

Solutions to Midterm 2

1. (a) [diagram omitted]
- (b) $A := \{8, 12, 9, 5, 7, 11\}$ is an antichain of size 6, and the chains

$$\begin{aligned}C_1 &:= \{1, 2, 4, 8\} \\C_2 &:= \{3, 6, 12\} \\C_3 &:= \{5, 10\} \\C_4 &:= \{7\} \\C_5 &:= \{9\} \\C_6 &:= \{11\}\end{aligned}$$

form a chain partition of X into 6 chains.

Since the maximal size of an antichain is equal to the minimal size of a chain partition, there can be no larger antichain and no smaller chain partition.

2. Let F_i be the set of permutations of $(1, \dots, n)$ which fix i , i.e. permutations (a_1, \dots, a_n) with $a_i = i$.

Then $\bigcap_{i \in I} F_i$ is the set of permutations which fix all $i \in I$, which can be identified with the set of permutations of $\{1, \dots, n\} \setminus I$.

So $|\bigcap_{i \in I} F_i| = (n - |I|)!$.

So by the inclusion-exclusion formula,

$$\begin{aligned}|\bigcup_i F_i| &= \sum_{\emptyset \neq I \subseteq \{1, \dots, n\}} (-1)^{|I|} |\bigcap_{i \in I} F_i| \\&= \sum_{\emptyset \neq I \subseteq \{1, \dots, n\}} (-1)^{|I|} (n - |I|)! \\&= \sum_{k=1}^n (-1)^{k+1} \binom{n}{k} (n - k)! \\&= \sum_{k=1}^n (-1)^{k+1} \frac{n!}{(n-k)!k!} (n - k)! \\&= \sum_{k=1}^n (-1)^{k+1} \frac{n!}{k!} \\&= n! \sum_{k=1}^n \frac{(-1)^{k+1}}{k!}\end{aligned}$$

Now the derangements are the permutations which are not in $\bigcup_i F_i$, so

$$\begin{aligned}|D_n| &= n! - |\bigcup_i F_i| \\&= n! - n! \sum_{k=1}^n \frac{(-1)^{k+1}}{k!} \\&= n! \sum_{k=0}^n \frac{(-1)^k}{k!}\end{aligned}$$

3. (a) Taking just those terms in the power series for e^x corresponding to the allowed numbers of the letters,

$$\begin{aligned}g^{(e)}(x) &= e^x (1 + x) \left(1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots\right) \\&= e^x (1 + x) \frac{e^x + e^{-x}}{2} \\&= \frac{e^{2x} + e^0 + xe^{2x} + xe^0}{2} \\&= \frac{1 + x + e^{2x} + xe^{2x}}{2}\end{aligned}$$

- (b) By the definition of $g^{(e)}(x)$, $\frac{h_n}{n!}$ is the coefficient of x^n in the power series expansion of $\frac{1 + x + e^{2x} + xe^{2x}}{2}$.

Expanding e^{2x} , we see that for $n > 1$ this coefficient is

$$\begin{aligned}\frac{1}{2} \left(\frac{2^n}{n!} + \frac{2^{n-1}}{(n-1)!} \right) \\= \frac{1}{2} \frac{2^n + n2^{n-1}}{n!}\end{aligned}$$

So $h_n = 2^{n-1} + n2^{n-2}$, and in particular $h_{13} = 30720$.