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Abstract

Let G be a compact p−adic analytic group with no elements of order p.
We provide a formula for the characteristic element [3] of any finitely
generated p−torsion module M over the Iwasawa algebra ΛG of G in
terms of twisted µ−invariants of M , which are defined using the Euler
characteristics of M and its twists. A version of the Artin formalism is

proved for these characteristic elements. We characterize those groups

having the property that every finitely generated pseudo-null p−torsion
module has trivial characteristic element as the p−nilpotent groups. It

is also shown that these are precisely the groups which have the property
that every finitely generated p−torsion module has integral Euler char-
acteristic. Under a slightly weaker condition on G we decompose the

completed group algebra ΩG of G with coefficients in Fp into blocks and

show that each block is prime; this generalizes a result of Ardakov and
Brown [1]. We obtain a generalization of a result of Osima [12], charac-

terizing the groups G which have the property that every block of ΩG

is local. Finally, we compute the ranks of the K0 group of ΩG and of
its classical ring of quotients Q(ΩG) whenever the latter is semisimple.

1. Introduction

1.1. Iwasawa algebras. In recent years there has been increasing interest
in noncommutative Iwasawa algebras. These are the completed group algebras

ΛG := lim
←−

Zp[G/N ],

where Zp denotes the ring of p−adic integers, G is a compact p−adic analytic
group, and the inverse limit is taken over the open normal subgroups of G.
Closely related is the epimorphic image ΩG of ΛG,

ΩG := lim
←−

Fp[G/N ],

where Fp is the field of p elements. In the paper [3], Coates et al develop
the notion of a characteristic element for a certain class of finitely generated
ΛG−modules, when G has no elements of order p. We briefly recall how this
is done.
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1.2. The localisation sequence. An additional hypothesis on G is in-
volved: it is assumed in [3] that G has a closed normal subgroup H such that
G/H is isomorphic to Zp. Let MH(G) denote the category of all finitely gen-
erated ΛG−modules M such that M/M(p) is finitely generated over ΛH ; here
M(p) denotes the p−primary part of M . In fact, MH(G) consists of precisely
the S∗−torsion modules for a certain Ore subset S∗ of ΛG depending on H.

Because G is assumed to have no elements of order p, ΛG has finite global
dimension. As a result, associated with the Ore set S∗ we have an exact
sequence of K−groups

K1(ΛG) → K1((ΛG)S∗) ∂G→ K0(MH(G)) → K0(ΛG) → K0((ΛG)S∗) → 0.

The connecting homomorphism ∂G is shown to be surjective in [3, Proposition
3.4], enabling us to define a characteristic element of a module M ∈ MH(G)
to be any ξM ∈ K1((ΛG)S∗) such that ∂G(ξM ) = [M ] ∈ K0(MH(G)).

1.3. In this paper, we will be concerned with a smaller class of Iwasawa
modules, namely the p−torsion ones. Let D denote the category of all finitely
generated p−torsion ΛG−modules. One can parallel the above construction
for the central Ore set T = {1, p, p2, . . .} of ΛG and obtain an analogous exact
sequence of K−groups

K1(ΛG) → K1((ΛG)T ) ∂G→ K0(D) → K0(ΛG) → K0((ΛG)T ) → 0.

Again, it can be shown (see Corollary 5.2) that ∂G is surjective, so we may
define a characteristic element of M to be any ξM ∈ K1((ΛG)T ) such that

∂G(ξM ) = [M ] ∈ K0(D).

1.4. Recall [3, §3] that S∗ is defined to be ∪∞n=0Sp
n, where

S = {x ∈ ΛG : ΛG/xΛG is finitely generated over ΛH}.

Hence T is always contained in S∗, so there exists a natural commutative
diagram of K−groups

K1((ΛG)T ) ∂G−−−−→ K0(D)y y
K1((ΛG)S∗) ∂G−−−−→ K0(MH(G))

which shows that our characteristic elements are compatible with those con-
sidered in [3]. Moreover, any S∗−torsion module M fits into a short ex-
act sequence 0 → M(p) → M → M/M(p) → 0 where M(p) is p−torsion
and M/M(p) is p−torsion free and S−torsion. This shows that it is suffi-
cient to consider characteristic elements for p−torsion modules and those for
S−torsion modules separately.
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1.5. Twisted µ−invariants. Now let G be an arbitrary compact p−adic
analytic group. Then ΛG has finitely many simple modules up to isomorphism,
V1, . . . , Vs say, and each one is a finite dimensional Fp−vector space. Assuming
G has no elements of order p, every finitely generated p−torsion ΛG−module
M has finite Euler characteristic, defined by

χ(G,M) =
∏
n>0

|TorΛG
n (M,Zp)|(−1)n

.

We define the i−th twisted µ−invariant of M for i = 1, . . . , s by the formula

µi(M) =
logp χ(G, (grpM)⊗Fp V

∗
i )

dimFp
EndΩG

(Vi)
.

Here V ∗i is the dual module to Vi and grpM is the graded module of M with
respect to the p−adic filtration on M ; this is a finitely generated ΩG−module.
It turns out that µi(M) is always an integer ; moreover, we are able to give an
explicit description of the characteristic element of M in terms these twisted
µ−invariants:

Theorem. Let θ : (ΛG)×T → K1((ΛG)T ) be the canonical homomorphism
and let M be a finitely generated p−torsion ΛG−module. Then

ξM = θ

(
s∏

i=1

f
µi(M)
i

)
,

where fi = 1 + (p − 1)ei and ei is an idempotent in ΛG such that Vi is the
unique simple quotient module of eiΛG.

See (5.6) for more details.
1.6. µ−invariants by Venjakob and Howson. By [1, Theorem C], ΩG

is a domain if and only if G is a pro-p group of finite rank with no elements
of order p. If these equivalent conditions hold, then the rank of a finitely
generated ΩG−module is defined in the usual way, using the fact that ΩG is
a Noetherian domain.

Venjakob [18, Definition 3.32] defines the µ−invariant of a finitely generated
ΛG−module M to be the ΩG−rank of grpM(p), the graded module of the
p−torsion part of M . See also the paper [8] by Howson for more precursors
to this notion.

Because G is pro-p, ΛG has a unique simple module, namely the trivial
module V1 = Fp. It now follows immediately from Lemma 8.3 that when M

is p−torsion, µ(M) coincides with the first twisted µ−invariant µ1(M) of M
defined in (1.5) - this motivates our terminology.

Note that in this case we may take e1 = 1 in Theorem 1.5. Then the
formula for the characteristic element of our p−torsion module M simplifies
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down to

(1) ξM = θ
(
pµ(M)

)
.

1.7. Artin formalism for characteristic elements. Let H be an open
normal subgroup of G. It is convenient to have a connection between the
characteristic element of a ΛG−module M and the characteristic element of
the restriction ResG

H M of M to ΛH . Such a connection is commonly known as
the Artin formalism, and it usually involves twists of M at certain Artin rep-
resentations of G; recall that a continuous representation ρ : G→ GLn(Zp) of
G is said to be an Artin representation if the kernel of ρ is an open subgroup of
G. [3, Theorem 3.10] establishes an Artin formalism for Euler characteristics.

Let ∆ denote the finite group G/H and let V(∆) be the set of all absolutely
irreducible representations of G over Qp. Then there exists a finite extension
L of Qp such that each ρ ∈ V(∆) can be realized over L. Let OL be the ring
of integers of L. For each ρ ∈ V(∆) we can then find a finitely generated
OL−module Eρ of OL−rank nρ, say, such that the image of ρ is contained
in Aut(Eρ); in this way, Eρ becomes a ΛG−module. Let twρ(M) denote
the ΛG−module M ⊗Zp

Eρ equipped with the diagonal action of G - this is
p−torsion whenever M is. Our version of the Artin formalism is given by the
following result:

Theorem. Let λG,H : K1((ΛH)T ) → K1((ΛG)T ) be the natural map and
let M be a finitely generated p−torsion ΛG−module. Then

λG,H(ξResG
H M )|L:Qp| =

∏
ρ∈V(∆)

ξ
nρ

twρ(M).

See (6.8) for more details. Note that if we ”evaluate this at 0”, or equiva-
lently, take the image of this equation under the canonical map

K1((ΛG)T ) → K1(Qp) ∼= Q×p ,

we obtain [3, Theorem 3.10] for p−torsion modules, as shown in Corollary 6.8.
1.8. Pseudo-null modules. Recall [18, Theorem 3.26] that if G has no

elements of order p, then ΛG is an Auslander regular ring. We will not give the
full technical definition of Auslander regularity here; see [4] for an excellent
introduction to the subject. If R is a ring, then a finitely generated R−module
M is said to be pseudo-null if its grade jR(M) satisfies jR(M) > 2.

Let M be a finitely generated p−torsion ΛG−module. It is shown in [18,
Remark 3.33] that if G is a pro-p group of finite rank with no elements of
order p then µ(M) = 0 if and only if M is pseudo-null. One would hope that
a suitable generalization of this would be true for compact p−adic analytic
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groups which are not necessarily pro-p. In view of (1), one might hope that

(2) ξM = 1 if and only if M is pseudo-null.

Whilst Corollary 8.3 shows that ξM = 1 certainly implies that M is pseudo-
null, the converse is false in general, as is shown in Example 9.6.

1.9. Integrality. We say that a finitely generated ΛG−module M has
integral Euler characteristic if χ(G,M) ∈ Z. Another nice property of Euler
characteristics in the case when G is pro-p without elements of order p is
integrality : every finitely generated p−torsion ΛG−module has integral Euler
characteristic.

Again, Example 9.6 shows that this property fails for more general groups
G. On the positive side, we are able to characterize those G for which in-
tegrality holds. Intriguingly, these groups coincide with those for which (2)
holds:

Theorem. Let G be a compact p−adic analytic group with no elements of
order p. Then the following are equivalent:

(a) ξM = 1 for all finitely generated p−torsion pseudo-null ΛG−modules M ,
(b) χ(G,M) ∈ Z for all finitely generated p−torsion ΛG−modules M ,
(c) G is p−nilpotent.

See (11.5) for a proof. The definition of p−nilpotent groups is given in
11.2; we simply note here that if G has no elements of order p, then G is
p−nilpotent if and only if it is a semidirect product of a finite p′−group with
a pro-p group of finite rank.

1.10. Blocks of ΩG. To establish Theorem 1.9, we need the concept of
blocks (2.2), which is a standard tool in the modular representation theory of
finite groups. Let ∆+ denote the largest finite normal subgroup of G.

Theorem. Suppose that p - |∆+|. Then the each block of ΩG is a prime
ring.

See (9.2) for more details. This result can be thought of as a generalization
of [1, Theorem A], which states that ΩG is prime if and only if ∆+ = 1.
Note that the condition p - |∆+| is equivalent to ΩG being semiprime by [1,
Theorem B].

