IRREDUCIBILITY RESULTS FOR EQUIVARIANT D-MODULES ON

RIGID ANALYTIC SPACES

KONSTANTIN ARDAKOV AND TOBIAS SCHMIDT

ABSTRACT. We prove a general irreducibility result for geometrically induced coadmis-
sible equivariant D-modules on rigid analytic spaces. As an application, we geomet-
rically reprove the irreducibility of certain locally analytic representations previously
constructed by Orlik-Strauch.
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1. INTRODUCTION

Let G be a p-adic Lie group and let K be a non-archimedean field of mixed character-
istic (0,p). Let X be a smooth rigid K-analytic space endowed with an action of G. The
category Cx g of coadmissible G-equivariant D-modules is the p-adic analogue of the clas-
sical category of equivariant coherent D-modules on a smooth complex variety endowed
with an action of a real or complex Lie group. Similar to the classical case, one of the
main motivations for the construction of Cx /s comes from representation theory: if X is
the analytic flag variety of a p-adic reductive group G, then there is a Beilinson-Bernstein
style localisation theorem which provides an equivalence of categories between Cx ;¢ and
the category of admissible locally analytic G-representations with trivial infinitesimal
character [0, 2I]. This opens up the way to study locally analytic G-representations ge-
ometrically through techniques from D-module theory. In particular, one may try to
construct irreducible representations geometrically on the flag variety X.

In this light, it is natural to study the preservation of irreducibility under various
operations on equivariant D-modules. Such operations may come in two flavours, which
correspond, vaguely speaking, to change of space or change of group. An example for the
first case is the equivariant Kashiwara theorem [5]: given a smooth rigid analytic space
X together with an embedding ¢ : Y — X of a Zariski closed G-stable subspace, the
equivariant direct image zf induces an equivalence between Cy ¢ and the full subcategory
Cx e of Cx /¢ consisting of modules with support in Y. An example for the second case
is the induction equivalence [5]: if P C G is a closed cocompact subgroup, then there is
a geometric induction functor

ll’ldg : Cx/p — CX/G-

Suppose that P equals the stabilizer of a Zariski-closed subspace Y C X, which is irre-
ducible and quasi-compact and suppose additionally that X is separated. If the G-orbit
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of Y is regular in X, i.e. distinct G-translates of Y are disjoint, then indg induces an
equivalence of categories between Cy e and C)GJ[G.

Requiring the G-orbit of a given Zariski-closed subspace Y C X to be regular is a strong
condition on Y and often not satisfied in practice. The present paper is motivated by
the following question: under which weaker conditions does the functor indg still preserve
irreducibility? In order to address this question properly, we establish first some useful
foundational results.

1.1. Induction and side-changing. According to [5], there are side-changing functors
Ox ® (—) and Hom(Qx, —) yielding mutually inverse equivalences of categories between
Cx/c and and its right module version "Cx . Similarly, there is a right module version
" indg of the induction functor, going from right P-equivariant Dx-modules to right G-
equivariant Dx-modules.

Theorem A. Let P C G be a closed cocompact subgroup. Let N € Cx,p. There is a
natural isomorphism in "Cx q

"ind$(Qx ® V) — Qx ® indG N
See Theorem for the proof.

1.2. Induction and duality. The category Cx/c contains the full subcategory C;gl;G
consisting of weakly holonomic equivariant modules [28]. This is a G-equivariant version
of the category of weakly holonomic D-modules appearing in [6]. Whenever Bernstein’s
inequality holds in Cx/g, then there is an involutive duality functor Dg on C)VZ}/IG. Note
that Bernstein’s inequality holds, for example, whenever X has a smooth formal model.

Theorem B. Assume that Bernstein’s inequality holds in Cx,/p and Cxq. Let N € C)V?/lp.
There is a natural isomorphism in C)VZI}G

De(ind$ N) — indG(DpN).
See Theorem for the proof.

1.3. The main irreducibility result. The set up is as follows. Suppose that X is a
connected, smooth, rigid K-analytic variety and G is a compact p-adic Lie group acting
continuously on X. Let Y be a connected Zariski closed subset of X, with stabilizer P :=
Gvy. We suppose that the triple (X,Y,G) satisfies condition (LSC) from [5, Definition
2.5.6]. The condition is a little too technical for the purpose of this introduction, but it is
always satisfied, for example, if X is separated and Y is irreducible and quasi-compact.
We call a module N € CX /p locally simple, if Nu is a simple object in Cy/p, whenever
U € X, (T) is connected and UNY is connected and non-empty. Here, Py denotes the
stabilizer of U in P.

Theorem C. Suppose there is a Zariski closed subset Z of Y with dimZ < dim'Y which
has the following properties:
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(1) U ¢gYNhY CGZ,
g%@ggY

(2) Y NX is connected, where ¥ =X\ G.Z.
Let N € C;((/P be weakly holonomic. If N and Dp(N') are locally simple, then the induced
module ind%(N) is a simple object in Cx/a-

See Theorem for the proof. It is the first point (1) involving self-intersections,
which is the crucial condition. For example, if Y has a regular G-orbit in X, then Z = ()
trivially satisfies (1) and (2). Below we explain how to verify condition (1) in practice.
In many situations, the locally simple module N is in fact self-dual, so that the condition
on D(N) is redundant. For example, assume that Bernstein’s inequality holds in Cx /¢
and that Y C X is a G-stable Zariski closed subvariety. Denote by zf :Cy/p — Cx/q the
equivariant direct image functor [5]. We show in Thm. that 1¢Oy is self-dual.

1.4. The set of self-intersections. In this subsection, we give a criterion to verify
condition (1) in the preceding theorem in practice. Let X be a rigid analytic variety and
G a p-adic Lie group (possibly non-compact) acting continuously on X. Let Y a Zariski
closed subset of X with the stabilizer Gy. Let S be a set of representatives for the double
cosets Gy \ G /Gy containing 1 € G and define S* := S\{1}. We write

R, =YNovY forevery ves, and Z:= U R,.

VES*

The set Z is Zariski closed in X, whenever Gy \ G / Gy is finite, and one has

U gYnry =qz,

g,heG

gY#hY
whenever X is quasi-compact. In this situation, the set Y has a regular G-orbit in X if
and only if Z is empty. Hence Z is the obstruction to Y having a regular G-orbit in X, at
least if X is quasi-compact. A major open question which we cannot answer completely
at the moment is: under what general conditions is the complement ¥ = X \ GZ an
admissible open subset of X7 The main problem is that the stabilizer Gz in general is
not cocompact in G, even when Gvy is cocompact in G. It is this open problem, which
limits our current range of applications.

1.5. Schubert varieties. A first class of examples to which the main result applies are
Schubert varieties in projective space. Consider G = GL, (L), where L is a finite extension
of Q, contained in K, acting on rigid analytic projective space P ™. Let

X CXygC:-- C:)(n

be the chain of Schubert varieties in Py ™ i.e. X, is the Zariski closed subvariety of X
where the last n — j homogeneous coordinates vanish.
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bProjIrred| Theorem D. Fir j and let P = Gx,. Leti: X; — P75 denote the closed embedding.
Let N := ii(’)xj € C;ij,lyan/P be the P-equivariant pushforward of the structure sheaf Ox; .
K

Then the induced module indg./\/' 15 a simple object in C]P,'rlz(—l,an/G.

See Theorem for the proof. We may also consider Schubert varieties in full flag
varieties. So let G be a split connected reductive K-group G, with its natural G-action
given by conjugating the Borel subgroups of G. Let G be a p-adic Lie group with a
continuous homomorphism G — G(K). Let T C B be a Borel subgroup in G containing
a split maximal torus T. Let W be the Weyl group of the pair (G, T). The B-orbits C,, in
the full flag variety G/B can be indexed by the Weyl elements w € W and their Zariski
closures X,, are the classical Schubert varieties. Let X = (G/B)* and X,, = (X,,)*" the
corresponding analytic spaces. For a Schubert variety i : X,, € X denote by Z,, its set of
self-intersections corresponding to a (finite) set of representatives for Gx, \ G/ Gx,,-

Theorem E. Let w € W and P := Gx,,. Suppose the following three conditions.

(a) GZ, = GoZy, with Gy C G some compact open subgroup such that G = GoP.
(b) Xy \ GZ,, is connected.
(c) Xy is smooth.

Let N := i Ox, € C;(;“P be the P-equivariant pushforward of the structure sheaf Ox,, .
Then the induced module M = indg/\/' is a simple object in Cxq.

See Theorem for the proof. We briefly comment on the two conditions (a), (b)
and (c) of the Theorem. Condition (a) does not hold for all Schubert varieties X,, in
X = (G/B)*, and is directly related to the open problem alluded above. A first case
in which it fails, appears in the case G = GL; and X,, equal to the inverse image of
the unique Schubert divisor in the analytic Grassmannian Gr(2,4)*. This X,, is non-
smooth, so condition (c) also fails in this case. One may imagine to eventually remove
condition (c) by replacing the push-forward of Ox, by some intermediate extension of
Oc, where C,, equals the corresponding Bruhat cell. However, a rigid analytic theory of
intermediate extensions is currently not available. As for condition (b), we are not aware
of any counterexamples where this conditions fails.

Assume that B C P is a parabolic subgroup and consider the projection f** : (G/B)* —
(G/P)®. Suppose that X,, is the inverse image of a Schubert variety X, p in (G/P)*. We
show that the conditions of the preceding theorem are satisfied as soon as the (analogous)
conditions are satisfied for X, p. This produces many examples. For example, the theorem
covers open and closed Schubert varieties, the Schubert curves X; (for simple reflections
s € W) or Schubert varieties of the form X, , where w,p is the longest element in a
parabolic subgroup Wp of W. In these cases, the G-orbit of X, is in fact regular (so
that Z,, = 00). In the case G = GL,,, all Schubert varieties arising as inverse images from
Schubert varieties in projective space are covered. In particular, all Schubert varieties for
the groups G = GLy or GL3 are covered.
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1.6. Application to locally analytic representations. We give some first applications
to the locally analytic representation theory of p-adic groups. To this end, we fix a
finite extension L/Q, and let G, be a connected semisimple algebraic group over L.
Let L C K be a complete non-archimedean splitting field for G;. Set G := G x, K
and let g be the Lie algebra of G. Let P, C G be a parabolic subgroup. Let T C
L, C P, be a maximal split torus and a Levi subgroup respectively. Let T, P,G be the
groups of L-rational points of T, Py, Gy respectively. Let T,LL,P be the base change
from L to K of the groups Tp,Ly, Py respectively. Let t,[,p be the K-Lie algebras of
T, L, P respectively. Let D(G, K) be the algebra of K-valued locally analytic distributions.
Denote by X the algebraic flag variety of the split K-group G = G x K, with its natural
G-action given by conjugating the Borel subgroups of G. Let X = X® be the rigid
analytification of X, with its induced G-action. In the case where Gy, is L-split, Orlik-
Strauch introduce in [24] a certain locally analytic lift O of the parabolic BGG category
OF. The definition extends without difficulty to our case of a K-split group Gr. The
category OF is abelian, of finite length and comes with an exact functor F5(—)": OF —
Cp(c, k) into the category of coadmissible D(G, K )-modules, which preserves irreducibility
under certain conditions. Our last main result proves a general compatibility of this
functor with geometric induction in the following sense. Classical Beilinson-Bernstein
localization composed with rigid analytification gives a functor Locg((g) from OF into
coherent Dxinodules.

Let Dx C Dx be the sheaf of analytic infinite order differential operators as constructed
and studied in [2], together with the extension functor Ex from coherent Dx-modules into

the category Cx of coadmissible Dx-modules [9, Lemma 4.14], [6, §7.2].

Theorem F. The functor Ex o Loc)U((g), restricted to the category OF, takes values in
Cx,/p. The resulting diagram of functors

FECY
P P
O Cp(c,K),0
EXoLoc)U((g) l LLOC)D((G’K)
—_—_—
Cx/p — Cx/a-

P

18 commutative up to natural isomorphism.

See Theorem for the proof. The irreducible U(g)o-modules L,, := L(—w(p) — p)
for w € W exhaust the irreducible objects in Oy. If P denotes the stabilizer of X,
then L, € OF for p = Lie(IP) and the main theorem of Orlik-Strauch in [25] proves that
F§ (Ly)' is an irreducible D(G, K)-module provided that (H1) Gy, is L-split and (H2)
that p > 2 if the root system of G has irreducible components of type B, C' or Fj, and
p > 3 if the root system has irreducible components of type G5. Their argument relies on
the delicate calculation of explicit formulae for the action of certain nilpotent generators
on highest weight modules of the BGG category O. Theorem F. allows us to deduce the
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irreducibility of F§ (L)’ for a non-split semisimple group G and for any p, whenever
the geometric conditions (a), (b) and (c¢) from Theorem E. are satisfied for the analytic
Schubert variety X,,.

For more details we refer to the main body of the text.

2. SOME COMPLEMENTS ON D-MODULES

2.1. Sheaves and supports. Given an abelian sheaf F on a topological space X, its
support is defined as Supp F = {z € X : F, # 0}.

Let X be a rigid K-analytic space. We denote by &?(X) its associated Huber space. We
have an inclusion X — Z(X) which sends a point € X to the principal maximal filter
m,, := {admissible open U C X : z € U}. The sets of the form U = {p €¢ #(X): U € p}
as U runs over the admissible open subsets of X form a basis of the topology for & (X).
There is an equivalence of categories M +— M between the abelian sheaves on X and

on Z(X) [32, §5]. One has M(U) = M(U) for any admissible open subset U of X, as
follows from the proof of [32, Theorem 1].

Let M be an abelian sheaf on X. Its support Supp M is defined to be the support of
the associated sheaf M. Given a subset S C X, the sheaf M is said to be supported on
S, in the sense of [3, 2.1.1], if M|y = 0 for any admissible open subset V of X \ S.

Proposition 2.1.1. Let Y C X be a Zariski-closed subset. Let M be a sheaf on X such
that Supp M =Y. Then M is supported on Y and

Y=X- U {V admissible open in X with M|y = 0}.

Proof. Let U =X \Y so that Y = Z(X)\U by [5, 2.1.4]. Hence M|g = 0 and hence
M|y = 0. This shows that M is supported on Y. We now have to show that

U= U {V admissible open in X with M|y = 0}.

Let V be an admissible open of X. If VNY # 0, take x € VNY. Then m, € VNSupp M
and hence My, # 0. So M|y # 0 and therefore also M|y # 0. So any V with M|y =0
is contained in U. U

2.2. Analytification. Let X be a smooth K-scheme which is locally of finite type. We
assume that X is quasi-compact and quasi-separated. Let Dx be the sheaf of algebraic
finite order differential operators on X. Denote by X = X®" the rigid analytification of X,
a quasi-compact and quasi-separated rigid K-analytic space.

Denote by p : X — X the canonical morphism of locally ringed spaces and consider the
functor
_/\/l S p*M = OX ®,0_1OX p_lM

from Ox-modules to Ox-modules. We recall some basic properties.

Proposition 2.2.1. (a) The functor p* is exact and faithful.
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(b) If X is proper, then p* induces an equivalence between coherent modules.
(c) If X is proper, then
H'(X,p*M) = H'(X, M)
for any 7 > 0 and any quasi-coherent Ox-module M.

Proof. According to [15] 5.1.2], the functor p* is exact and faithful and preserves coherence.
Suppose now that X is a proper K-scheme. The statement of (b) and the fact that
H(X,p*M) = H(X, M) for any i > 0 for coherent M follow from [8, 3.3.3/4 and
3.4.10/11]. So (c) holds in the coherent case. Since X is noetherian, any quasi-coherent
module is the union of its coherent subsheaves and cohomology on X commutes with the
formation of direct limits of abelian sheaves [I8, Ex. I1.5.15 and II1.2.9]. On the other
hand, since X is a quasi-compact and quasi-separated rigid space, cohomology on X also
commutes with the formation of direct limits [16} 2.1.7 and its proof]|. This completes the
proof of (c). O

Proposition 2.2.2. (a) Dx and Dx are coherent sheaves of rings on X and X respec-
tively and one has p*Dx = Dx.
(b) p* induces a functor from Dx-modules to Dx-modules.
(c) If M is a coherent Dx-module, then p* M is a coherent Dx-module.

