. For each
a € Nt let b* := b7 -+ b? € K[G] and define

M :={b":ac N}
Writing |« := a1 + ... + g, we can define
Mep :={b*e M :|a] <n}
for each n > 0, the subsets M_,, and M,, being defined similarly.
Corollary. K[G] =J" & K[Mc,] for alln > 0.

Proof. The above proposition implies that J*"! = J* ¢ K[M_,] for all n > 0.
The corollary follows from this by an easy induction. O



REFLEXIVE IDEALS IN IWASAWA ALGEBRAS 21

6.5. Subgroups. Recall the notation of §6.3, so that {¢%,..., 9%, gr+1,...,94} is a
topological generating set for G;. Now define

N :={b*e M :pla; forall i<t}
and note that the K-linear span K[N] of N is contained in K[Gq].
Lemma. (a) K[N] is dense in K[G1] with respect to the J-adic topology.

(b) KININJ" = KIN N Ms,], for alln > 0.
(c) The image of gr KN inside gr K[G| is equal to K[y}, ..., v, yts1,- -, ydl-

Proof. (a) Let x € G1 and n > 0. It will be enough to show that z =y mod J" for
some y € K[N]. Since G/GP" is a finite powerful p-group, by [DDMS, Corollary
2.8] we can find non-negative integers Ay, ..., A\q such that

x:gi\l...ggdu

for some u € GP". Considering the image of z in G/G? and using the fact that
x € (1, we see that \; is divisible by p for all ¢« < t. Write \; = pu; for some
w; € N, for each ¢ < t. Let y := gi\l ~~g2‘d; then

Y= (1+b0) o (L + )Y (1 + beyr) M+ -+ (L + bg)™ € KN,
Because GP" — 1 C J", the element u is congruent to 1 modulo J", and hence
r=yu=y modJ"

as required.

(b) It will be enough to show that K[N] N J" C KN N Msz,], so let a €
K[N] N J". We can decompose a uniquely as a = b+ ¢, where b € K[N N M,]
and ¢c € KIN N Ms,]. Nowce€ K[Mz,] CJ"sob=a—ce J"NK[M,] =0
by Corollary 6.4. Hence a = ¢ € K[N N Ms,], as required.

(c) This follows immediately from part (b). O

6.6. Completed group algebras. Let H be a compact p-adic analytic group.
The completed group algebra K H is by definition the inverse limit
KH :=lim K[H/N],
pi—
as N runs over all the open normal subgroups of H. When the field K is finite,
this algebra is sometimes called the Iwasawa algebra of H.

Proposition. Let A:= KG and Ay := KG;1. Then (A, A1) is a Frobenius pair.

Proof. For each open normal subgroup N of G, let wy ¢ be the kernel of the natural
map from K[G] to K[G/N]. By the proof of [DDMS, Lemma 7.1], this family of
ideals of K[G] is cofinal with the powers of the augmentation ideal J = wg,g.
Therefore A is isomorphic to the completion of K[G] with respect to the J-adic
filtration on K[G]. Let (F,A) be the associated filtration on A; explicitly,

g™ if n<o0
Fnd = { A otherwise.

In this way, A becomes a complete filtered K-algebra, and
Bi=grA=grK|G] = Kly1,...,yd|

is a commutative noetherian domain, by Proposition 6.4.
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Now if N is an open normal subgroup of G, then N N G is an open normal
subgroup of GG; and
wn,g N K[Gl] = WNNG,,G1 -
Conversely, if N7 is an open normal subgroup of G;, then we can find an open
normal subgroup N of G such that N NGy C Ny, so that
WN,,Gy 2 WNNGy,G = WN,c N K[G1].

Hence the subspace topology on K[G1] induced from the J-adic topology on K[G]
coincides with the natural topology on K[G1] used in the definition of A;. We may
therefore identify A; with the closure of K[G;] inside A. In this way A; becomes
a closed subalgebra of A.

Finally, Lemma 6.5 implies that the image of gr A; = gr K[G4] & gr K[N] inside
gr A can be identified with the subalgebra By := K[y),.... 4", yi41,...,ya] of B.
This clearly contains B!?! and moreover

B= @ By
a€lp—1]*t

as required. O
6.7. Sources of derivations for Iwasawa algebras.

Proposition. Let u € L be such that [u, L] C p*L and [u, L] C p**1L for some
k > e, and let a = exp(u). Then

(a) (0,G) € G,

(b) (a,Gy) € G”,

(c) la, F,A] C F,_ k1 A for alln € Z, and
(d) [a, F, A1) C F,_pe+1 1, A for alln € Z.

