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Abstract. Let H be a torsion-free compact p-adic analytic group whose Lie

algebra is split semisimple. We show that the quotient skewfield of fractions of

the Iwasawa algebra ΛH of H has trivial centre and use this result to classify
the prime c-ideals in the Iwasawa algebra ΛG of G := H × Zp. We also show

that a finitely generated torsion ΛG-module having no non-zero pseudo-null
submodule is completely faithful if and only if it is has no central torsion. This

has an application to the study of Selmer groups of elliptic curves.

1. Introduction

1.1. Iwasawa algebras. Let p be a prime number. In this note we are concerned
with modules over the Iwasawa algebra

ΛG := lim
←−N/oGZp[G/N ]

of a compact p-adic analytic group G. These groups frequently occur as images
of Galois representations on p-power division points of abelian varieties and act on
various arithmetic objects of interest such as ideal class groups and Selmer groups.
These arithmetic objects then naturally become modules over the associated Iwa-
sawa algebra. By examining the structure of these modules in detail, it is sometimes
possible to obtain precise arithmetic information.

1.2. Selmer groups. As a concrete example of the philosophy outlined above in
action, consider the following situation. Let E be an elliptic curve over a number
field F and assume E has no complex multiplication. Let Ep∞ denote the group of
all p-power division points on E, let F∞ = F (Ep∞) and let G = Gal(F∞/F ). By a
well-known theorem of Serre [18], G is an open subgroup of GL2(Zp). In this setting,
Coates, Schneider and Sujatha [11, §8] study the Pontryagin dual X(E/F∞) of the
Selmer group S(E/F∞); see [9, §1] for a definition. They show that X(E/F∞) is
always a finitely generated ΛG-module, and also that under suitable assumptions
on E and p, X(E/F∞) is finitely generated and torsion-free over ΛH , where H is
a certain closed normal subgroup of G satisfying G/H ∼= Zp. They also posed a
number of questions concerning the ΛG-module structure of X(E/F∞), including
the following.

• Let Z denote the centre of G. Assuming X(E/F∞) is finitely generated
and torsion-free over ΛH , is X(E/F∞) torsion-free as a ΛZ-module?
• Under the same assumptions, is q(X(E/F∞)) completely faithful?
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1.3. Completely faithful modules. Let M denote the category of all finitely
generated ΛG-modules, let C denote the full subcategory of all pseudo-null modules
in M and let q : M → M/C denote the quotient functor. Recall [11, §5] that
an object q(M) in the quotient category M/C is said to be completely faithful if
Ann(N) = 0 for any N ∈M such that q(N) is isomorphic to a non-zero subquotient
of q(M). The purpose of this note is to prove the following

Theorem. Let p > 5 and let H be a torsion-free compact p-adic analytic group,
whose Lie algebra L(H) is split semisimple over Qp. Let G = H×Z where Z ∼= Zp,
and let M be a finitely generated torsion ΛG-module, which has no non-zero pseudo-
null submodules. Then q(M) is completely faithful if and only if M is torsion-free
over ΛZ .

The proof is given in §4.9. We should point out that if M is a finitely generated
ΛG-module which is also finitely generated over ΛH , then M is automatically ΛG-
torsion. Moreover, in this situation, M has no non-zero pseudo-null submodules if
and only if M is torsion-free over ΛH .

Theorem 1.3 should be compared with [19, Theorem 6.3], which states that if
instead G is a non-abelian semidirect product of two copies of Zp, then q(M) is
completely faithful whenever M is a finitely generated ΛG-module which is finitely
generated over ΛH .

The assumptions on the group G in Theorem 1.3 are fairly mild. For example,
any open pro-p subgroup G of GL2(Zp) satisfies them whenever p > 3: just take
H = G∩SL2(Zp). Moreover, if G is just assumed to have a closed normal subgroup
H such that L(H) is semisimple and such that G/H ∼= Zp, then by passing to an
open subgroup we can ensure that in fact G = H × Zp. This is because the only
extension of a semisimple Lie algebra by a one-dimensional Lie algebra is the trivial
extension.

