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Abstract. We show that if a group G is finitely presented and nilpotent-by-

abelian-by-finite, then there is an upper bound on dimQ H1(M,Q), where M

runs through all subgroups of finite index in G.

1. Introduction

The virtual first betti number of a finitely generated group G is defined as

vb1(G) = sup{dimH1(S,Q) | S ≤ G of finite index }.
A group is said to be large if it has a subgroup of finite index that maps onto a
non-abelian free group. If G is large then vb1(G) = ∞. It is easy to find finitely
generated groups G that are not large but have vb1(G) = ∞. For example, in
the metabelian group Z o Z = 〈a, t | ∀n, [a, t−natn] = 1〉, the subgroup Sm < Z o Z
generated by tm and the conjugates of a has index m and H1(Sm,Z) = Zm+1. In
contrast, no example is known of a finitely presented group that is not large but
has vb1(G) =∞ (cf. [11], [17]). Since amenable groups do not contain non-abelian
free subgroups, one might hope to resolve this issue by finding a finitely presented
amenable group with vb1(G) =∞, but this seems to be a non-trivial matter.

We shall prove in this paper that for large classes of finitely presented soluble
groups vb1(G) is always finite. One would like to prove that the same is true for
all finitely presented soluble groups, but here one faces the profound difficulty of
deciding which soluble groups admit finite presentations; this is unknown even for
abelian-by-polycyclic and nilpotent-by-abelian groups.

In the case of metabelian groups, finite presentability is completely understood
in terms of the Bieri-Strebel invariant [8]. Some sufficient conditions for finite
presentability of nilpotent-by-abelian groups were considered by Isaac [15] and later
Groves [13]. In the case of S-arithmetic nilpotent-by-abelian groups G one knows
more thanks to the work of Abels [1]: if G is an extension of a nilpotent group N by
an abelian group Q then G is finitely presented if and only if it is of type FP2, which
it is if and only if H2(N,Z) is finitely generated as a ZQ-module (where the Q action
is induced by conjugation) and1 G/N ′ is finitely presented as a group. The first of
these conditions is an easy consequence of the fact that ZQ is a Noetherian ring
and the second is a corollary of a result of Bieri and Strebel that every metabelian
quotient of a group of type FP2 that does not contain non-cyclic free subgroups
is finitely presented [8]. The case where G is an extension of an abelian normal
subgroup A by a polycyclic group Q was approached by Brookes and Groves who
studied modules over crossed products of a division ring by a free abelian group [4],
[5] and [6].
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Given this background, the natural place to begin our investigation into the
virtual first betti number of finitely presented soluble groups is in the setting of
metabelian groups. Using methods from commutative algebra, we prove (Theorem
4.3) that if G is finitely presented and metabelian, then vb1(G) is finite. (The
hypothesis that one actually needs to impose on G is somewhat weaker than finite
presentability; see Remark 6.5.) The metabelian case is used in the proof of our
main theorem, which is the following.

Theorem A. Let G be a finitely presented group. If G is nilpotent-by-abelian-by-
finite, then vb1(G) is finite.

Our proof of this theorem relies on the fact that all metabelian quotients of
soluble groups of type FP2 are finitely presented [8, Thm. 5.5], as well as a techni-
cal result concerning the homology of subgroups of finite index (Proposition 6.2).
Groves, Kochloukova and Rodrigues [14, Thm. A] proved that if an abelian-by-
polycyclic group G is of type FP3 then it is nilpotent-by-abelian-by-finite, in which
case vb1(G) is finite by Theorem A. The same is true of all soluble groups of type
FP∞, because they are constructible [16], hence nilpotent-by-abelian-by-finite, but
in this case stronger finiteness results were already known: constructible soluble
groups are obtained from the trivial group by finite sequences of ascending HNN
extensions and finite extensions, from which it follows that they have finite Prüfer
rank (i.e. there is an upper bound on the number of generators for the finitely
generated subgroups).

It is natural to wonder if Theorem A might remain true when the field of rationals
Q in the definition of virtual betti number is replaced with other coefficient fields,
such as the field with p elements Fp. We shall see in Section 5 that it does not.

