Modelltheorie Übungsblatt 1

Sei $(I; \leq)$ eine lineare Ordnung. Wir nennen eine Familie $(\mathcal{A}_i)_{i \in I}$ von \mathcal{L} -Strukturen eine Kette, falls für alle $i, j \in I$ gilt:

$$i \leq j \Longrightarrow \mathcal{A}_i \leq \mathcal{A}_i$$
.

Eine Kette $(A_i)_{i \in I}$ heißt *elementar*, falls für alle $i \leq j$ die Struktur A_i eine elementare Unterstruktur von A_j ist.

Aufgabe 1. Sei $(A_i)_{i\in I}$ eine Kette von \mathcal{L} -Strukturen. Für jedes $i\in I$ sei A_i die Grundmenge von A_i . Wir setzen $A:=\bigcup_{i\in I}A_i$. Zeigen Sie:

- a) A ist das Universum einer eindeutig bestimmten \mathcal{L} -Struktur \mathcal{A} , für die jedes \mathcal{A}_i Unterstruktur von \mathcal{A} ist;
- b) Wenn $(A_i)_{i\in I}$ eine elementare Kette ist, dann ist jedes A_i eine elementare Unterstruktur von A.

Aufgabe 2. Es sei $(I; \leq)$ eine beliebige lineare Ordnung. Zeigen Sie mittels des Kompaktheitssatzes, dass es eine elementare Erweiterung $\mathcal{M} \succ (\mathbb{N}; \leq)$ gibt, sodass \mathcal{M} eine Unterstruktur enthält, welche isomorph zu $(I; \leq)$ ist.

Aufgabe 3. Es sei I eine nichtleere Menge und \mathcal{U} ein Ultrafilter auf I.

a) Zeigen Sie den Satz von Łoś: Ist $(\mathcal{M}_i : i \in I)$ eine Familie von \mathcal{L} -Strukturen und $\phi(\bar{x})$ eine \mathcal{L} -Formel, dann gilt für $\bar{a} = \lim_{i \to \mathcal{U}} \bar{a}_i \in \prod_{i \to \mathcal{U}} \mathcal{M}_i$:

$$\prod_{i \to \mathcal{U}} \mathcal{M}_i \models \phi(\bar{a}) \iff \{i \in I : \mathcal{M}_i \models \phi(\bar{a}_i)\} \in \mathcal{U}.$$

b) Es sei \mathcal{M} eine \mathcal{L} -Struktur. Zeigen Sie, dass die diagonale Einbettung

$$\mathcal{M} \hookrightarrow \mathcal{M}^{\mathcal{U}}$$

eine elementare Einbettung ist.

Eine Klasse C von \mathcal{L} -Strukturen heißt *elementar*, falls es eine Menge T von \mathcal{L} -Aussagen gibt, sodass $C = \{\mathcal{M} : \mathcal{M} \models T\}$.

Aufgabe 4. Zeigen Sie, dass eine Klasse \mathcal{C} von \mathcal{L} -Strukturen genau dann elementar ist, wenn sie abgeschlossen unter elementarer Äquivalenz und Ultraprodukten ist.

Hinweis: Erinnern Sie sich an den Beweis des Kompaktheitssatzes mittels Ultraprodukten.

Abgabe bis Donnerstag, den 17. Oktober, 10:00 Uhr, Briefkasten 161. Die Übungsblätter sollen zu zweit bearbeitet und abgegeben werden. Website: https://wwwmath.uni-muenster.de/u/baysm/logikII/