1.4. Selmer groups revisited. Returning to our GL2 example, Theorem 1.3 im-
plies that q(X(E/F∞)) must necessarily be completely faithful, provided X(E/F∞)
is finitely generated over ΛH and torsion-free over both ΛH and ΛZ . Although
X(E/F∞) is known to be finitely generated and torsion-free over ΛH in many cir-
cumstances, there are at present no known examples where one can prove that
X(E/F∞) is torsion-free over ΛZ . Some weak information about the ΛZ-torsion
part of X(E/F∞) in a particular case is given in [11, Proposition 8.10].

We should remark at this point that Coates et al conjecture that the p-torsion-
free part Y (E/F∞) of X(E/F∞) is finitely generated over ΛH whenever p > 5 and
E has good ordinary reduction at p [10, Conjecture 5.1].

1.5. Centres of skewfields and prime c-ideals. In order to prove Theorem 1.3,
we compute the centre Z(Q(ΛH)) of the quotient skewfield of fractions Q(ΛH) of
ΛH , thereby answering a question of Venjakob [19, Question 6.4]. We also classify
all the prime c-ideals in both ΛH and ΛG:

Theorem. Under the assumptions of Theorem 1.3, the centre of Q(ΛH) is equal
to Qp, the only prime c-ideal of ΛH is pΛH and every prime c-ideal of ΛG apart
from pΛG is generated by a distinguished polynomial in ΛZ .

The proof is given in §4.4 and §4.8 and follows from a very recent result of F.
Wei, J. J. Zhang and the author [6, Theorem 7.3], which essentially states that
ΩH = ΛH/pΛH has no nontrivial prime c-ideals.
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2. Preliminaries

2.1. Fractional ideals. Let R be a Noetherian domain. It is well-known that R
has a skewfield of fractions Q. Recall that a right R-submodule I of Q is said to
be a fractional right ideal if I is non-zero and I ⊆ uR for some non-zero u ∈ Q.
Fractional left ideals are defined similarly. If I is a fractional right ideal, then

I−1 := {q ∈ Q : qI ⊆ R}
is a fractional left ideal and there is a similar definition of I−1 for fractional left
ideals I. There is a natural isomorphism between I−1 and I∗ = HomR(I, R). The
following elementary result will be very useful for computing I−1.

Lemma. Let R be a Noetherian domain and let I be a non-zero right ideal of R.
Then I−1/R ∼= Ext1

R(R/I, R) as left R-modules.

Recall that the fractional right ideal I is said to be reflexive if

I = I := (I−1)−1.

Equivalently, the canonical map I → I∗∗ is an isomorphism. Let I be a fractional
right ideal which is also a fractional left ideal. We say that I is a fractional c-ideal
if it is reflexive on both sides, and we say that I is a c-ideal if I is contained in R.
Of particular interest are the c-ideals which happen to be prime ideals of R.

2.2. Two results about prime c-ideals. Let R be a Noetherian domain and let
x ∈ R is a non-zero central element such that R/xR is a domain. The following
facts are well-known, but we include the proofs for the convenience of the reader
because we will use these results repeatedly.

Lemma. Suppose that I is a proper c-ideal of R containing x. Then I = xR.

Proof. Since I−1I ⊆ R and I ⊇ xR, we see that I−1x ⊆ R. Because x is central,
I−1x = xI−1 is a two-sided ideal of R. Now (xI−1)I ⊆ xR and xR is a prime ideal
by assumption, so either xI−1 ⊆ xR or I ⊆ xR. Since I is proper and reflexive, R
is properly contained in I−1 and therefore I = xR. �

Proposition. Suppose that x lies in the Jacobson radical of R and that every non-
zero two-sided ideal J of T := R/xR satisfies J−1 = T . Then xR is the only prime
c-ideal of R.