1.11. Local blocks. In the modular representation theory of finite groups
one is also sometimes interested in those blocks which have exactly one simple
module (when viewing the block as a ring in its own right). Such blocks are
called primary or local. It is a well-known result of Osima [12] that for a
finite group G, every block of the group algebra FpG is local if and only if
G is p−nilpotent. We establish a generalization of this to compact p−adic
analytic groups in (11.4):
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Theorem. Let G be a compact p−adic analytic group. Then every block
of ΩG is local if and and only if G is p−nilpotent.

1.12. Ranks of K0−groups of certain algebras. Let kG be the com-
pleted group algebra of G with coefficients in k, a finite field extension of
Fp. We are able to explicitly compute the number of simple kG−modules,
or equivalently, the rank of K0(kG). By Proposition 7.2, kG has an Artinian
ring of quotients, Q(kG). When p - |∆+|, we also compute rkK0(Q(kG)); this
number turns out to be equal to the number of blocks of kG by Proposition
9.4.

Theorem. Let G be a compact p−adic analytic group. Fix an open normal
pro-p subgroup N of G. Then

(a) The rank of K0(kG) equals the number of G× Gk−orbits on (G/N)reg.
(b) If p - |∆+|, the rank of K0(Q(kG)) equals the number of G × Gk−orbits

on ∆+.

See (12.7) for the relevant notation and details.
1.13. Acknowledgements. The authors warmly thank John Coates for

giving a lecture course on ”Noncommutative Iwasawa theory” at Cambridge
which motivated this work, and for his unfailing encouragement and enthusi-
asm. Thanks are also due to Peter Collings for the reference [9] and to Jan
Saxl and Geoff Robinson for pointing out the Berman-Witt Theorem (12.5).
The second author thanks DPMMS for its hospitality during the course of
this research.

1.14. Conventions. All rings are assumed to be associative and to have
a unit element. All modules are assumed to be right modules, unless explicitly
stated otherwise. When we speak of a ring-theoretic property like ”Noether-
ian” or ”regular”, we implicitly assume that both the right and left handed
property holds. For a ring R, R× denotes the group of units of R. The reader
should be aware of the slightly nonstandard notation adopted in (3.2).

2. Generalities

2.1. Idempotents. Let A be a ring. An element e ∈ A is an idempotent
if e2 = e. Two idempotents e1, e2 in A are said to be orthogonal if e1e2 =
e2e1 = 0; thus e and 1−e are always orthogonal whenever e is an idempotent.

The nonzero (central) idempotent e is (centrally) primitive if it is not pos-
sible to find two nonzero orthogonal (central) idempotents e1, e2 ∈ A with
e = e1 + e2.
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2.2. Blocks. Let A be a ring and let A = B1⊕· · ·⊕Br be a decomposition
of A into indecomposable two-sided ideals Bi 6= 0; such a decomposition exists
whenever A is Noetherian.

The Bi’s are known as the blocks of A. Each one is generated as an ideal
by a central idempotent ei of A, corresponding to the decomposition 1 =
e1+· · ·+er. Note that each ei is centrally primitive, but need not be primitive.

Note also that each Bi = eiA is itself a ring, with the multiplication and
addition inherited from A, but with identity element ei. Thus block decom-
position expresses A as a direct sum of algebras. We will write b(A) for the
number of blocks of A; note that this is also the number of terms in the
decomposition of 1 into a sum of orthogonal centrally primitive idempotents.

2.3. Grothendieck groups. Recall that a category A is small if the col-
lection of objects in A forms a set. Let A be a small abelian category. A
full additive subcategory B of A is admissible if whenever 0 → M ′ → M →
M ′′ → 0 is a short exact sequence in A such that M and M ′′ belong to B,
then M ′ also belongs to B [10, 12.4.2].

The Grothendieck group K0(B) of B is the abelian group with generators
[M ] where M runs over all the objects of B and relations [M ] = [M ′] + [M ′′]
for any short exact sequence 0 →M ′ →M →M ′′ → 0 in A [10, 12.4.3].

If A is a ring, then P(A), the category of all finitely generated projective
modules is an admissible subcategory of M(A), the category of all finitely
generated A−modules. The Grothendieck groups of A are defined as follows:

• K0(A) := K0(P(A)), and
• G0(A) := K0(M(A)).

2.4. Semisimple rings. We record some information about K0−groups
of semisimple rings. The following result is well-known:

Lemma. Let A be a semisimple ring and let V1, . . . , Vs be a complete list
of representatives for the isomorphism classes of simple A−modules.

(a) If P,Q are finitely generated A−modules, then

P ∼= Q if and only if [P ] = [Q] in K0(A)

(b) K0(A) =
⊕s

i=1 Z[Vi] is free of rank s.
(c) b(A) = rkK0(A).

2.5. Semilocal rings. Let A be a ring. We will always write J(A) for
the Jacobson radical of A and A for A/J(A). We say that A is

• semilocal if A is Artinian,
• local if A is simple Artinian, and
• scalar local if A is a division ring.
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We say that A is a complete semilocal ring if A is semilocal and complete with
respect to the J(A)−adic filtration.

2.6. Idempotent lifting. Let A be a complete semilocal ring and let
V1, . . . , Vs be the simple A−modules as in (2.4). Since A is semisimple, we
can find primitive orthogonal idempotents a1, . . . , as ∈ A such that Vi

∼= aiA

as an A−module. Because A is J(A)−adically complete, we can lift the ai

to a set of primitive orthogonal idempotents e1, . . . , es of A by [6, Volume I,
Theorem 6.7]: ai = ei for each i.

Let Pi = eiA, i = 1, . . . , s. Since ei is an idempotent in A, Pi is a projective
A−module for each i. Write

P =
P

PJ(A)
∼= P ⊗A A

for any finitely generated projective A−module P .
Lemma. Let ϕ : K0(A) → K0(A) be the natural map given by ϕ([P ]) = [P ]

for finitely generated projectives P .

(a) ϕ is an isomorphism
(b) If P,Q are finitely generated projective A−modules, then

P ∼= Q if and only if [P ] = [Q] in K0(A)

(c) ϕ([Pi]) = [Vi]
(d) K0(A) =

⊕s
i=1 Z[Pi].

Proof. See [6, Volume I, Proposition 16.7] and its proof. �
Whenever P is a finitely generated projective with V = P , we will say

that P is a projective cover of V . Note that for any semisimple module V , a
projective cover exists and is unique up to isomorphism by [6, Volume I, §6C].

2.7. Proposition. Let A be a complete semilocal ring. Then b(A) 6
rkK0(A) with equality if and only if each block of A is local.

Proof. Note that if B is a semilocal ring, then B is local if and only if
rkK0(B) = 1.

Now, if A = B1 ⊕ · · · ⊕ Br is a decomposition of A into blocks, then each
Bi is complete and semilocal. Moreover, A = B1⊕· · ·⊕Br is a decomposition
of the semisimple ring A into a direct sum of two-sided ideals, so

K0(A) ∼= K0(B1)⊕ · · · ⊕K0(Br).

Hence by Lemma 2.6,

rkK0(A) = rkK0(A) =
r∑

i=1

rkK0(Bi) > r = b(A),

with equality if and only if rkK0(Bi) = rkK0(Bi) = 1 for each i. �
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2.8. Whitehead groups. If R is a ring, let GLn(R) denote the group of
all invertible matrices with coefficients in R. Note that GLn(R) can also be
thought of as the automorphism group of the free module Rn. There is an
obvious inclusion of GLn(R) into GLn+1(R), given by(

X
)
7→
(
X 0
0 1

)
.

We then define the infinite general linear group GL(R) to be the direct limit
of all the GLn(R)’s with respect to these inclusions. The Whitehead group
K1(R) of R is defined to be the abelianization of GL(R) [6, Volume II, §40]:

K1(R) =
GL(R)

[GL(R), GL(R)]
.

Since GL1(R) ∼= R× is the group of units of R, there is a natural map

θ : R× → K1(R).

It is shown in [6, Volume II, Theorem 40.31] that θ is a surjection whenever
R is semilocal.

2.9. Localisation sequence of K−theory. Let R be a ring and let S
be an Ore set in R consisting of regular elements. Then the localisation RS

exists by [10, Theorem 2.1.12].
The canonical map ϕ : R→ RS gives rise to an exact sequence ofK−groups

associated with the rings R and RS as in [16, Theorem 15.5]:

K1(R) → K1(RS) → K0(R,ϕ) → K0(R) → K0(RS).

Here K0(R,ϕ) is the relative K0−group [16, p. 214].
Suppose in addition that the ring R is Noetherian and regular. Recall [10,

7.7.1] that a ring R is said to be regular if every finitely generated R−module
has finite projective dimension. Of course, any ring of finite global dimension
is regular.

Lemma. K0(R,ϕ) can be identified with the group K0(C), where C is the
category of all finitely generated S−torsion R−modules.

Proof. Venjakob [17, (4.3)] shows precisely this, but in less generality. The
whole result follows from [19]. �

In view of [10, Theorem 12.4.9] the above sequence becomes

(3) K1(R) → K1(RS) ∂→ K0(C)
α→ K0(R)

β→ K0(RS) → 0.

Also, since R is a regular Noetherian ring, there is an isomorphism

γ : G0(R) → K0(R),

see [10, Theorem 12.4.8].
Below are partial descriptions of the maps β, γ, α and ∂ that we will need:
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• β([M ]) = [M ⊗R RS ] for all M ∈M(R),
• γ([M ]) =

∑n
j=0(−1)j [Xj ] if 0 → Xn → · · · → X0 →M → 0 is a finite

projective resolution of M ∈M(R),
• α([M ]) = γ([M ]) for all M ∈ C, and
• ∂(θ(x)) = [R/xR] ∈ C for all x ∈ R ∩R×S .

Here θ : R×S → K1(RS) is the natural map appearing in (2.8).

3. Iwasawa algebras

3.1. Notation. Let K be a finite field extension of Qp. Let O be the ring
of integers of K; this is a finite extension of Zp and a complete local discrete
valuation ring. We fix a uniformizer π of O and write k = O/πO for the
residue field of O; this is a finite field of characteristic p. This notation will
remain in force throughout the paper.

3.2. Completed group algebras. Let O[[G]] be the completed group
algebra of the compact p−adic analytic group G with coefficients in O:

O[[G]] = lim
←−

O[G/N ]

where N runs over all the open normal subgroups of G. Similarly,

k[[G]] = lim
←−

k[G/N ]

is the completed group algebra of G with coefficients in k. Note that these are
just the usual group algebras when G is finite. Since we will not be considering
the usual group algebra kG or OG if G is infinite, we will write kG for k[[G]]
and OG for O[[G]] throughout this paper. When k′ is a finite extension of k,
it is easily checked that

k′G ∼= kG⊗k k
′.

Also note that π is a central regular element of OG and that OG/πOG ∼= kG.
3.3. Properties of kG and OG. Let R = k or O. We collect some

well-known results about RG below.
Proposition. Let N be an open normal pro-p subgroup of G and let I be

the kernel of the natural map RG→ R[G/N ]. Then

(a) I is contained in the Jacobson radical of RG,
(b) RG is complete with respect to the I−adic filtration,
(c) RG is a complete semilocal ring,
(d) RG is Noetherian,
(e) The global homological dimension of RG is finite if and only if G has no

elements of order p.
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Proof. See [11, Proposition 5.2.16] for part (c). Part (e) follows from [2,
Theorem 4.1] and [14, Corollaire 1]. �

Corollary. The natural map K0(RG) → K0(R[G/N ]) is an isomorphism
for any open normal pro-p subgroup N of G.

