Modelltheorie Übungsblatt 6

Aufgabe 1. Es sei \mathcal{L} eine abzählbare Sprache und T eine vollständige \mathcal{L} -Theorie. Es sei $n < \omega$, sodass $S_n(T)$ überabzählbar ist. Zeigen Sie:

- a) $|S_n(T)| = 2^{\aleph_0}$;
- b) T hat bis auf Isomorphie 2^{\aleph_0} viele abzählbare Modelle.

Aufgabe 2. Es sei \mathcal{L} eine abzählbare Sprache und \mathcal{M} und \mathcal{N} seien elementar äquivalente abzählbare atomare \mathcal{L} -Strukturen. Zeigen Sie, dass \mathcal{M} und \mathcal{N} isomorph zueinander sind. Folgern Sie, dass abzählbare Theorien bis auf Isomorphie höchstens ein Primmodell besitzen.

Aufgabe 3. Es sei $\mathcal{Q} = (\mathbb{Q}, <)$ und $T = \text{Th}(\mathcal{Q}_{\mathbb{Q}})$.

- a) Zeigen Sie, dass T nicht schmal ist;
- b) Zeigen Sie, dass $\mathcal{Q}_{\mathbb{Q}}$ ein Primmodell von T ist;
- c) Konstruieren Sie 2^{\aleph_0} viele abzählbare Modelle von T, welche nicht isomorph zueinander sind.

Hinweis: Nutzen Sie die Quantorenelimination für DLO.

Aufgabe 4. Zeigen Sie:

a) Eine Theorie T ist genau dann modellvollständig (siehe Übungsblatt 2), wenn modulo T jede Formel äquivalent zu einer existentiellen Formel ist.

Hinweis: Erinnern Sie sich an Aufgabe 2 auf Übungsblatt 3.

b) Wir betrachten die Struktur (\mathbb{Z}, R_S), wobei R_S die binäre Relation

$$R_S(a,b) \iff b=a+1$$

sei. Zeigen Sie, dass $\operatorname{Th}((\mathbb{Z}, R_S))$ modellvollständig ist und (\mathbb{Z}, R_S) als Primmodell hat.

Hinweis: Aus der Vorlesung ist bekannt, dass (\mathbb{Z}, S) Quantorenelimination hat.

Abgabe bis Donnerstag, den 21. November, 10:00 Uhr, Briefkasten 161. Die Übungsblätter sollen zu zweit bearbeitet und abgegeben werden. Website: https://wwwmath.uni-muenster.de/u/baysm/logikII/