Solutions to Midterm 2

1. (a) [diagram omitted]

(b) A:={8,12,9,5,7,11} is an antichain of size 6,
and the chains

01 = {]_, 2,47 8}
C, = {3,6,12}
Cy = {5,10}
C4 = {7}

C5 = {9}

06 = {11}

form a chain partition of X into 6 chains.

Since the maximal size of an antichain is equal to the minimal
size of a chain partition, there can be no larger antichain and no
smaller chain partition.

2. Let F; be the set of permutations of (1,...,n) which fix i,
i.e. permutations (aq, ..., a,) with a; = 1.

Then ;. F; is the set of permutations which fix all € I, which can
be identified with the set of permutations of {1,...,n}\ I.

So |ﬂz’6[ Fi| = (n— [I])!.

So by the inclusion-exclusion formula,
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Now the derangements are the permutations which are not in J, £},
SO
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3. (a) Taking just those terms in the power series for e® corresponding
to the allowed numbers of the letters,
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(b) By the definition of ¢! (), 2 is the coefficient of 2™ in the power
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series expansion of e
Expanding e?*, we see that for n > 1 this coefficient is
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So h, = 2"t +n2""2 and in particular h;3 = 30720.



