p-ADIC FOURIER THEORY FOR Q,- AND THE MONNA MAP
KONSTANTIN ARDAKOV AND LAURENT BERGER

ABSTRACT. We show that the coefficients of a power series occurring in p-adic Fourier
theory for Q2 have valuations that are given by an intriguing formula.

INTRODUCTION

Let L be a finite extension of Q,, let m be a uniformizer of oy, and let LT be the Lubin-
Tate formal or-module attached to 7. The formal group maps over oc, from LT to Gy,
play an important role in p-adic Fourier theory (see [ST01]). Choose a coordinate Z on
LT, and let G(Z) € oc,[Z] be a generator of Hom,, (LT, G), so that

G(Z) =) Pu(Q)- Z" = exp(Q - logir(Z)) — 1
k>1
for a certain element Q € oc, and polynomials P(Y) € L[Y]. We have (§3 of [ST01])
val,(©2) = 1/(p—1) —1/e(q — 1) where e is the ramification index of L and ¢ = |or,/7or|.
The power series G(Z) gives rise to a function on mg, and the theory of Newton polygons
then allows us to compute the valuation of P(Q) for k = ¢/ /plu=D/el+1 with j > 0
(Theorem 1.5.2 of [AB24]). However, the valuation of P,(Q2) for most & > 2 has no
geometric significance and depends on the choice of the coordinate Z.

During our work on the character variety, we computed the valuation of Py (£2) for many
small values of k in a special case: we took L = Q,2 and 7 = p and chose a coordinate
Z on LT for which log;(Z) =3, 5 Z9" /p™ (this is possible by §8.3 of [Haz12]). Note
that in this setting, the theory of Newton polygons gives val,(P;(€2)) precisely when £ is
a power of p. Let w : Z>o — Q be the map defined by

w(k) = %'(lﬂOﬂLplkl—i—"-ﬂLph'kh) if k= (k- ko), in base p.

For all £ for which we were able to compute val,(P;(€2)), we found that val,(P,(Q2)) =
w(k). The main result of this note is that this formula holds for all k.

Theorem A. For all k > 1, we have val,(P(2)) = w(k).

The proof involves a careful study of the functional equation that G(Z) satisfies, and
a direct computation of val,(P;(€2)) for small values of k. The function w is related to
the Monna map, defined in [Mon52].
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1. THE POLYNOMIALS P, (Y)

Let L = Q2 and 7™ = p, so that ¢ = p?, and choose a coordinate Z on LT for which
logir(Z) = 3 k=0 79" Jp*. The polynomials P,,(Y) € L[Y] are given by

exp(Y -log;(2)) = Z Po(Y)- 2™

Proposition 1.1. We have
Y mot-+ma
Pm(Y) - Z mo! ce md! . pl'm1+2'm2+”'+d'md

mo+qgmi+--+qimg=m

Proof. Since logir(Z) = > ;50 79" [pF and exp is the usual exponential,

> " Pa(Y)Z™ = exp(Y logip(Z)) = [ exp(Y - 27 /p*) = [ D (v - 27 /p*) /5!

k>0 k>0 j>0
The coefficient of Z™ is the sum of Y™mot+ma /ml...m ! . ptmatZmet—tdma gyer 3]
d >0 and (mg,---,mg) € ch{)l such that mg + gmi + - - - + ¢%mg = m. O
For example, if + < ¢ — 1, then
P(Y) =Y/
Yq—i—i Yi+1
P (Y)= - -
‘H‘( ) (q+l)'+p2'
Y 29+ Y qtitl Yi+2
P2q+i(y) =

~ T ~ T .
(2¢+4)!  p-(g+i)!  2p?-4l
Because L = Q,2, it follows from Lemma 3.4.b of [ST01] that
1 1 P

p—1 e(g—1) ¢-1

Lemma 1.2. Ifi < ¢—1 and i = (ab), in base p, then val,(P;(Q)) = ‘f]%blp = w(i).

val,(Q) =

Proof. 1t i < q — 1, then P;(Q2) = Q'/i! by Proposition 1.1, so that

, 1 1 i—sp(i)  sp(4) i a+bp
1L (P: () — 7. — — p =2 — = . O
Vel (B8 = (p_1 q_1) p—1 p—1 q—1 q—1

2. THE MAP w
Recall that w : Z>y — Q is the map defined by

w(k):%'(ko+p_lk1+---+p_h-kh) it k= (kp--- ko), in base p.

Proposition 2.1. The function w : Z>o — Q>0 has the following properties:

(1) w(k) <14+1/(¢—1);
(2) w(k) > 1 if and only if k = —1 mod q, and then w(k) > 1 unless k = q — 1;
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(3) if £ > k, then w(l) —w(k) € Z if and only if k = qj and { = qj + (¢ — 1);
(4) w(pk) = 1/p-w(k);
(5) w(pmk +1i) = w(p"k) +w(@) if 0 <i <p"—1;
(6) For all a,b > 0 we have w(a +b) < w(a) + w(b).

