Modelltheorie Übungsblatt 2

Es sei K ein Körper. Wir betrachten K-Vektorräume als Strukturen in der Sprache $\mathcal{L}_{K\text{-VR}} = \{0, +, -, \mu_k\}_{k \in K}$, wobei jedes μ_k ein 1-stelliges Funktionssymbol ist (und die Multiplikation mit k darstellen soll). Die Theorie $T_{K\text{-VR}}$ der K-Vektorräume besteht aus

- den Axiomen für abelsche Gruppen,
- $\bullet \ \forall v, w \ \mu_k(v+w) = \mu_k(v) + \mu_k(w),$
- $\forall v \; \mu_{k_1+k_2}(v) = \mu_{k_1}(v) + \mu_{k_2}(v),$
- $\forall v \; \mu_{k_1 k_2}(v) = \mu_{k_1}(\mu_{k_2}(v)),$
- $\forall v \; \mu_1(v) = v$

für alle k, k_1, k_2 aus K.

Aufgabe 1. Zeigen Sie:

- a) Die Theorie der unendlichen K-Vektorräume hat Quantorenelimination und ist vollständig;
- b) Folgern Sie, dass die Theorie der divisiblen torsionsfreien abelschen Gruppen (in der Sprache $\mathcal{L}_{ab} = \{0, +, -\}$) Quantorenelimination hat und vollständig ist. Hinweis: Denken Sie an Q-Vektorräume.

Es sei $\mathcal{L}_R = \{R\}$ die Sprache, die nur ein zweistelliges Relationssymbol R enthält. Die Theorie $T_{\rm ZG}$ des Zufallsgraphen besteht aus den Aussagen:

- R ist symmetrisch und irreflexiv;
- Für je zwei disjunkte endliche Teilmengen X und Y existiert ein Element z, welches mit allen $x \in X$ in Relation (bzgl. R) steht, jedoch mit keinem $y \in Y$.

Aufgabe 2.

- a) Schreiben Sie T_{ZG} explizit als eine Menge von \mathcal{L}_R -Aussagen und geben Sie einen direkten Beweis dafür, dass jedes Modell von T_{ZG} unendlich ist.
- b) Zeigen Sie, dass die Theorie des Zufallsgraphen Quantorenelimination hat und vollständig ist. Für den Beweis der Vollständigkeit dürfen Sie annehmen, dass $T_{\rm ZG}$ konsistent ist.

Eine Theorie T heißt $streng \ minimal$, falls für jedes Modell $\mathcal{M} \models T$ jede definierbare Teilmenge $X \subseteq \mathcal{M}$ entweder endlich oder koendlich ist.

Aufgabe 3. Zeigen Sie:

- a) Die Theorie der algebraisch abgeschlossenen Körper ist streng minimal;
- b) Es sei T eine streng minimale Theorie, $\mathcal{M} \models T$, $\phi(x, \bar{y})$ eine Formel und $(\bar{b}_i)_{i \in I}$ eine Familie von Parametern aus \mathcal{M} . Wenn die Menge $\phi(\mathcal{M}, \bar{b}_i)$ für jedes $i \in I$ endlich ist, dann gibt es eine natürliche Zahl k, sodass jede dieser Mengen höchstens k Elemente hat.

Eine Theorie T heißt modellvollständig, falls für alle Modelle $\mathcal{M}, \mathcal{N} \models T$ gilt:

$$\mathcal{M} < \mathcal{N} \implies \mathcal{M} \prec \mathcal{N}.$$

Aufgabe 4.

- a) Zeigen Sie, dass jede Theorie mit Quantorenelimination auch modellvollständig ist.
- b) Es sei $X \subseteq \mathbb{R}$ in \mathcal{L}_{ab} mit Parametern aus \mathbb{Q} definierbar. Zeigen Sie: Wenn $X \cap \mathbb{Q}$ endlich ist, dann auch X.