Proof. Dx and Dx are coherent sheaves of rings by [14, 1.1.1] and |19} 1.4.9] respectively.
The canonical morphism p*Qx = (0x is an isomorphism and so is its Ox-linear dual
Tx = p*Tx. This implies p*Dx = Dx and shows (a). Suppose that M is a Dx-module.
Denote by 6 = > [i ®0; with f; € Ox,0; € Tx the image of a vector field 6 under the

map Tx — p*Tx. As in the algebraic setting [19, 1.3], one defines an action of Tx on p* M
via

0(f ®m) :=0(f) @ m+ Z f1; ©6;(m)

where f € Ox, m € M. The action extends to a Dx-module structure on p* M which is
functorial in M. This gives (b). Finally, locally on X and by (a), the functor p* transforms
a finite presentation of M as Dx-module into a finite presentation of p* M as Dx-module.
Since Dx and Dx are coherent sheaves of rings, this shows (c). O

Proposition 2.2.3. Suppose that X is proper and Dx-affine. Let M be a Dx-module
which is quasi-coherent as Ox-module.
(a) One has H°(X, p*M) = H°(X, M) for any i > 0 and H (X, p*M) = 0 for all
1> 0.
(b) p* induces an exact and fully faithful functor from Dg-modules, which are quasi-
coherent over Oy, to Dx-modules.

Proof. Part (a) follows from and the Dx-affinity. Moreover, M ~» p*M now has a
left quasi-inverse given by taking global sections M := H°(X, p* M) = H°(X, M) followed
by the functor M ~» Dx ®@pox py) M. This implies (b). O
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Let p: Z(X) — X be the canonical map. Note that &2(X) is the underlying topological
space of the adic space (X2, Oxaqa) associated to the finite type K-scheme X. According
to [20, Remark 4.6(i)], the morphism p extends to a flat morphism of locally ringed spaces
being the base change to X of the morphism Spa(K, K°) — Spec K induced by the identity
K — K.

Lemma 2.2.4. Let Y C X be a closed subset and let Y = p~!(Y). Then Y C X is
Zariski-closed and Y = p~}(Y) in 2(X).

Proof. 1t is clear that the subset Y C X is_ Zariski-closed. If Y has its reduced rigid-
analytic structure [12, Prop. 9.5.3.4], then Y = Z(Y). From the above description of
the morphism p as a base change of Spa(K, K°) — Spec K, it is clear that Z(Y) =
~_1

pH(Y). O

Proposition 2.2.5. Let M be a coherent Dx-module. Then Supp M C X is closed and
Supp p*M = 5~} (Supp M).

Proof. One has Supp M = Char(M) N T¥X inside the cotangent bundle 7*X and so this
is a closed subset of X. Note that &?(X) is the underlying topological space of the adic
space (X® Oyxaa) associated to the finite type K-scheme X. The map p extends to a

morphism of locally ringed spaces as explained above. One has p/*7\//l = p*M where p*
denotes the analogue of p* for (X2 Ox.q). For z € X2 one has

(15*'/\/038 - OXad,x ® Mﬁ(x)

X,p(x)

The homomorphism Ox j;) — Oxaa, is flat and hence faithfully flat (being a flat local
homomorphism between local rings). So (p*M), = 0 if and only if M) = 0, which
shows Supp p*M = p~(Supp M). O

Let Dx be the sheaf of analytic (infinite order) differential operators as constructed
and studied in [2] Let Cx be the category of coadmissible Dx-modules. The natural
inclusion Dx C Dx gives rise to an extension functor

Ex : Dx—mod — Dx—mod, M ~ Dx ®p, M
which is exact and faithful and takes coherent Dx-modules into Cx [0, 7.2].
Proposition 2.2.6. One has
Supp Ex (M) = Supp M

for any coherent Dx-module M.

"n the case of the flag variety, the associated sheaf 5)( on the space #(X) was independently con-
structed and studied in [21] where it is called Z.
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Proof. Fix x € 2(X); we will abuse notation and write AV, to denote N, for every abelian
sheaf N on X. We will first show that D is a faithful right D, module Let I be a left
ideal in D, and suppose that D, ®p, (D,/I) = 0. Then 1 € D, - I, so we can find
Qi,....,Q, €D, and P,,..., P, € I such that 1 = S, QiP;. We can find U € X,(T)
such that U 3 z, the maps D(U) — D, and D(U) — D, are injective and Q; € D(U)
and P, € D(U) for each . Then 1 =", Q;F; holds already in 5(U) SO

5 D(U) ) _

bW 2, (sroor) =°
But 5(U) is a faithfully flat 5(U)—module by [6, Theorem B, so i, D(U)P, = D(U)
and therefore I = D,. Hence ﬁx is a faithful right D,-module as claimed. .

Now since M is a coherent Dx-module, we can find U € X,,(7) such that U > z and

such that there is an exact sequence D{y — Dy — My — 0 for some integers m,n.
Because the functors

N @g;/vx and N (5%/@ = Fx(N),

are right exact and agree when N is a free D-module of finite rank, we conclude using
the Five Lemma that there is a natural isomorphism

Do @ M, — Ex(M),
for every x € &(X). The faithfulness of D, as a right D,-module established in the first
paragraph now shows that M, # 0 if and only if Fx(M), # 0, and the result follows. [
Combined with 2.2.5 we obtain:
Corollary 2.2.7. Let M be a coherent Dx-module. One has
Supp Ex(p"M) = 5~ (Supp M).

3.SONE]COMPLEMENTSHK)LOCALHATKHLINDUCTKHJANDINLMJTY

Let K be a non-archimedean complete field of mixed characteristic (0,p). Let G be a
p-adic Lie group acting continuously on a smooth rigid K-analytic space X. Let P C GG
be a closed subgroup.

3.1. Intersection obstructions and inverse images. Let for a moment GG be an ab-
stract group acting on a set X and let Y be a subset of X. Denote by

Gy :=Stabg(Y) ={ge G:gY CY}
the stabilizer of the set Y in GG and define the intersection obstruction of Y in G to be
Zy :={g9€ G :YNgY #0}.

We have Gy C Zy. Recall [B, Def. 2.1.8] that the G-orbit G.Y of Y is called reqular in
X if Zy = Gy
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Lemma 3.1.1. Let f: X — X be a G-equivariant map between two G-sets X and X.
Let Y = f~1(Y).

(a) One has Zy C Zy. If f is surjective, then Zy = Zy.

(b) One has Gy O Gy. If f is surjective, then Gy = Gy

(c) If f is surjective, then: G.Y is regular in X <= G.Y is regular in X.
Proof. (a) Let g € Zg. Then f~5(Y NgY) =Y NgY # 0,50 Y NgY # @ and g € Zy.
Conversely, suppose f surjective and g € Zy. Then YNgY # () and hence f~H(YNgY) # 0
because f is surjective. Hence Y NgY = f~1(Y NgY) # 0 as well, so g € Z;.

(b) Let g € Gy. Then f(gY) = gf(Y) C gY C Y so that g¥ C f~(Y) = Y which
implies g € Gy. Conversely, suppose f surjective so that Y = f(Y). If g € Gy, then
gY = gf(Y) = f(gY) C f(Y) =Y shows that g € Gy.

(c) This follows from (a) and (b). O

3.2. Induction and restriction. We start by recalling the geometric induction functor
indg :Cx/p — Cxa
from [5]. For a local description, let U € X,,(7"). Then by definition [5, 2.2.12]
ind(A)(U) = lim P EEIIZlﬁ(U, H) ® [sN(sT'U).
ZEH\G/P D(U,HN*P)
where the first inverse limit is over all U-small compact open subgroups H of G.

For any subset S C X we denote by Cx /p the full subcategory of Cx,p consisting of

those M € Cx,p which are supported on S, i.e. M|y = 0 for any admissible open subset
Vof X\ S.

Theorem 3.2.1. Suppose that X is separated. Let Y C X be a Zariski closed subset
of X. Suppose that Y is irreducible and quasi-compact, has a regular G-orbit in X and
a co-compact stabilizer Gy in G. Then the functor indgY induces an equivalence of
categories

ind%, : Cx/qy — C% /e
A quasi-inverse is given by the functor H$, of sections supported on Y.
Proof. [5, Theorem Al. O
Now let N € Cx,p. In the following, we first construct a certain morphism
an : N — ind%(N)
in Frech(P — Dx) which is natural in A. Let U € X,,(7). As we have recalled above,
indf(A)(U) = lim P  lim D(U,H) ® [s]N(s"'U).

SEZ ) s
ZeH\G/P D(U,HN3P)
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where the first inverse limit is over all U-small compact open subgroups H of G. For the
double class Zy = HP, we have a D(U, H N P)-linear map

N(U) = D(U,H) & N(U)%}érglﬁ(U,H) ®  [sIN(s7'U),

D(U,HNP) D(U,HNsP)

where the first map is the canonical map z — 1®z and the second map is the inverse of
the canonical isomorphism [5 2.2.9 (a)]. This gives a D(U, H N P)-linear map
N(U) = indG(N)(U).

If V C U is an affinoid subdomain, then this map is compatible with the restriction map
v and therefore extends to a morphism of sheaves N’ — ind%(N) on X,,(7) and then
on X. The morphism lies in Frech(P — Dx). This defines a,.

There is the obvious restriction functor Res% from Frech(G — Dx) to Frech(P — Dx).

Adjunction| Proposition 3.2.2. Let N € Cx,p, M € Cx/; and [ : N — Res% (M) a morphism in
Frech(P — Dx). Then there is a morphism

f:ind%(WN) — M
in Frech(G — Dx) such that f = f o ajy. This induces a K-linear isomorphism
Homprech(p,px)(./\/, Resg(/\/l)) i) Homprech(g,px)(indg (N), ./\/l)
which is natural in N and M.
Proof. Suppose that (U, H) is small. Let Z € H\ G/P and s € Z. There is the

—_

D(U, H Nn?® P)-linear morphism
[s]s, N (U) = N(s7'U) -5 M(s7'U) — M(U)
where the second map equals ¢ (U)~! for g = s~!. The map extends to a D(U, H)-linear

morphism
D(U,H) ® [s]N(s'U) = M(U)
D(U,HNsP)
and then to a morphism ind%(N)(U) — M(U). This gives the morphism f. The inverse
to the map f — f is given by precomposing a morphism with a. O

We deduce the right exactness of geometric induction (although this will not be used
in the following).

Corollary 3.2.3. The functor indIG; : Cx/p — Cx ¢ is right-exact.

Proof. This is a variant of the standard argument of deducing exactness properties from

an adjoint pair of functors. Let L = (ind$)°P : Cx;p = Cx)q be the opposite functor and

similarly R = (Res%)°P. We will show that L is left-exact. Let therefore 0 — Nj — Ny —
N5 be an exact sequence in C;p/ p and let M € C;’(p/G. Then

gq-adjointl| (1) 0 — Hom(R(M), N7) — Hom(R(M), Ny) — Hom(R(M), N3)
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is an exact sequence of abelian groups. Indeed, if a morphism f : R(M) — Ny maps
to zero in Hom(R(M), N3), then the morphism Ay — R(M) in Frech(P — Dx) factors
through the quotient A of Ajy. Since the canonical topology on local sections over open
affinoids U € X, (7)) of the coadmissible module N is the quotient topology, the induced
morphism N; — R(M) is continuous, i.e. lies in Frech(P — Dx). Its opposite is then a
preimage of f in the sequence . This shows the exactness of in the middle and the
exactness on the left is clear. By Proposition we obtain an exact sequence

0 — Hom(M, L(N7)) — Hom(M, L(Ny)) — Hom(M, L(N3))
for any M € Cy Jq- Since M is coadmissible, one has
Hompyean(G-px)or (M, L(N;)) = Homeg (M, L(NG))
for all 7 and so the Yoneda lemma in the abelian category Cy’ /G implies that
0 — L(N1) = L(Ny) — L(NS)

is exact. Hence L : CY’ p CY G is left-exact. O

Proposition 3.2.4. Let A € Cx/p. Suppose that there exists an open subgroup Gy C G
such that GoP = G. Let Py = Go N P. There is a natural isomorphism in Cx ¢,

ind§? (Resh, N) — Resg, indS(N).

Proof. Let Ny = Resp; N and My = Res&, indZ(N). It suffices to construct a bijective
morphism of Gy-equivariant sheaves of Dx-modules on X,,(7)

ind%° (Np) — Mo
compatible with local Fréchet topologies. Let U € X,,(T). Then
ANV =lim D m DUH) B N(U)
ZEH\GQ/PO SEZ D(U,HN3P)
where the limit runs through all open U-small subgroups H C Gj. On the other hand,
= lim lm D(U.H)_ & [sN(s1U),
L Zeg\%ﬂg S%Z D(U,HN*P)

where we may again assume, since (5 is open in G, that the limit runs through U-small
subgroups H contained in Gy . The equality GoP = G implies Go/Py ~ G/P as left
Go-sets, whence H \ Go/Py ~ H \ G/P. The latter isomorphism thus induces a bijective
morphism

indf (VD) (U) = My(U)
compatible with local Fréchet topologies. It is also compatible with the restriction maps,

if V.C U is an affinoid subdomain in X,,(7) and induces the desired isomorphism
ind7°(Np) = M. O
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3.3. Induction and side-changing. The aim of this subsection is to show that induction
commutes with the side-changing operations. Recall from [5, 3.1.15] that the functors
Qx ® (=) and Hom(§2x, —) are mutually inverse equivalences of categories between Cx /¢
and "Cx/g. Denote by "ind$ the right module version of the induction functor [5, 2.2]
from right P-equivariant Dx-modules to right G-equivariant Dx-modules.

Theorem 3.3.1. Let N € Cx,p. There is a natural isomorphism in "Cx /g

"ind%(Qx @ N) — Qx @ indG N

Proof. Tt suffices to construct an isomorphism between " ind%(Qx @ V) and Qx ® ind% A
as sheaves of right equivariant Dx-modules on X,,(7). Let U € X,,(T). According to [5],
2.2.12],

indf(A)(U) = lim P ImD(U,H)  © [N (s0).

—

se€Z
ZEH\G/P D(U,HN*P)

where the first inverse limit is over all U-small compact open subgroups H of G.
Fix H and s € Z as above and set @ := [s]N(s7'U). Consider Fréchet-Stein presenta-
tions

D(U, H ¢ P) ~lim S, and D(U, H) ~ lim T,
with noetherian Banach algebras S,, and T,,. Using a version of [5, 3.1.13], the two right
Sp-linear morphisms

Q(U) ®ow) Sn — Q(U) ®ow) I, and Q(U) Qo) Sn — Q(U) o) T

(using the notation of loc.cit.) coming from functoriality are actually isomorphic. Let
Qn = Sp, ®s Q. As in the proof of [5, 3.1.14], the right T,,-linear map

Oq., : (V) ®ow) Qn)®s,Tn — QAU) Qo) (Tr®s,Qn)

given by b, ((w®m) @ r) = (w® 1 ® m)r is an isomorphism. It is compatible in n and
induces an isomorphism

QQ : (Q(U) RPo(u) Q) @ ﬁ(Ua H) i Q(U) Qo(u) (6(U’ H)A @ Q)

D(U,HN*P) D(U,HN*P)
of right 73(U, H)-modules. Next, we may identify canonically
[s](Q(s'U) @os-1t) N(s71U)) and Q(U) Qo) [s]NV (s~ U)

as right ﬁ(U, H N?® P)-modules. Passing to the limit in s € Z, taking the direct sum over
7 and passing finally to the limit over H yields therefore an isomorphism

("ind§(Qx @ N))(U) — (Qx @ ind$ V) (U)

of right 73(U, H)-modules. Tt is compatible with restriction maps and yields the desired
isomorphism of sheaves on X, (7). O
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3.4. Induction and duality. The aim of this subsection is to prove the following the-
orem. Recall from [28, Definition 5.9] the full subcategory C)"g}/lG of Cx/q consisting of

weakly holonomic modules. If Bernstein’s inequality holds in Cx /¢ in the sense of [28]
5.2], then by [28| Definition 5.14], there is a duality functor Dg on C)@G.