Proof. Parts (a) and (b) follow from Proposition 6.2:
(a,G) = (exp(u),exp(L)) C exp(fu,L)G*"™" C G and
(a.G1) = (exp(u).exp(L1)) € exp(fu, LGP =

(c) It is sufficient to prove this for non-positive values of n, since then

[a,FnA] = [a,FQA] g Ffpk-+1A g anpk+1A
forall n > 0. Let h € G and set b := h — 1. Then
[a,b] = [a, h] = ha((a,h) — 1) € K[G)(G"" —1) C J*"
by (a), so by induction we have
[a’bm] _ b[a,bm_l] + [a,b]bm_l c ka+m—1
for all m > 0. Therefore
0,5 = [0, B 0§ B o B b € I
for all b® € M. Now K[Ms>_,] is dense in F, A, so
(0, FuA] = [g. KMo o] € TP 1 = B,y A,

as required.
(d) Again, we may assume that n < 0. Let h € G; and set b= h — 1. Then

[a,b] = [a,h] = ha((a,h) — 1) € K[Gl(G*"" —1) c J*"""

k41
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by (b). Hence in the notation of §6.5, [a,b"™] € JPm+P"™" =P for all i < ¢ and
[a,bm] € Jm+et =1 C gmar" b for all i > ¢, whenever m > 0. We can now
deduce as in part (a) that

[a,b] € Jlel+p" " —p

for all b € N/, or equivalently, [a, NN Ms_,] € J~""" =2 Part (d) now follows
because K[N N M>_,] is dense in F,, A; by Lemma 6.5. O

Corollary. Let u € L be such that [u, L] C pFL and [u, L] C p**1L for some
k> €, and let a = exp(u) € G. Then a = {a, aP, a”z, ...} is a source of derivations
for the Frobenius pair (A, Ay).

Proof. For all r > 0, [p"u, L] C p"t*L and [p"u, L,] C p"t**'L. Now let f(a?") =
p'tF —1 and 6;(a?") = ph(aP") and apply the proposition. O

In particular, if G is a uniform pro-p group and g € G, then g = exp(u) for some
u € L. Since L is powerful, [u, L] C p°L and [u,pL] C p**!L. Hence (g,gp,gpz, o)
is always a source of derivations for (KG, KGP).

6.8. Computing the corresponding derivations. Let u € L be such that for
some k > €, we have

o [u,L] Cp*L

e [u,L] £ p**1L, and

o [u, L] CpFTiL.
Note that if such a k exists, then it is uniquely determined by u. Moreover, if
L1 = pL, then the third condition automatically follows from the first, and in this
case such an integer k always exists for any non-central element u of L.

We can now define a well-defined non-zero Fp-linear map

pu: L/Ly — L/pL
v+ Ly +— ﬁ[u,v]+pL.

Let a = exp(u). Since [a, F,,A] C F,,_ k1 A for all n € Z by Proposition 6.7(c), u
induces a derivation

Du = {a, _}pkfl
of B= Klyi,...,yaq] as in §3.2. It turns out that there is a very close connection
between D, and p,. Recall from §6.3 that {v; + L1 : 1 < i < t} is an F,-basis for
L/Ly, and {v; + pL:1 < i < d} is an F-basis for L/pL.
Theorem. Let (c;;) be the matriz of p, with respect to these bases. Then

d

Dy(y;) = Z Cijyi

i=1

k

forallj=1,...t.

Proof. Choose \;; € [p— 1] such that ¢;; is the reduction of A;; modulo p. By the
definition of ¢;;,

d
1
—[u,v;] = E Aijv;  mod pL
p

i=1
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for all j =1,...,¢. Recall from §6.3 that g; = exp(v;) for all i. By Lemma 6.2(d),

d
1 iy
exp ( [u, v; > = Hg;‘” mod GP.
Pt i=1

Now by [DDMS, Theorem 3.6(iv)], g — g7 induces an isomorphism between G/GP
and G*" /GPkH. Using Lemma 6.2(a), we see that

k d
1 P PP Nis k1
exp([u, v; exp u, v =|]lg; 77 modGP
([u, v5]) = @[ ﬂ) [ ]

i=1
We can now apply Proposition 6.2 and deduce that
d

(a,95) = exp[u,vg)) = [[ o mod 67!
=1

Next, recall that b; = g; — 1 and consider the commutator [a,b;] inside K[G]:

[a’bj] = [aagj] = gja((a,gj) = gja ( i ng "hij )

k+1 . . .
for some h; € GP* . Since we're interested in {a, —},x_1, we only need to compute

[a,b;] modulo JP* 1 Now h;j—1C o't q C gttt c ka—i-l’ .

hj =1 mod JriEL,

Because g;a =1 mod J, we can deduce that

d
la,b;] = H(l + bp Mi]= Zc”bp mod JP"
i=1
for all  =1,...,t. The result follows. U

6.9. Verifying the derivation hypothesis. In a forthcoming paper [AWZ], we
will prove the following result.

Theorem. [AWZ, Theorem A| Let ®(Z,) be the Chevalley Z,-Lie algebra asso-
ciated to a root system ®. Let L be the Lie algebra p'®(Z,) for some t > 1 and
G be the corresponding uniform pro-p group exp(L). Suppose that p > 5 and that
ptn+1if ® has an indecomposable component of type A,. Then (KG, KGP)
satisfies the derivation hypothesis.

For the time being, we only verify that the derivation hypothesis holds in the
special case when G is a congruence subgroup of SLa(Z,).

6.10. Congruence subgroups of SLy(Z,), p > 3. Fix an integer [ > 1 and let L
be the powerful Lie algebra sl(p'Z,). Thus L has a basis

=G 5)v=G -6 5)

satisfying the following relations:
o [h,e] =2ple,
hd [hvf] = 72plf7
o [e,fl=1p'h.
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Let I';(SL2(Z,)) denote the I-th congruence subgroup of SLa(Zy):
I'y(SL2(Zy)) := ker (SL2(Z,) — SL2(Z/p'Z)) .

It is well known that G := exp(L) is isomorphic to I';(SLa(Z,)). We let Ly = pL,
so that the corresponding subgroup G is just GP = I'j41(SLa(Z,)).

We use the same variables {e, f, h} for the generators of the associated graded
ring B = gr KG and hope that this will cause no confusion. Thus

B =Kle, f,h] and By = KleP, fP, hP].

Let {%, %, a%} be the corresponding derivations, which were constructed in §2.4.
Using Theorem 6.8 and Proposition 2.4(b), we can write down the derivations

Dpru = {eXp(pTu)’ —}pr+1,71 :B— B
generated by u explicitly, for each u € {e, f, h}:

l+r 8 l+r 8
— p 9 _ p 9
Dyre = W75 20 L
. = _ppTo p T O
Dy =~ g2 g
. e P 9 _ P 9
Dp’h = 2e e 2f ar"

Proposition. Let ! > 1 and let G = exp(sla(p'Z,)) as above. Then the Frobenius
pair (KG, KGP) satisfies the derivation hypothesis.

Proof. Let X,Y be homogeneous elements of B and suppose that Y lies in the
a-closure of XB for all a € S(KG, KGP). By Corollary 6.7, (g,97, g7 ,...) €
S(KG,KGP) for all g € G, so we can find an integer s such that

Dyu(Y) € XB

for all w € {e, f,h} and all » > s. Consider the D,r.—equations for r = s and
r = s + 1. Eliminating the terms involving 0Y/df yields that

2P (hp”’(p—l) _ eps“(p—l)) 24 € XB,

Oh
and using similar operations with the D, f-equations we have
o (hps“(pfl) _ fps“(p*l)) v € XB.

oh

The coefficients of 8Y/0h appearing in the above two equations are coprime, which
allows us to deduce

Y

— e XB.

an <
Similar manipulations with the other equations show that 9Y/de and 9Y/0f also
lie in X B. Hence D(Y) C X B, by Proposition 2.4(b). O

7. IDEALS IN IWASAWA ALGEBRAS

7.1. Canonical dimension function. Let A be a noetherian ring. We say that
A is Gorenstein if it has finite injective dimension on both sides. For any finitely
generated left (or right) A-module M, the j-number or grade of M is defined to be

§(M) := inf{n | Ext" (M, A) # 0}.

The ring A is called Auslander-Gorenstein if it is Gorenstein and it satisfies the
Auslander condition:
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For every finitely generated left (respectively, right) A-module M and ev-
ery positive integer ¢, one has j(N) > ¢ for every finitely generated right
(respectively, left) A-submodule N C Ext% (M, A).
An Auslander-regular ring is a noetherian, Auslander-Gorenstein ring which has
finite global dimension. See [Bj] for some details. Note that a noetherian commu-
tative regular algebra is always Auslander-regular. For any Auslander-Gorenstein
ring A, there is a canonical dimension function defined by

Cdim(M) = injdim(A) — j(M)
for all finitely generated left (or right) A-modules M [AB1, §5.3]. This is a dimen-
sion function in the sense of [MR, §6.8.4]. Recall that a finitely generated A-module

is said to be pure if Cdim(N) = Cdim(M) for all nonzero submodules N of M. We
will use the following nice observation of Venjakob [CSS, Lemma 4.12]:

Lemma. Let A be an Auslander-reqular domain and I be a proper nonzero right
ideal of A. Then I is reflexive if and only if A/I is pure of grade 1.

7.2. Crossed products. Let R be an Auslander-Gorenstein ring, G be a finite

group and S = R * G be a crossed product. We know by [AB2, Lemma 5.4] that

the restriction Mg to R of any finitely generated S-module M satisfies
Cdlms(M) = Cdln’lR(M|R)

Hence S is also Auslander-Gorenstein.

Proposition. R has an ideal I with Cdimg(R/I) = n if and only if S has an ideal
J with Cdimg(S/J) = n.
Proof. (=) Choose a set of units {g : ¢ € G} in S such that Rg = gR inside S
and S = @geG Rg. Then ay : r — g~ 'rg is an algebra automorphism of R. Hence
Cdimp(R/ay(1)) = Cdimg(R/I) for all g € G. We set Iy := [ g ag(I), which
is a G-invariant ideal in R. It follows from the fact Iy C I that Cdimg(R/Iy) >
Cdimp(R/I). Since

R/To = @) Rfay (D),

g€G

we actually have equality. Let us set J = Iy - S; where [y is G-invariant, J is a
twosided ideal in S and by construction

Cdimg(S/J) = Cdimg((S/J)|r) = Cdimg(R/I).
(<) We set I := J N R, which is a G-invariant ideal in R. Then S/IS =
@D, cc(Rg/1g) and hence (S/1S)r = (R/I)IC!. Since S/IS — S/.J, we have
Cdimg(R/I) = Cdimg((S/1S)|r) = Cdimg((S/J)|r)-
On the other hand R/I — (S/J)g, so we have equality and the result follows. [

7.3. Proof of Theorem A. We present a slightly more general version of Theorem
A this section. Let £(G) denote the Q,-Lie algebra of G.

Theorem. Let K be a field of characteristic p. Suppose G is a compact p-adic
analytic group of dimension d such that L(G) is split semisimple over Q,. Suppose
that p > 5, and that p t n in the case when s1,(Q,) occurs as a direct summand of
L(G). Then KG has no two-sided ideals I such that

Cdimgg(KG/I) =d — 1.
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Proof. Note that KG is a crossed product of the Auslander-Gorenstein ring KN
with the finite group G/N, for any open normal uniform subgroup N of G. By
Proposition 7.2, we may replace G by any uniform pro-p group N having the same
Q,-Lie algebra without affecting the conclusion of the Theorem.

By considering a suitable Chevalley basis, we can find a sub Z,-Lie algebra
L C L(G) such that L = p'®(Z,) where @ is the root system associated to Q, ®
L(G). Now take N to be the corresponding uniform pro-p group exp(L). The
Z,-Lie algebra of NP s p*L, so the Frobenius pair (KNpk,KNle) satisfies the
derivation hypothesis for all £ > 0 by Theorem 6.9.

Suppose for a contradiction that I is a two-sided ideal of K'N such that

By replacing I by the inverse image of the largest pseudo-null submodule of KN/I
in KN we may assume that KN/I is pure. Note that I is proper and nonzero,
since otherwise d = Cdimgy(KN) =d — 1. Tt follows from Lemma 7.1 that I is a
reflexive ideal of K N. Applying Theorem 5.3 repeatedly, we see that I is controlled
by KNP for each k:

I=(INKN") KN.

Since I is a proper ideal of KN, we see that I N KN ?* must be contained in the
maximal ideal (Npk -1) . KN?" of KN?* for all k > 0. Hence

1< (N ~1)-KN) =0,
k=0
a contradiction. O

8. THE CASE WHEN p =2

8.1. Congruence subgroups of SLy(Z,), p = 2. The reader might have wondered
why we didn’t just assume that L; = pL from §6.3 onwards. The reason is that the
extra generality allows us to be more flexible when choosing the particular open
subgroup of G that we should try to ”descend” towards. The case of open subgroups
in SLo(Z,) when p = 2 should illustrate this flexibility: if G = I';(SL2(Z,)) and
p = 2, then (KG,KGP) does not satisfy the derivation hypothesis, but we can
circumvent this problem by going down to G? from G in two steps.

So assume that p = 2 and fix [ > 2. We choose the same basis {e, f,h} for
Lo :=sl5(p'Z,) as in §6.10, so that the following relations are satisfied:

o [he] =pitle,
b [ha f] = 7pl+1f7
o [e,f]=ph.

Let Ly = peZ, © pfZ, ® hZ, and let Ly = pL. The relations in L,

o [h,pe] = p(pe),

o [h,pf] = =P (pf),

o [pe,pf] =p"*"*h
show that L; is a powerful Z,-subalgebra of Ly which contains L,. Moreover,
pLy C Lo, so the pairs (Lo, L1) and (L1, Ls) both satisfy the assumptions made in
§6.3, and hence (K Gy, KG1) and (K Gy, KG2) are Frobenius pairs, by Proposition
6.6. However the parameter ¢ equals 2 in the first case and 1 in the second case.
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Proposition. Let G; = exp(L;) for each i = 0,1,2. Then the Frobenius pairs
(KGo, KGy) and (KG1, KG2) both satisfy the derivation hypothesis.

Proof. We first deal with the case (KGp, KG1); in this case, B = Kle, f, h] and
B, = K[e?, fP, h]. We observe that

[6, LO] g plLOa [6, LO] I(Z pl+1L07 [6, Ll] g lerlLOv

[fa LO} QPILO, [f7 LO] ;Q_pl+1LOa [faLl] nglLOa
[ha LO] g pl+1L07 [h'v LO] g pl+2L07 [h7 Ll} g pl+2L0'

By Theorem 6.8, we obtain three sets of derivations of B = gr K arising from
sources of derivations of (K Gy, KG1):

l+T8
= p 9
Dyre = W2
l+T8
= p <
Dp'r‘f — h +l+ale, i
— ep" 2 _ " il
Dp'r'h = € e f af"

Let X,Y be homogeneous elements of B and suppose that Y lies in the a-closure
of XB for all a € S(KGy, KG1); we can thus find an integer s such that

Dyru(Y) € XB

for all u € {e, f,h} and all r > s. Eliminating the terms involving 9Y/df from the
Dy, equations for r = s and » = s 4 1 shows that

pr (e e ) yor e XB

Since Dpse(Y) = h”sﬂﬁY/af € X B and the coefficients of 0Y/0f are coprime,
0Y/of € XB.

Similarly 0Y/de € X B, so the derivation hypothesis holds by Proposition 2.4(b).
Now consider the case (KG1, KG2). Recycling notation, let {e, f, h} be the basis
for L; considered above, so that {e, f,ph} is a basis for Lo, and the relations
o [he] =p'Tle,
b [h7 f] = _pl-‘rlf’
o fefl ="
hold in L. The corresponding graded rings are B = Kle, f, h] and By = Kle, f, h?].
Since
le, L] C p'TLy, le, L] € p'T2 Ly, le, L] C p'™2 Ly,
[fv Ll] glerth [val] ,¢—pl+2L17 [f7L2] gpl+2Lla
Theorem 6.8 gives us two sets of derivations of B arising from sources of derivations
of (KGl, KGQ)Z

o l+r+l g
Dp"e = Bpl+r+1afg,
Dyry = f? a5
Let X,Y be homogeneous elements of B and suppose that Y lies in the a-closure
of XB for all a € S(KG1, KG3); we can thus find an integer s such that

Dyu(Y) € XB

r+1+1

for all u € {e, f} and all » > s. In particular, Dpr.(Y) = eP 0Y/0h and

D¢ (Y) = prHH@Y/ah both lie in X B. Since the coefficients of 9Y/9h are
coprime, Y /0h € X B, so the derivation hypothesis holds. ([l
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Corollary. Let K be a field of characteristic 2 and suppose that G is an open
subgroup of SLo(Zs). Then KG has no two-sided ideals I such that

Cdimgq(KG/I) =2.
Proof. Follow the proof of Theorem A. O

8.2. Proof of Theorem C. Let I be a prime ideal of KG. The dimension of G
is three, so the possible values for ¢ = Cdimg (K G/I) when I is a two-sided ideal
of KG are 0,1,2 or 3. By Theorem 7.3 and Corollary 8.1, ¢ cannot be equal to 2
and by [A, Theorem A], ¢ cannot be equal to 1. Hence ¢ = 0, in which case I is the
maximal ideal of KG since K G is local, or ¢ = 3 in which case I = 0. ([
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