Modelltheorie Übungsblatt 12

Aufgabe 1. Es sei \mathcal{L} eine abzählbare Sprache und T eine vollständige \mathcal{L} -Theorie mit unendlichen Modellen. Es sei $\phi(x)$ eine streng minimale Formel und es gebe ein ω -saturiertes Modell $\mathcal{M} \models T$, sodass $\mathcal{M} = \operatorname{acl}(\phi(\mathcal{M}))$. Zeigen Sie, dass $T \aleph_1$ -kategorisch ist. Hinweis: Proposition 12.37.

Aufgabe 2. Es sei T eine streng minimale \mathcal{L} -Theorie mit Primmodell \mathcal{M} . Es sei $m < \omega$. Zeigen Sie, dass folgende Aussagen äquivalent sind:

- a) $m = \dim(\mathcal{M});$
- b) m ist minimal, sodass es unendlich viele Formeln $\phi(x_0, \dots x_m)$ modulo T gibt.

Aufgabe 3. Beschreiben Sie alle ununterscheidbare Folgen in Modellen der folgenden Theorien:

- a) Die Therie der unendlichen Q-Vektorräume;
- b) Die Theorie des Zufallsgraphen.

Aufgabe 4. Ein geordneter \mathbb{Q} -Vektorraum ist ein \mathbb{Q} -Vektorraum mit einer linearen Ordnung <, sodass

$$\forall x \forall y \forall z (x < y \rightarrow x + z < y + z).$$

Sei $\mathcal{L} := \mathcal{L}_{\mathbb{Q}\text{-VR}} \cup \{<\}$, und sei T die Theorie der unendlichen geordneten \mathbb{Q} -Vektorräume. Nach Vorlesung ist T vollständig und hat Quantorenelimination.

- a) Zeigen Sie, dass $\mathbb{R} \models T$ keine nicht-konstante unendliche ununterscheidbare Folge hat.
- b) Sei \mathcal{U} ein Nicht-Hauptultrafilter auf ω und sei * \mathbb{R} die Ultrapotenz $\mathbb{R}^{\mathcal{U}} \models T$. Beschreiben Sie eine nicht-konstante unendliche ununterscheidbare Folge in * \mathbb{R} . Hinweis: Sei $\alpha > \mathbb{R}$. Betrachten Sie $(\alpha^n)_{n \in \omega}$.

Abgabe bis Donnerstag, den 16. Januar, 10:00 Uhr, Briefkasten 161. Die Übungsblätter sollen zu zweit bearbeitet und abgegeben werden. Website: https://wwwmath.uni-muenster.de/u/baysm/logikII/