Conjecture: If G is finitely presented and soluble, then vb1(G) is finite.

It is difficult to construct finitely presented soluble groups that are not nilpotent-
by-abelian-by-finite. The examples provided by the constructions of Robinson and
Strebel [21] all satisfy the conjecture.

While editing the final version of this work, we learnt that Andrei Jaikin-Zapirain
has, in unpublished work, also proved Theorem A in the metabelian case. Higher
dimensional analogues of Theorem A are considered in the forthcoming PhD thesis
of Mokari [19].
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of Proposition 6.2 and Claim 2 in section 3. The work of the first author was
supported by grants from the EPSRC and by a Wolfson Merit Award from the Royal
Society; the work of the second author was supported by “bolsa de produtividade
em pesquisa”, CNPq, Brazil: we thank all of these organizations.

2. Preliminary results

2.1. Preliminaries on finitely presented metabelian groups. We fix a short
exact sequence of groups A� G� Q, where A and Q are abelian and G is finitely
generated. The action of G on A by conjugation induces an action of Q, which
enables us to regard A as a right ZQ-module. Because G is finitely generated and
Q is finitely presented, A is finitely generated as a ZQ-module.
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Associated to a non-zero real character χ : Q→ R one has the monoid

Qχ = {g ∈ Q | χ(g) ≥ 0}.

The character sphere S(Q) is the set of equivalence classes in Hom(Q,R) r {0}
under the relation that identifies χ1 ∼ χ2 if χ1 = λχ2 for some λ > 0. We write [χ]
for the class of χ. Following Bieri and Strebel [8], let

ΣA(Q) = {[χ] | A is finitely generated as a ZQχ-module}.

By definition, the ZQ-module A is 2-tame if ΣA(Q)c = S(Q) r ΣA(Q) contains
no pair of antipodal points. According to [8, Thm. 5.4], G is finitely presented
if and only if A is a 2-tame ZQ-module, and this happens precisely when G is of
homological type FP2. We refer the reader to [10] for general results concerning
groups of type FPm. If A1 � A2 � A3 is an exact sequence of ZQ-modules, then
ΣA2(Q)c = ΣA1(Q)c∪ΣA3(Q)c (see [8, Prop. 2.2]), hence every quotient of a 2-tame
ZQ-module is 2-tame.

2.2. Tensor products and finite presentability. Let R be a noetherian commu-
tative ring with unit 1 and let W be a finitely generated RQ-module. As above, we
have a Sigma invariant ΣW (Q) = {[χ] |W is finitely generated as RQχ−module},
and W is defined to be 2-tame as an RQ-module if ΣcW (Q) = S(Q) \ ΣW (Q) has
no pair of antipodal points.

The question of when the tensor square W ⊗RW is finitely generated as an RQ-
module (with Q acting diagonally) is addressed in [7], where it is shown that [χ]
lies in ΣcW (Q) if and only if the ring S = RQ/annRQ(W ) admits a real valuation
v : S → R ∪ {∞} (in the sense of Bourbaki) that extends χ and is such that the
restriction v0 of v to the image R of R in S is non-negative and discrete. By [7],
W ⊗R W is finitely generated as an RQ-module if and only if there is no pair of
antipodal elements [χ],−[χ] ∈ ΣcW (Q) that can be lifted to valuations of S that

have the same restriction v0 to R, with v0 discrete and non-negative. (These last
conditions on v0 are automatic if R is Z.)

Returning to the context of paragraph (2.1), we apply these general considera-
tions with W = A⊗Q and R = Q, in which case W ⊗RW ∼= (A⊗Z A)⊗Z Q. We
deduce that if there exists a group extension A � G � Q, with G finitely pre-
sented, then W = A⊗Q is 2-tame as a QQ-module, and W ⊗RW ∼= (A⊗ZA)⊗ZQ
is finitely generated as a QQ-module via the diagonal Q-action.

We shall also need a refinement of this observation that involves the annihilator
annZQ(A) of A in ZQ, which we denote I. In [9, (1.3)] Bieri and Strebel prove that

ΣA(Q) = ΣZQ/I(Q).

Thus if A is 2-tame as a ZQ-module, then so is ZQ/I.