Proof. This follows from Lemma 2.6 and part (a) of the Proposition. �
We wish to apply the long exact sequence (3) of K-theory to the ring RG.

In our setup (2.9), this requires RG to be Noetherian and regular. We will
therefore be frequently assuming that G has no elements of order p.

4. Projective kG−modules and Euler characteristics

4.1. Let V1, . . . , Vs be a complete list of representatives for the isomor-
phism classes of simple kG−modules; note that each Vi is finite dimensional
over k because G is virtually pro-p. As in (2.6), choose a projective kG−cover
Pi for Vi; thus P1, . . . , Ps are the indecomposable projective kG−modules. It
follows from Lemma 2.6 that any finitely generated projective kG−module X
can be written as follows:

X ∼=
s⊕

j=1

P
〈X,Pj〉
j

for some well-defined 〈X,Pj〉 ∈ N.
Proposition. Let X,Y be finitely generated projective kG−modules.

(a) X ∼= Y if and only if 〈X,Pi〉 = 〈Y, Pi〉 for all i = 1, . . . , s
(b) 〈X,Pi〉 = dimk HomkG(X,Vi)/dimk EndkG(Vi) for each i.

Proof. Part (a) follows from Lemma 2.6. For part (b), consider

HomkG(X,Vi) ∼=
s⊕

j=1

HomkG(Pj , Vi)〈X,Pj〉.

Note that the vector spaces involved here are finite dimensional over k, because
each Vi is finite dimensional. Now since Pj is the projective cover of Vj and
because Vi is semisimple, HomkG(Pj , Vi) ∼= HomkG(Vj , Vi). Hence by Schur’s
Lemma, we have

dimk HomkG(Pj , Vi) = δij dimk EndkG(Vi).

and the result follows. �
4.2. Twists and duality. Let V be an kG−module which is finite di-

mensional over k and let M be a finitely generated kG−module. Then the
tensor productM⊗kV is naturally an kG−module equipped with the diagonal
action:

(m⊗ v).g = mg ⊗ vg for all m ∈M,v ∈ V, g ∈ G.
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The vector space dual V ∗ = Homk(V, k) is also an kG−module in the usual
way:

(f.g)(v) = f(vg−1) for all f ∈ V ∗, v ∈ V, g ∈ G.

4.3. Induction and restriction. LetH be an open subgroup of G. Then
H has finite index in G, so whenever M is a finitely generated kG−module,
M is also finitely generated over kH. We thus have induction and restriction
functors

IndG
H : M(kH) →M(kG) and ResG

H : M(kG) →M(kH).

Twists and induced modules are connected via the following very useful result.
Lemma. Let X ∈ M(kH) and let Y ∈ M(kG). Suppose that Y is finite

dimensional over k. Then there is an isomorphism of kG−modules

IndG
H(X ⊗k ResG

H Y ) ∼= (IndG
H X)⊗k Y.

Proof. There exists a kH−balanced map (X ⊗k ResG
H Y )× kG→ (X ⊗kH

kG) ⊗k Y which sends (x ⊗ y, g) to (x ⊗ g) ⊗ yg for all x ∈ X, y ∈ Y, g ∈ G.
This gives rise to a kG−module homomorphism

ϕ : IndG
H(X ⊗k ResG

H Y ) → (IndG
H X)⊗k Y

such that ϕ((x⊗ y)⊗ g) = x⊗ g ⊗ yg for all x ∈ X, y ∈ Y, g ∈ G. There also
exists a k−linear map

ψ : (IndG
H X)⊗k Y → IndG

H(X ⊗k ResG
H Y )

such that ψ((x⊗ g)⊗ y) = (x⊗ yg−1)⊗ g for all x ∈ X, g ∈ G, y ∈ Y . Then
ψ is a k−linear inverse for ϕ, so ϕ is the required isomorphism. �

Lemma 4.3 is of course well known for finite groups, see for example [6, Volume
I, Proposition 10.5] and [15, §3.3, Example 5].

4.4. Lemma. Let X,Y, Z ∈ M(kG) and suppose that Y, Z are finite di-
mensional over k. Then

(a) X ⊗k Y is a finitely generated kG−module.
(b) If X is projective, then so is X ⊗k Y .
(c) There is a natural isomorphism of k−vector spaces

HomkG(X ⊗k Y
∗, Z) ∼= HomkG(X,Y ⊗k Z).

Proof. Since Y is finite dimensional over k and k is finite, we can find an
open subgroup H of G which acts trivially on Y . Thus ResG

H Y ∼= kn where k
denotes the trivial kH−module and n = dimk Y . Now,

ResG
H(X ⊗k Y ) ∼= (ResG

H X)⊗k k
n ∼= (ResG

H X)n.
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But X is finitely generated over kG and H has finite index in G, so X is
finitely generated over kH. Hence X ⊗k Y is finitely generated over kH and
therefore also finitely generated over kG as required for part (a).

By Lemma 4.3, we have

kG⊗k Y ∼= (IndG
H kH)⊗k Y ∼= IndG

H(kH ⊗k k
n) ∼= IndG

H(kHn) ∼= kGn

as kG−modules, so the twist of a free kG−module with a finite dimensional
module is again a free kG−module. Because tensor products commute with
finite direct sums, part (b) follows.

Note that the vector spaces occurring in (c) are finite dimensional over k
because Y and Z are finite dimensional. If θ ∈ Y ∗, let θ ⊗ id denote the
k−linear map Y ⊗k Z → Z which sends y ⊗ z to θ(y)z.

Now, pick a basis {y1, . . . , yn} for Y and let {θ1, . . . , θn} be the dual basis
for Y ∗. Define

Θ : HomkG(X,Y ⊗k Z) → HomkG(X ⊗k Y
∗, Z) and

Φ : HomkG(X ⊗k Y
∗, Z) → HomkG(X,Y ⊗k Z)

by setting

Θ(f)(x⊗ θ) = (θ ⊗ id)f(x) and
Φ(g)(x) =

∑n
i=1 yi ⊗ g(x⊗ θi)

for all f ∈ HomkG(X,Y ⊗k Z), x ∈ X, θ ∈ Y ∗, g ∈ HomkG(X ⊗k Y
∗, Z). The

reader can verify that Θ and Φ are mutually inverse k−linear maps. Part (c)
follows. �

4.5. Euler characteristics. Let M be a finitely generated kG−module.
Then

Hn(G,M) := TorkG
n (M,k)

is a finite dimensional k−vector space for all n > 0.
Definition. The Euler characteristic of M is defined to be

χ(G,M) =
∏
n>0

|Hn(G,M)|(−1)n

,

if this exists. M is said to have integral Euler characteristic if χ(G,M) ∈ Z.

Lemma. Let 0 → A → B → C → 0 be an exact sequence of finitely gen-
erated kG−modules. Suppose χ(G,A), χ(G,B) and χ(G,C) all exist. Then

χ(G,B) = χ(G,A)χ(G,C).

Proof. This follows from the long exact sequence of homology. �
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4.6. Let P1 be the projective cover (2.6) of the trivial kG−module V1.
Lemma. Let X be a finitely generated projective kG−module. Then

χ(G,X) = q〈X,P1〉.

Proof. Let IG be the augmentation ideal of kG, so that kG/IG is the trivial
module V1. Then X ⊗kG k ∼= X/XIG =: XG, the coinvariants of X. Now

HomkG(X,V1) ∼= HomkG(XG, V1) ∼= X∗G

as k−vector spaces, so dimk HomkG(X,V1) = dimk XG. Because EndkG(V1) ∼=
k, 〈X,P1〉 = dimk XG by Proposition 4.1(b).

Since X is projective, Hn(G,X) = 0 whenever n > 0. Hence

χ(G,X) = |H0(G,X)| = |X ⊗kG k| = |XG| = qdimk XG = q〈X,P1〉

as required. �
4.7. Proposition. Let X be a finitely generated projective kG−module.

Then

〈X,Pi〉 =
logq χ(G,X ⊗k V

∗
i )

dimk EndkG(Vi)
for all i = 1, . . . , s.

Proof. Since Vi ⊗k V1
∼= Vi for all i, Lemma 4.4(c) gives

HomkG(X,Vi) ∼= HomkG(X,Vi ⊗k V1) ∼= HomkG(X ⊗k V
∗
i , V1).

By Lemma 4.4(a) and (b), X ⊗ V ∗i is finitely generated projective. Applying
Proposition 4.1(b) we obtain

〈X ⊗ V ∗i , P1〉dimk EndkG(V1) = dimk HomkG(X ⊗k V
∗
i , V1),

and also
〈X,Pi〉dimk EndkG(Vi) = dimk HomkG(X,Vi).

But EndkG(V1) ∼= k, so

〈X,Pi〉 =
〈X ⊗k V

∗
i , P1〉

dimk EndkG(Vi)
.

The result now follows from Lemma 4.6. �

Corollary. Let X,Y be finitely generated projective kG−modules. Then
X is isomorphic to Y if and only if

χ(G,X ⊗k Vi) = χ(G, Y ⊗k Vi) for all i = 1, . . . s.

Proof. By Proposition 4.1(a), X is isomorphic to Y if and only if 〈X,Pi〉 =
〈Y, Pi〉 for all i. Because V 7→ V ∗ is an involution on the set of simple
kG−modules, the result follows from Proposition 4.7. �
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4.8. The image of γ. Assuming that G has no elements of order p, we
have the following description of the map γ : G0(kG) → K0(kG) appearing in
(2.9).

Proposition. Suppose G has no elements of order p. Then for any M ∈
M(kG),

γ([M ]) =
s∑

i=1

(
logq χ(G,M ⊗k V

∗
i )

dimk EndkG(Vi)

)
[Pi].

Proof. By Proposition 3.3(e), kG has finite global dimension, so we can
choose a finite projective resolution

0 → Xn → · · · → X0 →M → 0

for M . Then the definition of γ given in (2.9) gives

γ([M ]) =
n∑

j=0

(−1)j [Xj ] ∈ K0(kG).

By Proposition 4.7, we have

[Xj ] =
s∑

i=1

〈Xj , Pi〉[Pi] =
s∑

i=1

(
logq χ(G,Xj ⊗k V

∗
i )

dimk EndkG(Vi)

)
[Pi].

Since V ∗i is a flat k−module,

0 → Xn ⊗k V
∗
i → · · · → X0 ⊗ V ∗i →M ⊗k V

∗
i → 0

is an exact sequence of finitely generated kG−modules, by Lemma 4.4(a).
Because logq χ(G,−) is additive on short exact sequences by Lemma 4.5, we
obtain

logq χ(G,M ⊗k V
∗
i ) =

n∑
j=0

(−1)j logq χ(G,Xj ⊗k V
∗
i )

for each i = 1, . . . , s, and the result follows. �

5. Characteristic elements

5.1. The localisation sequence. We are primarily interested in finitely
generated p−torsion OG−modules. Let T = {1, π, π2, . . .}; this is clearly a
multiplicatively closed subset of OG consisting of central regular elements.
Since we can write p ∈ O as some power of π times a unit in O, we see that a
finitely generated OG−module is p−torsion if and only if it is π−torsion, or
equivalently, T−torsion.

