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Abstract

An ω-residually free tower is positive-genus if all surfaces used in
its construction are of positive genus. We prove that every limit group
is virtually a subgroup of a positive-genus ω-residually free tower. By
combining this with results of Gaboriau, we prove that elementarily
free groups are measure equivalent to free groups.

Measure equivalence was introduced by M. Gromov in [8] as a measure-
theoretic analogue of quasi-isometry. The motivating examples are commen-
surable groups and lattices in the same locally compact second countable
group. Much progress has been made in distinguishing measure-equivalence
classes (see, for example, [1], [3], [4], [5], [6] and [16]), but there have been
many fewer constructions of examples of measure equivalent groups. The
only groups whose measure-equivalence classes are completely classified are
finite groups, amenable groups, and lattices in simply connected Lie groups
with finite centre and real rank at least 2 (see [3]). In particular, the measure-
equivalence class of free groups is still quite poorly understood.

In [7], D. Gaboriau constructs some new examples of groups measure
equivalent to free groups, encapsulated in the following theorem.

Theorem 0.1 Let Σ be a compact orientable surface of positive genus, with
one boundary component. Then the iterated amalgamated product

π1(Σ) ∗〈∂Σ〉 π1(Σ) ∗〈∂Σ〉 . . . ∗〈∂Σ〉 π1(Σ)

is measure equivalent to a free group.
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The amalgamated product in the above statement is an example of a limit
group (indeed, it is an elementarily free group). Gaboriau also asks if all
limit groups are measure equivalent to free groups.

Limit groups have been studied under a variety of names: see [10], [11]
and [12]. The name limit group was introduced by Z. Sela in his solution
of the Tarski problem (see [14] et seq.). The elementary theory of a group
G is the set of first-order sentences that are true in G. The Tarksi problem
asks which groups have the same elementary theory as the free group of
rank 2. The existential theory consists of those sentences that only use one
quantifier ∃. Limit groups turn out to be precisely the groups with the same
existential theory as a free group. Another class, still more closely related to
free groups, is the class of elementarily free groups : those groups with the
same elementary theory as a free group.

Using [14] (cf. [10], [11]), one can give more constructive definitions of
limit groups and elementarily free groups. For the purposes of this paper,
both classes are defined in terms of ω-residually free towers, which are in
turn defined as the fundamental groups of certain complexes, inductively
constructed from graphs, surfaces and tori (see section 1). Such a tower is
called positive-genus if every surface used in its construction is of positive
genus. Our main result concerning towers is the following.

Theorem A (Theorem 1.11) Every limit group is virtually a subgroup of
a positive-genus ω-residually free tower.

Using this and results of [7], we deduce the following theorem, which partially
answers Gaboriau’s question.

Theorem B (Theorem 2.6) Every elementarily free group is measure
equivalent to a free group.

This paper is organized as follows. In section 1 we construct various finite-
index subgroups of towers and prove theorem A. In section 2 we recapitulate
some useful results of [7] and prove that elementarily free groups are measure
equivalent to free groups. In section 3 we discuss methods of attacking the
case of all limit groups.
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1 Limit groups

1.1 ω-residually free towers

For an introduction to the theory of limit groups, see [2].

Definition 1.1 An ω-rft space of height 0, denoted X0, is a one-point union
of finitely many compact graphs, tori, and closed hyperbolic surfaces of Euler
characteristic less than -1.

An ω-rft space of height h, denoted Xh, is obtained from an ω-rft space
Xh−1 of height h− 1 by attaching one of two sorts of blocks.

1. Quadratic block. Let Σ be a connected compact hyperbolic surface
with boundary, with each component either a punctured torus or having
χ ≤ −2. Then Xh is the quotient of Xh−1 t Σ obtained by identifying
the boundary components of Σ with curves on Xh−1, in such a way that
there exists a retraction ρ : Xh → Xh−1. The retraction is also required
to satisfy the property that ρ∗(π1(Σ)) be non-abelian.