Theorem 3.4.1. Assume Bernstein’s inequality holds in Cx,p and Cx/q. Let N € CX Ip-
There is a natural isomorphism in CX e

Proof. Let M = ind5 V. Let d = dim X and denote by "£%4(M) the right G-equivariant
Dx-module on X,,(7), equal to the d-th Ext sheaf of M (denoted by E4M) in [28,
Theorem 4.25/29]). In particular, Dg = Hom(Qx, —) o "€%, with the side-changing
functor Hom(x, )

In view of Thm. | it suffices to construct a bijective morphism of right equivariant
Dx-modules on X, (T)

rEL(M) = T indG("Ep(N)),

compatible with local Fréchet topologies, where " mdg denotes the induction functor for
right modules, as in the preceding subsection. Let U € X,,(7) and let H be a U-small
subgroup of G. Fix a system s, ..., s,,, of representatives for the double cosets in H\ G/ P.
On the one hand,

Extf g ) (M(U), D EBExtDwH) (UH) ® [sJN(s;'U),D(U, H)).
D(U,HN*i P)

Using the proof of [5, Lemma 2.5.3] applied to the morphism ﬁ(U, s"PNH) — 5(U, H),
[30, Lemma 8.4] and the fact that the twisting functor [s;] commutes with Ext groups, we
see that this is isomorphic to

@EX%(UH%P (M(s;'U),D(U,H* N P))[s;] ® DU, H).

D(U,HN% P)

By definition of "£%, the latter module is canonically isomorphic to

DesME O] © DU H) = ((indTELN)(U)

This isomorphism is right ﬁ(U, H)-linear and therefore is compatible with the Fréchet
topologies. Moreover, it is compatible with variation in H. Hence, taking the limit over
all U-small subgroups H of G and recalling from [28, Def. 4.12] that

"ELM)(U) = lm Extf ., (M(U), D(U, H)),
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we obtain a bijective morphism

o

"EGM)(U) — (indE"ER(N))(U).

It is compatible with the restriction maps if V. C U is an affinoid subdomain in X,,(7)
and induces the desired isomorphism "€%4(M) ~ ind% "EL(N). O

3.5. Duality and pushforward. Denote by Hol(Dx) the Dx-modules of minimal di-
mension, cf. [6, 7.2]. Let D denote the classical duality on Hol(Dx). Note that Dx has a
natural G-equivariant structure, so we may speak about G-equivariant Dx-modules. Our
first lemma is well-known, but we could not find a reference.

Lemma 3.5.1. Let R, R’ be two rings and f : R — R’ a ring isomorphism. Let M and
M’ be a module over R and R’ respectively. Let i > 0. Any R-linear map M — M’
induces a right R-linear map Exty (M', R') — Extyh(M, R).

Proof. By functoriality, the map in question induces a R-linear map Exth(M’, R) —
Ext’% (M, R). A projective resolution P, — M’ as R-module remains a projective resolu-
tion of M as R-module. The map of complexes Hompg(P,, R) — Hompg (P,, R'), F — foF
induces a bijection Ext,(M’, R) ~ Ext’, (M’, R'). Combining the inverse of this map with
the first map gives the result. 0

Proposition 3.5.2. If M € Hol(Dx) is G-equivariant, then its dual DM has a natural
G-equivariant structure.

Proof. Let d = dim X, let U C X be an affinoid subdomain and g € G. Applying
to the ring isomorphism ¢g? : D(U) — D(gU), the modules M(U) and M(gU) and the
map g™ : M(U) - M(gU) yields a D(U)-linear map

Exthu) (M(U), D(U)) = Extp,u)(M(gU), D(gU)).
This defines on Ext%x (M, Dx) the structure of a G-equivariant right Dx-module. Apply-

ing the side-changing functor Hom({2x, —) and using the natural G-equivariant structure
on Qx produces a G-equivariant structure on D M. O

Now let ¢ : Y C X be a smooth Zariski closed subvariety. Denote by i, : Cy — Cx
the direct image and by D the duality on C3". Note that Dx has a natural G-equivariant
structure, so we may speak about G-equivariant Dx-modules.

Proposition 3.5.3. The module 7, Oy is self-dual, i.e one has a 73X—1inear isomorphism
Di+OY ~ i+(9y.
If i, Oy is G-equivariant, then so is Di; Oy and the latter isomorphism is G-equivariant.

Proof. Let Byx := 1;Oy. Similarly, let B%}lx ;= 19Oy, where i denotes the classical
push-forward functor from Hol(Dy) to Hol(Dx). Then B%X is self-dual with respect
to the classical duality on Hol(Dx), arguing as [19, 2.6.9]. Since i, commutes with the
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extension functors Ex and Ey, cf. [6l 7.3], and since EyOy ~ Oy, one has Byx ~
EXB%X. Moreover, the extension functor Fx intertwines the dualities on Hol(Dx) and

Cyt cf. [6l, 3.1]. Hence

DBy‘X >~ ExIDdB%p( ~ EXB%HX ~ By‘x.
Now suppose that By x has a G-equivariant structure. The existence of a G-equivariant
structure on DBy |x follows very similarly to [3.5.2 using the G-equivariant structure

{ g23 : g € G}. As we have just seen, the isomorphism DByx ~ By|x comes by extension
from the classical isomorphism [19] 2.7.2]. This makes it possible to verify G-equivariance
by direct inspection. 0

Now assume that Y is G-stable. We then have the G-equivariant push-forward functor
ZE : Cy/G — CX/G-

Proposition 3.5.4. As ﬁx—modules
Resf if(’)y ~ i, Oy,
where the functor Res® forgets the G-equivariant structure.

Proof. We may check this on the basis B for X described in [5, Def. 4.4.1]. Let U € B
with UNY # 0 given by an ideal I C O(U) and choose a corresponding basis 0, ..., 9y
of a free A-Lie lattice £ of T(U), for some affine formal model A C O(U), and let H be
U-good, cf. [5, Lem. 4.4.2]. Let Z = I N A and denote by N the quotient N, (Z)/ZL.
Choose a good chain H, in H for £. Then put

S:=DUNY,H) ~ lim S, with S, := Wy xp, H and W, := U(m"N) g

and

L —

T:=D(U,H) ~lim T, with T, := U, xp, H and U, = U(7"(L)) ;-

Write the coadmissible right S-module N := Qy(UNY) as N = lim N, with finitely
generated right S,-modules. By construction of the direct image iir for right modules,
the coadmissible T-module M := (i§ ,Qy)(U) admits the presentation M = Wm M,
where M,, = N,, ®g, T,,/IT,.. But according to [5, 3.3.6] and its proof, one has

Nn ®Sn Tn/ITn = Nn ®Wn Un/[Una
compatibly in n. Passing to the limit over n yields

(i$O0y)(U) = (Hom(Qx, —) 0§ Qv )(U) = (Hom(Qx, —) 0 i4,y)(U) = i1 Oy (U).

as 5(U)—modules. This isomorphism is compatible with restriction maps relative to the
inclusion of an affinoid subdomain V C U in B and induces the asserted isomorphism

Res{ 10y ~ i, Oy. O
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Before we come to the main result in this subsection, we need an auxiliary result on Ext
groups over crossed product rings. For crossed product rings and their basic properties,
we refer to [26]. Let T'= R G be a crossed product ring and let M be a left T-module.
We will consider the two Ext groups Ext’ (M, R) and Ext}.(M,T) for any i > 0.

Let g € T for some g € G. We may apply to the ring isomorphism R — R,r —
grg ' and the map M — M, m ~ gm, which is linear relative to this isomorphism. This
produces a R-semilinear map

g : Exth(M, R) — Exthh(M, R).
For example, if ¢ = 0 and A € Homg(M, R), then \g € Homg(M, R) is given as m —
g *X\(gm)g. On the other hand, the Ext group Ext’-(M, T) is naturally a right T-module,
which induces an action of g by right multiplication on this group for any g € G. Now
the left-version of [I, Lemma 5.4] gives a canonical isomorphism
Ext’-(M,T) ~ Ext’ (M, R)
as right R-modules.

ssed_prod2| Lemma 3.5.5. Let T'= R * G be a crossed product ring for some group GG and let M be
a left T-module. For any ¢ > 0, the above isomorphism as right R-modules
Ext’. (M, T) ~ Ext’ (M, R)
intertwines the actions of g on both sides, for any g € G.

Proof. Let g € G. By construction of the isomorphism [I, Lemma 5.4] we may use a
projective resolution of the T-module M (which is then also a projective resolution of
M as R-module) to reduce the verification of the intertwining property for g to the case
1 = 0. Next, let us review the construction of the isomorphism

Homy(M,T) ~ Homp(M, R)

as right R-modules from loc.cit. First, Homg(7, R) is a (T, R)-bimodule, where the left
T-module structure is given as (tof)(t) = f(tty) for any to,t € T and f € Homg(T, R).
By tensor-hom adjunction, we have the isomorphism of right R-modules

F : Homg(M, R) — Homy (M, Hompg(7T, R)), A — F\.

Here, the map F\(m) € Homg(T, R), for any m € M, is given as t +— A(tm). Furthermore,
the map
a:Homp(T,R) — T, f > 7' f(g)
geG
is a (T, R)-bimodule isomorphism. Combining F' and « yields the canonical isomorphism

Homy(M,T) ~ Hompg(M, R)

as right R-modules. To see that this latter isomorphism intertwines the g-actions, it suf-
fices to show that both F' and « intertwine the g-actions in a suitable sense. To start with,
Hompg(7', R) has aright g-action, as we have just seen above, whence Homy (M, Homg (T, R))
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has a right g-action through right multiplication. To show that F' intertwines these ac-
tions reduces to show that for fixed m € M, one has F\;(m) = (F,g)(m) as functions on
T. But fort €T,

Fyg(m)(t) = (Ag)(tm) = g~ " A(gtm)g = g~ (Fx(m)(gt))g = (FA(m)g)(t) = (Fxg)(m)(2).

In a final step, we show that « intertwines the g-actions, i.e. a3 = a(f)g. Now Gh = rngh
for some 7, € R, whence h = g~ 'r,gh, which gives

Shea N (f9)(h) = Sheah g f(Gh)g = Yheah g f(ragh)g
= Yheagh [(gh)3

= a(f)g.
O

If Bernstein’s inequality holds in Cx g, then there is the duality functor Dg on C35 G-

Theorem 3.5.6. Assume that Bernstein’s inequality holds in Cx,q. Then if@y is self-
dual, i.e ]D)Gz+(’3Y ~7q Oy.

Proof. Let d = dim X. As in the proof of , we work over the basis B for X described
in [B, Def. 4.4.1]. Let U € B and let H be U-good. We first construct an isomorphism

EXt g, (i$Ox (U), D(U, H)) ~ Extgg(U('on(U),ﬁ(U))

in Frech(H — D(U)), where the H-action on the right-hand side is induced by the given

H-action on i¢Oy(U) and the H-action on ﬁ(U) The choice of U comes with a basis
O1,...,0q4 of a free A-Lie lattice £ of T(U), for some affine formal model A C O(U).
Choose a good chain H, in H for £L. We use the notation developed in the preceding
proof:

—

T:=D(U,H) ~lim T, with T, := U, x5, H and U, = U(7"(£)) ¢
and

with finitely generated T,-modules M,. Note that U := l&ln U, = 5(U) Every M,
is a finitely generated U,-module and according to Proposition , M =lim M, is a
Fréchet-Stein presentation for M, viewed as a coadmissible U-module. Now

Ext}. (M,,T,) ~ Ext{, (M,,U,)

as right (H — U,)-modules, cf. Since everything is compatible with variation in n,
one obtains an isomorphism Ext(M, T) ~ Extf,(M,U) in Frech(H — D(U)), as claimed.
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The isomorphism

EXtS . g, (1§ Oy (U), D(U, H)) = Ext ., (i{ Oy (U), D(U))

is compatible with the restriction maps arising from an inclusion of an affinoid subdomain
V C U in B. We obtain a bijection
TEL(IGOy) ~ "EYRest iF Oy)

in Cx, which is G-equivariant with respect to the induced G-structure on the right-hand
side. Applying the side-changing functor Hom({2x, —) together with [3.5.4] and [3.5.3]
yields a bijection

Dgi¢ Oy ~ D(Resy i¢Oy) ~ Res{ %0y,
which is G-equivariant with respect to the induced G-structure on the right-hand side.
But this means ]D)Gif(’)y ~ if(’)y in Frech(G — Dx). O

3.6. The ring ﬁ(g, P). We now place ourselves in the setting of [4, §6.2]. In particular,
we suppose given an affine algebraic group G of finite type over K and a continuous group
homomorphism G — G(K). We write g = Lie(G) and suppose that the center of g is
trivial.

The functor U (g, —) from [4, 6.2.11] can be evaluated on any closed subgroup H of G}
in particular we have at our disposal the associative K-algebra

Ul(g, P)
which is equal to U (9, H) ®km) K[P] for any choice of compact open subgroup H of P.
As a first basic result, we prove the following double coset decompositions.

Proposition 3.6.1. Suppose that there is an open subgroup Gq in G such that G = Go P
Let Py = GoN P. Let H C G be a compact open subgroup. Then

(a) As (ﬁ(g, H), ﬁ(g, Py))-bimodules, one has the decomposition
Ug,Go)= B Ulg H)zU(g, Ro).

ZcH\Go/Po
(b) As ((7 (g, H), U (g P)) bimodules, one has the decomposition
Ug.G)= €P Ulg.H)ZU(g,P).
ZEH\G/P

Proof. Because of G = Gy P, we may choose a system of representatives S C G, for the
(H, Py)-double cosets in Gy which is, at the same time, a system of representatives for
the (H, P)-double cosets in G. Recall that

—

Ug.Go) = lim  T(L)x = Go

(L,N)eJ(Go)
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where J(Gg) denotes the set of all pairs (£, N), where L is an Gy-stable Lie lattice in g
and N is an open subgroup of (Go), which is normal in Gy. For each pair (£, N), the
group Np := PN N is an open subgroup of (F), which is normal in Fy. Consider a pair
(L, N) with the additional property N C H,. Then for any s € S,

(U(L)x 3y H).5.(T(L)x 3wy Po) = (U(L)x 3y H).5.Py

and so, because of UsegHsPy = Gy, the natural inclusion

(2) jE::(U(L»K'NAff{)S-U](E)K'NA&)}%) ——%l]<£)K'NAIC%
seS

is bijective. On the other hand,
(l]([»}( AN }{).S.EB ::(l]([»}( AN }{) K%%}J([EILS.}([I%]

and

ifZZiE; N]q(;oiz (67(25;;)4A7f{)15%h<31(;0y

Since K[Gy] = @sesK[H].s.K[F], the sum on the left-hand side of formula ({2)) is direct.
Taking inverse limits over the cofinal set of all pairs (£, N) satisfying additionally N C H,
yields the decomposition

A U(g. H).5.0(a, o) = U(g, Go).

seS

This proves (a). Working inside U(g, G) we obtain from this

S Ulg, H).s.0(g,P) = Ulg, H).5.0(g, Po).P = U(g,Go).P = U(g, G).
seS seS
By a similar argument as above, this sum is direct. This gives (b). 0

Proposition 3.6.2. U (g, H) is a Fréchet-Stein algebra for any compact open subgroup
H of P.