Lemma 2.1. If there exists a group extension A� G� Q with A and Q abelian
and G finitely presented, and I = annZQ(A), then (ZQ/I)⊗Z (ZQ/I)⊗ZQ is finitely
generated as a QQ-module via the diagonal Q-action.

2.3. Preliminaries on commutative algebra. We will need the following basic
facts from commutative algebra; for details see, for example, [3], [2] or [12]. Let
Q be a finitely generated abelian group and recall that the Krull dimension of a
commutative ring is the supremum of the lengths of all chains of prime ideals in
the ring.
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(1) The radical
√
J of each ideal J C QQ is the intersection of the finitely many

prime ideals that contain J and are minimal subject to this condition.
(2) Finite dimensional Q-algebras are Artinian and therefore have Krull dimen-

sion 0.

Throughout, if R is a commutative ring and m a positive integer, then Rm will
denote the subring generated by m-th powers, except that Zn and Qn will denote
Cartesian powers. Where no ring is specified, tensor products are assumed to be
taken over Z.

3. A finiteness result in commutative algebra

Lemma 2.1 assures us that the following theorem applies to the modules that
arise from short exact sequences N � G � Zn associated to finitely presented
metabelian groups.

Theorem 3.1. Let Q ∼= Zn be a group and let S = ZQ/I be a commutative ring
such that (S ⊗Z S) ⊗Z Q is finitely generated as a QQ-module via the diagonal
Q-action. Then,

sup
m

dimQ(S ⊗ZQm Q) <∞.

Proof. Let B = S ⊗ Q = QQ/J and for each positive integer m define Jm C QQ
to be (J,Qm − 1) and

Bm := B ⊗QQm Q = QQ/Jm ∼= S ⊗ZQm Q.

As QQ/(Qm − 1) is finite dimensional over Q, so is Bm = QQ/Jm. Hence Bm has
Krull dimension 0, i.e. every prime ideal in Bm is a maximal one. Therefore, the
finite collection of primes ideals Pm,t whose intersection is

√
Bm are the only prime

ideals in QQ above Jm, and each of the quotients QQ/Pm,t is a field.
We shall establish the theorem by proving the following:

Claim 1. There exist only finitely many fields F such that for some m ≥ 1 (de-
pending on F ) the field F is a quotient of Bm.

Claim 1 provides an integer m0 such that if a field F is a quotient of Bm then
the natural map QQ→ F factors through QQ/(Qm0 − 1).

Claim 2. If m0 divides m then Jm = Jmr for every r ∈ N.

To see that the theorem follows from these claims, note that for an arbitrary
positive integer m we have Jm ⊇ Jmm0

= Jm0
, whence

dimQ(QQ/Jm) ≤ dimQ(QQ/Jm0
) ≤ dimQ(QQ/(Qm0−1)) = dimQ Q[Q/Qm0 ] = mn

0 .

Proof of Claim 1. Our hypothesis on S implies that B⊗QB is finitely generated
as QQ-module via the diagonal Q-action, by d elements say. Let F be a field
quotient of Bm and let θ : QQ→ F be the canonical projection; so Qm−1 ⊆ ker(θ).
Then θ(Q) is a finitely generated multiplicative subgroup of F ∗ that has finite
exponent and F , being finite dimensional over Q, embeds in C. Hence θ(Q) is
a finite cyclic group, generated by a root of unity, ε of order s say. Thus we
obtain a subgroup H < Q such that Q/H is cyclic of order s and H − 1 ⊆ ker(θ).
Now, F ∼= Q[x]/(f), where f is the minimal polynomial of ε over Q. And f is
an irreducible factor of xs − 1 in Q[x], whose zeroes are distinct roots of unity
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with order precisely s. Thus dimQ F = deg(f) = ϕ(s), where ϕ is Euler’s totient
function. On other hand, F⊗QF is an epimorphic image of the QQ-module B⊗QB
and the action of Q on F ⊗Q F factors through the action of Q/H, so F ⊗Q F is
generated as Q[Q/H]-module by d elements. Hence

ϕ(s)2 = (dimQ F )2 = dimQ(F ⊗Q F ) ≤ ddimQ Q[Q/H] = ds.