Until the end of this section G has no elements of order p.
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LetD denote the category of all finitely generated T−torsionOG−modules.
By Proposition 3.3, OG is Noetherian and has finite global dimension since G
has no elements of order p. Thus we obtain an exact sequence of K−groups
from (2.9):

(4) K1(OG) τ→ K1(OGT ) ∂G→ K0(D) α→ K0(OG)
β→ K0(OGT ) → 0.

5.2. The following result is essentially [3, Proposition 3.4]. We give the
proof for the convenience of the reader.

Lemma. The map α : K0(D) → K0(OG) appearing in (4) is zero.
Proof. Fix an open normal pro-p subgroup N of G. We have a natural

commuting diagram of rings

OG λ1−−−−→ OGT

λ2

y yλ3

O[G/N ] −−−−→
λ4

K[G/N ]

which induces by the functoriality of K0 a commuting diagram of K0−groups:

K0(OG)
K0(λ1)−−−−−→ K0(OGT )

K0(λ2)

y yK0(λ3)

K0(O[G/N ]) −−−−−→
K0(λ4)

K0(K[G/N ]).

Now, K0(λ1) is the map β appearing in (4) and is therefore surjective; more-
over K0(λ2) is an isomorphism by Corollary 3.3.

It is well known from the representation theory of finite groups that K0(λ4)
is injective [15, Chapter 16, Corollary 2 to Theorem 34]. Now an elementary
diagram chase shows that K0(λ1) = β is an isomorphism. Because the se-
quence (4) is exact at K0(OG), α is zero as required. �

From the exactness of (4), we also obtain
Corollary. The connecting homomorphism ∂G appearing in (4) is surjec-

tive.
5.3. Characteristic elements for T−torsion modules. Following [3,

(33)] we make the following definition:
Definition. A characteristic element for a T−torsion module M is any

element ξM ∈ K1(OGT ) such that ∂G(ξM ) = [M ] ∈ D.
Because ∂G : K1(OGT ) → K0(D) is surjective by Corollary 5.2, such a ξM

always exists. By the exactness of (4), ξM is only defined modulo the image
of K1(OG) in K1(OGT ). We will provide an explicit formula for ξM in terms
of the natural map θ : (OGT )× → K1(OGT ) in Proposition 5.6.
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5.4. Euler characteristics for T−torsion OG−modules. Let M be a
finitely generated OG−module. Then

Hn(G,M) := TorOG
n (M,O)

is a finitely generated O−module for all n > 0. If M is T−torsion, M is killed
by some power of π, so each Hn(G,M) is also killed by some power of π and
is hence finite.

Definition. The Euler characteristic of M is defined to be

χ(G,M) =
∏
n>0

|Hn(G,M)|(−1)n

.

M is said to have integral Euler characteristic if χ(G,M) ∈ Z.
It is easy to see that this definition extends the one given in (4.5). Moreover,

as G has no elements of order p, χ(G,M) is always exists.
5.5. Dévissage. Since we can view each M ∈M(kG) as a finitely gener-

ated OG−module killed by π, we see that M(kG) is a full subcategory of the
abelian category D which satisfies the conditions of [10, Theorem 12.4.7]:

• M(kG) is an admissible subcategory of D,
• if 0 → M ′ → M → M ′′ → 0 is exact in D and M ∈ M(kG) then
M ′,M ′′ ∈M(kG),

• eachM ∈ D has a finite filtrationM ⊇Mπ ⊇Mπ2 ⊇ · · · ⊇Mπn+1 =
0 for some n with Mπi/Mπi+1 ∈M(kG) for all 0 6 i 6 n.

Because these conditions are satisfied, [10, Theorem 12.4.7] guarantees that
the natural map G0(kG) → K0(D) induced from the inclusion of M(kG) in
D is an isomorphism. The inverse is given by ψ : K0(D) → G0(kG), where

(5) ψ([M ]) = [grπ M ] ∈ G0(kG) where grπ M :=
∞⊕

i=0

Mπi

Mπi+1
∈M(kG).

5.6. A formula for the characteristic element. We retain the nota-
tion of (4.1). By Lemma 2.6 we can choose a projective OG−cover eiOG for
Vi. Here e1, . . . , es are a collection of pairwise orthogonal idempotents in OG
obtained from idempotent lifting. Then

Pi :=
eiOG
πeiOG

is a projective kG−cover for Vi.
Define fi = 1 + (π − 1)ei ∈ OG for each i = 1, . . . , s and note that

(6) fi(π + (1− π)ei) = π.

Because π is a unit in OGT , we see that f1, . . . , fs all lie in (OGT )× ∩ OG.
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Proposition. Let θ : (OGT )× → K1(OGT ) be the canonical homomor-
phism appearing in (2.8) and let M ∈ D. Then

ξM = θ

(
s∏

i=1

f
µi(M)
i

)
, where µi(M) =

logq χ(G, (grπ M)⊗k V
∗
i )

dimk EndkG(Vi)
.

Proof. Since π is a multiple of fi by (6), we see that fiOG = fiOG+πOG =
(1− ei)OG+ πOG. Hence

OG
fiOG

=
OG

(1− ei)OG+ πOG
∼=

eiOG
πeiOG

= Pi

so Pi
∼= OG/fiOG as OG−modules for all i = 1, . . . , s. Next, we have

an isomorphism γ : G0(kG) → K0(kG) = ⊕s
i=1Z[Pi] and an isomorphism

ψ : K0(D) → G0(kG) given in (5). By Proposition 4.8, the composition
γψ : K0(D) → K0(kG) is given for M ∈ D by

γψ([M ]) =
s∑

i=1

µi(M)[Pi] where µi(M) =
logq χ(G, (grπ M)⊗k V

∗
i )

dimk EndkG(Vi)
;

moreover γψ([Pi]) = [Pi] for all i = 1, . . . , s. From the definition of ∂G given
in (2.9), we have

∂Gθ

(
s∏

i=1

f
µi(M)
i

)
=

s∑
i=1

µi(M)
[
OG
fiOG

]
=

s∑
i=1

µi(M)[Pi] ∈ K0(D),

so γψ([M ]) = γψδGθ(
∏s

i=1 f
µi(M)
i ). Since γψ is an isomorphism, the result

follows. �
5.7. Evaluation at zero. Let ε : OGT → K denote the augmentation

map. This gives rise to a commutative diagram

OG×T
θ−−−−→ K1(OGT )

ε

y yK1(ε)

K×
∼=−−−−→ K1(K).

Identifying K1(K) with K× allows us to write K1(ε) ◦ θ = ε. Compare the
following result with [17, Proposition 8.6].

Lemma. For any M ∈ DG, let ξM (0) := K1(ε)(ξM ) ∈ K×. Then

χ(G,M) = NK/Qp
(ξM (0)).

Proof. SinceK is a field, precisely one of the idempotents e1, . . . , es appear-
ing in (5.6) gets sent to 1 under ε, and it is clear that this is the idempotent
corresponding to the trivial representation, e1. Thus ε(ei) = δi1, so

ε(fi) = 1 + (π − 1)δi1 = πδi1,
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for all i = 1, . . . , s. Hence, Proposition 5.6 gives

ξM (0) = K1(ε)(ξM ) =
s∏

i=1

ε(fi)µi(M) = πµ1(M).

But dimk V1 = 1 and (grπ M)⊗kV
∗
1
∼= grπ M , so µ1(M) = logq χ(G, grπ M) =

logq χ(G,M). Since NK/Qp
(π) = q, the result follows. �

6. Artin Formalism

6.1. We continue with the notation the previous sections, but do not
make further assumptions on G for the time being. Let ∆ be a finite quotient
of G. Then G0(k∆) is a commutative ring with multiplication given by

[X].[Y ] = [X ⊗k Y ] for all X,Y ∈M(k∆).

Moreover, G0(kG) becomes a G0(k∆)−module by Lemma 4.4(a) if we set

[M ].[X] = [M ⊗k X] for all M ∈M(kG), X ∈M(k∆).

6.2. The decomposition map. Let V ∈ M(K∆). A ∆−lattice in V

is defined to be a finitely generated O∆−submodule E of V such that V ∼=
E ⊗O K. The decomposition map d : G0(K∆) → G0(k∆) is given by

d[V ] = [E], where E = E/Eπ

for any choice of ∆−lattice E in V . It is shown in [15, Chapter 15, Theorem
32] that d[V ] is independent of the choice of E and that d is in fact a ring
homomorphism. In this way, G0(kG) becomes a G0(K∆)−module:

[M ].[V ] = [M ].d[V ] for all M ∈M(kG), V ∈M(K∆).

6.3. Dévissage and twists. As in (5.1), let DG be the category of all
finitely generated π−torsion OG−modules. In view of (5.5), we have an iso-
morphism of abelian groups ψ : K0(DG) → G0(kG), so K0(DG) becomes a
G0(K∆)−module via

[M ].[V ] = ψ−1(ψ[M ].d[V ]) for all M ∈ DG, V ∈M(K∆).

Let E be a ∆−lattice in V and let M ∈M(OG). The twist M ⊗OE becomes
an OG−module with the diagonal action of G. An argument analogous to
the proof of Lemma 4.4(a) shows that this module is finitely generated over
OG; moreover it is π−torsion whenever M is.

Lemma. Let M ∈ DG and let V ∈ M(K∆). Then for any ∆−lattice E
in V ,

[M ].[V ] = [M ⊗O E].
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Proof. Because E is a flat O−module, it is easy to verify that

grπ(M ⊗O E) ∼= (grπ M)⊗k E

as kG−modules. Hence

ψ[M ].d[V ] = [(grπ M)⊗k E] = [grπ(M ⊗O E)] = ψ[M ⊗O E]

and the result follows. �
Let ρ : ∆ → GL(V ) be the group homomorphism associated to a finitely
generated K∆−module V and let M ∈ DG. Because ∆ is finite, the image of
ρ is contained in Aut(E) for some ∆−lattice E in V . We define the twist of
M at ρ to be

twρ(M) = M ⊗O E ∈ DG.

Lemma 6.3 can now be rephrased as follows:

[M ].[V ] = [twρ(M)]

for any M ∈ DG and any V ∈M(K∆).
6.4. Induction and restriction. Let H be the kernel of the surjection

G � ∆; this is an open normal subgroup of G. Then we have the induction
functor

IndG
H : M(OH) →M(OG)

which sends M to M⊗OHOG. It is easy to see that IndG
H(M) ∈ DG whenever

M ∈ DH . We also have the restriction functor

ResG
H : M(OG) →M(OH)

which sends DG to DH .
Lemma. Let M ∈M(OG). Then the induced module of the restriction of

M to OH is isomorphic as an OG−module to the twist of M by O∆ :

IndG
H(ResG

H M) ∼= M ⊗O O∆.

