Modelltheorie Übungsblatt 3

Aufgabe 1. Es sei G eine einfache Gruppe und $H \leq G$ eine elementare Unterstruktur bezüglich der Sprache $\mathcal{L}_{gp} = \{1, \cdot, ^{-1}\}$. Zeigen Sie, dass H eine einfache Gruppe ist. Folgern Sie, dass jede unendliche einfache Gruppe eine einfache Untergruppe von Kardinalität \aleph_0 besitzt.

Hinweis: Eine Gruppe ist genau dann einfach, wenn für jedes $h \in G \setminus \{1\}$ die von $h^G = \{h^g : g \in G\}$ erzeugte Untergruppe schon die ganze Gruppe ist.

Eine Formel $\phi(\bar{x})$ heißt existentiell, falls es eine quantorenfreie Formel $\psi(\bar{x}, \bar{y})$ gibt, sodass $\phi(\bar{x})$ von der Form $\exists \bar{y} \, \psi(\bar{x}, \bar{y})$ ist. Analog dazu heißen Formeln der Form $\forall \bar{y} \, \psi(\bar{x}, \bar{y})$ universell. Eine Theorie heißt existentiell (bzw. universell), wenn sie zu einer Theorie aus existientiellen (bzw. universellen) Formeln äquivalent ist.

Aufgabe 2. Sei T eine \mathcal{L} -Theorie.

- a) Zeigen Sie, dass für eine Formel $\phi(x_1,\ldots,x_n)$ äquivalent sind:
 - i) ϕ ist modulo T äquivalent zu einer existentiellen Formel.
 - ii) Sind $\mathcal{M} \subseteq \mathcal{N}$ Modelle von T und $a_1, \ldots, a_n \in \mathcal{M}$ mit $\mathcal{M} \models \phi(a_1, \ldots, a_n)$, so gilt auch $\mathcal{N} \models \phi(a_1, \ldots, a_n)$.
- b) Folgern Sie eine ähnliche Charakterisierung für universelle Formeln.
- c) Zeigen Sie, dass die folgenden Bedingungen äquivalent sind:
 - i) T ist zu einer universellen Theorie äquivalent.
 - ii) Sind $\mathcal{M} \subseteq \mathcal{N}$ \mathcal{L} -Strukturen und $\mathcal{N} \models T$, so auch $\mathcal{M} \models T$.

Hinweis: Sie können das Trennungslemma auf die $\mathcal{L}_{\bar{c}}$ -Theorien $T_1 = T \cup \{\phi(\bar{c})\}$ und $T_2 = T \cup \{\neg\phi(\bar{c})\}$ anwenden.

Aufgabe 3. Es sei T_{ZG} die Theorie des Zufallsgraphen (wie in Aufgabe 2 auf Übungsblatt 2 definiert). Zeigen Sie, dass T_{ZG} konsistent ist.

Hinweis: Sie können ein Modell von T_{ZG} als Vereinigung einer Kette endlicher \mathcal{L}_R Strukturen konstruieren.

Aufgabe 4. Zeigen Sie, dass $T_{ZG} \aleph_0$ -kategorisch ist.

Abgabe bis Donnerstag, den 31. Oktober, 10:00 Uhr, Briefkasten 161. Die Übungsblätter sollen zu zweit bearbeitet und abgegeben werden. Website: https://wwwmath.uni-muenster.de/u/baysm/logikII/