An elementary calculation shows that ϕ(n)/
√
n → ∞ as n → ∞, so for fixed d

there are only finitely many possible values of s and ε. Let b be a natural number
such that the order of ε is at most b. Then the order of ε is a divisor of m0 = b!
and

F is a quotient of QQ/(Qm0 − 1).

Since QQ/(Qm0−1) is finite dimensional over Q it has Krull dimension 0, so has
only finitely many prime ideals and finitely many field quotients. This completes
the proof of Claim 1.

Proof of Claim 2. Since m0 divides m we have Jm ⊆ Jm0 , so the prime ideals
containing Jm0 also contain Jm. On the other hand, we saw earlier that for each
of the prime ideals Pm,i containing Jm, the quotient Fi := QQ/Pm,i is a field. By
definition, m0 is such that QQ→ Fi factors through QQ/(Qm0 − 1), and therefore
Pm,i (which already contains J ⊂ Jm) contains Jm0

= (J,Qm0 − 1). The radical of
Jm is the intersection of the prime ideals containing it, so√

Jm =
√
Jm0

.

Arguing by induction on r, Claim 2 will follow if we can prove that for every
prime number p we have Jm = Jmp, which is equivalent to the assertion that
qm − 1 ∈ Jmp for all q ∈ Q. We fix q ∈ Q.

From the preceding argument we have
√
Jm =

√
Jmp. In particular, Qm − 1 ⊆

Jm ⊆
√
Jm =

√
Jmp, so there is a natural number (over which we have no control)

s such that

(3.1) (qm − 1)s ∈ Jmp.

As Qmp − 1 ⊆ Jmp, we also have

(3.2) qmp − 1 ∈ Jmp.

Let g(x) be the greatest common divisor of xpm − 1 and (xm − 1)s in Q[x]. In
characteristic zero, the polynomial xpm − 1 has no repeated roots, so neither does
g(x). Since g(x) divides (xm − 1)s, it must actually divide xm − 1, so in fact
g(x) = xm − 1. From (3.1), (3.2) and Bézout’s Lemma, we have g(q) ∈ Jpm. Since
q ∈ Q is arbitrary, this implies that Jmp = Jm. �

4. The Main Theorem for Metabelian Groups

In this section we prove that all finitely presented metabelian groups have finite
virtual first betti number. The proof relies on the finiteness theorem proved in the
previous section and two technical lemmas, the first of which is a simple observation
about commensurable groups.

Lemma 4.1. Let G be a group. If G0 < G is a subgroup of finite index, then
vb1(G) = vb1(G0).
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Proof. By definition, vb1(G) = supM dimH1(M,Q) where the supremum is taken
over finite index subgroups of G. If M has finite index in G0, then it also has finite
index in G, so vb1(G) ≥ vb1(G0). Conversely, if S has finite index in G, then
S0 = G0 ∩ S has finite index in G0, and since it also has finite index in S we have
dimH1(S0,Q) ≥ dimH1(S,Q), so vb1(G0) ≥ vb1(G). �

Lemma 4.2. Let A� G � Q be a short exact sequence of groups with A and Q
abelian and let n be the torsion-free rank of Q. Then,

(a) writing [G,A] = 〈{[g, a] = g−1a−1ga | g ∈ G, a ∈ A}〉, we have

dimQH1(G,Q) ≤ dimQ(A/[G,A]⊗Q) + n.

In the split case, G = AoQ, we have H1(G,Q) ∼= (G/[G,A])⊗Z Q, and

dimQH1(G,Q) = dimQ(A/[G,A]⊗Q) + n

(b) If Gm is a subgroup of finite index in G and Qm is the image of Gm in Q,
then

dimQH1(Gm,Q) ≤ dimQ(A⊗ZQm Q) + n.

In the split case, Gm = (A ∩Gm) oQm, equality is attained:

dimQH1(Gm,Q) = dimQ(A⊗ZQm Q) + n.

(c) If G = AoQ and B denotes the set of subgroups of finite index in Q, then

vb1(G) = sup
S∈B

dimQ(A⊗ZS Q) + n.