Proof. This follows from [4, 6.2.9]. O

3.7. Localization. We now place ourselves in the setting of [3, Theorem 7.4.8]. In par-
ticular, we keep all the hypothesis of the preceding subsection and suppose the following
additional hypothesis. Let Gy be a connected, split semisimple affine algebraic group
scheme over ox and let G = Gy ® K be its generic fibre. We fix a closed smooth Borel
ox-subgroup scheme By of Gy and we set B = By ® K. Let Xg = Go/By, X = G/B and
X = Xen,

Proposition 3.7.1. The algebra ﬁ(g, P) acts on X compatibly with P.
Proof. This follows from [4, 6.4.4]. O
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According to these results, we have the category Cﬁ( oP) of coadmissible U (g, P)-modules
and the localization functor [4, 3.6.8]

Locgj((g’P) :C~

U(g,P) —>Cx/p.

Let Cﬁ( 0.P).0 be the full subcategory of Cﬁ(g P) consisting of modules M satisfying moM = 0
for the maximal ideal my = Z(g) N U(g)g of the center Z(g) of U(g).

Theorem 3.7.2. The functor Locgj((g’P) induces an equivalence of categories

Coi pro — Cx/p.

U(s,P),
A quasi-inverse is given by the global sections functor H°(X, —).

Proof. This follows from [4, 6.4.9]. O

Similarly, given s € G, there is the parabolic subgroup *P = sPs~!

Cs In analogy to [5], 2.2.4] there is a twisting functor
C M — [s]M

and the category
(9:°P)
O@r) ~ Co@ery
where [s]M = {[s]m : m € M} equals M as abelian group and receives an U (g, * P)-action
via the ring isomorphism 51 : U (g,°P) =0 (g, P) which is induced by the conjugation
automorphism g — s 'gs of G.

Lemma 3.7.3. Let s € G and M € Cﬁ(g P) and H a compact open subgroup of GG. There

is a canonical U(g, H)-linear isomorphism

1%

Ug,H) & [s|M = U(g,H)sU(g,P) & M.
U(g,HN3P) Ul(g,P)

Proof. As in the proof of [5, 2.2.10]. The rule a®[s|m — as@m defines a U(g, H)-linear
isomorphism

v UG H) & [s\M —U(g,H)sU(g,P) @ M
U(g,HﬁSP) U(g,P)

whose inverse is given by asb&@m — a®[s]bm. O

Proposition 3.7.4. Let s € G and M € Cﬁ(g P)- The conjugation automorphism s~!

induces a canonical isomorphism in Cx/sp
Loc;]((g’SP)([s]M) = [s]s. Locgj((g’P)(M).
a U

Proof. Let U € X,,(T) and let H be -small subgroup of G. Then

(LocZ® P[] M)(U) =D(U,HN*P) & [s)M

U(g,HNsP)
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and

—

([s]s. LocV@P)(M))(U) = D(s U, H*NP)  ® M.

U(g,H*NP)

The lattes receives its D(U, H N* P)-module structure from the ring isomorphism
5 :D(U,HN P) — D(s U, H* N P)

induced from s~!. Since the latter induces the obvious isomorphism

DU HNP) & UlgH'NP)— D(s U HNP)

U(g,HN3P),s—1

as (D(U, H n* P),U(g, H* N P))-bimodules, it induces a canonical D(U, H N* P)-lincar
isomorphism

~

s7h: (Loc)ﬁ((g’sp) [s]M)(U) — ([s]s. Locﬁ(g’P)(M))(U).

This is compatible with restriction maps and establishes then the required isomorphism

—

Loc?@*P)([s]M) 2 [s]s. Loc”@P) (M), 0

We finally establish a simple compatibility between the functors LOC)U((Q ) and Locg((g ),

Let M € Cp, ) and N € Cp, py and let f: N — M be a continuous ﬁ(g, P)-linear map.

Recall that Loc)ﬁ((gﬂ) (M) is the unique sheaf on X whose restriction to X,,(7") equals the
presheaf P)lé(g’e)(M) [, 3.5.12]. Here,
PIEA (A1) (U) = im D(U,H) & M
— U(a.H)

for U € X,,(T) where, in the inverse limit, H runs over all the U-small subgroups of G
[, 3.5.3]. In this case, H N P runs over a cofinal subset of all the U-small subgroups of
P and we similarly have

PE(Q’P)(N)(U) = <11_5(U, HnN P)A( ® )N-
U(g,HNP

The natural map
N—DU,H) @ M,z— 18f(z)

Ul(g,H)
is U(g, HN P)-linear and extends to a D(U,H N P)-linear map

DU, HNP) ® N-—D(UH) @ M.
U(g,HNP) Ulg,H)

This defines a morphism of sheaves

'Pg(g’P)(N) SN 'P)ﬁ((g’G)(M)
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on X, (7) which extends then to a morphism

(3) Loc(f) : Lock®™ (V) — Lock®? (M)
in Frech(P — Dx).

4. IRREDUCIBILITY OF CERTAIN INDUCED EQUIVARIANT D-MODULES

Let K be a non-Archimedean complete field of mixed characteristic (0, p).

4.1. Some general results from rigid analytic geometry. Our first Lemma is pre-
sumably well-known, but we could not find a reference.

Lemma 4.1.1. Let U be an affinoid variety over K and let Y = V/(I) be a Zariski closed
subset of U, cut out by an ideal I of O(U). Then p € £ (U) lies in the closure Y of Y
in Z(U) if and only if ker(p) contains I.

Proof. We recall from [32 Theorem 4] that p corresponds uniquely to a valuation val(p) =
(p,V) on A := O(U). We write here ker(p) =: p; it is a prime ideal of A, and V is a
certain valuation ring in the field of fractions k, of A/p. Using [5, Lemma 2.1.11(c)], we
see that we have to show that U\Y ¢ p if and only if ker(p) D I.

Suppose that U\Y ¢ p. By definition of ker(p) = p, we have to show that I maps
to zero under the restriction map A — O(V) whenever V € p. Choose a finite set of
generators fi,..., f, such that I = Af; +--- + Af, and define, for each n > 0,

Y, = U/ and 2, = UGG/,

Then for each n > 0, {Y,,,Z,} is an admissible covering of U by special subsets. Since p
is a filter on the admissible open subsets of U, we see that Y,, € p or Z,, € p. However
if Z, € p then U\Y € p because Z,, C U\Y for any n > 0. Since we’re assuming that
U\Y ¢ p, we see that Y,, € p for all n > 0. Now fix i = 1,--- ;7 and consider the norm
|| fill, of fi in the local ring O,, [32, p.6]. By definition, we have || fi||, = %}fgp || fillv, where

the infimum runs over all affinoid subdomains V of U contained in p. Since Y,, € p for all
n >0, we see that || f;|l, <||fillv, = |7"| for all n > 0. This shows that || f;||, = 0 for
all i =1,---,r, and therefore ||f||, = 0 for all f € I. Since ker(p) ={f € A:||fl||, =0},
we conclude that I C ker p.

Conversely, suppose that I C kerp. Then as we saw above, ||f||, = 0 for all f €
I. Suppose for a contradiction that U\Y € p. By [23] Folgerung 1.3], the covering
{U((f;/7™) ) :n >0,5 =1,---,7} of U\Y is admissible. Hence, using [32, page 4,
(p4’)], we see that p must contain U((f;/7")~"!) for some n > 0 and some j = 1,--- 7.
But then f; maps to a unit in O(U((f;/7")~"')). Since the map A — O, factors through
this algebra, we see that f; maps to a unit in O,. But then || f;||, cannot be zero, which
is the required contradiction. O
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Lemma 4.1.2. Let H be a compact p-adic Lie group acting continuously on the affinoid
variety U, and let S and T be two Zariski closed subsets of U such that S € HT. Then
for every irreducible component S’ of S there exists h € H such that S’ C AT, and hence
dimS < dim T.

Proof. Without loss of generality we may assume that S is already irreducible. Hence by
[5, Lemma 2.5.13(b)], O(S) = O(U)/p is an integral domain, and the ideal p of O(U)
of functions vanishing on S is prime. Pick any valuation (p, V') on the field of fractions
of O(S) in the sense of [32, page 4] and let p € £(U) be the corresponding prime filter
given by [32, Theorem 4]. Since S is cut out in U by p = ker(p) by construction, Lemma
tells us that p € S.

Since S C HT by assumption and since H is compact, we can now use [5, Corollary
2.1.16 and Lemma 2.1.11(c)] to see that p € S € HT = HT. Hence we can find h € H
such that p € AT = hT. Using Lemmaagain, we conclude that ker(p) D h-J where J
is the ideal of functions vanishing on T. Hence S = V' (ker(p)) C V(h-J) = hV(J) = hT,
and therefore dimS < dim AT = dim T as required. O

Lemma 4.1.3. Let f : X — Y be a surjective morphism of rigid K-analytic spaces.
Assume that Y admits an admissible open covering by connected affinoids Y;,i € I such
that f~'(Y;) is connected for all i. If Y is connected, then X is connected.

Proof. Assume that Y is connected. Then any Y; can be linked up to any Y, by some
finite chain of Y;s, ie. there are Y;, =Y, Yy, ... Y, =Yy with Y; NY;  # (0. Let
now z,z’ € X. Put y = f(x),y = f(2’) and choose Y; containing y and Y containing y'.
Then pick a chain Y;,, ..., Y;, as above. Let X;, = f~1(Y;,), so that z € X; and 2’ € X,,.
Choose a sequence of points zg = x, 21, 22, ..., Zn_1, 2, = ©’ in X such that z, € X, N X1
for 1 < k <n—1. Since each X}, is connected, one may link up z,_; and z; by a sequence
of connected affinoid opens in Xj. Varying k, this produces a link between = and z’ by
connected affinoid opens in X. Hence X is connected. 0

Proposition 4.1.4. Let H be a compact p-adic Lie group acting continuously on the
affinoid variety U, and let Z be a Zariski closed subset of U. Then

V=U\H-Z

is an admissible open subspace of U: we can find a countable increasing admissible
covering {V,, : n > 0} of V by H-stable affinoid subdomains of U.

Proof. Let A := O(U) and let I C A be an ideal such that Z = V(I). Choose a finite set
of generators f1,..., f.such that = Af;+---+Af,.. Foranyn >0and j =1,...,r, let

20 ={rU:|f@)| <la"l}. Z,=JZY and V,:=U\ H-Z,
j=1

We claim that the H-stable subset V,, of U is an affinoid subdomain of U. To see
this, note that complement of Z¢ in U is the Laurent domain U((f;/m)~1), defined by
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|fj/7"| > 1. Its stabilizer H;,, in H (which coincides with the stabiliser in H of Z9)) is
therefore an open subgroup of H, by continuity of the H-action on U. Let

H, = () Hjn,
j=1
an open subgroup of H, stabilizing each Z{1 and therefore also Z,,. Since H is compact,
we can find finitely many elements h,, 1, ..., hy,,» € H such that

H=hy,H,U---Uhy,,H,.
It follows that

H-Z,= U H-7Z = U Ohn,iHn - ZY) = Oghn,izgk
j=1

j=1i=1 j=1i=1

Passing to complements gives

Vo =U\H-Zy= [ )i U(S5/7") 7).
j=li=1

Since hy,;U((f;/7")™") equals the Laurent domain {z € U : | f;(h, ;)| > |7"|} and since
Laurent domains are stable under finite intersections [I1, Prop. 1.6.14], we recognize V,,
as a Laurent domain in U.

We claim further that given a morphism of affinoids f : W — U with f(W) C V,
there exists n > 0 such that f(W) C V,,. Indeed, for any fixed h € H, and any n > 0,
the same argument as above shows that U\hZ, is a Laurent domain in U. Moreover,

U\nz = | U\nz,
n=0

is an increasing admissible open covering of the Zariski open subspace U\hZ of U, cf.
[23, Folgerung 1.3]. By admissibility [I1, Def. 1.10.4], for each h € H there is n = n(h)
such that

f(W) C U\RZyp.

Now hH,) is an open subset of H containing h. By the compactness of H, there are
therefore hy, ..., h,, € H such that

H = thn(hl) U---u hmHn(hm)'

We set n := miélx n(h;). Now let h € H and choose i such that h € h; H,,). Then

hZ, C hlym,y € hiHymy) - Zninyy = hilinn,)

which means that
H- -7, C hlzn(hl) U---u hmZn(hm).
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Passing to complements yields
f(W) C U\ (hlzn(hl) u---u hmZn(hm)) cCU \ H-7,=V,,

as claimed. We conclude [II, Def. 1.10.4] that the covering {V,, : n > 0} of V is
admissible and that V is an admissible open in U. 0

4.2. Local cohomology of the induced module. We keep all notation from the pre-
ceding subsection. We assume here that (U, H) is small and H is a uniform pro-p group,
with a closed, isolated subgroup J of H. Because (U, H) is small, we can find an affine
H-stable formal model A in O(U), and an H-stable free A-Lie lattice £ in 7 (U). We fix
a good chain (H,) for £ in the sense of [4, Definition 3.3.3]. By shrinking it further, we
may assume that there is an increasing sequence of integers (e,,) such that

H,, = H"" foral m>0.
For each m > 0, we define J,, := J N H,, and introduce the K-Banach algebras
Dy = U@ L)x x5, J and Ry, = UamL)x iz, H.
Using [4, Lemma 3.3.4] we then have
D(U, J) = lim D,, and D(U,H) = lim R,,.

There is a natural map of K-Banach algebras D,, — R,,. Because the group J/J,, is
canonically isomorphic to JH,,/H,,, we will identify D,, with its image in R,,, which is
equal to the sub-crossed product

o —

Dy = U@ L) 3tz JHyp s Ry = U(mm L) 3. H.

Because H is a uniform pro-p group and J is a closed isolated subgroup, we can find
a minimal topological generating set {gi,---,gq} for H such that {g,11, -+, 94} is a
minimal topological generating set for J. Recall [4], §2.2, equation (3)] that v(g) denotes
the image of any g € H in any crossed product that we consider here, such as D,, or R,,.
We define b; := v(g;) — 1 € R,, if 1 <14 < d; then for each a € N? we have the element
b = b1 057 - - by? € Ry,
Let N, :={n e N:n < p}.
Lemma 4.2.1. Let m > 0. Then {b*: a € N7 } is a basis for R, as a right D,,-module.

Proof. Note that {g" ---g* : ky,--- k. € N,,} € H maps to a complete set of coset
representatives for JH,,/H,, in H/H,,. Use [I7, Lemma 7.8]. O

We fix M in Cy/; so that N(U) is a coadmissible D(U, J)-module. Writing
N, = D,, N(U) forall m >0,

D(U,J)
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we then see that
N(U) = lim N,,.
%

If M = ind N denotes the induced module, then by [5, Lemma 2.3.6], we have
M(U)=D(U,H) ® N(U)=1lmR,, ® Ny.
D(U,J) S Dm
We now introduce a Zariski closed subset Z of U and define
V.=U\ H-Z

We fix the countable increasing admissible covering {V,, : n > 0} given by Proposition
until the end of §4.2 For each n > 0, using [2, Lemma 7.6(b)], we can choose
a non-negative integer k, such that V,, is 7% £-admissible. We may also assume that
the k,’s form an increasing sequence. Using [4, Definition 4.3.8], we form the following
K-Banach algebras for each m > k,,:

Dy = (% (7 L) %05, J)(V) = R = (% (7™ L) e 311, H)(V,).

For fixed n and varying m > k,,, these give Fréchet-Stein presentations for 5(Vn, J) and

—_

D(V,,, H)-respectively, by [4, Proposition 4.4.2(a)]:
D(V,,J) 2 lim Dy, and D(V,,J) = lim Ry,

m>kn, m>=kn

Lemma 4.2.2. R,,, = R,, ® Dy, as (R, Dpn)-bimodules if n > 0 and m > k.
Dy,

Proof. Same idea as in the proof of Lemma [4.2.1] O

Let Nypn := Dy @ Ny, for each m > k,,; using Lemma [4.2.2] we then have
Dy,

(4) N(V,)=lim N, and M(V,)= lim R, & Ny,
mgin n&im Dm

Definition 4.2.3. Let m > 0.
(a) Define n(m) := max{n > 0: k, < m}.
(b) Define N, := Ny, pn(m)-
Note that for each m = 0, kym) < m < m 4+ 1 implies that n(m) < n(m + 1). Hence
the N/ form a projective system.

