Modelltheorie Übungsblatt 8

Eine Relation \leq auf einer Menge P, welche reflexiv, transitiv und antisymmetrisch (d.h. $x \leq y \land y \leq x \implies x = y$) ist, heißt partielle Ordnung.

Aufgabe 1. Zeigen Sie, dass die Klasse der endlichen partiellen Ordnungen eine Fraïssé-Klasse ist.

Ein Graph heißt *planar*, wenn er sich mittels Punkten und Linien in der Ebene darstellen lässt, ohne dass sich zwei Kanten schneiden.

Aufgabe 2. Zeigen Sie, dass die Klasse der endlichen planaren Graphen (in der Sprache \mathcal{L}_R) keine Fraïssé-Klasse ist.

Hinweis. Betrachten Sie den Graphen mit Ecken $a_1, a_2, a_3, b_1, b_2, b_3$ und Kanten zwischen a_i und b_j für alle $i, j \in \{1, 2, 3\}$.

Aufgabe 3. Es sei η eine Limeszahl. Zeigen Sie, dass $cof(\aleph_{\eta}) = cof(\eta)$ gilt. Folgern Sie, dass \aleph_{\aleph_1} singulär ist.

Aufgabe 4. Es sei \mathcal{L} eine abzählbare Sprache und für jedes $i < \omega$ sei \mathcal{M}_i eine \mathcal{L} -Struktur. Es sei weiter \mathcal{U} ein Ultrafilter auf ω , der kein Hauptultrafilter ist. Zeigen Sie, dass das Ultraprodukt $\mathcal{M} := \prod_{i \to \mathcal{U}} \mathcal{M}_i \ \aleph_1$ -saturiert ist.

Für eine Menge X sei $\mathcal{P}_{\text{endl}}(X)$ die Menge der endlichen Teilmengen von X.

Bonusaufgabe. Zeigen Sie:

- a) Es gibt eine Familie \mathcal{F} von Funktionen $f: \mathbb{N} \to \mathcal{P}_{\text{endl}}(\mathbb{N})$, sodass gelten:
 - i) $|\mathcal{F}| = 2^{\aleph_0}$;
 - ii) Für $f \neq g$ aus \mathcal{F} ist $\{n \in \mathbb{N} : f(n) = g(n)\}$ endlich.
- b) Es sei $\mathcal{M} := \prod_{i \to \mathcal{U}} \mathcal{M}_i$ wie in Aufgabe 4 und zusätzlich sei jedes \mathcal{M}_i abzählbar unendlich. Zeigen Sie, dass dann $|\mathcal{M}| = 2^{\aleph_0}$ gilt. Hinweis: Nutzen Sie, dass die Menge $\mathcal{P}_{\text{endl}}(\mathbb{N})$ abzählbar ist.

Abgabe bis Donnerstag, den 5. Dezember, 10:00 Uhr, Briefkasten 161. Die Übungsblätter sollen zu zweit bearbeitet und abgegeben werden. Website: https://wwwmath.uni-muenster.de/u/baysm/logikII/