Proof. (a) As [G,A] ⊆ [G,G], we see that H1(G,Z) = G/[G,G] is a quotient of
G/[G,A]. So from the central extension A/[G,A]� G/[G,A]� Q we get

dimQH1(G,Q) ≤ dimQ(A/[G,A]⊗Q) + dimQ(Q⊗Q) = dimQ(A/[G,A]⊗Q) + n.

If G = A o Q then, using that A,Q are abelian and A is normal in G, we
get [G,G] = [AQ,AQ] = [Q,A] ⊆ [G,A] ⊆ [G,G], hence [G,G] = [G,A] and
A/[G,A]� G/[G,G]� Q is an exact sequence of abelian groups.

For (b) we consider the short exact sequence Am � Gm � Qm, where Am =
A ∩Gm. From part (a) we have

dimQH1(Gm,Q) ≤ dimQ(Am ⊗ZQm Q) + n,(4.1)

with equality if the sequence splits. Furthermore, since A/Am is finite we have

0 = TorZQm1 (A/Am,Q) and (A/Am)⊗ZQm Q = 0.

Thus there is an exact sequence (part of the long exact sequence in Tor associated
to A ∩Gm� A� A/(A ∩Gm))

0 = TorZQm1 (A/Am,Q)→ Am ⊗ZQm Q→ A⊗ZQm Q→ (A/Am)⊗ZQm Q = 0,

whence Am ⊗ZQm Q ∼= A ⊗ZQm Q. Thus we may replace Am ⊗ZQm Q in (4.1) by
A⊗ZQm Q, and (b) is proved.

(c) From the first part of (b) we have

vb1(G) ≤ sup
S∈B

dimQ(A⊗ZS Q) + n,

and to obtain the reverse inequality we use the second part of (b)

sup
S∈B

dimQ(A⊗ZS Q) + n = sup
S∈B

dimQH1(Ao S,Q),
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noting that Ao S has finite index in G. �

Theorem 4.3. Let A� G� Q be a short exact sequence of groups with A and Q
abelian. If G is finitely presented then its virtual first betti number vb1(G) is finite.

Proof. By passing to a subgroup of finite index in Q and replacing G by the inverse
image of this subgroup, we may assume that Q is free abelian. Lemma 4.1 assures
us that it is enough to consider this case, and Lemma 4.2(b) tells us that we will
be done if we can establish an upper bound on dimQ(A⊗ZQm Q) as Qm ranges over
the subgroups of finite index in Q.

Recall that A is finitely generated as a ZQ-module, say by d elements. Thus,
denoting the annihilator annZQ(A) = {λ ∈ ZQ | Aλ = 0} by I, we have an
epimorphism of ZQ-modules

(ZQ/I)[d] = ZQ/I ⊕ . . .⊕ ZQ/I → A

that induces an epimorphism of Q-vector spaces

((ZQ/I)⊗ZQm Q)[d] = (ZQ/I)[d] ⊗ZQm Q→ A⊗ZQm Q.

Thus

dimQ(A⊗ZQm Q) ≤ d.dimQ((ZQ/I)⊗ZQm Q)

and it suffices to show that

sup
m

dimQ((ZQ/I)⊗ZQm Q) <∞.

For every m there is a natural number αm such that Qαm ⊆ Qm, and ZQ/I⊗ZQmQ
is a quotient of ZQ/I ⊗ZQαm Q. Thus

dimQ((ZQ/I)⊗ZQm Q) ≤ dimQ((ZQ/I)⊗ZQαm Q),

and we have reduced to showing that

sup
s

dimQ((ZQ/I)⊗ZQs Q) <∞.

The theorem now follows from Lemma 2.1 and Theorem 3.1. �

5. Characteristic p case

In this section we shall construct examples which show that the restriction to
fields of characteristic 0 in Theorem A is essential, even in the metabelian case. To
this end, we consider the mod p virtual first betti number of a finitely generated
group G,

vb
(p)
1 (G) = sup{dimH1(S,Fp) | S < G of finite index }.

Proposition 5.1. For every prime p there exist finitely presented metabelian groups

Γ such that vb
(p)
1 (Γ) is infinite.