Proof. By an appropriate modification of the proof of Lemma 4.3, we have
an isomorphism IndG

H(O ⊗O ResG
H M) ∼= IndG

H(O) ⊗O M of OG−modules.
Since IndG

H(O) ∼= O∆ and O ⊗O N ∼= N for any OH−module N , the result
follows. �

6.5. Artin formalism expressed in K0(DG). We can find a finite field
extension L of K such that the division rings appearing in the Wedderburn
decomposition of the group algebra L∆ are all isomorphic to L. Such an L

can always be obtained by adjoining sufficiently many roots of unity to K [15,
Corollary to Theorem 24] and is called a splitting field for ∆.

Thus we have an isomorphism of L∆−modules

(7) L∆ ∼=
⊕

ρ∈V(∆)

Wnρ
ρ .
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Here V(∆) is the set of all absolutely irreducible representations of ∆ over
Qp, Wρ is the L∆−module corresponding to the representation ρ and nρ =
dimLWρ.

Proposition. Let M ∈ DG. Then

|L : K| · [IndG
H(ResG

H M)] =
∑

ρ∈V(∆)

nρ[twρ(M)] ∈ K0(DG).

Proof. Viewing (7) as an isomorphism of K∆−modules, we obtain

|L : K| · [K∆] =
∑

ρ∈V(∆)

nρ[Wρ] ∈ G0(K∆).

Now by (6.3), K0(DG) is a G0(K∆)−module, so we may apply this equation
to [M ] ∈ K0(DG) to get

|L : K| · [M ⊗O O∆] =
∑

ρ∈V(∆)

nρ[twρ(M)] ∈ K0(DG).

Here we have chosen O∆ to be the ∆−lattice in K∆ and applied Lemma 6.3.
The result now follows from Lemma 6.4. �

6.6. Until the end of this section, G has no elements of order p.
The following result is essentially [3, Lemma 4.6]. We include a proof for the
convenience of the reader.

Lemma. The natural map θ : OG×T → K1(OGT ) is surjective.
Proof. Let x ∈ K1(OGT ). By Proposition 5.6, each generator [Pi] of

K0(kG) is in the image of ∂G ◦ θG, so ∂G ◦ θ is surjective. Hence there exists
y ∈ OG×T such that ∂G(x − θ(y)) = 0. Because (4) is exact at K1(OGT ),
x = θ(y) + τ(z) for some z ∈ K1(OG); here τ : K1(OG) → K1(OGT ) is the
natural map.

Now because OG is semilocal by Proposition 3.3(c), the natural map θ1 :
OG× → K1(OG) is surjective (2.8), so we can find w ∈ OG× such that
z = θ1(w). Moreover, θ(w) = τ(θ1(w)) by functoriality, whence

x = θ(y) + τ(z) = θ(yw)

and θ is surjective as required. �
6.7. Lemma. There exists a commuting diagram of groups

OG×T
θG−−−−→ K1(OGT ) ∂G−−−−→ K0(DG)

ι

x λG,H

x xK0(IndG
H)

OH×T −−−−→
θH

K1(OHT ) −−−−→
∂H

K0(DH)

where ι : OH ↪→ OG is the natural inclusion and λG,H = K1(ι).
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Proof. Any element x ∈ OH×T can be written as x = rs−1 with r, s ∈ OH.
Then both r and s lie in OH×T ∩ OH, so it is sufficient to check that the
diagram commutes for all elements x ∈ OH×T ∩ OH.

The first square commutes by functoriality. If x ∈ OH×T ∩ OH then

∂GθGι(x) =
[
OG
xOG

]
=
[
IndG

H

(
OH
xOH

)]
= K0(IndG

H)∂HθH(x)

by (2.9). Since θH is surjective by Lemma 6.6, the second square also com-
mutes as required. �

6.8. Artin formalism for characteristic elements. Recall that char-
acteristic elements for modules in DG are only defined modulo the image of
K1(OG) inside K1(OGT ).

Theorem. Keeping the notation of (6.5), let M ∈ DG. Then

λG,H(ξResG
H M )|L:K| =

∏
ρ∈V(∆)

ξ
nρ

twρ(M) mod τ(K1(OG)).

Proof. Apply Lemma 6.7 and Proposition 6.5. �
Evaluating at zero as in (5.7) gives [3, Theorem 3.10] for p−torsion modules.

Corollary. For any M ∈ DG, we have

χ(H,ResG
H M)|L:K| =

∏
ρ∈V(∆)

χ(G, twρ(M))nρ .

Proof. Let εG : OG → K and εH : OH → K be the augmentation maps.
Then εG ◦ ι = εH , so K1(εG)◦λG,H = K1(εH) by functoriality. Now the result
follows from Lemma 5.7. �

We now turn towards the question ”When are Euler characteristics in-
tegral?”. First, we must establish some preliminary results about torsion
kG−modules.

7. Torsion kG−modules

7.1. Uniform pro-p groups. By a celebrated result of Lazard, any com-
pact p−adic analytic group G always contains an open normal uniform pro-p
subgroup N [7, Corollary 8.34]. Uniform pro−p groups are defined at [7,
Definition 4.1].

For any suchN , there is a natural decomposition of kG as a crossed product
of kN with the finite group G/N :

(8) kG ∼= kN ∗ (G/N).

The following Lemma is well-known when k = Fp, see [7, Corollary 7.25].
Lemma. If N is uniform, then kN is a domain.
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Proof. Let J be the Jacobson radical of kN . Then J = wN⊗Fp k where wN

is the augmentation ideal of FpN . Using [7, Theorem 7.24], we see that the
graded ring gr kN of kN with respect to the J−adic filtration is isomorphic to
k[X1, . . . , Xd]. Since kN is complete with respect to the J−adic filtration and
gr kN is a domain, kN itself must be a domain by [7, Proposition 7.27]. �

7.2. Torsion modules. Recall [10, 2.1.14] that a ring R is said to have
a classical quotient ring Q(R) if the localisation of R at the set S = CR(0) of
regular elements of R exists. This is equivalent to S being an Ore set by [10,
Theorem 2.1.12].

Proposition. Let G be a compact p−adic analytic group. Then kG has
an Artinian quotient ring Q(kG).

Proof. Choose an open normal uniform subgroup N of G as in (7.1) and
let T = kN\{0}. As kN is a Noetherian domain by Lemma 7.1, T is an Ore
set in kN by [10, Theorem 2.1.15] and the localisation kNT is a division ring.

Because N is normal, T is invariant under conjugation by G. In view of
the crossed product decomposition (8), [13, Lemma 37.7] implies that T is
actually an Ore set in kG, and that

kGT
∼= kNT ∗ (G/N).

Because kNT is a division ring and G/N is finite, we see that kGT is Artinian.
Now, kG is a free kN−module so every element of T is regular in kG. Hence
T ⊆ S and kG embeds into the Artinian ring kGT . Now every element of
S = CkG(0) is regular in kGT and hence is a unit in kGT by [10, Proposition
3.1.1]. This shows that kGT is a quotient ring of kG with respect to S in the
sense of [10, 2.1.3], so kGS exists and kGS

∼= kGT is Artinian, as required. �

We will say that a kG−module M is torsion if it is torsion with respect to
the canonical Ore set S = CkG(0). Thus, M is torsion if and only if for all
m ∈M there exists s ∈ S such that ms = 0.

Corollary. Let G be a compact p−adic analytic group with an open sub-
group H and let M be a kG−module. Then M is torsion as a kH−module if
and only if M is torsion as a kG−module.

Proof. We can choose an open normal uniform subgroup N of G contained
inH. The proof of the Proposition shows thatM is CkG(0)−torsion if and only
if M is CkN (0)−torsion if and only if M is CkH(0)−torsion, as required. �

7.3. Twists of torsion modules.
Proposition. Let V be a kG−module which is finite dimensional over k

and let M be a torsion kG−module. Then the twist M ⊗k V is also torsion.

Proof. Since V is finite dimensional, we can find an open normal subgroup
H of G which acts trivially on V . Then M ⊗k V is isomorphic to a finite
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direct sum of copies of M , viewed as a kH−module. Hence

(m⊗ v).t = mt⊗ v for all m ∈M,v ∈ V, t ∈ kH.

Because M is kG−torsion, it is kH−torsion by Corollary 7.2. Hence M ⊗k V

is kH−torsion and therefore also kG−torsion, again by Corollary 7.2. �

7.4. Pseudo-null p−torsion modules. An obvious extension of the ar-
gument used by Venjakob in [18, Theorem 3.26] together with the computation
of gr kN when N is uniform performed in Lemma 7.1 shows that OG is an
Auslander-Gorenstein ring.

Lemma. Let M be a finitely generated π−torsion OG−module. Then M

is pseudo-null if and only if grπ M is kG−torsion.
Proof. Choose an open normal uniform subgroup N of G. Then by [1,

Lemma 5.4],

jOG(M) = jON (ResG
N M),

so M is pseudo-null if and only if ResG
N M is. By Corollary 7.2, we may

assume without loss of generality that G = N is uniform. Furthermore, by
dévissage, we may assume that M is actually a kG−module, so grπ M = M .

Now, M is kG−torsion if and only if jkG(M) > 1 by [5, Lemma 1.4]. But

jOG(M) = jkG(M) + 1

by the formula preceeding Theorem 3.30 in [18] and the result follows. �

8. Integrality of Euler characteristics

8.1. Throughout this section G has no elements of order p.
By Proposition 7.2, kG has a classical Artinian ring of quotients Q(kG) =

kGS , which can be obtained by localising kG at the Ore set of all regular
elements S = CkG(0) of kG. Let C be category of of all finitely generated
S−torsion kG−modules. Because G has no elements of order p, kG is a
Noetherian ring of finite global dimension by Proposition 3.3. We hence obtain
the localisation sequence (3) of K0−groups from (2.9):

(9) K0(C)
α→ K0(kG)

β→ K0(Q(kG)) → 0.

We also have an isomorphism

γ : G0(kG) → K0(kG)

because kG has finite global dimension.



CHARACTERISTIC ELEMENTS FOR p-TORSION IWASAWA MODULES 25

8.2. Euler characteristics of torsion kG−modules. We can now give
a characterisation of those groups G which have the property that every
finitely generated torsion kG−module has trivial Euler characteristic.

Theorem. Keeping the notation of (8.1), the following are equivalent:

(a) χ(G,M) = 1 for all M ∈ C,
(b) α = 0,
(c) ξM = 1 for all M ∈ C,
(d) β is injective,
(e) rkK0(kG) = rkK0(Q(kG)).

Proof. Since M ⊗k V
∗
1
∼= M , M ∈ C if and only if M ⊗k V

∗
i ∈ C for all

i = 1, . . . , r by Proposition 7.3. Now by Proposition 4.8, the map α in (9) is
given by

α([M ]) = γ([M ]) =
s∑

i=1

(
logq χ(G,M ⊗k V

∗
i )

dimk EndkG(Vi)

)
[Pi],

and the equivalence of (a) and (b) follows.
For any OG−module M ∈ D, ξM is completely determined by the element

[M ] ∈ K0(D) ∼= K0(kG). So if M ∈ C, ξM = 1 if and only if α([M ]) = 0, as
required for the equivalence of (b) and (c).

