

Ch. 4; Q. 38:

Let (X_1, \leq_1) and (X_2, \leq_2) be posets. Define a relation (the product order) T on $X_1 \times X_2$ by $(x_1, x_2)T(x'_1, x'_2)$ iff $x_1 \leq_1 x'_1$ and $x_2 \leq_2 x'_2$.

Prove that $(X_1 \times X_2, T)$ is a poset.

We prove this more generally for a product of m posets (X_i, \leq_i) .

Write \mathbf{x} for $x_1, \dots, x_m \in \prod X_i$, and \leq for the product order.

We have to verify that \leq satisfies reflexivity, transitivity, and anti-symmetry.

Reflexivity: given \mathbf{x} , $x_i \leq x_i$ for all i by reflexivity of \leq_i , so $\mathbf{x} \leq \mathbf{x}$.

Transitivity: if $\mathbf{x} \leq \mathbf{y} \leq \mathbf{z}$ then, for all i , $x_i \leq y_i \leq z_i$,

so $x_i \leq z_i$ by transitivity of \leq_i . So $\mathbf{x} \leq \mathbf{z}$.

Antisymmetry: if $\mathbf{x} \leq \mathbf{y} \leq \mathbf{x}$ then, for all i , $x_i \leq y_i \leq x_i$,

so $x_i = y_i$ by antisymmetry of \leq_i . So $\mathbf{x} = \mathbf{y}$.

Ch. 4; Q. 39:

Suppose $|X| = n$. By identifying the subsets of X with n -tuples of 0s and 1s, prove that the partially ordered set $(\mathbb{P}(X), \subseteq)$ can be identified with the n -fold direct product $(\{0, 1\}^n, \leq)$.

Enumerate X as $X = \{x_1, \dots, x_n\}$. Identify $A \subseteq X$ with $\mathbf{e}^A \in \{0, 1\}^n$ where

$$e_i^A = 1 \text{ if } x_i \in A,$$

$$e_i^A = 0 \text{ otherwise.}$$

Write \leq for the product order on $\{0, 1\}^n$, as defined in question 38.

Then we must check that $A \subseteq B$ iff $e^A \leq e^B$.

But indeed,

$$\begin{aligned} e^A \leq e^B &\text{ iff } \forall i. e_i^A \leq e_i^B \\ &\text{ iff } \forall i. \text{ if } x_i \in A \text{ then } x_i \in B \\ &\text{ iff } A \subseteq B. \end{aligned}$$

Ch. 5; Q 48:

Use the theorem that in a finite poset, the maximal size of a chain is the minimal size of an antichain partition, to show that if m and n are positive integers, then a poset of $mn + 1$ elements has a chain of size $m + 1$ or an antichain of size $n + 1$.

Let (X, \leq) be a poset with $|X| = mn + 1$, and suppose X has no chain of size $m + 1$. Then the maximal size of a chain is $\leq m$, and so, by the theorem, X has a partition into $\leq m$ antichains. Then by the packed pigeonhole principle, since $|X| > nm$, some antichain in this partition must have size greater than n , so at least $n + 1$. Then any subset of this antichain of size exactly $n + 1$ will also be an antichain.

Ch. 5; Q 49:

Use the result of the previous exercise to show that a sequence of $mn + 1$ real numbers either contains a (non-strictly) increasing subsequence of $m + 1$ numbers or a decreasing subsequence of $n + 1$ numbers.

Let a_1, \dots, a_{mn+1} be a sequence of real numbers. Define an ordering on $\{1, \dots, mn + 1\}$ by

$$i \leq' j \text{ iff } i \leq j \text{ and } a_i \leq a_j,$$

where \leq is the usual ordering.

This defines a partial order, so by the previous exercise, there is either a chain of length $m + 1$ or an antichain of size $n + 1$, defining respectively a

(non-strictly) increasing or decreasing subsequence.

Ch. 6; Q 3:

Find the number of integers between 1 and 10,000 which are neither squares nor cubes.

Let S and C be the set of squares and cubes in this range.

$\sqrt{10000} = 100$, so $|S| = 100$.

$10000^{1/3} = 21.5$, so $|C| = 21$.

If $x \in S \cap C$, the exponent of each prime in the prime decomposition of x must be divisible by both 2 and 3, and hence by 6.

So $S \cap C$ is the set of sixth powers in the range $[1, 10000]$,

so since $(10000)^{1/6} = 4.6$, $|S \cap C| = 4$.

By inclusion-exclusion,

$$|S \cup C| = |S| + |C| - |S \cap C| = 100 + 21 - 4 = 117.$$

By subtraction, the answer is $10000 - 117 = 9883$.