Proof. Let I be a prime c-ideal of R. By the above lemma, it will be enough to show
that x ∈ I. Let M = R/I and let J be the image of I in T , so that M/xM ∼= T/J
as right T -modules. The short exact sequence of right R-modules

0 −→M
x−→M −→ T/J −→ 0

gives rise to the following long exact sequence of left R-modules:

· · · −→ Ext1
R(M,R) x−→ Ext1

R(M,R) −→ Ext2
R(T/J, R) −→ · · · .

Suppose for a contradiction that x /∈ I. Because I is prime and x is central, the
module M is x-torsion-free. By the well-known Rees Lemma (see, for example, [1,
Lemma 1.1]), we have

Ext2
R(T/J, R) ∼= Ext1

T (T/J, T ).
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Because J is a non-zero two-sided ideal of T , we must have J−1 = T by assumption.
Since T is a domain, Ext1

T (T/J, T ) ∼= J−1/T = 0 by Lemma 2.1, so the finitely
generated left R-module E := Ext1

R(M,R) satisfies E = xE. Because x lies in the
Jacobson radical of R, Nakayama’s Lemma implies that E = 0. Hence I−1 = R,
again by Lemma 2.1. But I is reflexive by assumption, so I = (I−1)−1 = R,
contradicting the assumption that I is a prime ideal. �

2.3. Maximal orders. Recall that R is said to be a maximal order in Q if when-
ever S is a subring of Q containing R such that uSv ⊆ R for some non-zero u, v ∈ Q,
we must have S = R. Asano [7] showed that the set G(R) of fractional c-ideals for
a maximal order R is an abelian group when equipped with the product

I · J := IJ

and inverse I 7→ I−1 defined in §2.1. He also proved the following

Theorem. G(R) is a free abelian group on the set of prime c-ideals of R.

Proof. See, for example, [14, II.1.8 and II.2.6]. �

3. A useful isomorphism

3.1. Venjakob’s localisation of Iwasawa algebras. If G is a compact p-adic
analytic group, we write ΛG and ΩG for the completed group algebras of G with
coefficients in Zp and Fp, respectively. See [5] for more information about these
algebras.

Let H be a closed normal subgroup of G. Recall from [4, §1.5] the two-sided
augmentation ideal

wH,G := (H − 1)ΩG = ker(ΩG → ΩG/H).

Let N be an open pro-p subgroup of H which is normal in G, and let PH = √wN,G

be the prime radical of wN,G. This is a semiprime ideal of ΩG which only depends
on H, see [4, Lemma 3.2]. It was shown in [4, Theorem D] that PH is a localisable
ideal in ΩG, meaning that

{s ∈ ΩG : s is regular modulo PH}

is a two-sided Ore set in ΩG. We will denote the Ore localisation of ΩG at this Ore
set by ΩG,H . It follows fairly directly from the above definitions that ΩG,H = ΩG,L

whenever L is a normal subgroup of G which is open in H.

3.2. Lemma. Suppose that G = Z × H where H is finite and Z ∼= Zn
p for some

n > 0. Then ΩG,H
∼= K[H], where K is the field of fractions of ΩZ .

Proof. Because H is finite, we see that ΩG,H = ΩG,1. Now Z is an open normal
uniform subgroup of G, and in this situation [4, Lemma 5.1] shows that ΩG,H is a
crossed product of ΩZ,1 with the finite group G/Z:

ΩG,H = ΩG,1 = ΩZ,1 ∗ (G/Z).

Clearly ΩZ,1 is the field of fractions K of ΩZ , and ΩG = ΩZ [H] because G = Z×H.
Now inspecting the proof of [4, Lemma 5.1] shows that the crossed product on the
right hand side is in fact just the ordinary group ring K[H]. �
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3.3. A completion of ΩG,H . Now let H be an arbitrary compact p-adic analytic
group and let Z ∼= Zn

p . Letting K denote the field of fractions of ΩZ , we can form
the completed group algebra of H with coefficients in K:

K[[H]] := lim
←−

K[H/U ],

where U runs over all the open normal subgroups of U . We can now state the main
result of this section.