2. Abelian block. Let T be an n-torus, and fix a coordinate circle γ. Fix
a loop c in Xh−1 that generates a maximal abelian subgroup in π1(Xh−1).
Then Xh is the quotient of Xht (S1× [0, 1])tT obtained by identifying
S1 × {0} with c, and S1 × {1} with γ.

An ω-rft space is called hyperbolic if no tori are used in its construction.

Definition 1.2 An (ω-residually free) tower of height h, denoted Lh, is the
fundamental group of an ω-rft space of height h.

The following deep theorem of Sela (see [13]) will, for our purposes, serve
as a definition of elementarily free groups.

Theorem 1.3 A group is elementarily free if and only if it is the fundamen-
tal group of a hyperbolic ω-rft space.

Towers are examples of limit groups. Another theorem of Sela [15] and,
independently, O. Kharlampovich and A. Myasnikov [11], will serve as a
definition of limit groups.

Theorem 1.4 A group is a limit group if and only if it is a finitely generated
subgroup of an ω-residually free tower.
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We will need a result that is an immediate consequence of the fact that
the limit groups are precisely the finitely generated ω-residually free groups.

Lemma 1.5 Limit groups are residually free; that is, if L is a limit group
and g ∈ L−{1} then there exists a homomorphism to a free group f : L→ F
with f(g) 6= 1.

A key feature of the definition of a tower is the retraction ρ : Xh → Xh−1.
In the abelian case, the retraction simply projects T onto the coordinate circle
γ, and thence to c. In both cases, ρ induces a retraction ρ∗ : Lh → Lh−1 on
the level of fundamental groups.

An ω-rft space Xh has a natural graph-of-spaces1 decomposition ΓX , with
two vertex spaces, namely Xh−1 and the block at height h; the edge spaces are
circles. We will often use the retraction to pull finite covers back from Xh−1

to Xh. It is worth noting that such pullbacks inherit a similar graph-of-spaces
decomposition from Xh.

Lemma 1.6 Let X be a CW-complex with a graph-of-spaces decomposition
ΓX , such that there is a retraction ρ : X → X ′ to a vertex space. Let Y ′ → X ′

be a connected covering of degree d, and let Y → X be the connected covering
obtained by pulling back along ρ; that is, π1(Y ) = ρ−1

∗ (π1(Y ′)). Then:

1. Y → X is of degree d and inherits a graph-of-spaces decomposition ΓY ;

2. the pre-image of X ′ in Y is a (connected) vertex space of ΓY homeo-
morphic to Y ′;

3. Y → X extends Y ′ → X ′, and Y inherits a retraction to Y ′ covering
ρ.

A tower Lh inherits, by the Seifert–van Kampen Theorem, a graph-of-
groups decomposition ΓL from the graph-of-spaces decomposition ΓX of the
associated ω-rft space Xh. The decomposition ΓL is 2-acylindrical [14].

1By convention, our graphs of spaces are connected and have connected vertex and
edge spaces.
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1.2 Positive-genus towers

The purpose of this section is to prove that, up to finite index, the quadratic
blocks can be assumed to have positive genus. A compact, connected surface
Σ with Euler characteristic χ(Σ) and b(Σ) boundary components is of positive
genus if χ(Σ) + b(Σ) ≤ 0. Note that, in particular, all finite covers of such Σ
also have positive genus.

Definition 1.7 An ω-rft space is positive-genus if every quadratic block used
in its construction is of positive genus. A tower is positive-genus if it is the
fundamental group of a positive genus ω-rft space.

We are going to prove that every elementarily free group is virtually
a subgroup of a positive-genus elementarily free group. Our strategy for
obtaining positive-genus quadratic blocks is to identify connected p-sheeted
coverings (here p is a prime number) that restrict to a p-sheeted covering
on each boundary component. We achieve this by passing to a finite-index
subgroup of the tower that admits a map to Z/pZ which maps each attaching
loop of the top quadratic block non-trivially. In particular, we must arrange
for the attaching loops to become non-trivial in homology.

Recall that, for X a topological space, c : S1 → X a loop, and Y → X
a covering map, the elevations of c to Y are the minimal connected covers
Ŝ1 → S1 such that Ŝ1 → X lifts to Y . Fixing basepoints, it follows from
standard covering space theory that π1(Ŝ1) is the pre-image of π1(Y ) in
π1(S1).