Proof. Let Q be a free abelian group with generators x and y and let A = FpQ/I,
where I is the ideal of FpQ generated by y − x2 + x− 1. Then

A ∼= Fp[x, x−1,
1

x2 − x+ 1
].

Consider

Am = A⊗ZQpm Fp ∼= FpQ/(I,Qp
m

− 1).
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Since (x2 − x+ 1)p
m − 1 = x2p

m − xpm + 1− 1 = xp
m

(xp
m − 1), we have

Am = Fp[x, x−1,
1

x2 − x+ 1
]/(xp

m

− 1, (x2 − x+ 1)p
m

− 1) =

Fp[x, x−1,
1

x2 − x+ 1
]/(xp

m

− 1)

is the localisation
BmS

−1

where Bm = Fp[x, x−1]/(xp
m − 1) and S is the image of {(x2 − x + 1)j}j≥1 in

Bm. Note that xp
m − 1 and x2 − x + 1 do not have a common root in any finite

field extension of Fp, for if z were a common root we would have 1 = z2p
m

=

(z − 1)p
m

= zp
m − 1 = 0, which is a contradiction. Thus the polynomials xp

m − 1
and (x2−x+ 1)j are coprime in Fp[x, x−1] i.e. generate the whole ring as an ideal,
and so the elements of S are invertible in Bm. Therefore BmS

−1 = Bm and

dimFp Am = dimFp BmS
−1 = dimFp Bm = pm.

Now define
Γ = AoQ and Γm = AoQp

m

.

Then, as the split case of Lemma 4.2(b) (with Fp coefficients in place of rational
ones)

dimFp H1(Γm,Fp) = dimFp Am + 2 = pm + 2,

which tends to infinity with m.
By the calculation of ΣA(Q) for A = FpQ/I, where the ideal I is 1-generated,

[9, Thm. 5.2] or by the link between ΣcA(Q) and valuation theory (as described in
subsection 2.2), we have that

ΣcA(Q) = {[χ1], [χ2], [χ3]}
χ1(x) = 0, χ1(y) = 1, χ2(x) = 1, χ2(y) = 0 and χ3(x) = −1, χ3(y) = −2.

Thus A is 2-tame as ZQ-module, and by the classification of finitely presented
metabelian groups in [8], Γ is finitely presented. �

Corollary 5.2. There exists a finitely presented metabelian group G such that for
the class A of all subgroups of finite index in G

sup
M∈A

d(M) =∞,

where d(M) is the minimal number of generators of M .

Proof. Immediate, since

d(M) ≥ dimFp H1(M,Fp).
�

It is natural to wonder if the lack of finiteness exhibited in the preceding propo-
sition might be avoided by restricting to subgroups whose index is coprime to p.
The following refinement shows that this is not the case.

Proposition 5.3. Let p be a prime. There exist finitely presented metabelian groups
G such that

sup{dimFp H1(S,Fp) | S ∈ Ap} =∞,
where

Ap = {S ≤ G | [G : S] is finite and coprime to p}.
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Proof. Let A = Fp[x, 1x ,
1

x+1 ] and let Q be a free abelian group of rank 2 whose
generators x1, x2 act on A as multiplication by x and x + 1 respectively. We
consider the group G = A o Q. As an Fp[Q]-module, A ∼= Fp[Q]/I where I is the
ideal generated by x2−x1−1, and the argument given in the preceding proposition
shows that ΣA(Q)c consists of precisely 3 points, no pair of which is antipodal.
Therefore G is finitely presented.

Let F be a finite field with pr elements, r ≥ 2. Let w be a generator of the
multiplicative group F ∗ = F r {0}. Let Qr be the kernel of the homomorphism
Q → F ∗ defined by x1 7→ w and x2 7→ w + 1. Let Gr = A o Qr and note that
|G/Gr| = |Q/Qr| = pr − 1 is coprime to p.

The ring epimorphism A → F sending x to w provides an epimorphism of the
underlying additive groups which extends to a group-epimorphism AoQr → F×Z2.
Since dimFp F = r, it follows that dimFp H1(Gr,Fp) ≥ r + 2. And r ≥ 2 was
arbitrary. �

6. Beyond the metabelian case

In this section we shall prove Theorem A, but first we present a consequence
of Theorem 4.3 that describes what one can deduce about towers of finite-index
subgroups above the commutator subgroup in amenable and related groups.