Lemma 4.2.4. The restriction maps N (U) — N (V) and M(U) — M(V) fit into the

following commutative diagrams:

N(U) N(V)  and M(U) M(V)
. . / . o : % !/

aeN?, aeNp,
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Proof. Since {V,, : n > 0} is an admissible covering of V and since N is a sheaf, the
restriction maps induce an isomorphism

N(V) = limN(V,,).
n>0
Applying the first formula in and swapping the order of limits, we have
N (V) =5 limN(V,) =lim lim N,,,, = lim lim N, = lim N/ .
ﬁ;b ﬁgbn&%n %;0n£;%m ;5%
Similarly, using the second formula in (4] together with Lemma we have
MV) = limR, ® N, =li b*® N ..
(V) im Ry, ® Ny, = lim (P b*@ N,

m=0 m m=0 aeNr,
The result follows. O

Theorem 4.2.5. Let H be a uniform pro-p group with closed subgroup J. Suppose that
(U, H) is small. Let Z be a Zariski closed subset of U and let V.= U\HZ. Suppose
that N/ € Cy,; is such that the restriction map N(U) — N(V) is injective, and let

M := ind N. Then the restriction map M(U) — M(V) is injective as well.
Proof. We first deal with the special case where the closed subgroup J is isolated, and we
use Lemma and its notation. So let IC,,, be the kernel of the map N,,, — N/ for any

m > 0. The first diagram in the lemma, together with left-exactness of the projective
limit, implies (h_m K. = 0, since the restriction map N (U) — N (V) is injective by

hypothesis. Define
W,, = @ b® ® IC,,.

aeNT,
By the second diagram in the lemma, the projective limit h£ W, computes the kernel of

the restriction map M(U) — M(V). Hence, it suffices to show that this latter projective
limit vanishes.

To start with, let f,, be the transition map K,,41 — K,,. For each o € N}, C N} .,
the transition map W,,.1 — W,, sends the direct summand b* ® IC,,;1 to b* ® K,, via
the map b* ® f,,. Now let (v(m));m>0 € <ll_m Win. Write

v(m) = Z b* ® v(m)q

aeNr,

with some v(m), € K. Now fix m > 0 and take o € N/ . By the observation above,

fmr1(v(m+ 1)) =v(m)a
and, more generally,

fm+k(U(m + k)ﬁ) = U(m +k— 1)04
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for any k£ > 1. So
(v(m)a, v(m + 1)a, v(M + 2)q, . ..) € iIm K; = 0.
s>m

T
m?

In particular, we have v(m), = 0. This holds for any o« € N/ whence v(m) = 0. This

shows (v(m))m=0 = 0 and <h_m Wy, = 0.

Returning to the general case, we let J = {g € H:g" € J for some n > 0}. Using
[17, Proposition 7.15(i)], we see that J is a closed isolated subgroup of H containing .J as
an open subgroup. Let N := indg./\/’ € Cy,j; then using [4, Theorem B(c)], [5, Lemma
2.3.6] and [2, Corollary 7.4], we see that M is isomorphic to ind? N in Cy /H- Since J is
isolated in H by construction, the special case handled above shows that it is enough to

show that the restriction map A/ (U) — N (V) is injective. Since J has finite index in J,
the left-handed version of [4, Proposition 3.4.10(a)] shows that the natural map
K[J] ® D(U,J)— D(U,J)
K[J]
is an isomorphism. It follows that the maps
K[J] ?]N(U) —~ N(U) and K[J] <}[§]N(V) — N (V)
K[J K[J

are isomorphisms as well. Since K[J] is a free right K[J]-module, the injectivity of
N(U) = N(V) now follows easily from the given injectivity of N'(U) — N (V). O

4.3. The proof of irreducibility. We will work in the following axiomatic setting.

Hypothesis 4.3.1.

e X is a connected, smooth, rigid K-analytic variety,

e (G is a compact p-adic Lie group acting continuously on X,
e Y is a connected Zariski closed subset of X,

e 7Z C Y is a Zariski closed subset of Y with dimZ < dimY,
o NV e C;({/P where P := Gy is the stabilizer of Y in G,

o M= 1nd1G;N S CX/G-
Definition 4.3.2. We define ¥ := X\GZ.
Lemma 4.3.3. ¥ is an admissible open subset of X.

Proof. Let {X;}icr be an admissible affinoid covering of X. For the admissibility of ¥, it
suffices, according to property (G;) of the G-topology on X, (in the terminology of [12]
Definition 9.3.1/4(i)]) to show that each X; NX is admissible open in X.

Let H; be an X;-small open subgroup of Gx,. According to Lemma below, one
has X; N X = X;\H;Zx, g, for some Zariski-closed Zx, i, in X;. By Proposition [4.1.4]
Xi\H;Zx, u, is admissible open in X;, hence in X. O
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Lemma 4.3.4. Let U be an affinoid subdomain of X and let H be an open subgroup of
Guy. Then there exists a Zariski closed subset Zy g of U such that UNGZ = HZy i
and dim Zy g < dimZ, and therefore UNY = U\HZp u.

Proof. Let si,...,s, be the representatives for the (H,Gz)-double cosets in G. Then
G =[] HsiGz, so GZ = || Hs;Z. Since U is H-stable, one finds
i=1 i=1

UNGZ=|JUNHsZ=|JH(UNsZ) = HZyn,

i=1 i=1

where Zy g := |J U N s;Z is Zariski-closed in U with dim Zy gz < dim Z. O
i=1

Next, we introduce the following conditions on our data (X,G,Y,Z,N):

Hypothesis 4.3.5.

(A) (X,Y,G) satisfies the LSC from [5], Definition 2.5.6],
B) U ¢YNhY CGZ,

g,h€G
gY#hY

(C) Y NX is connected,
(D) N is locally simple, i.e. Ny is a simple object in Cy/p, whenever U € X,,(T) is
connected and UN'Y is connected and non-empty,

(E) Y C Supp(A), and
(F) N is weakly holonomic in the sense of [28, Def. 5.9]: N € C)Vz}/lp.

Recall from [4, Definition 3.4.6(a)] that X,,(7) denotes the set of affinoid subdomains
U of X such that 7(U) admits a free A-Lie lattice for some affine formal model A in
O(U).

Our goal will be to prove Theorem [4.3.14 below. We assume, until the end of §4.3] that
(X, G, Y, Z) satisfy Conditions (A),(B) and (C), and that N satisfies Conditions (D,E,F).

Lemma 4.3.6. The G-orbit of X N'Y in X is regular.

Proof. According to [5, Definition 1.2.2], we have to show that any two distinct G-
translates of ¥ N'Y in ¥ have empty intersection. Because ¥ = X\GZ is G-stable,
we have g(XNY) =3XNgY for any g € G. Suppose that g(XNY) # h(XNY) for some
g,h € G. Then XN gY # X NAY and hence gY # hY. Condition (B) now implies that
gY NRY C GZ and hence g(XNY)NA(ENY)=XN(GgYNRY)CEXENGZ=0. O

Lemma 4.3.7. N5 is a simple object in Cx/p.

Proof. Suppose that N is a subobject of Njs in Cx/p. Fix a 3,(7T)-covering U of X
consisting of connected affinoid subdomains. By applying [5, Lemma 2.5.16], we may
refine the covering to assume that each UN'Y is either connected or empty for U € U.
Now we define

Uy ={UelU:Ny=0} and Uy:={UeclU:Ny=Nu}
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We restrict the admissible covering U to Y N X. This gives us an admissible covering
U :={UNY :Uecl}of YN (possibly containing the empty set), together with its
subsets U] and U} which are defined analogously. We will now show that

U =ujuty, and | Jupn| Juy=0.

Suppose that U € U\U;. Then 0 # ./\/"U < Ny implies that UNY # ) because
N e C;g /P by assumption. Hence U NY is connected by the first paragraph of the proof.
By Lemma {4.3.3] U lies in £,,(7) C X, (7). By condition (D), Ny is a simple object in
Cu/py, SO |’U = Ny and hence U € U,. We have shown that U = U; UlU,, and hence a
fortiori, U' = U] UU,.

Now take U; € U, and U, € Uy and suppose for a contradiction that Uy N Uy, NY # 0.
By applying [5, Lemma 2.5.16] again, we can choose a non-empty connected affinoid
subdomain Uj of U; NU, such that U3NY is also connected and non-empty. Then ./\/'|U3

is simple and hence non-zero by condition (D). Hence N|y,nu, is also non-zero. However
IIU1 = 0 because U; € U; and J\/"’U2 = MU2 because Uy € Uy, so

0= ('/\/'|/LH)|U10U2 = N/|U10U2 = ( \/Ug)|U1F1U2 = (MU2)|U10U2 = N|U1QU2

and we have a contradiction. Hence (JU; N |JUy = 0 as required. Note that this also
implies that U; N} is either empty, or is equal to {(}.

Now U"\{0} is still an admissible covering of Y N, and &'\ {0} is the disjoint union of
UN{D} and UL\ {D}. Since Y NX is connected by condition (C), we deduce that U; = {0}
or Uy = {0} by [11, p. 108, equation (x)].

Suppose that U] = {(0}. This means that for every U € U, ./\/'|’U = 0 implies that
UNY = 0. In other words, whenever UNY # 0 with U € U, we have Ny # 0.
Condition (D) then shows that /\/'|’U = Ny for every such U, since then UNY is also
connected by the first paragraph of the proof. On the other hand, if UNY = ) with
U € U, then J\/'|’U < My =050 /\/"’U = Ny. Hence N/ = N, as U is an admissible
covering of 3.

Suppose that Uy = {0}. This means that for every U € U, Njy; = Ny implies that
UNY = 0. In other words, whenever UNY # §) with U € U, we have Ny # Nu.
Condition (D) then shows that MlU = 0 for every such U, since then UNY is also
connected by the first paragraph of the proof. Since ./\/'|’U = 0 whenever UNY = 0, we
see that N/ = 0 as U is an admissible covering of X. O

Lemma 4.3.8. Y N Y is dense in Y in the classical topology on X.

Proof. Let U be an affinoid subdomain of X containing y € Y\(Y N¥) = Y N GZ.
It will be enough to show that U N (Y NX) # (), so suppose for a contradiction that
UNY C YNGZ. Choose an open subgroup H of Gy. Then by Lemma[t.3.4, UNGZ C
HZy p for some Zariski closed subset Zy g of U with dimZy g < dimZ, and hence
UNY CUNGZ C HZy x. Now Lemma [£.1.2) implies that dimUNY < dim Zy 5.
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By Hypothesis £.3.1], Y is connected, so dimY = dimU N'Y and therefore dimY <
dim Z. This contradicts Hypothesis [4.3.1} ([l

Corollary 4.3.9. We have Gynx = P.

Proof. P stabilises Y by Hypothesis [£.3.1] so it also stabilises Y N'Y because X is G-
stable. Hence P < Gyny. On the other hand, if g € G preserves Y N, then since G acts

continuously on X, g must preserve the closure of Y N X in X in the classical topology.
Hence gY CY by Lemma[4.3.8 and g € P = Gy. O

Proposition 4.3.10. M|y is a simple object in Cy/q.

Proof. We will first verify the conditions of the Induction Equivalence [5, Corollary 2.5.11],
applied to the action of G on ¥ and to its Zariski closed subspace Y N X.

(a) By Corollary we have Gynx, = P, which is co-compact in G by Hypothesis
4311

(b) This is Lemma [4.3.6]

(c) By Condition (A), (X,Y,G) satisfies the LSC. Since ¥ is admissible open in X
by Lemma and since it is G-stable, (3,Y N X, G) satisfies the LSC by [5, Lemma
2.5.19].

Hence by [5, Corollary 2.5.11], ind% : CY B~ cs (émz) is an equivalence of categories.

Since Ny is a simple object in Cx;/p by Lemma 4.3.7, we conclude that My, 2 ind%(Nsx)
is a simple object in Cy /¢ as required. 0

Lemma 4.3.11. We have H2,(N) = 0.

Proof. Tt is enough to show that H,(N)u = 0 for every affinoid subdomain U of X. By
applying [5, Lemma 2.5.16], we may assume that U is connected and UNY is connected.
If UNY is empty, then because N € C;g /P by Hypothesis , Nu = 0 and there is
nothing to show. So we may assume further that UN'Y is non-empty.

By Lemma [£.3.4] there is a Zariski closed subset Z' := Zy ¢, of U such that UNGZ =
GuZ' and dimZ' < dimZ. Then

HezN)(U) = Hinaz(Nu) = Heyz (Mu) = ker (N (U) = N(U\GuZ))
and it will be enough to show that this is zero. By Lemma [£.1.4] there is an increasing
admissible affinoid covering (V,),, of U\GuZ’ such that each V,, is Gy-stable. Let
pn  N(U) = N(V,) denote the restriction map and suppose for a contradiction that
ker p, = N(U) for all n > 0.
Fix a U-small subgroup H of Gy. Using [4, Theorem B(c)], the natural map
D(V,, H) & N(U) = N(V,)
D(U,H)

is an isomorphism; then since the image of N (U) in N (V,,) is zero by assumption, this
means that A/(V,,) = 0 for all n > 0. In this case, Nju\gyz = 0. Now, by Lemma
applied with H = Gy, S=UNY and T = Z, we have UNY ¢ GuZ' because as Y
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is connected and UNY # (), we have dim(UNY) =dimY > dimZ > dimZ’. Choose
y € (UNY)\GuZ; then on the one hand, the stalk N, is non-zero by Condition (E),
and on the other hand it must be zero because y € U\GyZ' and Njy\gyz = 0. This
contradiction shows that ker p,, # N (U) for some n > 0.

Now, since V,, is Gy-stable, the restriction map p, : N(U) — N(V,,) is ﬁ(U, H)-
linear, and hence a fortiori 73(U, H N P)-linear. Since Ny is a simple object in Cy,p,
by Condition (D), we deduce from [4, Theorem B(c)] that the coadmissible 73(U, HNP)-
module N (U) has no non-zero, proper, closed 5(U, H N P)-submodules that are also
Py-stable. Since ker p,, a proper, closed ﬁ(U, HNP)-submodule of N'(U) which is also Py-
stable, we deduce that ker p, = 0. Then for any m > n, we also have ker p,, C ker p,, =0

since V,, C V,,,. Finally, as U\GyZ' = |J V,,, using [5, Corollary 2.1.5] we see that

H2z(N)(U) = ker (N(U) = N(U\GyZ')) = ﬁ ker(pm : N(U) - N(V,,))=0. O

Lemma 4.3.12. We have H2, (M) = 0.

Proof. This is again a local statement, so we fix an affinoid subdomain U of X and a U-
small open subgroup H of Gy. By shrinking H further, we assume that H is uniform pro-p.
By Lemma , there is a Zariski closed subset Z' := Zy g of U such that UNGZ = HZ'
and dimZ’ < dim Z. It will be enough to show that H2,(M)(U) = H}z (My) = 0.

Recall the Mackey decomposition for M|y = (ind% Ay from [5, Lemma 2.3.7]: choose
a set {sy, - ,s,} of representatives for the (H, P)-double cosets in G, for each i =

-1
1,---,m write H; := H N s;Ps; " and set N; = Resj}fsi [si]si+N to be the restriction to
H; of the s;-twist [s;]s; .N € Cx Jeips—t Of N; then there is a natural isomorphism in Cy, g

m

My = P indj (Nijw)-

i=1

Fixing i = 1,--- ,m, it will therefore be enough to show that H%Z/(indgi (NMju)) = 0.
Using [0, Corollary 2.1.5], we see that

Hyz (Nju) = ker (V;(U) — N;(U\HZ')) = ker (N (s;'U) = N(s; '(U\HZ"))) .