Lemma 1.8 If X is a connected CW-complex with π1(X) residually free,
and c1, . . . , cm is a finite collection of curves in X, then there exists a finite
cover Y → X so that every elevation of each ci to Y is of infinite order in
H1(Y ).

Proof. Fix a base-point in X, and without loss of generality assume the ci
are based loops representing elements of L = π1(X). Since L is residually
free, for each i there exists a homomorphism fi : L→ F with fi(ci) 6= 1. By
M. Hall’s theorem [9], there exists a finite-index subgroup Fi ⊂ F containing
fi(ci), such that fi(ci) is primitive in H1(Fi). Let Y → X be the cover
corresponding to the subgroup

⋂
i f
−1
i (Fi). Every elevation dj of ci to Y

corresponds to a conjugate of a power of ci ∈ L. Since fi(ci) has infinite
order in H1(Fi), it follows that dj has infinite order in H1(Y ). �

We can now construct a map to Z/pZ as required.
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Lemma 1.9 Let Y be a connected CW-complex, and let d1, . . . , dn be a col-
lection of curves in Y that are all of infinite order in H1(Y ). Then, for all
sufficiently large primes p, there exists a homomorphism ϕ : π1(Y ) → Z/pZ
so that ϕ(dj) is non-trivial for all j.

Proof. There exists a homomorphism H1(Y )→ Z under which each dj has
non-trivial image. This is because Zn is ω-residually free. (To prove this,
fix a basis for H1(Y ) mod torsion and consider an inner product on the real
vector space V = H1(Y )⊗ZR, so that the basis is orthonormal. Then for each
j, the unit vectors not normal to dj ⊗ 1 are an open subset of full measure
on the unit sphere; so the unit vectors not normal to any of the dj ⊗ 1 also
form an open subset of full measure on the unit sphere; then there exists
an integral vector in V not normal to any of the dj ⊗ 1. Taking the inner
product with this vector defines the required homomorphism H1(Y )→ Z.)

Now choose a prime p that doesn’t divide any of the images of the dj in
Z. In particular, each dj has non-trivial image under the composition

ϕ : π1(Zh)→ H1(Zh)→ Z→ Z/pZ.

�

We shall apply the preceding lemmas to the height h − 1 subspace and
pull back to the full tower to obtain the positive genus cover that we seek.

Proposition 1.10 Let Xh be an ω-rft space, constructed by attaching a
quadratic block Σ to a space Xh−1 of height h − 1. Then there exists a con-
nected cover Zh → Xh with an inherited graph-of-spaces decomposition ΓZ,
with one vertex space a connected cover Zh−1 → Xh−1, and the remaining
vertex spaces connected covers Σ̄i → Σ, so that each Σ̄i has positive genus.
The retraction ρ : Xh → Xh−1 pulls back to a retraction Zh → Zh−1.

Proof. Let c1, . . . , cm be the images of the boundary curves of Σ in Xh−1.
Since π1(Xh−1) is residually free, lemma 1.8 provides a finite covering Yh−1 →
Xh−1, so that if d1, . . . , dn are the elevations of the ci, each dj is of infinite
order in homology. Let Yh → Xh be the covering obtained by pulling back
along the retraction ρ, with graph-of-spaces decomposition ΓY .

By lemma 1.9, there exists a homomorphism ϕ : π1(Yh−1) → Z/pZ with
ϕ(dj) 6= 1 for each j. Let Zh−1 → Yh−1 be the covering corresponding to the
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kernel of ϕ. Finally, pull the covering Zh−1 → Yh−1 back along the retraction
Yh → Yh−1 to give a covering Zh → Yh, with graph-of-spaces decomposition
ΓZ .

The key point to observe is that each edge space of ΓY is only covered
by one edge space of ΓZ . Indeed, Zh → Yh is a covering of degree p, but any
edge cycle dj has order p under the map Z/pZ, so an elevation of it to Zh
covers dj with degree p. Thus dj only has one elevation to Zh.