Proof. Ttem (1) results from the fact that

k) = (ot p oy o+ ) P« P L

¢g—1 q—1 q—1
If kg < p—2,orifkg =p—1and k; < p—2, thenw(k) < (p"1—1—-p" 1) /ph1(¢—1) < 1,
so if w(k) > 1, then kg = p—1 and k; = p—1, and £ = —1 mod ¢q. Conversely, if

k = —1mod q, then kg = p—1 and k; = p — 1, and w(k) > 1. Finally, if we have
equality, then k; = 0 for all 4 > 2. This proves (2).

Write k = (ky, - - - ko), and £ = (€; - - - £p),. Since w(k) <1+1/(q—1), if w(l) —w(k) €
Z~o, then w(f) = w(k) or w(f) = w(k)+1. Ifw(l) = w(k), then kg+p~thki+--+p "k =
bo+p 4y +--- 4+ p - ¢. By comparing p-adic valuations, we get h = 7, and then
ky, = ¢; mod p so that k, = {;. By descending induction, k; = ¢; for all j, and k = (. If
w(l) = w(k) + 1, then w(¢) > 1, and hence £ = (¢;---lo(p — 1)1(p — 1)o), by item (2).
We then have w((¢; - - - €20,00),) = w(k) and hence k = (¢; - - - £50,0¢),. This implies (3).

Items (4) and (5) are straightforward. For item (6), let {a;}, {b;} and {¢;} be the digits
of a, b and ¢ in base p. Let o = 0 and let ; € {0, 1} be the ith carry when adding a and
b, so that ¢; = a; + b; + r; — prix1. The result follows from the following computation.

ch Zaz—l—b r, priflzzaifbi_(p Z <Zaz+b 0

7 0
z>0 >0 p >0 p z>1 >0

3. CONGRUENCES FOR THE Py (1)

From now on, we write u, for P,(2) to lighten the notation. Recall that ¢ = p®>. The
power series G(Z) is a map between LT and Gy, so that G([p]ur(Z2)) = [pla. (G(Z)).

Proposition 3.1. We have > 1% u,, 27 = 325 uf Z* mod p - mg, .

Proof. We have G(Z) €

me,[Z] and [plur(Z) = Z9 mod p and [plg,,(Z) = Z? mod p.
Since G([plur(%)) = [pla

Ple.(G(Z)), we get G(Z9) = G(Z)P mod p - mg,. O
Corollary 3.2. If k is not divisible by p, then val,(ux) > 1/p.
Corollary 3.3. We have ub,, = u,, mod p-mc,.

Proof. Take k = pm in Proposition 3.1. O

Corollary 3.4. Take m > 0.
(1) Suppose that val,(u,,) < 1. Then val,(upm) = 1/p - val,(uy,).
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(2) Suppose that val,(u,,) > 1. Then val,(uy,) > 1/p.

Proof. Both cases follow easily from Corollary 3.3. U

We now compare [p|ir(Z) and Z9+ pZ (compare with (iv) of §2.2 of [Haz12]).
Lemma 3.5. We have [plir(Z) = Z%+ pZ + p* - s(Z) for some s(Z) € Z* - Z,[Z].

Proof. There exists r(Z) € Z* - Z,[Z] such that [p|ir(Z) = Z%+ pZ + pr(Z). By the
properties of log; ., we have log;([p|lLr(Z)) = plogi (7). Expanding around Z9, we get
pZ+pr(Z))
logr(Z14+p2+pr(Z)) = log (20 + (2 +pr(2)) login (204 P2 I ou0) 0
i>2 ’

Our choice of logyr is such that log;p(Z%) = plog,+(Z)—pZ and log;+(Z) € 1+pZ-Z,[Z]
and log\\(Z) € pZ,[Z] for all i > 2. Note also that pi*!/il € p*Z, for all i > 2.

The above equation now implies that pr(Z) = 0 mod p? so that r(Z) = ps(Z). O

Corollary 3.6. The coefficient of Z7 in G([plrr(Z)) is congruent to u, mod p?.

Proof. Since [plyr(Z) = Z% + pZ mod p?, Lemma 3.5 tells us that
G([plur(2)) = G(Z9) + pZ - G'(Z7) mod p*
= Zuquk + me Uy Z9 D mod p?.

k>1 m>1

Hence pZ - G'(Z?) doesn’t contribute to the coeffiicent of Z9" modulo p?. O

Proposition 3.7. For all k > 1, we have k - u, = u; - ZTUZOE‘Z(W P U gr -
Proof. We have ), ., up 2% = exp(uy - logip(Z)). Applying d/dZ, we get

> kup 2"t = exp(u - logyp(Z)) - us - logir(Z)

k>1
=u - (O wZ)- (O (q/p)" 27 7).
i>0 r>0
The result follows from looking at the coefficient of Z*~! on both sides. U

Corollary 3.8. We have uy - up_1 = kup mod p for all k > 1.

Proposition 3.9. If 0 < <p—1 and m > p, then there exists ¢, € or, such that

N —1
mp + i
Ump+i = ( i ) *Umyp - Uy +p- gi,m * Up(m—p)+i+1 mod p2.

Proof. We proceed by induction on 7. When ¢ = 0, we can even achieve equality by
setting Com = 0, because uy = 1. Write k := mp + ¢ for brevity. For ¢ > 1 we have
1
Up = —Up - Up—1 + Bul - Up—q mod P’

k k
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by Proposition 3.7, because here k € oy . By the inductive hypothesis, we have

k—1\"
Up—1 = (2 B 1) U * Ui—1 + PCim1,m - Up—q moOd p°.

i

Note that since i < p — 1, we have u; = u? /i! by Proposition 1.1, so uju; 1 = (:11)! = qu;.

Substituting this information, we obtain

-1
_w k—1 P
Up = T ((z B 1) Ump * Ui—1 +pCi1,mqu> + Eul “Ug—qg

i (k—1\""
= E (Z B 1> Upmyp * Uj + %(Q_Lm + 1)u1 CUk—g mod p2'

On the other hand, by Corollary 3.8, we have
puy - ug—g = p(k — ¢+ 1ug_gq1 mod p*.

Hence we can rewrite the congruence as follows:

A k—q+1
Up = (2> Uy * Ui + p+(€i—l,m + 1)ug—g+1 mod p2.

Define ;. ,, := ’“*,Z“ (Ci—1.m + 1) and observe that this lies in oy, because p 1 k. O

We need to know what (,_; ., is modulo p.

Lemma 3.10. Take 1 <i<p—1and m >0 and let k = mp + 1.

If Con =0 and G = k_,‘f“l (Ci—1m+1) whenever 1 <i < p—1, then (-1, = 0 mod p.

Proof. Note that modulo p, the recurrence relation satisfied by (; ., is simply
141
gi,m = T(gi—l,m + 1) mod b.
Now set ¢ = p — 1 to see that (,_1,, = 0 mod p. U
4. PROOF OF THEOREM A

We now use the functional equation of G(Z) modulo p? in order to prove Theorem A.

Definition 4.1. For each n > 0, let C,, be the coefficient of Z" in

(1+G(2)P = (i uka> :

We develop some notation to compute C),.

Definition 4.2.
(1) Let |k| :=ky+---+k, for all k € NP.
(2) For each k € NP, define uy 1= up, - Upy - -+ - - Ug, -
(3) For eachn >0, let X,, C NP be a complete set of representatives for the orbits of
the natural action of S, on {k € NP : |k| = n}.
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In this language, expanding (ZZOZO uka)p gives the following
Lemma 4.3. We have C, = 3y« Sy - k| k.
Lemma 4.4. We have val,(|S, - k|) = 1 whenever k; # k; for some i # j.

Proof. Let H be the stabiliser of k in S, so that |S, - k| = |S,|/|H|. If k; # k; for some
t # j, then H cannot contain any p-cycle. The only elements of S, of order p are p-cycles,
so by Cauchy’s Theorem, val,(|H|) = 0. Hence val,(|S,|/|H|) = val,(]S,|) = 1. O

Lemma 4.5. Ifk € X, \ ¢N?, then val,(ux) > w(n) — 1.

Proof. Since q%l > w(n) — 1 by Proposition 2.1(1), it is enough to show that

1
Valp(Uk) > ﬁ
If some k; is not divisible by p, then by Corollary 3.2,
1 1
1 > val ) > —-> —.
vl (1) > valy (i) >~ > ——
Assume now that for each i = 1,...,p, we can write k; = pm,; for some m; > 0 so that

lm| = %|k| = pn. Since k ¢ ¢IN? by assumption, we must have m; #Z 0 mod p for some i.
Because |m| = np = 0 mod p, in this case there must be at least two distinct indices ¢, j

such that m; # 0 mod p and m; # 0 mod p. Using Corollary 3.2 again, we obtain

2_ .
valy(um) > valy(upm,;) + valy(up,) p > =
Suppose now that val,(u,,) < 1 for all 7. Then Corollary 3.4(1) implies that

1 1 p 1

val,(ux) = —val,(uy) > - —— = ——.

(1) = vl ) > - L =
Otherwise, for at least one index ¢ we have val,(u,,,) > 1, and then Corollary 3.4(2) gives

1 1
1 > val ) > > —. ]
val, (ux) = val,(u,) p - q—1
We can now prove Theorem A.

Theorem 4.6. We have val,(u,) = w(n) for all n > 0.