Theorem. Let G = Z ×H, let N be an open normal uniform subgroup of H and
let m be the augmentation ideal wN,GΩG,H of ΩG,H . Then

(a) the m-adic filtration on ΩG,H is Zariskian, and
(b) the completion of ΩG,H with respect to this filtration is isomorphic to K[[H]].

Proof. (a) We refer the reader to the book [13] for information about Zariskian
filtrations. Because N is normal in G and has finite index in H, ΩG,H = ΩG,N as
above. Now ZN is an open normal uniform subgroup of G and G/ZN ∼= H/N , so
[4, Lemma 5.1] shows that

ΩG,H = ΩG,N
∼= ΩZN,N ∗ (H/N).

Let J = (N − 1)ΩZN,N , so that m = J · ΩG,N and mk = Jk · ΩG,N for all k. We
can therefore compute the Rees ring of ΩG,N with respect to the m-adic filtration
as follows:

Ω̃G,N =
⊕

k

m−ktk =

(⊕
k

J−ktk

)
⊗ΩZN,N

ΩG,N
∼= Ω̃ZN,N ∗ (H/N).

It was shown in [4, Proposition 5.3] that the Rees ring Ω̃ZN,N is Noetherian, so
Ω̃G,N is also Noetherian since H/N is finite.

Now PHΩG,H is the Jacobson radical of ΩG,H by [15, Theorem 3.2.3(a)], and
m = wN,GΩG,H ⊆ PHΩG,H .

(b) Let R denote the completion of ΩG,N at the m-adic filtration. By [12, Lemma
7.1], the families of ideals {wk

N,N : k > 0} and {wU,N : U /o N} are cofinal in ΩN .
It follows that the families of ideals

{mk : k > 0} and {wU,GΩG,N : U /o H,U 6 N}

are cofinal in ΩG,N , so R is isomorphic to the completion of ΩG,N at the second
family.

Let U be an open normal subgroup of H which is contained in N . Then G/U ∼=
Z × (H/U) and H/U is finite. Now ΩG/wU,G

∼= ΩG/U , so by Lemma 3.2 we have

ΩG,N/wU,GΩG,N
∼= ΩG/U,N/U = ΩG/U,H/U

∼= K[H/U ].

Hence R ∼= lim
←−

K[H/U ] ∼= K[[H]]. �

3.4. An application. Let IH denote the inverse image of PH in ΛG. By [4, Theo-
rem G], IH is a localisable ideal in ΛG and we denote the corresponding localisation
by ΛG,H . The element p lies in the Jacobson radical of ΛG,H and

ΛG,H/pΛG,H
∼= ΩG,H .
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Proposition. Let G = Z ×H where Z ∼= Zn
p for some n and H is a torsion-free

compact p-adic analytic group. Let K be the field of fractions of ΩZ and suppose
that J−1 = K[[H]] for every non-zero two-sided ideal J of K[[H]]. Then the only
prime c-ideal of ΛG,H is pΛG,H .

Proof. Because H is torsion-free, K[[H]] is a Noetherian domain by the proof of
[4, Theorem C]. In view of Proposition 2.2, it will be enough to show that every
non-zero two-sided ideal J of T := ΩG,H satisfies J−1 = T .

Fix an open normal uniform subgroup N of H as in Theorem 3.3. By that result,
the m-adic filtration on T is Zariskian and the completion of T with respect to this
filtration is isomorphic to K[[H]]. Hence K[[H]] is a faithfully flat (right and left)
T -module by [13, Chapter II, §2.2.1, Theorem 2], and therefore

K[[H]]⊗T Ext1
T (T/J, T ) ∼= Ext1

K[[H]]((T/J)⊗T K[[H]], K[[H]])

by [6, Proposition 1.2]. Now (T/J)⊗T K[[H]] ∼= K[[H]]/J ·K[[H]] and J ·K[[H]] is
just the completion Ĵ of J with respect the m-adic topology on T by [13, Chapter
II, §1.1.2, Theorem 10(5)]. As such, J ·K[[H]] is a two-sided ideal of K[[H]] and
therefore (J ·K[[H]])−1 = K[[H]] by our assumption.

It follows from Lemma 2.1 that K[[H]] ⊗T Ext1
T (T/J, T ) = 0, but K[[H]] is a

faithfully flat left T -module, so Ext1
T (T/J, T ) = 0. Therefore J−1 = T . �

4. The centre of the skewfield of fractions of ΛH

4.1. Iwasawa algebras are maximal orders.

Lemma. Let G be a torsion-free compact p-adic analytic group. Then ΛG is a
maximal order.

Proof. It is well known that ΛG is a domain. Moreover, ΩG is also a domain [5,
Theorem 4.3] and is a maximal order in its skewfield of fractions by [5, Corollary
4.7]. If we filter ΛG p-adically, we get a Zariskian filtration whose associated graded
ring is isomorphic to the polynomial ring ΩG[t]. This is a maximal order by [14,
V.2.5]. Because ΩG[t] is a domain we may apply [14, X.2.1] and deduce that ΛG is
also a maximal order. �

If one is happy to pass to open subgroups of G then one can assume that the
group G is p-valued in the sense of Lazard. In this case, ΛG is already known to be
a maximal order [11, Proposition 7.2].

4.2. Two-sided ideals in K[[H]]. From now on, we will assume that our group
G satisfies the conditions of Theorem 1.3:

• G = H × Z for some closed subgroups H and Z,
• Z ∼= Zp,
• H is torsion-free pro-p,
• L(H) is split semisimple over Qp,
• p > 5.

We should remark that the hypotheses made on H are only there to ensure that
the conclusion of following theorem holds. In particular, the hypothesis that p > 5
can probably be dispensed with altogether.

Theorem. For any field K of characteristic p, if I is a non-zero two-sided ideal
of the completed group algebra K[[H]], then I−1 = K[[H]].
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Proof. It is shown in [6, Theorem 7.3] that K[[H]] has no non-trivial reflexive two-
sided ideals. As I is non-zero, it follows that I = K[[H]]. Hence I−1 = I

−1
=

K[[H]]. �

4.3. Here is our first application of Theorem 4.2.

Theorem. Let I be a prime c-ideal of ΛG. Then either I = pΛG or ΛG/I is finitely
generated over ΛH .

Proof. Let S be the Ore set in ΛG that gives rise to the localisation ΛG,H :

S = {x ∈ ΛG : x is regular modulo IH}.
Suppose first that I ∩ S = ∅. By [16, Proposition 2.1.16(vii)], IS := I · ΛG,H is a
prime ideal of ΛG,H and I = IS ∩ ΛG. Because IS is reflexive by [6, Proposition
1.2(a)], it follows from Proposition 3.4 and Theorem 4.2 that IS = pΛG,H . Hence
p ∈ IS ∩ ΛG = I, and therefore I = pΛG by Lemma 2.2.

On the other hand, if I ∩ S 6= ∅, then the right ΛG-module ΛG/I is S-torsion
and is therefore finitely generated over ΛH by [10, Propositions 2.3 and 2.6]. �

4.4. Centre of Q(ΛH). To obtain our second application of Theorem 4.2, we
combine it with Proposition 2.2:

Proposition. Let I be a prime c-ideal of ΛH . Then I = pΛH .

We can now compute the centre of the skewfield of fractions Q of ΛH .

Theorem. The centre of Q is equal to Qp.

Proof. Recall that ΛH is a maximal order in Q by Lemma 4.1. Let q be a non-zero
central element of Q. Then qΛH is a fractional c-ideal and hence can be written as
a product of prime c-ideals of ΛH (and their inverses) by Theorem 2.3. Using the
proposition, we see that any such product must be equal to pnΛH for some n ∈ Z.
Hence q = pnr for some r ∈ ΛH and this r must clearly be a central element of ΛH .
Our assumptions on H force the centre of H to be trivial, so Z(ΛH) = Zp by [2,
Corollary A]. Hence q ∈ Qp. �

Fix a topological generator g ∈ Z such that Z = 〈g〉 and write z = g − 1 ∈ ΛZ .
Motivated in part by Theorem 4.3, we now move on to study the prime ideals in
ΛG
∼= ΛH [[z]] that are finitely generated over ΛH .

4.5. Proposition. Let I be a prime ideal in ΛG such that ΛG/I is finitely gener-
ated over ΛH . Then either I ∩ ΛH 6= 0 or I ∩ ΛZ 6= 0.

Proof. Let An :=
⊕n

i=0 ΛHzi — this is a finitely generated ΛH -submodule of ΛG

and we have an increasing chain

ΛH = A0 ⊂ A1 ⊂ A2 ⊂ · · · .
The image of this chain inside ΛG/I must stabilize since ΛG/I is a Noetherian
ΛH -module by assumption, and it follows that I ∩An 6= 0 for some n.

Let n be minimal subject to having I∩An 6= 0: note that if n = 0 then I∩ΛH 6= 0
and we’re done. So assume that n 6= 0; we can then find some non-zero polynomial

a = anzn + an−1z
n−1 + · · ·+ a1z + a0 ∈ I.

Note that an 6= 0 by the minimality of n. Writing Q for the skewfield of fractions
of ΛH , we can form the polynomial ring Q[z], which can be viewed as an Ore
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localisation of the polynomial ring ΛH [z]. Note that Q(I ∩ ΛH [z]) is a two-sided
ideal of Q[z] by [16, Proposition 2.1.16], and

a−1
n a = zn + (a−1

n an−1)zn−1 + · · ·+ (a−1
n a1)z + a−1

n a0 ∈ Q(I ∩ ΛH [z]).

Let u ∈ Q and consider the commutator [u, a−1
n a] = ua−1

n a − a−1
n au. This lies in

Q(I ∩ ΛH [z]) and has degree strictly smaller than n. Clearing denominators we
obtain an element of I ∩ An−1 which is zero by the minimality of n. Therefore
[u, a−1

n a] = 0 for any u ∈ Q meaning that each a−1
n ai is central in Q. By Theorem

4.4, a−1
n ai ∈ Qp for all i < n, so we can find some m > 0 such that pma−1

n a ∈ ΛZ .
Now pma = an · (pma−1

n a) ∈ I and I is prime. Because ΛZ is central in ΛG and
an /∈ I (otherwise I ∩ ΛH 6= 0), we see that I ∩ ΛZ 6= 0. �

In the case when the ideal I is actually a prime c-ideal, we will be able to refine
the above. First, some preparatory results.

4.6. Lemma. Let I be a prime ideal in ΛG. Then
(a) I ∩ ΛZ is a prime ideal in ΛZ ,
(b) J := I ∩ ΛH is a prime ideal in ΛH ,

Proof. Let us remark that in the general setting of noncommutative rings, the
inverse image of a prime ideal under a ring homomorphism need not be prime (or
even semiprime!). This is clearly illustrated by the inclusion(

k k
0 k

)
⊂M2(k)

for any field k. However in our setting there is enough commutativity to enable the
obvious proofs of parts (a) and (b) to work. For part (b) let A, B be ideals of ΛH

such that AB ⊆ J ; then BΛG = B[[z]] = ΛGB so (AΛG)(BΛG) ⊆ JΛG ⊆ I and
either AΛG ⊆ I or BΛG ⊆ I because I is prime. Hence A ⊆ J or B ⊆ J whence J
is prime. The proof of part (a) is similar but easier. �

4.7. Distinguished polynomials. Recall [20, §7.1] that a polynomial

f = anzn + an−1z
n−1 + · · ·+ a1z + a0 ∈ Zp[z]

is said to be distinguished if an = 1 and ai ∈ pZp for all i < n.