It follows that the underlying graphs of ΓY and ΓZ are the same. Consider
a surface vertex Σ̄i of ΓZ , covering a surface vertex Σi of ΓY . By construction
b(Σ̄i) = b(Σi), so we have

χ(Σ̄i) + b(Σ̄i) = p χ(Σi) + b(Σi).

Since χ(Σi) ≤ −1 and χ(Σi) + b(Σi) ≤ 2, Σ̄i has positive genus for p ≥ 3. �

The above result is enough to prove that elementarily free groups are
measure equivalent to free groups. It is perhaps more cleanly expressed,
however, in terms of the following theorem, which we believe to be of inde-
pendent interest.

Theorem 1.11 Every limit group L has a finite-index subgroup M that is a
subgroup of a positive-genus tower P . If L is elementarily free then P can be
taken to be elementarily free.

By theorem 1.4 it suffices to prove the theorem for towers. More precisely,
we prove the following.

Proposition 1.12 Let Lh be a tower of height h. Then there exists a finite-
index subgroup Mh ⊂ Lh contained in a positive-genus tower Ph. If Lh is
elementarily free then Ph can be taken to be elementarily free. If A ⊂ Mh is
a maximal abelian subgroup then A is also maximal abelian in Ph.

Proof. The proof is by induction on height. By definition, every level 0 tower
is positive-genus. Consider Lh the fundamental group of an ω-rft space Xh

of height h, obtained as usual by attaching a block to a height h − 1 space
Xh−1 with fundamental group Lh−1.

First we consider the case of a quadratic block Σ. By induction, Lh−1 has a
finite-index subgroup Mh−1 that is a subgroup of a positive-genus tower Ph−1.
By proposition 1.10, Lh has a finite-index subgroup Kh = π1(Zh) with graph-
of-groups decomposition ΓK , with one vertex labelled by Kh−1 a finite-index
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subgroup of Lh−1 and the remaining vertices labelled by the fundamental
groups of surfaces of positive genus, amalgamated with Kh−1 along boundary
components. Set Mh = ρ−1

∗ (Kh−1 ∩Mh−1). Then Mh inherits a graph-of-
groups decomposition ΓM , with one vertex labelled by Kh−1 ∩Mh−1 and the
remainder by fundamental groups of surfaces of positive genus, amalgamated
with Kh−1 ∩Mh−1 along boundary components. The retraction ρ∗ : Lh →
Lh−1 restricts to a retraction Mh → Kh−1 ∩Mh−1. Enlarge ΓM to ΓP by
replacing Kh−1 ∩Mh−1 with Ph−1. Extending ρ∗ by the identity on Ph−1, it
is clear that Ph = π1(ΓP ) is a positive-genus tower.

The case of an abelian block T is similar. By induction, there exists a
finite-index subgroup Mh−1 ⊂ Lh−1 that embeds in a positive genus tower
Ph−1. The pullback Mh = ρ−1

∗ (Mh−1) inherits a graph-of-groups decompo-
sition ΓM , with one vertex labelled by Mh−1 and the remainder by finitely
generated free abelian groups. Each abelian vertex has a coordinate fac-
tor amalgamated with a cyclic maximal abelian subgroup of Mh−1. Enlarge
ΓM to ΓP by replacing Mh−1 by Ph−1. Since cyclic maximal abelian sub-
groups of Mh−1 are maximal abelian in Ph−1, the resulting fundamental group
Ph = π1(ΓP ) is again a tower.

It remains to show that any maximal abelian subgroup A of Mh is max-
imal abelian in Ph. For this we need a little Bass–Serre Theory. Suppose
g ∈ Ph commutes with every element of A. If g is elliptic in ΓP then g ∈ A by
induction on height, so assume that g acts hyperbolically on the Bass–Serre
tree TP of ΓP , preserving an axis l. In this case, A also preserves l.

If A were conjugate into a vertex of ΓP then A would fix l pointwise.
But this would contradict the fact that ΓP is 2-acylindrical, since in an
acylindrical tree the stabilizer of a line is trivial.

Therefore there is some a ∈ A which acts hyperbolically on TP , also with
axis l. