Dr. M. Bays T. Clausen

Modelltheorie Übungsblatt 5

Aufgabe 1. Es sei \mathcal{M} ein Modell der Theorie T_{ZG} des Zufallsgraphen. Zeigen Sie:

- a) \mathcal{M} ist ω -saturiert;
- b) Ist \mathcal{M} abzählbar, so ist \mathcal{M} ein Primmodell von T_{ZG} .

Aufgabe 2. Konstruieren Sie explizit ein Modell \mathcal{M} von DLO, welches (\mathbb{Q}, \leq) als Unterstruktur enthält, sodass jeder Typ über \mathbb{Q} in \mathcal{M} realisiert wird.

Es sei T eine vollständige \mathcal{L} -Theorie. Eine \mathcal{L} -Formel $\phi(\bar{x})$ heißt algebraisch, falls die Lösungsmenge $\phi(\mathcal{M})$ endlich ist für jedes $\mathcal{M} \models T$. Ein Typ $p(\bar{x})$ in T heißt algebraisch, wenn er eine algebraische Formel enthält.

Aufgabe 3. Zeigen Sie, dass algebraische Typen isoliert sind.

Aufgabe 4. Betrachten Sie die Sprache $\mathcal{L} := \{A, B, \Theta, \alpha, (b_i)_{i \in \aleph_1}\}$, wobei A, B, Θ unäre Prädikate sind, α ein 3-stelliges Prädikat ist und b_i Konstanten sind. Sei \mathcal{M} eine \mathcal{L} -Struktur, sodass \mathcal{M} die disjunkte Vereinigung von $A^{\mathcal{M}}$, $B^{\mathcal{M}}$ und $\Theta^{\mathcal{M}}$ ist, $|A^{\mathcal{M}}| = |B^{\mathcal{M}}|$, $b_i^{\mathcal{M}} \in B^{\mathcal{M}}$, wenn $b_i \neq b_j$ dann $b_i^{\mathcal{M}} \neq b_j^{\mathcal{M}}$, $\Theta^{\mathcal{M}}$ die Menge der Bijektionen $A^{\mathcal{M}} \to B^{\mathcal{M}}$ ist, und $\mathcal{M} \models \alpha(\theta, a, b)$ genau dann, wenn $\theta \in \Theta^{\mathcal{M}}$ und $a \in A^{\mathcal{M}}$ und $b \in B^{\mathcal{M}}$ und $a \in A^{\mathcal{M}}$ und

- a) Sei $\tau: A^{\mathcal{M}} \to A^{\mathcal{M}}$ eine Bijektion. Zeigen Sie, dass es einen Automorphismus σ von \mathcal{M} gibt, sodass $\sigma(a) = \tau(a)$ gilt für $a \in A^{\mathcal{M}}$.

 Hinweis: Für $\theta \in \Theta^{\mathcal{M}}$ betrachten Sie $\theta \circ \tau^{-1}$.
- b) Sei $A_0 \subseteq A^{\mathcal{M}}$ eine abzählbare Teilmenge. Zeigen Sie, dass

$$p(x) := \{A(x)\} \cup \{x \neq a \mid a \in A_0\} \in S_1(A_0)$$

nicht isoliert ist.

Hinweis: Verwenden Sie (a).

c) Zeigen Sie, dass es kein Modell von $T(A_0)$ gibt, das p(x) vermeidet. Anmerkung: Deshalb ist die Annahme in dem Typenvermeidungssatz, dass die Sprache abzählbar ist, notwendig.

Abgabe bis Donnerstag, den 14. November, 10:00 Uhr, Briefkasten 161. Die Übungsblätter sollen zu zweit bearbeitet und abgegeben werden. Website: https://wwwmath.uni-muenster.de/u/baysm/logikII/