Next, (b) and (d) are equivalent because the sequence (9) is exact at
K0(kG). Now β : K0(kG) → K0(Q(kG)) is surjective and K0(kG) is a
torsionfree abelian group of finite rank. Hence β is injective if and only the
rkK0(kG) = rkK0(Q(kG)) as required for the equivalence of (d) and (e). �

8.3. Reduced rank. Let R be a Noetherian ring and let S = CR(0) be
the set of all regular elements of R. Suppose that the classical quotient ring
Q(R) = RS exists and is Artinian.

Let M be a finitely generated R−module. Then MS is a finitely generated
module for the Artinian ring RS and as such must have finite composition
length ρ(M), say. The reduced rank of M is defined to be ρ(M). It is easy to
see that this definition coincides with the slightly more general one given in
[10, 4.1.2]. We list some fairly obvious properties of this invariant:

• ρ(M) is a nonnegative integer,
• ρ is additive on short exact sequences,
• ρ(M) = 0 if and only if M is S−torsion.

Note that kG has an Artinian quotient ring by Proposition 7.2. In our
setup, we have the following formula for ρ(M):
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Lemma. Keeping the notation of (8.1), let M be a finitely generated
kG−module. Then

ρ(M) =
s∑

i=1

µi(M)ρ(Pi) =
s∑

i=1

(
ρ(Pi)

dimk EndkG(Vi)

)
logq χ(G,M ⊗k V

∗
i ).

Proof. Because ρ is additive on short exact sequences, it factors through
G0(kG). Now apply Proposition 4.8. �

Corollary. Let M be a finitely generated π−torsion OG−module with
ξM = 1. Then M is pseudo-null.

Proof. By Proposition 5.6, µi(M) = 0 for all i = 1, . . . , s. By the Lemma,
ρ(grπ M) = 0, so grπ M is kG−torsion. Hence M is pseudo-null by Lemma
7.4. �

8.4. Integrality of Euler characteristics. Our main result is the fol-
lowing:

Theorem. Suppose G is a compact p−adic analytic group with no elements
of order p. Then every finitely generated kG−module has integral Euler char-
acteristic if and only if rkK0(kG) = rkK0(Q(kG)).

Proof. (⇒) Let M ∈ C. In view of Theorem 8.2, it is sufficient to show
that χ(G,M) = 1. Now as M is torsion, the reduced rank ρ(M) of M is zero.
On the other hand, Lemma 8.3 gives

s∏
i=1

χ(G,M ⊗k V
∗
i )ri = 1 where ri =

ρ(Pi)
dimk EndkG(Vi)

.

Note that ri > 0 for all i. Since we are assuming that χ(G,N) ∈ Z for all
N ∈ M(kG), we see that χ(G,M ⊗k V

∗
i ) = 1 whenever ρ(Pi) 6= 0. But each

Pi is a submodule of the S−torsionfree module kG and as such is torsionfree.
It follows that (Pi)S 6= 0, so ρ(Pi) > 0 for all i = 1, . . . , s and χ(G,M⊗kV1) =
χ(G,M) = 1 as required.

(⇐). This will be given in (9.5), after we have obtained more information
about blocks of kG. �

9. Blocks of kG

9.1. Recall [1, 1.3] the important characteristic subgroup ∆+ of G, de-
fined by

∆+ = ∆+(G) = {x ∈ G : |G : CG(x)| <∞ and o(x) <∞}.

Thus ∆+ consists of all elements of finite order whose G−conjugacy class is
finite. Since G is a compact p−adic analytic group, it can be shown that ∆+

is in fact the largest finite normal subgroup of G.
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9.2. Suppose p - |∆+|, so that the group algebra k∆+ is semisimple. Since
∆+ is normal in G, G acts by conjugation on the centrally primitive idempo-
tents of k∆+. Whenever C is a G−orbit on these idempotents, Ĉ =

∑
e∈C e is

a central idempotent of kG. Let f1, . . . , fr be the central idempotents of kG
obtained in this way; it is easy to see that they are pairwise orthogonal and
that 1 = f1 + . . .+ fr.

We then have a decomposition of kG into a direct sum of ideals:

(10) kG = f1kG⊕ · · · ⊕ frkG.

The main result of this section can be thought of as a suitable generalization
and refinement of [1, Theorem A], which says that FpG is prime if and only
if ∆+ = 1.

Theorem. The ring fikG is prime for every i = 1, . . . , r.
The proof is given in (10.6). First, we derive some important consequences.
Corollary. Let G be a compact p−adic analytic group such that p - |∆+|.

Then the number of blocks of kG equals the number of G−conjugacy classes
of blocks of k∆+.

Proof. A prime ring is cannot be nontrivially decomposed into a direct sum
of ideals, so (10) is actually a decomposition of kG into the required number
of blocks. �

9.3. Semiprimeness of kG. Recall [1, Theorem B] that when k = Fp,
kG = FpG is semiprime if and only if p - |∆+|. We obtain a generalization of
this result, as another consequence of Theorem 9.2.

Proposition. Let G be a compact p−adic analytic group. Then kG is
semiprime if and only if p - |∆+|.

Proof. Suppose p - |∆+|. Then by Theorem 9.2 and (10), kG is a direct
sum of prime rings and is therefore semiprime. On the other hand, if p | |∆+|,
the Jacobson radical of k∆+ generates a nonzero two-sided nilpotent ideal of
kG. �

9.4. Local blocks. Our proof of Theorem 8.4 depends on the next result.
Proposition. If G be a compact p−adic analytic group such that p - |∆+|,

then rkK0(Q(kG)) = b(kG). Moreover, rkK0(kG) = rkK0(Q(kG)) if and
only if every block of kG is local.

Proof. Since kG is semiprime by Proposition 9.3, Q(kG) is semisimple Ar-
tinian. Hence rkK0(Q(kG)) = b(Q(kG)) by Lemma 2.4(c). By Theorem 9.2,
kG is a direct sum of r = b(kG) prime rings, so Q(kG) is a direct sum of r
simple Artinian rings. Hence b(Q(kG)) = b(kG) as required. The last part
now follows directly from Proposition 2.7 and Proposition 3.3(c). �
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9.5. Proof of Theorem 8.4(⇐). Since rkK0(Q(kG)) = rkK0(kG), we
see that every block fikG of kG is local by Proposition 9.4. By reordering the
indecomposable projectives P1, . . . , Ps if necessary, we may write fikG ∼= Pmi

i

for some integers mi > 1. Thus K0(fikG) = Z[Pi] for all i.
Next, as β is an isomorphism, β restricts to an isomorphism of K0(fikG)

and K0(Q(fikG)). Since Q(fikG) is simple Artinian, we see that β([Pi]) must
be a generator of K0(Q(fikG)); in other words, each localisation (Pi)S is a
simple Q(kG)−module. Moreover, (P1)S , . . . , (Pr)S is then a complete list of
representatives for the isomorphism classes of simple Q(kG)−modules.

Now let M be a finitely generated kG−module. Then the localisation MS

is a finitely generated module for the semisimple ring Q(kG), so we may write

MS = (P1)a1
S ⊕ · · · ⊕ (Pr)ar

S
∼= (P a1

1 ⊕ · · · ⊕ P ar
r )S

for some integers a1, . . . , ar > 0. Let N = P a1
1 ⊕· · ·⊕P ar

r , a finitely generated
projective kG−module. By Lemma 4.6, χ(G,N) = qa1 ∈ Z so N has integral
Euler characteristic.

Now [M ] − [N ] ∈ ker(β) = Im(α) and χ(G,X) = 1 for all X ∈ C by
Theorem 8.2. It follows that χ(G,M) = χ(G,N) ∈ Z as required. �

9.6. An explicit example. Let p be an odd prime and let

G = Zp o C2 = 〈x, y : y−1xy = x−1, y2 = 1〉

be the pro-p completion of the infinite dihedral group. This is a compact
p−adic analytic group of dimension 1. Let N = 〈x〉 ∼= Zp, an open normal
subgroup of G.

Since G/N is cyclic of order 2 and p is odd, we see that kG/J(kG) =
k[G/N ] is a direct product of two copies of k. Also ∆+(G) = 1 because
otherwise G would be isomorphic to the direct product of N and G/N . Thus
rkK0(kG) = 2 but rkK0(Q(kG)) = 1 since kG is prime by Theorem 9.2.

Let e = 1
2 (1 + y) and f = 1 − e, a pair of orthogonal idempotents in kG.

Then P1 = e.kG is the projective cover of the trivial simple kG−module V1

and P2 = f.kG is the projective cover of the other simple kG−module, V2

say. Moreover, kG = P1 ⊕ P2 is a decomposition of kG into a direct sum of
two indecomposable projectives.

Viewing kG as a kN−module, we see that P1 and P2 must both be finitely
generated projective kN−modules of rank 1. Since kN ∼= k[[t]] is a scalar
local Noetherian domain, this forces P1 and P2 to be uniform kG−modules;
recall [10, 2.2.5] that a module U is said to be uniform if any two nonzero
submodules X,Y of U have nonzero intersection.

Recall also that two uniform right ideals U and V of a semiprime Noetherian
ring R are said to be subisomorphic if U contains an isomorphic copy of V , or
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equivalently, if V contains an isomorphic copy of U [10, 3.3.4]. By [10, Lemma
3.3.4(ii)], any two uniform right ideals U, V of a prime Noetherian ring R are
necessarily subisomorphic.

Hence we can find an embedding ϕ : P1 ↪→ P2 of kG−modules, leading to
a short exact sequence

0 → P1
ϕ→ P2 → coker(ϕ) → 0.

Taking Euler characteristics and applying Lemma 4.6, we see that

χ(G, coker(ϕ)) = χ(G,P2)/χ(G,P1) = q−1.

Thus coker(ϕ) does not have integral Euler characteristic in this case.
With a bit of care, the injection ϕ can be chosen to have cokernel precisely

V2: set ϕ(e) = fα where α ∈ kN is such that fαkG = f.J(kG). We omit the
computations which show that such an α exists. So χ(G,V2) = q−1.

10. Proof of Theorem 9.2

10.1. A special case. A very special case of Theorem 9.2 is not too
difficult to deal with:

Proposition. Let N be a uniform pro-p group, F a finite group with p - |F |
and H = N × F . Suppose e is a centrally primitive idempotent of kF .

(a) There exists a finite extension k′ of k and an integer t > 1 such that e.kH
is isomorphic to a full t× t matrix ring with coefficients in k′N :

e.kH ∼= Mt(k′N).

(b) The ring e.kH is prime.