Since s; H(U\HZ') = s; '(U\GZ) = s; "U\GZ, applying [5, Corollary 2.1.5] again shows
4.3.11

that HYz (Nju) = Hoz(N)(s;'U). This last group is zero by Lemma . Finally we
can apply Theorem m to see that HY,, (indjy (Vju)) = 0 as required. O

Corollary 4.3.13. Assume that N satisfies Conditions (D,E), and suppose that M’ is a
subobject of M = ind% N in Cx ¢ such that My = 0. Then M’ = 0.
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Proof. Lemma |4.3.12] implies that Hg,(M') < Heyz(M) = 0. Hence for any affinoid
subdomain U of X, using Lemma [4.3.3[ and [5], Corollary 2.1.5] we have

0 =H%y (M) (U) = ker (M'(U) = M'(U\GZ)).
However M'(U\GZ) = M'(UNX) = 0 by assumption, so M'(U) = 0 as required. [

Theorem 4.3.14. Suppose that (X, G,Y, Z) satisfy Conditions (A,B,C), that Bernstein’s
inequality holds in Cx ¢ and Cx,p and that A" and D(N) satisfy Conditions (D,E,F). Then

M = ind$ N is a simple object in Cx/q-

Remark: If A satisfies (E,F), then D(N') automatically satisfies (E,F), since duality
preserves the support and weak holonomicity, so the point is condition (D).

Proof. Let M’ be a non-zero subobject of M in Cx,s; we have to show that M’ =
M. Since N is weakly holonomic by Condition (F), we know by [28, Prop. 6.20] that
M = indgj\/' is also weakly holonomic, and by Theorem , that we have a natural
isomorphism

D(M) = ind% D(N)

in Cx/q, if Bernstein’s inequality holds in Cx,¢ and Cx,p. Therefore by [28, Prop. 5.11]
all terms in the short exact sequence

0O—-M->M->M' =0

are weakly holonomic as well. Applying the exact and contravariant duality functor D
from [28, Def. 5.14] gives us another short exact sequence in Cx /q:

0— DWM") - DM) - DM — 0.
Restricting this sequence to X gives the short exact sequence in Cy /¢
0 — DM5) = D(Mg) = D(Mig) — 0.

Now My, is simple in Cs/¢ by Proposition (4.3.10; hence D(Mx) is also simple. Also,
D( "E) # 0 because MTE # 0 by Corollary |4.3.13 and Do D = 1C§?}c by [28 Prop.
5.15]. Hence D(M")s = D(My;) = 0. However D(N) also satisfies Conditions (D,E) by

assumption, so Corollary 4.3.13| applied to the subobject D(M”) of D(M) = indG D(N)
shows that D(M") = 0. Hence M"” =0 and M = M’ as required. O

4.4. The set of self-intersections. In this subsection, we give a criterion to verify the
hypothesis (B) appearing in the list of conditions of the preceding subsection.

Let X be a rigid analytic variety and G a p-adic Lie group (possibly non-compact)
acting continuously on X. Let Y a Zariski closed subset of X. Recall from the
stabilizer Gy ={g € G:gY C Y} of Y in G.

Lemma 4.4.1. Suppose that X is quasi-compact. Then ¢gY =Y for every g € Gv.
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Proof. Suppose that ¢gY C Y for some g € G. Then the descending chain Y O ¢gY D
¢*Y D ---must terminate: this is clear when X is affinoid as O(X) is then a Noetherian
ring, and in general it follows from the quasi-compactness of X. Hence ¢"*'Y = ¢"Y for
sufficiently large n; applying ¢~ then gives gY =Y as claimed. 0

Let S be a set of representatives for the double cosets Gy \ G /Gy containing 1 € G
and define S* := S\{1}. We write

R, =YNovY forevery vesS and Z:= U R,.
vES*

Remark 4.4.2. Z is a Zariski closed subset of X whenever Gy \ G / Gy is finite.
Proposition 4.4.3. Suppose that X is quasi-compact. Then
U Yngy=0cvz
9€G\Gy
In particular, Y has a regular G-orbit in X if and only if Z = ().

Proof. Given g € G\ Gy, there is a unique v € S* such that g € GyvGy. Write
g = gq1vgo for some g1, g2 € Gy. The quasi-compactness assumption on X implies that
@Y =Y = ¢ Y by Lemma[4.4.1} Hence for every g € G\ Gy we have

YNgY=YNgvgepY=g(YNvY)=gnR,CGyZ
which gives the forward inclusion. Using Lemma [4.4.1] again, if h € Gy and w € S* then
MR, =h(YNwY)=YnhoYC (] YngY,
geG\Gy

and the reverse inclusion follows. The last sentence is clear. O
Corollary 4.4.4. Suppose that X is quasi-compact. Then
U gYnhy =Gz

g,h€eG
gY#hY

Proof. For the forward inclusion, let g,h € G such that gY # hY. Then g~'h ¢ Gy by
Lemma 4.4.1 By Proposition [4.4.3] we have
gYNhY =g(YNg'hY)CG. |J YnNgY=G.(Gy.Z,) =(GGy)Z=GZ.
g'€G\Gy
Since Z is clearly contained in the left-hand side, which is moreover G-stable, the reverse

inclusion quickly follows. 0

For future applications, we single out the following observation, which is a direct con-
sequence of Corollary [4.4.4]
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Corollary 4.4.5. Suppose that X is quasi-compact, and that there is a compact subgroup
Go C GG such that GZ = GyZ. Then

U gYNnhY C Gz
g,h€Gy
gY#RY
To conclude, we observe a certain stability of these constructions under inverse images
with respect to equivariant surjections. To make this precise, let X be another rigid
analytic space with continuous G-action and let

f:X—X

be a G-equivariant morphism. Let Y be a Zariski closed subset of X. Denote by S, R,
(for v € S) and Z the above notions for the pair Y C X.

Proposition 4.4.6. Let Y = f~1(Y). Suppose that f is surjective. Then Gy = Gy. If
S =5, then Z = f*1~(Z). If, additionally, GZ = G©Z in X for some compact subgroup
Gy C G, then also GZ = GyZ in X.

Proof. The equality Gy = Gy follows from Lemma M(b) Taking S = S, one computes
for v € S that

R, =Y NoY = fYY)nof (YY) =LY nvY)=fYR,).
Since f~! commutes with arbitrary unions, this implies Z = f~1(Z). If GZ = GoZ, then
GZ=GfN(Z) = [ (GZ) = fH(GoZ) = Gof ' (Z) = GyZ. O

5. IRREDUCIBLE EQUIVARIANT D-MODULES FOR SCHUBERT VARIETIES

Let K be a non-Archimedean complete field of mixed characteristic (0,p). We give ex-
amples related to classical Schubert varieties, where the axiomatic approach for irreducible
induced modules of the previous section applies.

5.1. Schubert varieties and their G-orbits. Our basic reference for the following is
[22, chap. 13]. In this subsection, K could be any field. Let G be a split connected
reductive K-group G, with its natural G-action given by conjugating the Borel subgroups
of G. Let G be a p-adic Lie group with a continuous homomorphism G — G(K). Let
T C B be a Borel subgroup in G containing a split maximal torus T. Let W be the
Weyl group of the pair (G, T). The choice of B determines a set of simple reflections
s; and a corresponding length function for W. The B-orbits C,, in the full flag variety
G/B can be indexed by the Weyl elements w € W and their Zariski closures X,, give rise
to the well-known Schubert varieties. Each X, has the structure of a normal projective
K-variety, usually with singularities.

Let B C P be a parabolic subgroup of G. Let Wp C W be the parabolic subgroup
of W associated to P and let W¥ C W be the system of minimal representatives (i.e
representatives of minimal length) for the cosets in W/Wp. Denote by w,p € Wp the
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longest element in Wp. The products of the form ww,p with w € W¥ are then the
maximal representatives (i.e. representatives of maximal length) of the cosets in W/Wp.
The Schubert varieties in the partial flag variety G /P are the Zariski closures X, p of the
B-orbits BwP/P for w € WF. There is the surjective G-equivariant morphism

f:G/B— G/P, gB~ gP.

Proposition 5.1.1. (a) One has f~(Xyp) = Xy, , for any w e WF.
(b) Xyuw,, is smooth if and only if X,p is smooth.
(¢) Xyw, has a regular G-orbit in G/P if and only if X,p has a regular G-orbit in
G/P.

Proof. Part (a) is [22, 13.8(2)] which moreover says that the induced map X, , — Xup
is a locally trivial fibration with fiber P/B. Since P/B is smooth, this implies (b). Finally,
(c) follows from (a) using Lemma [3.1.1](c). O

Corollary 5.1.2. (a) Xy, = P/B is smooth.
(b) The G-orbit of Xy, , is regular in G/B.
(c) the Schubert curves X, have regular G-orbits in G/B.

Proof. The above proposition applied to w = 1 gives (a) and (b). Part (c) is the special
case where P is the minimal parabolic associated with s;. 0

Remark 5.1.3. We do not know whether the varieties P/B for the standard parabolics
B C P appearing in the corollary exhaust all smooth Schubert varieties with regular
G-orbit in X.

Example 5.1.4. We discuss some cases of low dimension for the group G = GL,,. Let
G = GL,(K). Identify W with the symmetric group S,. Let Gr(d,n) be the Grass-
mannian of d-dimensional linear subspaces in affine n-space. Let eq,...,e, denote the
standard basis of the latter space and denote by P = P(d,n — d) C G the parabolic sub-
group equal to the stabilizer of the subspace spanned by ey,...,e;. Then Wp identifies
to the subgroup Sy x S,_4 of S,,. Moreover, Gr(d,n) = G/P and we have the surjective
morphism f : X — Gr(d, n).

In the special case d = 1 the Grassmannian Gr(1,7n) is the projective space P ' of
dimension n — 1. The system W¥ identifies with the set {1,...,n} via w — w(1) and the
Schubert varieties of Gr(1,n) are all smooth and form a flag of linear subspaces

XlPCXQPC"'CXn[P
with Xjp ~ P} " for j € {1,...,n}.

The first case of a non-regular G-orbit for these X;p appears in the case n = 3 and
Jj =2, i.e. the Schubert divisor Xyp does not have a regular G-orbit in Gr(1,3). In fact,

Xop = {[71 : 79 : 23] € P% | 23 = 0} C P%
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and its stabilizer Gx,, in GL3 equals therefore the minimal standard parabolic P(2,1) of
all matrices of the form

11 A2 13
G271 Q22 A3
0 0 a3 3

in GL3. Note that our parabolic P = IP(1,2) from the beginning equals the ”other”
minimal standard parabolic of GL3. To compute the intersection obstruction we let
g € GLs \ P(2,1). Assume g32 # 0 and choose a point x = [z1 : 23 : 0] € Xop with
—2o/x1 = g31/932. Then gs121 + gsere = 0 which means gr € Xop N gXop. In other
words, Xop N gXop # (). The case where g3; # 0 works similarly. Denoting by P(2,1) the
L-rational points of P(2,1), we therefore have

ZXQ]P’/GXQ]P’ = G/P(Qv 1)'
In particular, Xop does not have a regular G-orbit in Gr(1, 3).

Still in the case of GLg, let s; = (i,i 4+ 1) and ¢ = 159 = (123) € S3. The Schubert
divisor X, of X equals the inverse image f~!(Xyp) under the map f : X — Gr(1,3). In
particular,

ZXC/GXC = ZXZ]}”/G§§2]}’> = G/P(27 1)
according to and hence X. does not have a regular G-orbit in X.

5.2. Schubert varieties in projective space. In this subsection, we explain how Schu-
bert varieties in projective space gives rise to irreducible equivariant D-modules. We let
G = GL,(L), where L is a finite extension of Q, contained in K, and consider P?{_l’an
with its induced G-action. We consider the analytic Schubert varieties

XycXyC---C X,
with Xj = (Xﬂp)an. Let P] = Stabg(X]‘).
Theorem 5.2.1. Fix j and write P := P;. Let i : X; < Px "™ denote the closed em-
bedding. Let N := £ Ox, € C;EE_I,M/P
K

sheaf Ox;. Then the induced module M := ind$ AV is an irreducible object in CIP?(A,M /G

be the P-equivariant pushforward of the structure

By the equivariant Kashiwara Theorem, [5, Theorem B|, we know that A is an irre-

ducible object in ;53,173,, P If the G-orbit of X; is regular in P”K_l’an, then the induction

equivalence, Theore?n [3.2.1], applies directly, and shows that M is an irreducible object
in C]P;L(_l,an s This is for example the case when 57 = 1 or j = n. However, our above
example in the case n = 3 and j = 2 shows that this is not always the case. Instead, we
will apply Theorem [£.3.14] Because of these remarks, we may and will suppose in the
following that 2 < j <n — 1.

We denote by s; = (j,7 +1) € W the j-th elementary transposition. Let Gy =
GL,(0or) and Py = PN Ggy. Theorem will in fact give a stronger result, namely the
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irreducibilty of Resg0 M in the category CP?(_LM JGo- According to Proposition |3.2.4] we
have Res$, M ~ indgg(Resgo N).
For simplicity, we will continue to write A instead of Resgo./\/ in the following. Let

S C W be a finite set of representatives containing 1 for the double cosets P\ G / P.

Note that the transposition s; does not stabilize X;. Thus we may and will suppose that
s; € §. Write S* = §'\ {1}. Recall from the Zariski closed subsets R, := X; NvX;

and
YARES U R,

vES*

of P75 We will apply Theorem [4.3.14] to the data
(X = Pr;(il’an, Go, Xj, Zj,N).

In the following, we will verify the axioms (A,B,C,D,E,F) appearing in Theorem (4.3.14]

Since Py ™" is separated and X is irreducible and quasi-compact, [5, Corollary 2.5.18]
implies that the triple (P "™, X, Gy) satisfies the LSC, whence axiom (A). The verifi-
cation of (B) and (C) relies on the following lemma.

Lemma 5.2.2.

(a) For every v € S* there is w = w(v) € W and m = m(v) with 1 < m < j, such
that “P,, = wP,w™"! equals the stabilizer of R,,.
(b) We have GZ; = GyZ,.

Proof. (a) For each r = 1,--- n let p, be the coordinate function on ]P’}?l’an vanishing
on the r-th homogeneous coordinate. Then X; = V(pn,pn-1,...,pj+1) and therefore
VX = V(pon)s - - - Do+1))- Let I, :={n,...,j+1}U{v(n),...,v(j + 1)}, so that

RU = Xj N UX]‘ = ﬂ V(pz)
Z’GI’U

Since v € S*, the set R, is properly contained in X;. Now I, is just some subset of
{1,--+ ,n} withn—j < |,| < 2(n—7), so we can find some m(v) < j with |I,| = n—m(v).
Then we can find some w € W such that

w(l,) ={n,...,m(v) + 1}.

Hence wR, = X,;,(,), and therefore me(U)w_l equals the stabilizer of R, in G.

(b) Using (a), we see that GoR, C GoX,_; for any v € S*, so that GyZ; C GpX;_.
But if v = s;, then I, = {n,---,j}, and hence R, = X,_; and GoZ; = GoX,_;. By the
Iwasawa decomposition G = GoP;j_, whence GZ; = GX,;_1 = GoX,;_; = GoZ;. [

Now (B) follows from Lemma [5.2.2(b) together with and Corollary 4.4.5, Furthermore,
Y =P\ GoZy = P\ GX .
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It is rather clear that X; N GX;_; equals the set H of all L-rational hyperplanes in

—1
X; ~ Pi-*" whence

SNX; ~ Pt A
HeH
This Drinfeld space is well-known to be connected, whence (C).

Note that Bernstein’s inequality holds in C]P;L{—l,an /G, and CP'rIL{—l,an /py» Since P75 has
good reduction, cf. [28, Cor. 5.8].

We start the verification of the remaining axioms (D,E,F) from with the observa-
tion, cf. Theorem [3.5.6] that N ~ D(N). Now let U € X,,(T) be connected with UNX;
connected and non-empty. Let Py be the stabilizer of U N X in P. By the local nature
of the equivariant pushforward, we have

~ ;fu
Nu ~ iy’ Ovunx;,

where 7y denotes the closed immersion of U N X, into U. Now U N X is connected, so
Ounx, is a simple object in Cunx,/p, by [3, Proposition 7.5.1(2)]. Hence Ny is a simple
object in Cy,p, by [B; Theorem BJ, giving axiom (D) for V.

