Modelltheorie Übungsblatt 10

Aufgabe 1. Es sei T eine \mathcal{L} -Theorie und $\mathcal{M} \models T$. Seien $A \subseteq B \subseteq C \subseteq \mathcal{M}$ Teilmengen von \mathcal{M} , sodass C über B konstruierbar ist und B über A konstruierbar ist. Zeigen Sie, dass C über A konstruierbar ist.

Es sei $A \subseteq B \subseteq \mathcal{M}$. Wir sagen B ist atomar über A, falls für alle $\bar{b} \in B^{<\omega}$ der Typ $\operatorname{tp}(\bar{b}/A)$ isoliert ist.

Aufgabe 2. Es sei T eine \mathcal{L} -Theorie und $\mathcal{M} \models T$. Seien $A \subseteq B \subseteq \mathcal{M}$ Teilmengen von \mathcal{M} , sodass B über A konstruierbar ist. Zeigen Sie, dass B atomar über A ist. Hinweis: Wenn B mittels $(b_{\alpha})_{\alpha<\gamma}$ über A konstruierbar ist, zeigen Sie die Aussage induktiv für alle $B_{\leq \delta} = \{b_{\alpha} : \alpha \leq \delta\} \cup A$ mit $\delta < \gamma$. Nutzen Sie Lemma 8.12.

Aufgabe 3.

- a) Es sei $A \subseteq \mathcal{M} \models T$. Zeigen Sie: $\operatorname{acl}(A)$ ist genau dann die maximale über A konstruierbare Menge, wenn jeder isolierte 1-Typ über A auch algebraisch über A ist.
- b) Es sei $\mathcal{M} \models T_{\infty}$, d.h. \mathcal{M} ist eine unendliche Menge als \mathcal{L}_{\emptyset} -Struktur. Bestimmen Sie alle 1-Typen über der leeren Menge und bestimmen Sie acl(\emptyset). Welche Teilmengen von \mathcal{M} sind über \emptyset konstruierbar?

Hinweis: T_{∞} hat Quantorenelimination.

Aufgabe 4. Es sei $S: \mathbb{Z} \to \mathbb{Z}$, $a \mapsto a+1$ die Nachfolgerfunktion auf \mathbb{Z} . Wir betrachten $(\mathbb{Z}; S)$ als Struktur in der Sprache $\mathcal{L}_S = \{S\}$. Zeigen Sie, dass $T = \text{Th}(\mathbb{Z}; S)$ streng minimal ist und beschreiben Sie acl(A) für alle $A \subseteq \mathcal{M} \models T$.

Hinweis: Aus der Vorlesung ist bekannt, dass T Quantorenelimination besitzt.