Proof. We prove the stronger statement val,(u,) = w(n) = p - val,(u,,) by induction on
n. The base case n = 0 is clear, so assume n > 1. We first show that val,(u,) = w(n).
Write n = mp+1i with 0 <4 < p—1. Then val,(u;) = w(i) holds by Lemma 1.2. Since
n # 0, we must have m < n so val,(uy,,) = %w(m) by the inductive hypothesis. Using
(4) and (5) of Proposition 2.1, we see that
1

val, (Uitlyy) = val,(u;) + val, (uy,) = w(i) + ]—)w(m) =w(pm +1i) = w(n).
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Suppose first that n Z —1 mod ¢q. Then w(n) < 1 by Proposition 2.1(2), which means
that val,(u;um,) = w(n) < 1. By Proposition 3.9, we have

(mp + z) !
Uy = ‘ Ui Uy Mod .
1

We have (™”*') =1 mod p by Lucas’ theorem, and therefore val,(u,) = w(n).
Suppose now that n = —1 mod ¢. Then i = p — 1, and Proposition 3.9 tells us that
~1
_ n 2
Up = <p B 1> Umyp * Up—1 + p<p71,m *Un—g+1 mod p.
We have (,_1,, = 0 mod p by Lemma 3.10. Hence in fact u, = (pfl)_lumpup,l mod p?.

Since val,(umpup—1) = w(n) < 2 by Proposition 2.1(1), we again conclude that
val, (u,) = val, (tmy) + val,(u,—1) = w(n).

To complete the induction step, we must show that w(n) = pval,(up,) = val,(u},). In

order to do this, we compare the coefficients of Z%" in the functional equation for G(Z)

G([plr(2)) = Ple.(G(2)) = 1+ G(Z)) -1
modulo p?. Using Corollary 3.6 and Lemma 4.3, we see that
(0) u, = C, = Z S, - k| uy mod p?.

Define ko := (pn, pn,--- ,pn). We will now proceed to show that in fact
(%) val, (]S, - klux) > w(n) for all ke X, \ {ko}.

Note that w(n) < 2 by Proposition 2.1(1) and that uy, = ub,. Hence congruence (o)
together with (x) imply that val,(u,—u} ) > w(n). Since we already know that val,(u,) =
w(n) this shows that val,(ub ) = val,(u,) = w(n) and completes the proof.

Since at least two entries of k must be distinct when k # ko, we have val,(|S, - k|) =1

by Lemma 4.4, so we're reduced to showing that
(%) val,(ux) > w(n) —1 forall ke X, \ {ko}.

Fixk € X, \{ko}. When k ¢ ¢qIN?, (%x) is precisely the conclusion of Lemma 4.5, so we
may assume that k € ¢gIN?. Write k = gm for some m € NP, so that |m| = %]k\ =L =n.
We first consider the case where m; < n for all 7, so that by the inductive hypothesis we
have valy,(upm,) = w(m;)/p. Suppose that val,(upm,) > 1 for some 7. Then by Corollary
3.4(2) and Proposition 2.1(1),

1 1
val, (u) > val,(uy,) = valy(ugm,) > — > — w(n) —1
p qg-=
and (xx) holds. Otherwise, val,(tym,,) <1 for all i and then by Corollary 3.4(1) we have

1
val, (ug, ) = val,(Ugm,;) = — val,(Upm,) = —w(my).
p q
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Since |m| = n, Proposition 2.1(6) gives
1 1
val, (uy) > — w(m;) > —
plu) 2 > w(m) .
because w(n) < 1+ 1/(¢ — 1) by Proposition 2.1(1). Hence (xx) follows.

We're left with the case where at least one m; is equal to n. But then since l[m| = n,

~w(n) > w(n) —1

all other m;’s are zero and such m’s form a single Sy-orbit of size p. Hence we have to
show (xx) holds when k = (0,0, -, ¢n).

The congruence (¢) together with our estimates above implies
val, (t, — (U2, + Pitng)) > w(n).
Now, uy,, = uf,, mod p by Corollary 3.3 so that ul, = ui, mod p?. Therefore
val, (tty — (1, + itng)) > w(n).
Since we already know that val,(u,) = w(n), we get that
val, (1, + png) = w(n).

We will now see that val,(pu,,) < w(n) is not possible. Indeed, if val,(pu,,) = w(n),
then val,(uf,) > w(n) so that val,(un,) > w(n)/q and val,(pune) > 1 +w(n)/q > w(n).
And if val,(pung) < w(n) then val,(pun,) = val,(uf, ), so val,(ung) = 1/(¢ — 1). But then
val,(ptng) > 14 1/(¢ — 1) > w(n) by Proposition 2.1(1).

Hence val,(pu,,) > w(n) after all, which is (xx) for k = (0,0,---,0,¢n). O
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