

1. (a) A chain is a subset C such that for any c and c' in C ,
 $c \leq c'$ or $c' \leq c$.
 (Equivalently: a subset $\{c_1, \dots, c_k\}$ with $c_1 < c_2 < \dots < c_k$.)

(b) An antichain partition is a partition of X into antichains,
 i.e. $X = A_1 \cup \dots \cup A_n$ with $A_i \cap A_j = \emptyset$ for $i \neq j$,
 where for each A_i , distinct elements are incomparable.

(c) An antichain can meet a chain in at most one point,
 so an antichain partition of X partitions any chain into subsets of
 size at most 1,
 so no chain can be longer than the size of an antichain partition.
 So it suffices to show that if C is a chain of maximal length,
 there exists an antichain partition A_1, \dots, A_n with $n = |C|$.
 Define A_1 to be the set of minimal elements of X , and recursively
 define A_{k+1} to be the set of minimal elements of $X \setminus \bigcup_{i=1}^k A_i$.
 Clearly the A_i are disjoint.
 The set of minimal elements of any finite poset $(Y; \leq)$ is an
 antichain, since if y, y' are minimal and comparable, then say $y < y'$,
 contradicting minimality of y' .
 So each A_i is an antichain.
 Enumerate $C = \{c_1, \dots, c_n\}$ with $c_1 < c_2 < \dots < c_n$.
 Then clearly $c_i \in A_i$.
 Suppose $X \neq \bigcup_{i=1}^n A_i$, say $x \in X \setminus \bigcup_{i=1}^n A_i$.
 Then $x > c_i$, so $C' := C \cup \{x\}$ is a chain,
 contradicting maximality of C .
 So the A_i form an antichain partition as required.

2. (a) Let D_n be the set of numbers between 1 and 1000 divisible by n .

$$\text{Then } |D_n| = \left\lfloor \frac{1000}{n} \right\rfloor.$$

$$\text{Note } D_n \cap D_m = D_{\text{lcm}(n,m)}.$$

So by inclusion-exclusion,

$$\begin{aligned} |D_5 \cup D_7 \cup D_{11}| &= |D_5| + |D_7| + |D_{11}| \\ &- (|D_{35}| + |D_{55}| + |D_{77}|) + |D_{385}| \\ &= 200 + 142 + 90 - (28 + 18 + 12) - 2 \\ &= 376 \end{aligned}$$

(b) Let D'_n be the set of numbers between 1000 and 2000 divisible by n .

$$\text{Then } |D'_n| = \left\lfloor \frac{2000}{n} \right\rfloor - \left\lfloor \frac{999}{n} \right\rfloor.$$

So by inclusion-exclusion, and using least common multiples,

$$\begin{aligned} |D'_4 \cup D'_6 \cup D'_{10}| &= |D'_4| + |D'_6| + |D'_{10}| \\ &- (|D'_{12}| + |D'_{20}| + |D'_{30}|) + |D'_{60}| \\ &= 369 \end{aligned}$$

3. (a)

$$\begin{aligned} g(x) &= (x + x^3 + x^5 + \dots)^3 \\ &= x^3(1 + x^2 + x^4 + \dots)^3 \\ &= \frac{x^3}{(1-x^2)^3} \end{aligned}$$

(b) Using the formula $\frac{1}{(1-x)^t} = \sum_{n=0}^{\infty} \binom{n+t-1}{t-1} x^n$,

$$g(x) = \frac{x^3}{(1-x^2)^3}$$

$$\begin{aligned} &= x^3 \left(\sum_{n=0}^{\infty} \binom{n+3-1}{3-1} (x^2)^n \right) \\ &= \sum_{n=0}^{\infty} \binom{n+3-1}{3-1} x^{2n+3} \\ \text{So } h_n &= \binom{k+2}{2} \text{ if } n = 2k+3 \text{ for some } k \geq 0, \\ \text{and } h_n &= 0 \text{ otherwise.} \end{aligned}$$