Proposition 6.1. Let G be a group of type FP2 that does not contain a non-
abelian free group and let C be the set of finite-index subgroups in G that contain
the commutator subgroup G′. Then supM∈C dimQH1(M,Q) <∞.

Proof. By [8, Thm. 5.5] G/G′′ is finitely presented. Since M ⊇ G′ we have
M ′ ⊇ G′′, hence we can replace G by G/G′′ and M by MG′′/G′′ without changing
H1(M,Q). Then we can apply Theorem 4.3. �

Our proof of Theorem A relies on the following proposition, which is of interest
in its own right.

Proposition 6.2. Let N � G� Q be a short exact sequence of groups, where N
is nilpotent, Q is abelian and G is finitely generated. Let Gn be a subgroup of finite
index in G and let Gn be the image of Gn in the metabelian group G/N ′. Then

dimQH1(Gn,Q) = dimQH1(Gn,Q).

Proof. We argue using the Malcev completion j : N → N∗, as defined in [18]. Ac-
cording to [20, Appendix A, Cor. 3.8], for any nilpotent group N the homomorphism
jN : N → N∗ is characterized up to isomorphism by the following properties:

(a) N∗ is nilpotent and uniquely divisible;
(b) ker jN is the torsion subgroup of N ;
(c) for every x ∈ N∗ there is a positive integer n such that xn ∈ N .

In any nilpotent group, the set
√
S of elements that have powers in a fixed

subgroup S is a subgroup. It follows that, for every subgroup M < N , the map
M →

√
jN (M) satisfies properties (a) to (c). Thus we may identify M∗ with√

jN (M) < N∗. If M < N has finite index then M∗ =
√
jN (M) = N∗. And

(N∗)′ = (N ′)∗.
With these facts in hand, for all subgroups of finite index Gn < G we have

(G′n)∗ ⊇ ((Gn ∩ N)′)∗ = ((Gn ∩ N)∗)′ = (N∗)′ = (N ′)∗. Thus (G′nN
′)∗ = (G′n)∗,

and from (c) we deduce that G′nN
′/G′n is torsion. As G′nN

′/G′n is the kernel of the
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canonical epimorphism Gn/G
′
n → GnN

′/G′nN
′, we have H1(Gn,Q) ∼= (Gn/G

′
n)⊗

Q ∼= (GnN
′/G′nN

′)⊗Q ∼= H1(Gn,Q) as required. �

Theorem 6.3. Let N � G � Q be a short exact sequence of groups. If N is
nilpotent, Q is abelian and G is of type FP2, then the virtual first betti number
vb1(G) is finite.

Proof. In the light of the preceding proposition, this follows directly from Theo-
rem 4.3 and the fact, proved in [8, Thm. 5.5], that G/N ′ is a finitely presented
metabelian group. �

Corollary 6.4 (=Theorem A). If a group G is nilpotent-by-abelian-by-finite group
and of type FP2, then vb1(G) is finite.

Proof. Let G0 be a subgroup of finite index in G such that G0 is nilpotent-by-
abelian. Then G0 has type FP2, so vb1(G0) is finite, by Theorem 6.3, and hence
so is G, by Lemma 4.1. �

Remark 6.5. We did not use the full force of finite presentability in establishing
Theorem A: in fact, it is enough to assume that G has a subgroup of finite index G0

in which there is a nilpotent subgroup N C G0 such that Q = G0/N is free abelian
and, writing A = N/N ′, the QQ-module A ⊗ A ⊗ Q, with diagonal action, should
be finitely generated. These requirements follow from the finite presentability of
G0/N

′ but are strictly weaker.

Corollary 6.6. Every soluble group of type FP∞ has finite virtual first betti num-
ber.

Proof. Soluble groups S of type FP∞ are constructible and hence nilpotent-by-
abelian-by-finite [16]. �

Corollary 6.7. Every abelian-by-polycyclic group of type FP3 has finite virtual first
betti number.

Proof. By the main result of [14], abelian-by-polycyclic groups of type FP3 are
nilpotent-by-abelian-by-finite. �
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