Proof. (a) Since p - |F |, kF is semisimple so the block e.kF is a simple
finite dimensional k−algebra. Since k is finite, Wedderburn’s theorem on the
structure of finite division algebras implies that e.kF ∼= Mt(k′) for some finite
field extension k′ of k. Now, because N commutes with F , we can think of
kG as a group algebra of F with coefficients in kN : kH = kN [F ]. We can
also write this as a tensor product of k−algebras

kH ∼= kN ⊗k kF

where the multiplication on the right hand side is given by (a ⊗ b)(c ⊗ d) =
ac⊗ bd. Hence,

e.kH ∼= kN ⊗k e.kF ∼= kN ⊗k Mt(k′) ∼= Mt(kN ⊗k k
′) ∼= Mt(k′N)

as required.
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(b) Now, k′N is a domain by Lemma 7.1 and is therefore prime. Since
primeness is preserved by Morita equivalence [10, Proposition 5.10(iii)] and a
ring A is always Morita equivalent to the matrix ring Mt(A) [10, Proposition
5.6], we see that e.kH ∼= Mt(k′N) is prime. �

10.2. We will need a general Lemma.
Lemma. Let A,B be k−algebras and let T be an Ore set in A. Then T ⊗1

is an Ore set in A⊗k B and

(A⊗k B)T⊗1
∼= AT ⊗k B.

Proof. This is a straightforward application of [10, Lemma 2.1.8]. �
WhenN is a uniform pro-p group, writeDN for the division ring of fractions

of FpN which exists by [10, Theorem 2.1.15] and Lemma 7.1.
Proposition. Let H and e be as in Proposition 10.1. Let R = e.kH and

let S = e.FpN\{0}. Then:

(a) S is an Ore set in R,
(b) RS

∼= DN ⊗Fp Mt(k′) as Fp−algebras,
(c) RS is a simple ring.

Proof. From the proof of Proposition 10.1(a), we know that

R = e.kH ∼= kN ⊗k e.kF.

But kN ∼= FpN⊗Fp
k by (3.2) and e.kF ∼= Mt(k′) for some finite field extension

k′ of k so we have an isomorphism

θ : R→ FpN ⊗Fp
Mt(k′)

of Fp−algebras. Now, T = FpN\{0} is an Ore set in FpN so T ⊗ 1 is an Ore
set in FpN ⊗Fp Mt(k′) by the first part of the Lemma. It is easy to see that
θ−1(T ⊗ 1) = S, so S is an Ore set in R and

RS
∼= (FpN ⊗Fp Mt(k′))T⊗1

∼= DN ⊗Fp Mt(k′)

by the second part of the Lemma. This deals with parts (a) and (b).
Now, by Proposition 10.1(b), R is prime so RS is also prime. But RS

∼=
DN⊗Fp

Mt(k′) is a finite module over the division subring θ−1(DN⊗1), so RS

is Artinian. Since any prime Artinian ring is simple, RS is simple as required
for part (c). �

10.3. Recall from [1, 2.2] the important subgroup EG(N) associated to
any open normal uniform subgroup N of a compact p−adic analytic group G:

EG(N) = {x ∈ G : [N,x] ⊆ Npε

}.

Here, as in [1, 2.1],

ε =
{

2 if p = 2
1 otherwise.
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EG(N) is the kernel of the conjugation action of G on the finite set N/Npε

and as such is an open normal subgroup of G containing N .
10.4. Another special case. The following proposition reduces to [1,

Proposition 2.2] in the case when ∆+ = 1. The proof is also broadly similar.
Proposition. Let G be a compact p−adic analytic group with p - |∆+|.

Suppose N is an open normal uniform subgroup of G such that EG(N) = N∆+

and suppose that the centrally primitive idempotent e of k∆+ is central in kG.
Then e.kG is prime.

Proof. Let H = N∆+. Since N is torsionfree [7, Theorem 4.5], H is
actually isomorphic to the direct product of N and ∆+. Since H is normal in
G we can write kG as a crossed product of kH with the finite group G = G/H:

kG = kH ∗G.

Since e ∈ k∆+ ⊆ kH, we can also write e.kG as a crossed product:

e.kG = R ∗G

where R = e.kH is the ring appearing in Proposition 10.1. Let S = eFpN\{0}.
Because kH is a free FpN−module and FpN is a domain, we see that S
consists of regular elements in R. Also, it is G−stable and an Ore set in R

by Proposition 10.2(a). Hence S is actually an Ore set of e.kG consisting of
regular elements by [13, Lemma 37.7], so by Proposition 10.2(b), we have

(e.kG)S
∼= RS ∗G ∼= (DN ⊗Fp

Mt(k′)) ∗G.

We will now show that every nontrivial element of G induces an outer auto-
morphism of the ring RS .

The sets eFpN and e.k∆+ are stable under the conjugation action of G. Let
g ∈ G and let βg and γg denote the automorphisms ofDN andMt(k′) ∼= e.k∆+

induced by conjugation by g on eFpN and e.k∆+, respectively.
Since RS

∼= DN ⊗Fp
Mt(k′), we see that the action of g on RS is given by

the automorphism αg := βg ⊗ γg. Suppose that αg is an inner automorphism
of RS . Now, by the Skolem-Noether Theorem, γg ∈ Aut(Mt(k′)) is inner,
so βg ⊗ 1 = αg(1 ⊗ γ−1

g ) is an inner automorphism of RS which stabilizes
DN ⊗ 1 and fixes 1⊗Mt(k′). Let βg ⊗ 1 be given by conjugation by x ∈ RS .
Then x commutes with every matrix unit in Mt(k′) and therefore must lie
in the subring DN ⊗ 1. Hence, by [1, Proposition 2.1], [N, g] ⊆ Npε

and
g ∈ EG(N) = N∆+.

Hence every element 1 6= ḡ ∈ G induces an outer automorphism on RS ,
which is simple by Lemma 10.2(c). Hence RS ∗G is simple by [10, Theorem
7.8.12], so e.kG = R ∗G is prime, as required. �
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10.5. Now let G be an arbitrary compact p−adic analytic group such
that p - |∆+|. By [7, Corollary 8.34], we can find an open normal uniform
subgroup N of G.

Let e be a centrally primitive idempotent of k∆+ and let f be the corre-
sponding central idempotent in kG; thus f is the sum of the G−conjugates
of e. We have a crossed product decomposition

f.kG = f.kH ∗G

where G = G/H and H = N∆+ ∼= N ×∆+, as in (10.1).
Suppose that we are given a crossed product T ∗G. Recall [13, §14.4] that

the coefficient ring T is said to be an G−prime if whenever A,B are G−stable
ideals of T with AB = 0, then either A = 0 or B = 0.

Lemma. The coefficient ring f.kH appearing in the crossed product

f.kG = f.kH ∗G

is G−prime.
Proof. Write f = e1 + . . .+ em as a sum of centrally primitive idempotents

of k∆+ and let R = e.kH where e = e1, say. Suppose A,B are nonzero
G−stable ideals of f.kH. Then A ∩ eif.kH 6= 0 for some i. Since G acts
transitively on the ej ’s by construction and since A is G−stable, we see that
A ∩ R 6= 0. Similarly B ∩ R 6= 0. But R is prime by Proposition 10.1(b), so
(A ∩R)(B ∩R) 6= 0. Hence AB 6= 0 and the result follows. �

10.6. Recall the following useful fact from [1, 2.2(3)]:

(11) if H is a subgroup of G of finite index, then ∆+(H) 6 ∆+(G).

It follows immediately that ∆+(H) = ∆+(G) for any open subgroup H of G
containing ∆+(G).

Proof of Theorem 9.2. Keeping the notation of (10.5), we have to show
that the crossed product

f.kG = f.kH ∗G
is prime. We know from Lemma 10.5 that f.kH is G−prime. Let

Q = (f − e)kH = e2.kH ⊕ · · · ⊕ em.kH,

this is a minimal prime ideal of f.kH by Proposition 10.1(b).
Let GQ/H = StabG(Q); since H centralizes the idempotent e, it is easy to

see that GQ = StabG(e). By [13, Corollary 14.8], f.kH ∗ G is prime if and
only if (f.kH/Q) ∗GQ

∼= e.kH ∗GQ
∼= e.kGQ is prime.

Note that ∆+(GQ) = ∆+ by (11) because GQ is an open subgroup of G
containing ∆+. We can therefore replace G by GQ and assume that f = e is
central in G. In this case we have a crossed product decomposition

e.kG = e.kH ∗G
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where the coefficient ring e.kH is prime by Proposition 10.1(b).
Now let l be a prime (possibly equal to p) and let Kl/H be a Sylow

l−subgroup of G = G/H. Then

e.kKl = e.kH ∗Kl

is a sub-crossed product and it is sufficient to show that e.kKl is prime for
any prime l by [13, Theorem 17.5]. Also, note that ∆+(Kl) = ∆+ for any l,
by (11).

Suppose first that l 6= p. If L is a Sylow l−subgroup of EKl
(N), then the

conjugation action of L on N gives rise to an injection

L/CL(N) ↪→ Γ = {ϕ ∈ Aut(N) : [N,ϕ] ⊆ Npε

}.

But Γ is a pro-p group by [7, Theorem 5.2]; since L is an l−group and l 6= p,
we see that L = CL(N), so [N,L] = 1. Hence every element of L has open
centralizer in G, so L ⊆ ∆+ ⊆ H. Since Kl/H is an l−group by assumption,
we have shown that EKl

(N) = H and the result follows from Proposition
10.4.

Finally, suppose that l = p and let K = Kp, so that K/H is a p−group.
Let P be a maximal open normal uniform subgroup of K containing N . We
claim that EK(P ) = P∆+; clearly P∆+ 6 EK(P ). Let − : K � K/∆+

denote the natural surjection.
Because ∆+ 6 K, it is easy to verify that EK(P ) = EK(P ). Also, P is a

maximal open normal uniform subgroup of K if and only if P is a maximal
open normal uniform subgroup of K, so for this part of the proof we may
assume that ∆+ = 1. Thus, K is a pro-p group of finite rank with ∆+(K) = 1
and we have to show that EK(P ) = P .

If EK(P ) > P then EK(P )/P is a nontrivial normal subgroup of the finite
p−group K/P and as such meets the centre of K/P nontrivially. Let xP
be a nontrivial element in this intersection and consider L = 〈P, x〉, an open
normal subgroup of K properly containing L. Since L is itself uniform by [1,
Lemma 2.3], this contradicts the maximality of P . Hence EK(P ) = P in this
special case, and EK(P ) = P∆+ in general, as required.

The result now follows from Proposition 10.4, with P replacing N . �

11. For which groups G is every block of kG local?

11.1. Theorem 8.2 and Theorem 8.4 stimulate interest in those compact
p−adic analytic groups G with the property that rkK0(kG) = rkK0(Q(kG)).
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If G is such that p - |∆+|, these two numbers are equal if and only if every
block of kG is local by Proposition 9.4.

11.2. p−nilpotent groups. Recall that a finite group G is said to be
p−nilpotent if a Sylow p−subgroup of G has a normal complement. It is well
known that any subgroup and any quotient of a p−nilpotent group is again
p−nilpotent.

Following [1, 1.5] we will denote the largest finite normal p′−subgroup
of G by ∆+

p′(G). We will say that a compact p−adic analytic group G is
p−nilpotent if G/∆+

p′(G) is pro-p; it is clear that this extends the usual notion
of p−nilpotence.