It is clear that X; = Supp(N), whence (E). Finally, again by the compatibilty of
equivariant push-forward with duality, N € C]Pr;l,an /P is weakly holonomic, whence (F).

This completes the proof of Theorem [5.2.1]

5.3. Some cases for the full flag variety. Let L be a finite extension of @, contained
in K and let G = G (L) for a connected reductive algebraic group G, defined over L. We
suppose that G := G, x K is K-split and adopt all the notation from 5.1 for the K-group
G. In particular, T C B denotes a Borel subgroup in G containing a split maximal torus
T and W denotes the Weyl group of the pair (G, T).

Let X = (G/B)*. For a Schubert variety i : X,, C X denote by Z,, the Zariski closed
subset of X from § [4.4] corresponding to a finite set of representatives for Gx, \ G/ Gx,, .
We abbreviate P, := Gx,, in the following.

Theorem 5.3.1. Let w € W. Suppose the following three conditions.
(a) GZ, = GoZ,, with Gy C G some compact open subgroup such that G = Gy P,,.
(b) X, \ GZ,, is connected.
(c¢) X, is smooth.

Let NV := if“’ Ox, € C))((;’Pw be the P,-equivariant pushforward of the structure sheaf Ox,, .

Then the induced module M := indgw N is an irreducible object in Cx ¢.

Proof. One applies Theorem to the data (X, Go, Xy, Zy, N). Theorem will
in fact give a stronger result, namely the irreducibilty of Resg0 M in the category Cx /Go.
According to Proposition we have Resg, M =~ indggﬁGO(ResﬁszO N).

Since X is separated and X,, is irreducible (by [I5, Theorem 2.3.1]) and quasi-compact,
[5, Corollary 2.5.18] implies that the triple (X, X,,, Go) satisfies the LSC, whence axiom
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(A). Axiom (B) follows from hypothesis (a) in view of Corollary Axiom (C) is
hypothesis (b). Since G is assumed to be K-split, the algebraic flag variety X has a
smooth model over og, whence X has good reduction. Therefore, Bernstein’s inequality
holds in Cx/g, and Cx/p,na,- The verification of the remaining axioms (D,E,F) is now as
in the case of projective space. 0

We recall from Proposition that X,, has a regular G-orbit if and only if Z,, = 0.
In this case, conditions (a) and (b) of the theorem are empty.

For a Schubert variety X,p in some partial flag variety (G/P)**, denote by Z,p the
Zariski closed subset of (G/P)*" from corresponding to a finite set of repesentatives
for Gx,, \ G/ Gx,,.

Corollary 5.3.2. Let w € W be a maximal representative in W for the cosets modulo
Wp for some parabolic subgroup B C P, i.e. w = vw,p for some v € WF. Suppose the
following three conditions.

(a) GZ,p = GoZ,p with Gy C G some compact open subgroup such that G = G P,,.
(b) X,p \ GZ,p is connected.
(¢) X,p is smooth.

Let N := ii” Ox, € C§7Pw. Then M = indgw N is an irreducible object in Cx -

Proof. This follows from Theorem [5.3.1] Indeed, if f* : (G/B)™ — (G/P)™ denotes the
projection, then X,, = (f*)~}(X,p). Hence condition (a) of the Theorem follows from
Proposition , which, in particular, implies that Z,, = (f*)~Y(Z,p). So f restricts
to a surjective morphism

h: Xw \ sz — va \ GZvP-

Since f* is a Zariski locally trivial fibration with fiber (P/B)*", there is an admissible
covering of X,p \ GZ,p by connected affinoid opens U trivializing the covering. In par-
ticular, h~1(U) ~ U x (P/B)* is connected, since (P/B)*" is geometrically connected.
Since X, p \ GZ,p is connected by hypothesis, Lemma implies that X, \ GZ, is

connected. This gives condition (b) of the theorem. O

Remark 5.3.3. Theorem and/or Corollary cover, in particular, closed and
open Schubert varieties, the Schubert curves X (for simple reflections s € W) or Schubert
varieties of the form X, , for some parabolic B C IP. In all these case, the G-orbit of
X, is regular (so that Z,, = (). In the case G = GL,, all Schubert varieties arising as
inverse images from Schuberts in projective space are covered. All Schubert varieties for
the groups G = GLy or GL3 are covered.

Remark 5.3.4. We briefly comment on the two conditions (a), (b) and (c¢) of Theorem
[5.3.1] Condition (a) does not hold for all Schubert varieties X,, in X = (G/B)™. A first
case in which it fails, appears in the case G = GL4 and X,, equal to the inverse image of
the unique Schubert divisor in the analytic Grassmannian variety Gr(2,4)*". This X,, is
non-smooth, so condition (c) also fails in this case. The latter reflects the well-known fact,
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that a general Schubert variety has singularities. One may imagine to eventually remove
condition (c) by replacing the push-forward of Ox, by some intermediate extension of
Oc¢, where C, equals the Bruhat cell indexed by w € W. However, a rigid analytic
theory of intermediate extensions is currently not available. As for condition (b), we are
not aware of any counterexamples where this condition fails.

6. LOCALLY ANALYTIC REPRESENTATIONS FROM THE BGG CATEGORY O

In this and the next section, we give some applications to the locally analytic represen-
tation theory of p-adic groups.

Let L/Q, be a finite field extension. Let G, be a connected semisimple algebraic group
over L. Let L C K be a complete non-archimedean extension field, which is a splitting

field for G;. Set G := G x;, K and let g be the Lie algebra of G.

Let P;, C G, be a parabolic subgroup. Let T; C L, C Py, be a maximal split torus and
a Levi subgroup respectively. Let T, P, G be the groups of L-rational points of Ty, Py, G
respectively.

Let T,IL, P be the base change from L to K of the groups T, L, P respectively. Let
t,[,p be the K-Lie algebras of T, L, P respectively.

Denote by X the algebraic flag variety of the split K-group G = G x K, with its
natural G-action given by conjugating the Borel subgroups of G. Let X = X*" be the
rigid analytification of X, with its induced G-action.

6.1. The Orlik-Strauch functor. We fix a Borel subgroup B C G of G such that
TCBCP

and let b be the Lie algebra of B. Let ® = ®(G, T) be the roots of G relative to T. Let
W be the corresponding Weyl group. Let p be half the sum over the positive roots ®*
with respect the Borel T C B.

The algebras of K-valued locally L-analytic distributions on P and G are denoted by
D(P,K) and D(G, K) respectively. Since the center of g vanishes, we have the isomor-

~

phism D(G, K) ~ U(g,G) from [3], 6.5.1].

By the Iwasawa decomposition, we find a maximal compact subgroup Gy of G such
that G = G()P, cf. [137 35] Let PO = GO NnP.

Let D(g, P) respectively D(g, Py) be the smallest K-subalgebras of D(G, K') containing
the rings U(g) and D(P, K) respectively the rings U(g) and D(Fy, K). Recall the rings

[A](g, Py) and ﬁ(g, P) from subsection .

Lemma 6.1.1. The multiplication map

U(g,Py) © D(g,P)— Ulg, P)
D(g7PU)
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~

is an isomorphism as (U(g, P), D(g, P))-bimodules.

Proof. The map in question sits in the composite of maps

U(g, ) ® K[P|—U(g,P) © D(g,P)— Ulg,P).
K[Po] D(g,Po)

The composite is bijective and the first map is surjective. Hence all maps in the sequence
are bijective. O

In the case where G, is L-split, Orlik-Strauch introduce in [24] a certain locally analytic
lift OF of the parabolic BGG category OF associated to b C p C g. The definition of
OF and certain basic properties which we will use, extend without difficulty to our case
of a K-split group Gz. The objects in O are pairs M = (M, 1) where M € OF and
T: P — Autg (M) is a locally analytic locally finite P-representation lifting the given p-
representation and compatible with the given g-representation on M. The category OF is
abelian and any object is of finite length. There is a forgetful functor OF — O, M ~» M.

Denote by Ofﬂg the full subcategory of O formed by objects M such that in the weight
decomposition M = @y My, all occuring weights A lie in the lattice X*(T) C t¥. The
subcategory Oglg is closed under extensions in OF. A simple object L(A) € OF lies in Oglg
if and only if A € X*(T) [25], 2.7]. There is a fully faithful embedding

or, c oFf

alg

whose composition with the forgetful functor equals the inclusion Oszlg C OF. The point
is the following: let P = LU be the Levi decomposition induced by our choice of L.
Denote by u the Lie algebra of the unipotent group U. Then the algebraic T-action on an
object M € Oglg lifts uniquely to an algebraic IL-action on each finite dimensional simple
[-constituent of M [25], 2.8]. The u-action on M lifts uniquely to an algebraic U-action via
the exponential map [25, 3.2]. The two actions combine into a P-action whence M € OF.

Any object from OF can be naturally regarded as a D(g, P)-module. Our basic object
of study is the functor

fg(—)l3op—>CD(G,K), M~ DG K) @ M

D(g,P)

which was introduced by Orlik-Strauch [24], 25]. Tt is exact [24, 3.7] and faithful [24]
3.7.6] and preserves irreducibility (assuming p > 2 or p > 3 for certain root systems, cf.
[24], Assumption 4.1]) in an appropriate sense [24], 4.3].

We will later on restrict to subcategories, where the infinitesimal character is trivial,
in the following sense. We denote by Of the subcategory of OF formed by objects M
satisfying myM = 0 for the maximal ideal

mo = Z(g) N U(g)g
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of the center Z(g) of U(g). Similarly, we have O} and Ozlg,(]' The simple objects in

Oy = Of are known to be of the form L(—w(p) — p) for w € W [19, 12.2].

Lemma 6.1.2. One has
O(I)D =0F = (93.

alg,0
Proof. Let w € W. It is well-known [22, 11.1.5] that w(p) — p € Z®. Hence

—w(p) — p=—(w(p) —p) —2p € Z& € X*(T).

All other weights of L(—w(p) — p) are given by —w(p) — p— pu where p is a sum of positive
roots, hence lie in X*(T). It follows Oy = Qg 0. This implies Of = OF, , and

alg,
OF =0 N0y = O N Oy = O°

alg,0°

O

6.2. Compatibility with geometric induction I. We keep all notation from the pre-
ceding subsection. Lemma provides an inclusion D(g, P) C U(g, P). Given M € OF
we may form the U(g, P)-module

—

M:=U(g,P) ® M.
D(g,P)

Proposition 6.2.1. One has ﬂ € Cﬁ(g P) and this yields a functor
OF = Coopyy M~ M.

Proof. We show that M is U (g, P)-coadmissible. This can be proved along the lines of
[29, 4.3] and is solely based on the fact that an object from OF can be regarded as a

D(g, P)-module which is finitely generated over U(g). As a U (g, Py)-module we have

— o~

M=U(g,Fy) ® M by Lemmal|6.1.1, Let py,...,p, be a set of topological generators
D(vao)

for Py and let my, ..., m4 be a set of U(g)-module generators for M. The ﬁ(g, Py)-module

U (9, P) ®u(g) M is finitely presented and hence coadmissible by [30, Corollary 3.4v]. Let
IC be the U(g, Fy)-submodule generated by the finitely many elements p; @ m; — 1 ® p;m;.
Then K is coadmissible by [30, Corollary 3.4iv] and it suffices to see that K equals the

kernel of the natural surjection U(g, Py) @y M — M. Letp-a:= Ad(p)(z) denote the
adjoint action of p € G on an element x € U(g); then
pi @ xmy; — 1@ pim; = pix @ mj — p; - x @ pymy = (p; - o) (pi @ myj — 1 ® pymy)

so K contains all elements of the form p; ® m — 1 ® p;m with m € M. Because D(g, Fp)
is generated as a K-algebra by U(g) and D(P, K), it remains to see that each element
of the form 6 ® m — 1 ® om with § € D(Py, K) also belongs to K. For any m € M, the



compatible

46 KONSTANTIN ARDAKOV AND TOBIAS SCHMIDT

map D(Fy) — ﬁ(g, Fy) ®@ug) M, 6 — 6 ®m —1® dm is continuous. Hence, if 6, — ¢ is
a convergent sequence in D(P,, K), then for any m € M

(0p@m—1®d,m) = (0®@m—1& dm)

is a convergent sequence in the coadmissible module U (9, ) ®u(g) M. Since K is

closed in ﬁ(g, Fy) ®ug M by [30, Lemma 3.6], we are therefore reduced to show that
dp®m—1® 6§, m € K for all n. Since the abstract group ring K[F,)] is dense in D(Fp, K)
we may assume 0, € K[FP] and then, by linearity, even 9,, € P,. Since the p; topologically

generate the group F,, the assertion follows. This shows that ﬂ is U (g, P)-coadmissible.
It is clear that its formation is functorial in M. O

We recall the full subcategory Cs 0.P).0 of Cﬁ( oP) formed by those objects, which are
annihilated by my. According to ﬁ we have the localization functor

LOC)U((Q’P) :Cn

Gerro — Cx/p

and we may thus form the localization Loc)U((g’P) (ﬂ), whenever mgM = 0.

On the other hand, using the identification between D(G, K) and U(g, G) we may in this
case localize the D(G, K)-module 7§ (M) = D(G,K) ® M and form LOC)UC(Q’G) (FS(M)).
D(g,P)
In order to compare the two sheaves on X, we note that there is a canonical map

M — FS(M) =D(G,K) ® M, mw1om.
D(g,P)

Proposition 6.2.2. Let M € Of'. The canonical map M — F5 (M)’ induces an isomor-
phism

indf(Lock®" (M) = Lock ) (FE (M)

in Cx /¢ which is natural in M. In particular, the diagram of functors

Y

P
@5 Coe.K)0
Locg(g’P) o(/—\)l jLocQ(G’K)
CX/P mdC > CX/G

P

is commutative up to natural isomorphism.
Proof. The canonical map M — FS(M)' extends to a continuous U (g, P)-linear map

far: M — FS(MY,a@m v 1(a) ®m.
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Here, ¢+ denotes the inclusion ﬁ(g, P) C ﬁ(g, G) = D(G, K). As in the formula (3]) above,
this gives a morphism

Loc(fa) : Locl®P) (M) —s LocZ®D(FS(MY)

in Frech(P — Dx). Applying Proposition to Loc(fy) results in a morphism

de(LocX(g M) — LOCX C(FE(M))

in Cx /¢ which is natural in M, as required.

In the rest of the proof we will show that this morphism is an isomorphism. We argue

locally. Let N = Loc)ﬁ((g’P) (M) and M = Locg(g’G) (FS(M)'). Let U € X,,(T) and let H
be a U-small subgroup of G contained in GGg. Choose a system of representatives S for
the (H, P)-double cosets in G. By [B, 2.3.6/7], there is a canonical isomorphism

ind% (N @DUH ®  N,(U)

in C5y g Where Ny = Res«p[s]s.N and [s]s, is the twisting functor Cx,p — Cx/sp
from [0, 2.2.4]. On the other hand, there is the canonical isomorphism [4, 3.5.6]

By Lemma we have

D(H,K)sU(g,P) © M=DHK) ® [s|M

U(a,P) U(s,HNP)

and so, using the double coset decomposition from Proposition |3.6.1],

FE(M) =~ D(G,K)ﬁ(@@ M
g

= (@sESD]_LK)SU(g’P))A@ M

U

= @sGSD(H7K)SU(97P) 2

g
~ Dues DI K) @ [sIM
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in CD(H,K)- It follows that
M(U) ~ D(U,H) & FEMY
. D(H,K)
~ D(U,H) ®@ (@susDHK) ® [s]M)

D(H,K) Ul(g,HNS P)

~ @,sDUH) ® [s|]M

U(g,HNsP)

~ @..sDUH) & ((Loci®[s]a)(U))

D(U,HNS P)

where

(Lock® Ps|M)(U) = DU, H(¥ P) & [s|M.