Ch. 6; Q 6:

A bakery sells chocolate, cinnamon, and plain doughnuts, and now has 6 chocolate, 6 cinnamon, and 3 plain. A box contains 12 doughnuts. How many different options are there for a box?

We want to find the number of 12-combinations of a multiset with multiplicities 6, 6, and 3.

By the formula derived in lectures, this is

$$\sum_{I \subseteq \{1, \dots, t\}} (-1)^{|I|} \binom{r - (\sum_{i \in I} (c_i + 1)) + t - 1}{t - 1}.$$

where $r = 12$, $t = 3$, $c_1 = c_2 = 6$, $c_3 = 3$. We calculate:

$$\begin{aligned} & \sum_{I \subseteq \{1, \dots, 3\}} (-1)^{|I|} \binom{12 - (\sum_{i \in I} (c_i + 1)) + 2}{2} \\ &= \binom{12+2}{2} - \binom{12-7+2}{2} - \binom{12-7+2}{2} - \binom{12-4+2}{2} \\ & \quad + \binom{12-(7+7)+2}{2} + \binom{12-(7+4)+2}{2} + \binom{12-(7+4)+2}{2} \\ & \quad - \binom{12-(7+7+4)+2}{2} \\ &= 91 - 21 - 21 - 45 + 0 + 3 + 3 - 0 \\ &= 10 \end{aligned}$$

Ch. 6; Q 9:

Determine the number of integral solutions to

$$x_1 + x_2 + x_3 + x_4 = 20$$

subject to

$$1 \leq x_1 \leq 6, 0 \leq x_2 \leq 7, 4 \leq x_3 \leq 8, 2 \leq x_4 \leq 6.$$

Set $y_1 := x_1 - 1$, $y_2 := x_2$, $y_3 := x_3 - 4$, $y_4 := x_4 - 2$.

Then solutions as in the question correspond to solutions in non-negative integers to $y_1 + y_2 + y_3 + y_4 = 20 - 1 - 4 - 2 = 13$ with $y_1 \leq 5$, $y_2 \leq 7$, $y_3 \leq 4$, $y_4 \leq 4$.

Applying the formula as in the previous question, we can see that most terms will be zero (a term is zero when $r < \sum_{i \in I} (c_i + 1)$).

We get non-zero terms for $I = \emptyset, \{1\}, \{2\}, \{3\}, \{4\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}$.

In this way, we get the answer 96.

Ch. 6; Q 12:

How many permutations of $\{1, 2, \dots, 8\}$ have exactly four integers in their natural positions?

If we first pick 4 of the 8 numbers to fix, and then **derange** the other 4, we get such a permutation. Each such permutation arises once in such a way. So by the number of such permutations is

$$\begin{aligned} \binom{8}{4} * |D_4| &= \binom{8}{4} 4! \sum_{i=0}^4 \frac{(-1)^i}{i!} \\ &= 70 * (24 * (1 - 1 + 1/2 - 1/6 + 1/24)) = 70 * 9 \\ &= 630 \end{aligned}$$

Ch. 6; Q 13:

Note: in a previous version of these solutions, I confused Q12 and Q13, so gave the above answer to Q12 (which was not set) as the answer to Q13.

Apologies for any resulting confusion.

How many permutations of $\{1, 2, \dots, 9\}$ have at least one odd integer in its natural position?

We can do this directly using inclusion-exclusion, as in the proof of the formula for $|D_n|$. The number of permutations which fix exactly k of the numbers is $(9-k)!$; we want to count the number which fix one of 5 numbers, so by inclusion exclusion this is

$$\begin{aligned} \sum_{k=1}^5 (-1)^{k+1} \binom{5}{k} (9-k)! &= 5 * 8! + 10 * 7! + 10 * 6! + 5 * 5! + 1 * 4! \\ &= 198120 \end{aligned}$$

Ch. 6; Q 15:

At a party, seven gentlemen check their hats, then hand them over.

How many ways can they be returned so that

(a) *no gentleman receives his own hat?*

(b) *at least one receives his own hat?*

(c) *at least two receive their own hats?*

(a) These are just the derangements; $|D_7| = 1854$.

(b) These are the permutations which are not derangements; $7! - |D_7| = 3186$.

(c) These are the permutations which are neither derangements nor permutations in which exactly 1 hat is fixed. As in the previous question, the latter can be counted by first choosing a lucky(?) gentleman to get his own hat back, then considering a derangement of the remaining 6. So the answer is $7! - (|D_7| + 7 * |D_6|) = 1331$.