Write ∆+ = ∆+(G) as in (9.1). If G is such that p - |∆+|, then ∆+
p′(G) =

∆+, so in this case G is p−nilpotent if and only if it is a semidirect product
of ∆+ with a Sylow pro−p subgroup of G.

11.3. We collect together some useful inequalities.
Lemma. Let N be an open normal pro-p subgroup of G. Then

b(kG) 6 b(k[G/N ]) 6 rk(K0(k[G/N ])) = rk(K0(kG)).

Proof. In view of Proposition 2.7 and Corollary 3.3, it is sufficient to prove
the first inequality. Suppose e is an idempotent of kG contained in the Jacob-
son radical J(kG). Then 1−e is invertible, but e(1−e) = 0 so e = 0. By Propo-
sition 3.3(a), the kernel of the natural map π : kG→ k[G/N ] is contained in
J(kG) so the image of any nonzero idempotent in kG is nonzero in k[G/N ].
Now, if 1 = e1 + · · ·+ er is a decomposition of 1 ∈ kG into a sum of r nonzero
orthogonal centrally primitive idempotents, then 1 = π(e1) + · · ·+ π(er) is a
decomposition of 1 ∈ k[G/N ] into r nonzero orthogonal central idempotents,
so r = b(kG) 6 b(k[G/N ]) as required. �

11.4. Our main result in this section is the following:
Theorem. The following are equivalent for a compact p−adic analytic

group G:

(a) every block of kG is local,
(b) every block of k[G/N ] is local, for every open normal pro-p subgroup N ,
(c) G/N is p−nilpotent for every open normal pro-p subgroup N ,
(d) G is p−nilpotent.

Proof. We will use Proposition 2.7 in what follows without further mention.
(a) ⇒ (b). This follows from Lemma 11.3.
(b) ⇒ (a). From Lemma 11.3 we have

b(kG) 6 b(k[G/N ]) = rk(K0(k[G/N ])) = rk(K0(kG)) = r, say,

for every open normal pro-p subgroup N of G. Let N1 6 N2 be two such
subgroups and let π : k[G/N1] � k[G/N2] be the canonical projection. If 1 =
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e1+· · ·+er is a decomposition of 1 into nonzero orthogonal centrally primitive
idempotents in k[G/N1], then 1 = π(e1) + · · · + π(er) is a decomposition
of 1 into nonzero orthogonal central idempotents in k[G/N2]. Because r =
b(k[G/N1]) = b(k[G/N2]), we see that each π(ei) must be centrally primitive.
This shows that we can “lift” primitive central idempotents modulo smaller
and smaller open normal subgroups N . Using the definition of kG as the
inverse limit of the various k[G/N ], we obtain r nonzero orthogonal central
idempotents of kG. Hence b(kG) > r and (a) follows.

(b) ⇔ (c). This follows directly from [12, Theorem 1]. A more modern
treatment of (b) ⇒ (c) can be found at [9, Theorem 29.1] - a careful in-
spection of the proof shows that the hypothesis that the underlying field be
algebraically closed is unnecessary for this part of the proof presented there.
We have so far been unable to find a more modern reference for the whole
result.

(c) ⇒ (d). Without loss of generality, we may assume that ∆+
p′(G) = 1.

Choose an open normal uniform subgroup N of G. Then N∩∆+ = 1 so ∆+ is
isomorphic to a subgroup of the p−nilpotent group G/N . Hence ∆+ is itself
p−nilpotent. Since ∆+

p′(G) = 1, we see that ∆+ is a p−group. Now G is a
pro-p group by [1, Proposition 3.7] and is therefore p−nilpotent, as required.

(d) ⇒ (c). This is easy. �
11.5. A summary of results involving p−nilpotence.
Theorem. Let G be a compact p−adic analytic group with no elements of

order p. Then the following conditions are equivalent:
(a) ξM = 1 for all M ∈ C (8.1),
(b) χ(G,M) = 1 for all M ∈ C,
(c) χ(G,M) ∈ Z for all M ∈M(kG),
(d) rkK0(kG) = rkK0(Q(kG)),
(e) every block of kG is local,
(f) G is p−nilpotent (11.2).

Proof. Apply Theorems 8.2, 8.4, 11.4 and Proposition 9.4. �

12. Ranks of K0(kG) and K0(Q(kG))

12.1. We are able to explicitly compute the rank of K0(kG), as well as
the rank of K0(Q(kG)) in the case when p - |∆+|. First, we must recall some
well-known results from the modular representation theory of finite groups.
We follow [6, Volume I, §17A, §21B] in our treatment of Brauer characters.

12.2. Galois action. Let H be a finite group and let m = pam′ be the
exponent of H, where p - m′. Let k′ = k(ω̃), where ω̃ is a primitive m′−th
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root of unity over k and let Gk be the Galois group Gal(k(ω̃)/k). If σ ∈ Gk,
then σ(ω̃) = ω̃tσ for some tσ ∈ (Z/m′Z)×. This gives an injection σ 7→ tσ of
Gk into (Z/m′Z)×.

We can now define a left permutation action of Gk on H by setting σ.h =
htσ . Note that h 7→ σ.h is invertible because tσ is coprime to |H|. Note also
that this action commutes with any automorphism of H, and in particular
with conjugation by elements of H. Thus Gk permutes the conjugacy classes
of H.

12.3. p−regular elements. An element of H is said to be p−regular if
its order is coprime to p. The set of all p−regular elements of H will be
denoted by Hreg - this is a union of conjugacy classes of H. It is clear that
the action of Gk leaves Hreg stable.

12.4. Brauer characters. Fix a finite unramified extensionK of Qp with
residue field k. Let K ′ = K(ω), where ω is a primitive m′−th root of 1. Then
the ring of integers of K ′ is O′ = O[ω] where O is the ring of integers of K.
Moreover, reduction modulo p gives an isomorphism of the residue field of K ′

with k′, with ω mapping to ω̃. Let ϕ : 〈ω〉 → 〈ω̃〉 be the restriction of this
isomorphism to the cyclic group of m′−th roots of unity in K ′.

Now, if V is a finite dimensional kH−module and h ∈ Hreg, the eigenvalues
of the action of h on V are powers of ω̃, {ξ1, . . . , ξd} say. Define

χV (h) =
d∑

i=1

ϕ−1(ξi) ∈ K ′.

The function χV : Hreg → K ′ is called the Brauer character of V . It has the
following properties:

• χV is a class function; that is χV (g−1hg) = χV (h) for all g ∈ H and
for all h ∈ Hreg,

• χV = χU + χW whenever 0 → U → V → W → 0 is a short exact
sequence of finite dimensional kH−modules.

See [6, Volume I, p. 509] for details and proofs.
12.5. Berman-Witt Theorem. Let C(Hreg,K

′) denote the K ′−vector
space of all K ′−valued class functions on Hreg. The group Gk acts on this
space via

(f.σ)(h) = f(σ.h) for all f ∈ C(Hreg,K
′), σ ∈ Gk, h ∈ H.

We will write C(Hreg,K
′)Gk for the fixed points of Gk under this action. Next,

because χV is additive on short exact sequences, we obtain a K ′−linear map

χ : K ′ ⊗Z G0(kH) → C(Hreg,K
′),
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given by χ(λ ⊗ [V ]) = λχV for all λ ∈ K ′ and all relevant kH−modules V .
The following result is essentially due to Berman and Witt.

Theorem. χ is an isomorphism of K ′ ⊗Z G0(kH) onto C(Hreg,K
′)Gk .

Proof. This is a rephrasing of [6, Volume I, Theorem 21.25]. �

Corollary. The number of isomorphism classes of simple kH−modules is
equal to the number of Gk−orbits on the p−regular conjugacy classes of H.

12.6. A G−equivariant version. Now suppose that we have a group
G acting on our finite group H by automorphisms. We will suppose that
this is a left action, and will write gh for the image of h ∈ H under g ∈ G.
Whenever V is a finite dimensional kH−module, let V g be the kH−module
whose underlying abelian group is V , but H acts via v.h = v(gh).

This induces a right action ofG on G0(kH) given by [V ].g = [V g] which per-
mutes the classes of simple modules. There is also a natural right K ′−linear
action of G on C(Hreg,K

′) given by

(f.g)(h) = f(gh) for all f ∈ C(Hreg,K
′), g ∈ G, h ∈ H.

It is now straightforward to verify the following result:
Lemma. The isomorphism χ : K ′ ⊗Z G0(kH) → C(Hreg,K

′)Gk appearing
in Theorem 12.5 is a map of right K ′G−modules.

Taking dimensions of the G−fixed points of both sides, we obtain
Corollary. The number of G−orbits on the set of simple kH−modules

equals the number of G×Gk−orbits on the p−regular conjugacy classes of H.
12.7. We now come to the main result of this section.
Theorem. Let G be a compact p−adic analytic group. Fix an open normal

pro-p subgroup N of G. Then

(a) The rank of K0(kG) equals the number of G× Gk−orbits on (G/N)reg.
(b) If p - |∆+|, the rank of K0(Q(kG)) equals the number of G × Gk−orbits

on ∆+.

Proof. Here G acts on G/N and ∆+ by conjugation. By Corollary 3.3,
the rank of K0(kG) is equal to the number of isomorphism classes of simple
k[G/N ]−modules, which by Corollary 12.5 is the number of Gk−orbits on the
conjugacy classes of (G/N)reg, or equivalently, the number of G× Gk−orbits
on (G/N)reg. Part (a) follows.

Now, the conjugation action ofG on ∆+ gives rise to an action on the blocks
of k∆+, and also to an action on the set of simple k∆+−modules described
in (12.6). Let b and s denote the numbers of orbits of G under these actions,
respectively.

Because k∆+ is semisimple, it is easy to see that b = s.
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By Corollary 12.6, s equals the number of G×Gk−orbits on the p−regular
conjugacy classes of ∆+. Since p - |∆+| and since G contains ∆+, this also
equals the number of G× Gk−orbits on the whole of ∆+.

On the other hand, b = b(kG) by Corollary 9.2 and b(kG) = rkK0(Q(kG))
by Proposition 9.4. Part (b) follows. �

12.8. We end with a second proof of a part of Theorem 11.5.
Proposition. Let G be a compact p−adic analytic group with p - |∆+|.

Then rkK0(kG) = rkK0(Q(kG)) if and only if G is p−nilpotent.

Proof. Let N be an open normal pro-p subgroup of G. Because p - |∆+|,
we see that N ∩∆+ = 1, so ∆+ embeds into G = G/N . It is clear that this
embedding, ι say, is a map of G× Gk−spaces.

By Theorem 12.7, the two ranks are equal if and only if Greg = ι(∆+).
Now, every element x of G can be written as x = xuxs where xs is p−regular
and xu has order a power of p. This shows that Greg = ι(∆+) if and only
if every element of G/ι(∆+) has order a power of p, that is, if and only if
G/N∆+ is a p−group. This happens if and only if G/∆+ is a pro-p group,
as required. �
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