U(g,HN* P)
By Proposition
Lock @ P s M ~ [s]s, Loc ™" M = [s]s, N/
and so we arrive at the isomorphism

MU)~PDUH) & N(U)~indZ(N)(U).

scS D(U,HNSP)

Tracing through the definitions, one checks that it is induced from the morphism of sheaves
in question indIGp (N) = M. The proof of the proposition is complete. O

In the following we aim at finding a simpler description of the left-vertical arrow
Loc)U((g’P) o(/—\) O — Cx/p
from the diagram of , which avoids the use of the auxiliary ring U (g, P).

6.3. Extensions for g-modules. Recall the extension functor from [27]

E, - U(g)—mod — U(g)—mod, M ~ M := U(g) @y (g M.

Denote by OP the essential image under E; of the parabolic BGG category OF (denoted
by OF in [27]). The following proposition summarizes some basic properties.

Proposition 6.3.1.
(a) The functor Ej is exact and faithful.
(b) If M is a finitely generated U(g)-module, then Mis U (g)-coadmissible.
(c) E, induces an equivalence of categories OF =, Or.
(d) OF C Cﬁ(g) is closed under passage to submodules and quotients.

Proof. Part (a) follows from [29, Prop. 3.6] and [6, Theorem 3.1]. Finitely presented
modules are coadmissible, whence (b). Part (c) is [27, Theorem 4.3.1] and part (d) is [27,
Lem. 3.6.4]. O
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If M € OF, then the canonical map ¢ : (7(9) — ﬁ(g, P) induces a canonical ﬁ(g)—linear
map

— —_

M=U(g) ® M—>ﬂ:ﬁ(g,P) ® M, z@m—i(z)m.
U(g) D(g,P)

Source and target are coadmissible modules over U (g) and U (g, P) respectively, accord-
ing to [6.3.1] and |6.2.1} and hence, carry their canonical topologies.

Proposition 6.3.2.

(a) The map (7( ) — U(g7 P) is a continuous injection.
(b) The map M —s ]\/[ is a continuous bijection for any M € OF.

Proof. The map in question factors through the map U (g) — U (g, Py) and it suffices to
establish the claim for the latter map. B/utihis latt/erinap equals the projective limit over
all pairs (£, N) of the canonical maps U(L)x — U(L)x Xy Py where L is a Py-stable Lie
lattice in g and N is an open subgroup of (F,), which is normal in F,. Each of these maps

is a continuous injection, by definition of the crossed products U(L)x xy Py [4, 2.2.3/4]
and their topology [4, 3.4.8 and 6.2. 9] This shows (a).

As a U(g, Py)-module, we have M = U(g, Py) ®p(g,p,) M and this holds as topological
modules with respect to the canonical topology on the right-hand side. In order to prove
the statement of the lemma, we may therefore replace the group P by F,. We start with
the continuity. Our map in question factors through the map

M=U@ ® M—U(g,P) ® M, z®mw i(z)®m.
Ul(g) Ulg)

As observed in the proof of the U (g, Py)-module ﬂ equals the quotient of the finitely
presented U (g, Po)-module U(g, Py) ®u(g) M by a coadmissible submodule. Its canonical
topology equals therefore the quotient topology. It therefore suffices to establish the
continuity of the map M — U(g, ) Qu(g) M. The U(g)-module M is finitely presented
and its canonical topology can therefore be defined as the quotient topology with respect
to a finite presentation as U (g)-module. Using the very same presentation to define the
canonical topology of the finitely presented U (g, Py)-module U (9, P) ®ug) M, we are

therefore reduced to show the continuity of the map U (g)%" — U (g, Po)®" induced by .
This follows from part (a).
For the bijectivity, it suffices to see that the analogous map

fM—U@gPR) ® M

D(97P0)

is bijective. By construction, the morphism f equals the projective limit over all pairs
(L, N) of the morphisms

—

fﬁN U(E) M—)(U(E)KNNPQ) ® M

U(G) D(g,P0)
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where £ is a Pp-stable Lie lattice in g and N is an open subgroup of (Fp), which is
normal in F. It suffices to see that each map f, y is bijective. Each map f. n is visibly
surjective. For the injectivity, we construct an explicit left inverse map for f. y, following

—

the argument in [29, Lem. 4.6]. We observe that U(L)x ® M has a natural Py-action
Ulg)
given by p.(x®@m) := Ad(p)(x) ® pm. On the one hand, this Py-action is compatible with

the crossed product structure and yields a U(L)k xy Po-action, i.e. a map

— — —

K U(g) U(g)

which we write as A@ (u®m) — Ax(u®@m), for A € U(L)x Xy FPo,u € U(L) kg, m € M. We
denote the restriction of this action to the ring D(g, Py) via the natural homomorphism

—

D(g, Py) — U(L)kx Xn Py by the same symbol. Precomposing with the map induced by

M —UL)x ® M,m+— 1®m yields a map
U(s)

fon  U(L)k xn Py) @M — UL)x U@(@) M,
g
given by A@ m — A% (1 ® m). Note that § x (1®@m) = 1 ®@ dm if § € D(g, Fp).
Indeed, D(g, Fp) is generated by U(g) and D(FP, K) and the group ring K[P,] is dense
in D(Py, K). The claim thus follows by continuity of the actions on the Banach module

o —

U(L)x ® M. Using this, one computes that
U(g)

FonAd@m) = (A8) * (1@m) =A*(0x(1@m)) =A*(1®m) = fr (A ®dm)

for \ € m Xy Py,0 € D(Py, K),m € M. We see that fg}\, factors into a map

o — o —

fin ULk xyPR) ® M-—UL)x © M.
D(a. ) Ulg)

This is the required left inverse map (as our notation suggests). To check the identity
fﬁv o fe.n = id, it suffices to consider elements of the form 1 @ m for m € M, since both

—

maps fz_}v and fr y are U(L)g-linear - where it is obvious. O

We recall at this point the localization equivalence for the full subcategory Cﬁ( 0,07
consisting of objects M € Cﬁ(g) with mgM = 0.

Theorem 6.3.3. The functor Locgj((g) induces an equivalence of categories

A quasi-inverse is given by the global sections functor H°(X, —).

Proof. This is announced in [2, Theorem E] and follows from [4, 6.4.9]. O
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6.4. Compatibility with geometric induction II. Let M € OF. There is the com-
posed morphism

M—M— LocU(g PY(M)

which is U(g)-linear and whose target is a Dx-module. It therefore induces a Dx-linear
morphism

Locx(g)(M) — LocX ©2) (M)

which is natural in M.

Proposition 6.4.1. Let M € OF. The morphism
Locx(g)(M) e LOCU(g P

is an isomorphism.

Proof. The map M — ﬂ induces a morphism of presheaves on X,,(7)

£+ PR () — PR D).
Given an affinoid U € X,,(7) we have
PXT (L)) = im DU H) & M
<_ O(e.H)

where, in the inverse limit, H runs over all the U-small subgroups of P. Given a H-stable
affine formal model A of A = O(U), we have

DUH) ® M= lim (UL)xxyH) © M
U(g.H) A U (g,H)
(L,N)ET(H)

where Z(H) denotes the set of all A-trivialising pairs, i.e. the set of pairs (£, N), where
L is an H-stable A-Lie lattice in Derg(A) and N is an open subgroup of H, which is
normal in H [4], 3.3.1]. Moreover, the canonical topology on left-hand side of this equality

(which is a coadmissible 73(U, H)-module) equals the projective limit topology. The map
f(U) is continuous in the canonical topologies of source and target. Moreover, f(U) is
the projective limit of maps

FU)ew:UL)x ® M — (U(L)xxy H) @ M.
U(g) U(g,H)
Each of the maps f(U). y is visibly surjective. The injectivity follows by constructing
an explicit left inverse, very similar to the proof of [6.3.2(b). Passing to the limit, we see
that f(U) is bijective. This proves the proposition. O

Ul(g)

Let us define Locy ~ to be the composite of the Beilinson-Bernstein localization functor

Locg(G) : coh(U(g)o) — coh(Dx)
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from [7], followed by rigid analytification [2.2.3]

p* : coh(Dx) — coh(Dx).
Recall the extension functor Ex from [2.2]

Theorem 6.4.2. The functor Fx o Loc)U((g), restricted to the category O, takes values
in Cx,p. The resulting diagram of functors

FE(-Y

P P

Oq Cpe.K)0

EXOLOC)Lé(wl LLOCQ(G’K)
CX/P T) C'X/G

P

is commutative up to natural isomorphism.

Proof. Let M € Of. One has
Ex o LOC)U((Q)(M) = Dx Qug) M = Loc)ﬁ((g)(]\A/[) ~ Locg(g’P) (ﬂ)

by contracting tensor products and by Proposition [6.4.1} In particular, this object lies
in Cx/p, so that its geometric induction indp(—) is well-defined. Now Proposition m
implies the commutativity of the diagram appearing in the theorem. 0

7. IRREDUCIBILITY RESULTS

We keep all the notations from the preceding section.

7.1. The support of irreducible representations. As before, let W be the Weyl group
of (G, T). Let X,, € X be an algebraic Schubert variety associated with some w € W.
Suppose that the parabolic P equals the stabilizer in G of X,,. Let X, be the associated
rigid-analytic variety to X,. As usual, for a subset S C X, we denote by S its closure in
the Huber space Z(X).

Lemma 7.1.1. The quotient space G/P is compact.
Proof. One may apply [10, Prop. 9.3], since L is locally compact. O
Lemma 7.1.2. We have GX,, = GX,, i.e. the G-orbit of X,, is closed in 2 (X).

Proof. Because GX,, is a closed and G-stable subset of #(X) which contains X,,, it also
contains GX,. For the reverse inclusion it suffices to show that GX,, is closed. The
subset X,, of X is stabilized by P ¢ G. Hence X,, and X,, are stabilized by P. Now G /P
is compact by Lemma , so if H is any open compact subgroup of G then H\G/P
is finite by [5, 2.2.1]. Choose g1,...,gm € G such that G = Hg;PU --- U Hg,, P; then
GX, = U, HgX, is a finite union of the sets Hg;X,, = ¢;H%X,, which are closed by
[5, 2.1.15], and is therefore itself closed. O
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As before, let O be the classical BGG category relative to b C g and consider the
irreducible module L,, := L(—w(p) — p) € Op. Since P stabilizes X,,, one has L, € O
for p = Lie(PP).

Proposition 7.1.3. One has
Supp Ex(p* L) = X
for any w € W.

Proof. Let L, = Lock™(Ly). It is well-known that Supp £, = X,, [19, 12.3.2]. Then
Lemma and Corollary imply

Supp Ex(p* L) = ﬁ_l(Xw) = Xy
for the canonical map p: Z(X) — X. O
Lemma 7.1.4. We have G Supp N C Suppindi N C G'Supp NV for all N € Cx/p.

Proof. Recall the map ay : N — indIGD/\/' from . Using the proof of [5, Lemma
2.5.3] together with the standard argument that shows that a faithfully-flat ring map is
universally injective [31], Tag 05CK]| we see that o, is injective on spaces of local sections.
Therefore it is also injective on stalks, which implies

SuppN  C  SuppindGN.

Since the set on the right hand side is clearly G-stable, we obtain the first inclusion.
For the second inclusion, let U € X,,(7) be such that (G SuppN) N U is empty. Then
Supp N N GU = ( as well, so N(s'U) = 0 for all s € G. We can now conclude from [5),
2.2.12] that (ind% N)(U) = 0 for every such U. Now if € Suppind% N but z does not
lie in the closure of G Supp NV, then we can find an open neighbourhood U of z such that
(G'SuppN) N U is empty. Then (ind% N, # 0 but (ind% N)(U) = 0 by the above — a
contradiction. So z € G Supp N as required. O

Theorem 7.1.5. Supp LOCQ(G’K) (FS(Ly)") = GX,.
Proof. Let L,, = Locg(g)(Lw). According to Theorem the statement amounts to
Suppind$ o Ex (p* L) = GX,.
According to Proposition we have
Supp Ex (0" L) = X
Applying Lemma [7.1.4] we see that
GX, C SuppindGoEx(p*L,) C GX,
But the right-hand side equals GX,, by Lemma, . 0J
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Example 7.1.6. We discuss the two extreme cases w = w, and w = 1. In the first
case, the module L,, = L(0) equals the trivial g-representation and P = G. Then
FS(L,) equals the trivial one-dimensional G-representation. One has X,,, = X and so
GX,, = P(X).

In the second case, the module L; = L(—2p) equals the antidominant Verma module
M(—2p) and P is a minimal parabolic. If K = L, then F5(L,,) equals the principal series
G-representation ind%(2p) induced from the algebraic character 2p of the maximal torus
T. Moreover, X; = B/B C G/B = X is the base point determined by B and GX; = X(L)
equals the set of L-rational points of X, viewed as a subset of Z(X).

7.2. Geometric proofs of irreducibility. We keep the notation from the preceding
subsection.

Proposition 7.2.1. Let w € W and £, = Lock @ (Ly).
(a) The coadmissible U (g)-module L, is irreducible.

(b) The coadmissible Dx-module Loc;]((g)(zw) is irreducible.
(c) Let P C G be a parabolic subgroup with L, € OF. Then Ex(p*L,) is an
irreducible object in Cx/p.

Proof. Part (a) follows from the equivalence of categories [6.3.1] This implies (b) by the

localization equivalence LOC)U((Q), cf. 16.3.3] Finally, (c) follows from (b), since

Ex(p*Ly) = Ex o Locg((g)(Lw) = ﬁx ® L, = LOC)U((Q)(EU,)
Ul(g)

as 5X—modules. O

Let P, C G be a parabolic subgroup which is mazimal for L,, in the sense of Orlik-
Stauch’s [25, Definition 5.2]. Letting p,, = Lie(P,) ® K, this means L,, € O but
L,, ¢ O% for any parabolic p,, C q strictly containing p,,. Note that L, € OP for some
p = Lie(PP), implies that £, is P-equivariant, whence P stabilizes X,,. In particular, the
stabilizer of X, in G equals P,.

In the main theorem [25, Theorem 5.3] Orlik-Strauch show that
Vi = F5 (Ly)

is an irreducible locally analytic G-representation provided that (H1) K = L, ie. G = Gy,
is L-split, and (H2) that p > 2 if the root system of G has irreducible components of
type B, C' or Fy, and p > 3 if the root system has irreducible components of type GS.
Their argument relies on the delicate calculation of explicit formulae for the action of
certain nilpotent generators on highest weight modules of the BGG category O, cf. [25]
Appendix].
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We deduce the irreducibility of V,, in a geometric way that does not need the two hy-
potheses (H1) and (H2), whenever the geometric conditions (a), (b) and (c) from Theorem
are satisfied for the analytic Schubert variety X,,.

Theorem 7.2.2. Let w € W. Suppose the following three conditions.
(a) GZ,, = GoZ,, with Gy C G some compact open subgroup such that G = Gy P,,.
(b) X, \ GZ,, is connected.
(c) X, is smooth.

The locally analytic G-representation Ff; (L,,) is irreducible.

Proof. By the localization equivalence |3.7.2|it suffices to check that LOCQ(G’K) (F§ (Lw))
is irreducible in Cx,g. According to 0.4.2)
LOC)D((G’K) (F5 (Ly)") ~ind$ oBx(p*Ly,)

in Cx/c. Let i : X,, = X be the inclusion. Note that p*L,, = i¢Ox,, where i denotes
the classical push-forward from Hol(Dx,) to Hol(Dx), compare Proposition and

its proof. Since ¢ commutes with Fx, and Fx, we have Ex(p*L,) = i1Ox,. Now
Res;» it Ox, ~i,0x,, as Dx-modules by Proposition . This implies
N = ZEMOXUJ = Ex(p*ﬁw)

as objects in Cx,,/p,. But indIGDw N is irreducible in Cx ¢ by Theorem O
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