Ch. 4; Q. 38:

Let (X1,<4) and (Xo, <s) be posets. Define a relation (the product order) T
on X1 X Xo by (x1,x2)T (2], 2y) iff 21 <y 2 and xo <5 ).

Prove that (X1 x X5, T) is a poset.

We prove this more generally for a product of m posets (X;, <;).

Write x for x4, ..., x,, € 11X}, and < for the product order.

We have to verify that < satisfies reflexivity, transitivity, and anti-symmetry.
Reflexivity: given x, x; < x; for all ¢ by reflexivity of <;, so x < x.
Transitivity: if x <y < z then, for all 7, z; < y; < z,

so ; < z; by transitivity of <;. So x < z.

Antisymmetry: if x <y < x then, for all i, z; < y; < x;,

so z; = y; by antisymmetry of <;. So x =y.

Ch. 4; Q. 39:
Suppose | X = n. By identifying the subsets of X with n-tuples of Os and
1s, prove that the partially ordered set (P(X),C) can be identified with the
n-fold direct product ({0,1}, <)™.
Enumerate X as X = {z1, ..., 7, }. Identify A C X with e? € {0,1}" where
e =1ifx; € A,
et = 0 otherwise.
Write < for the product order on {0,1}", as defined in question 38.
Then we must check that A C B iff e < eB.
But indeed,
et <P iff Vie <P
iff Vi. if x; € A then z; € B
iff AC B.

Ch. 5; Q 48:

Use the theorem that in a finite poset, the maximal size of a chain is the
minimal size of an antichain partition, to show that if m and n are positive
integers, then a poset of mn + 1 elements has a chain of size m + 1 or an
antichain of size n + 1.

Let (X, <) be a poset with | X = mn+1, and suppose X has no chain of size
m + 1. Then the maximal size of a chain is < m, and so, by the theorem,
X has a partition into < m antichains. Then by the packed pigeonhole
principle, since |X| > nm, some antichain in this partition must have size
greater than n, so at least n + 1. Then any subset of this antichain of size
exactly n + 1 will also be an antichain.

Ch. 5; Q 49:
Use the result of the previous exercise to show that a sequence of mn + 1
real numbers either contains a (non-strictly) increasing subsequence of m+1
numbers or a decreasing subsequence of n + 1 numbers.
Let ay,...,amny1 be a sequence of real numbers. Define an ordering on
{1,...,mn+ 1} by

i<'jiffi <janda; <aj,
where < is the usual ordering.
This defines a partial order, so by the previous exercise, there is either a
chain of length m + 1 or an antichain of size n + 1, defining respectively a



(non-strictly) increasing or decreasing subsequence.

Ch. 6; Q 3:
Find the number of integers between 1 an 10,000 which are neither squares
nor cubes.
Let S and C' be the set of squares and cubes in this range.
V10000 = 100, so |S = 100.
10000/ = 21.5, so |C' |= 21.
If x € SN, the exponent of each prime in the prime decomposition of =
must be divisible by both 2 and 3, and hence by 6.
So SN C' is the set of sixth powers in the range [1,10000],
so since (10000)/6 = 4.6, |SN C| = 4.
By inclusion-exclusion,
|ISUC| =S|+ |CH|SNC| =100+ 21 —4=117.
By subtraction, the answer is 10000 — 117 = 9883.

Ch. 6; Q 6:
A bakery sells chocolate, cinnamon, and plain doughnuts, and now has 6
chocolate, 6 cinnamon, and 3 plain. A box contains 12 doughnuts. How
many different options are there for a box?
We want to find the number of 12-combinations of a multiset with multi-
plicities 6,6, and 3.
By the formula derived in lectures, this is

Z[gﬂ ..... t}<_1>u| (Tﬁ(zigt(ii;rl))ﬂfl)-
where r = 12,t = 3,¢; = co = 6,c3 = 3. We calculate:
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=91-21-21-45+0+3+3-0
=10

Ch. 6; Q 9:
Determine the number of integral solutions to
T+ x93+ 23+ 14 = 20
subject to
1<21<6,0<2,<7,4<23<8,2< 14 <6.
Set y1 ;=121 — L,yg := X0, y3 := 3 — 4, Yy 1= 14 — 2.
Then solutions as in the question correspond to solutions in non-negative
integers toy1 +yo +y3 +ys =20 —1—-4 -2 =13 with y; <5,y < 7,y3 <
4,ys < 4.
Applying the formula as in the previous question, we can see that most
terms will be zero (a term is zero when r <37, (¢; + 1)).
We get non-zero terms for I = 0, {1}, {2}, {3}, {4},{1,3},{1,4},{2,3},{2,4}, {3,4}.

In this way, we get the answer 96.

Ch. 6; Q 12:
How many permutations of {1,2,...,8} have exactly four integers in their
natural positions?



If we first pick 4 of the 8 numbers to fix, and then derange the other 4, we
get such a permutation. Each such permutation arises once in such a way.
So by the number of such permutations is
4 —_1)¢
(i) * | Da| = (2)4! 2 i0 ( i!l)
=70% (4% (1—1+1/2—1/6+1/24)) =709
=630

Ch. 6; Q 13:
Note: in a previous version of these solutions, I confused Q12 and 13, so
gave the above answer to Q12 (which was not set) as the answer to Q13.
Apologies for any resulting confusion.
How many permutations of {1,2,...,9} have at least one odd integer in its
natural position?
We can do this directly using inclusion-exclusion, as in the proof of the
formula for |D,|. The number of permutations which fix exactly k of the
numbers is (9—k)!; we want to count the number which fix one of 5 numbers,
so by inclusion exclusion this is
> ohaa (CDF Q)9 — k).
=5x8+ 107+ 10% 6! + 5« 5! 4+ 1 x 4!
= 198120

Ch. 6; Q 15:
At a party, seven gentlemen check their hats, then hand them over.
How many ways can they be returned so that

(a) no gentleman receives his own hat?
(b) at least one receives his own hat?

(c) at least two receive their own hats?

(a) These are just the derangements; |D;| = 1854.

(b) These are the permutations which are not derangements; 7! — |D7| =
3186.

(¢) These are the permutations which are neither derangements nor permu-
tations in which exactly 1 hat is fixed. As in the previous question, the
latter can be counted by first choosing a lucky(?) gentleman to get his
own hat back, then considering a derangement of the remaining 6. So
the answer is 7! — (|D7| + 7 % | Dg|) = 1331.



