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Ch.7 Q.11:
The Lucas numbers l0, l1, ..., are defined by

ln+2 = ln + ln+1; l0 = 2; l1 = 1.

Prove that

(a) ln = fn−1 + fn+1 for n ≥ 1;

(b)
∑n

i=0 l
2
i = lnln+1 + 2 for n ≥ 0.

(a) l2 = 3, so this relation holds for n = 1 and n = 2.

Let dn := ln − fn−1 − fn+1.
Then d1 = 0 = d2, and the dn also satisfy the Fibonacci recurrence
relation,
dn+2 = dn + dn+1 for all n ≥ 0,
by linearity.

So dn = 0 for all n ≥ 0.

Hence ln = fn−1 + fn+1 for all n ≥ 0.

(b) This holds for n = 0.

Suppose inductively that
∑n

i=0 l
2
i = lnln+1 + 2.

Then∑n+1
i=0 l2i = (

∑n
i=0 l

2
i ) + l2n+1

= lnln+1 + 2 + l2n+1

= ln+1(ln + ln+1) + 2
= ln+1ln+2 + 2.

So the formula holds for all n ≥ 0.

Ch.7 Q.14 a,b:
Determine the generating function for the number hn of n-combinations from
the multiset {∞∗ e1,∞∗ e2,∞∗ e3,∞∗ e4} with the following added restric-
tions:

(a) Each ei occurs an odd number of times;

(b) Each ei occurs a multiple of 3 number of times.

(a)
g(x) = (

∑∞
i=0 x

2i+1)4

= (x
∑∞

i=0 x
2i)4

= ( x
1−x2 )4

(b)
g(x) = (

∑∞
i=0 x

3i)4

= (1− x3)−4

Ch.7 Q.18:
Find the generating function for the number hn of non-negative integral so-
lutions of 2e1 + 5e2 + e3 + 7e4 = n.
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hn is the number of n-combinations from the multiset {∞ ∗ a1,∞∗ a2,∞∗
a3,∞ ∗ a4} where a1 occurs an even number of times, a2 a multiple of 5
times, and a4 a multiple of 7 times.

So, as in the previous question, the generating function is
(1− x2)−1(1− x5)−1(1− x)−1(1− x7)−1.

Ch.7 Q.29:
Derive, without using exponential generating functions, the formula

hn = 5n+2∗3n+1
4

for the number hn of n-digit numbers with each digit odd, where the digits 1
and 3 occur an even number of times.

This one is tricky! Here’s the neatest solution I could find.

Call a number ”healthy” if 1 and 3 occur an even number of times. Call
a number ”sick” if both 1 and 3 occur an odd number of times. Call it
”unwell” if it is neither healthy nor sick.

Let hn, sn, and un be the number of healthy, sick, and unwell,
respectively, n-odd-digit numbers.

Consider the operation of changing the last digit in a number which is either
a 1 or a 3 to a 3 if it was a 1 and to a 1 if it was a 3. This operation changes
a healthy number into a sick number, a sick into a healthy, and an unwell
into another unwell. It is defined except on those numbers with no 1s or 3s,
which must be healthy.

Since the operation is its own inverse, it provides a bijection between the
sick numbers and those healthy numbers which contain a 1 or a 3.

The number of n-odd-digit numbers which don’t contain a 1 or a 3,
being the n-digit numbers where each digit is one of the 3 numbers 5,7, or
9, is 3n, so

hn − 3n = sn.

Now define the complement of a decimal digit d to be 10− d, and consider
the operation of changing the last digit in a number which is not a 5 into
its complement.
This operation changes a healthy or sick number into an unwell number, and
an unwell number into a healthy or sick number.
It is defined on all odd-digit numbers except those of the form 55...5.

Since again this operation is its own inverse, we obtain
un = hn + sn − 1.

Now since the total number of n-odd-digit numbers is 5n,
un + hn + sn = 5n.

So now we can solve these 3 linear equations to find hn:
hn + sn − 1 = un = 5n − hn − sn
→ 2hn + 2sn = 5n + 1
→ 2hn + 2(hn − 3n) = 5n + 1
→ hn = 5n+2∗3n+1

4
.



3

Ch.8 Q.6:
Let hn = 2n2 − n + 3. Find the difference table, and find a formula for∑n

k=0 hn.

3 4 9 18 31 48 ...

1 5 9 13 17 ...

4 4 4 4 ...

0 0 0 ...

As we saw in lectures, we obtain from the initial diagonal the formula
hn = 3 + n + 4

(
n
2

)
and so∑n

k=0 hn = 3(n + 1) +
(
n+1
2

)
+ 4
(
n+1
3

)
which we could expand out as a polynomial if we so desired,∑n

k=0 hn = 3(n + 1) + n(n+1)
2

+ 4 (n−1)n(n+1)
6

= 3 + (3 + 1
2
− 2

3
)n + 1

2
n2 + 2

3
n3

= 3 + 17
6
n + 1

2
n2 + 2

3
n3.

Ch.8 Q.7:
Suppose hn = f(n) with f a cubic polynomial. Suppose the first four en-
tries of the 0th row of its difference table (i.e. h0, h1, h2, h3) are 1,-1,3,10.
Determine hn and a formula for

∑n
k=0 hn.

We can draw the start of the difference triangle:

1 -1 3 10

-2 4 7

6 3

-3

.

Since the polynomial is of degree 3, we know that all successive rows are
zero.

So just as in the previous question, we have
hn = 1− 2n + 6

(
n
2

)
− 3
(
n
3

)
and ∑n

k=0 hn = (n + 1)− 2
(
n+1
2

)
+ 6
(
n+1
3

)
− 3
(
n+1
4

)
.

Were we so inclined, we could expand these out as polynomials, hence deter-
mining the polynomial f and giving a polynomial expression for the partial
sums.