Lemma. Let J 6= 0 be an ideal in ΛZ such that ΛZ/J is p-torsion-free. Then
(a) J is generated by a distinguished polynomial f ,
(b) if J is a prime ideal of ΛZ , then JΛG = fΛG is a prime ideal of ΛG.

Proof. (a) This is a well-known consequence of the p-adic Weierstrass preparation
theorem [20, Theorem 7.3].

(b) Let K denote the field of fractions of the domain ΛZ/J . K is a finite field
extension of Qp because ΛZ/J is finitely generated over Zp. By part (a), the image
of z in K satisfies a monic polynomial with coeffcients in Zp, so ΛZ/J is contained
in the ring of integers O of K.

Now ΛG is isomorphic to the completed group ring of H with coefficients in ΛZ :

ΛG
∼= lim
←−N/oHΛZ [H/N ]

and for every open normal subgroup N of H we have an exact sequence

0→ ΛZ [H/N ]
f→ ΛZ [H/N ]→ O[H/N ].
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Since inverse limits are left exact, we obtain an exact sequence

0→ ΛG
f→ ΛG → O[[H]]

where O[[H]] denotes the completed group ring of H with coefficients in O. The
latter is a domain by [3, Proposition 2.5(iii)] so ΛG/fΛG is also a domain and fΛG

is a prime ideal. �

We are now ready to give proofs of our main results.

4.8. Theorem. Let I be a prime c-ideal of ΛG. Then I = fΛG where f = p or
f ∈ Zp[z] is a distinguished polynomial which is irreducible in ΛZ .

Proof. Suppose that J := I ∩ ΛH is non-zero. J is prime by Lemma 4.6(b) and
reflexive by [6, Proposition 1.2(b)], so J = pΛH by Proposition 4.4. Hence pΛG ⊆ I.
Because ΛG/pΛG = ΩG is a domain by [5, Theorem 4.3], I = pΛG by Lemma 2.2.

Now suppose that J = 0; in particular, p /∈ I. By Theorem 4.3, ΛG/I is
finitely generated over ΛH , so Proposition 4.5 implies that I ∩ ΛZ 6= 0. Because
p /∈ I, Lemma 4.7(a) implies that I ∩ΛZ = fΛZ for some distinguished polynomial
f ∈ Zp[z]. The polynomial f must be irreducible in ΛZ by Lemma 4.6(a). Now
fΛG is a prime ideal in ΛG by Lemma 4.7(b), so I = fΛG by Lemma 2.2. �

Corollary. Let I be a reflexive two-sided ideal of ΛG. Then I = fΛG for some
f ∈ Zp[z].

Proof. Apply Proposition 4.1, Theorem 2.3 and Theorem 4.8. �

4.9. Proof of Theorem 1.3. Let N be the ΛZ-torsion submodule of M . If
N 6= 0, then q(N) is a non-zero subobject of q(M) because the largest pseudo-null
submodule Mo of M is zero by assumption. Moreover, Ann(N) 6= 0 since ΛZ is
central in ΛG, so q(M) is not completely faithful.

Conversely, suppose that N = 0. Recall from Lemma 4.1 that ΛG is a maximal
order. By [8, Proposition 4.2.2], q(M) decomposes uniquely in the quotient category
M/C as a direct sum q(M) = A⊕B of a completely faithful object A and a locally
bounded object B. Since B is a subobject of q(M) and Mo = 0, we can find a
submodule X of M such that q(X) ∼= B by general properties of quotient categories.

Now, since Xo 6 Mo = 0, the annihilator ideal I := Ann(B) equals Ann(X) by
[17, Lemma 2.5]. Because X is locally bounded, I 6= 0 and therefore X is a finitely
generated, torsion, bounded ΛG-module. Therefore I = Ann(q(X)) is a non-zero
reflexive two-sided ideal of ΛG by [11, Lemma 5.3(i)], and hence I = fΛG for some
non-zero f ∈ ΛZ by Corollary 4.8. Hence X ⊆ N = 0, so B = q(X) = 0 and
q(M) = A is completely faithful. �
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