Modelltheorie Übungsblatt 7

Für eine \mathcal{L} -Struktur \mathcal{M} ist $\operatorname{Aut}(\mathcal{M})$ die Menge der Automorphismen von \mathcal{M} .

Aufgabe 1.

- a) Es sei \mathcal{M} eine \mathcal{L} -Struktur, $\bar{a} \in \mathcal{M}^n$ und $\sigma \in \operatorname{Aut}(\mathcal{M})$. Zeigen Sie, dass $\operatorname{tp}(\bar{a}) = \operatorname{tp}(\sigma(\bar{a}))$ gilt.
- b) Konstruieren Sie ein Modell \mathcal{M} von DLO, welches zwei Elemente $a, b \in \mathcal{M}$ enthält, sodass $\operatorname{tp}(a) = \operatorname{tp}(b)$ gilt, aber es kein $\sigma \in \operatorname{Aut}(\mathcal{M})$ gibt, sodass $\sigma(a) = b$.

Aufgabe 2.

- a) Es sei \mathcal{M} eine saturierte unendliche \mathcal{L} -Struktur und $\bar{a}, \bar{b} \in \mathcal{M}^n$, sodass $\operatorname{tp}(\bar{a}) = \operatorname{tp}(\bar{b})$. Zeigen Sie, dass es einen Automorphismus $\sigma \in \operatorname{Aut}(\mathcal{M})$ gibt, sodass $\sigma(\bar{a}) = \bar{b}$. Hinweis: Betrachten Sie die Strukturen $\mathcal{M}_{\bar{a}}$ und $\mathcal{M}_{\bar{b}}$.
- b) Es sei \mathcal{M} eine \aleph_0 -kategorische \mathcal{L} -Struktur von Kardinalität $|\mathcal{M}| = \aleph_0$. Es sei $X \subseteq \mathcal{M}^n$ eine $\operatorname{Aut}(\mathcal{M})$ -invariante Teilmenge (d.h. $\sigma(X) = X$ für alle $\sigma \in \operatorname{Aut}(\mathcal{M})$). Zeigen Sie, dass X definierbar ist. Hinweis: Ryll-Nardzewski.

Aufgabe 3. Sei T eine vollständige abzählbare Theorie. Wir bezeichnen mit $I(T, \aleph_0)$ die Anzahl der abzählbar unendlichen Modelle von T bis auf Isomorphie.

- a) Angenommen, es gilt $1 < I(T, \aleph_0) \le \aleph_0$. Zeigen Sie:
 - i) Es gibt ein ω -saturiertes Modell $\mathcal{M} \models T$ und ein Tupel $\bar{a} \in \mathcal{M}^n$, sodass $\operatorname{tp}(\bar{a})$ nicht isoliert ist.
 - ii) $\mathcal{M}_{\bar{a}}$ ist ω -saturiert.
 - iii) Th $(\mathcal{M}_{\bar{a}})$ besitzt ein abzählbares Modell, das nicht ω -saturiert ist.
- b) Folgern Sie hieraus Vaughts "niemals zwei": Für eine vollständige abzählbare Theorie T gilt $I(T,\aleph_0) \neq 2$.

Hinweis: Korollar 8.28 und Ryll-Nardzewski.

Sei G ein Graph in der Sprache \mathcal{L}_R , d.h. R ist eine symmetrische irreflexive binäre Relation. Der Graph G heißt dreiecksfrei, falls es kein Tupel (x_1, x_2, x_3) in G gibt, sodass $R(x_1, x_2), R(x_2, x_3)$ und $R(x_3, x_1)$ gelten.

Aufgabe 4. Zeigen Sie, dass die Klasse der endlichen dreiecksfreien Graphen eine Fraïssé-Klasse ist.

Anmerkung: Der Fraïssé-Limes dieser Klasse ist der dreiecksfreie Zufallsgraph.

Abgabe bis Donnerstag, den 28. November, 10:00 Uhr, Briefkasten 161. Die Übungsblätter sollen zu zweit bearbeitet und abgegeben werden. Website: https://wwwmath.uni-muenster.de/u/baysm/logikII/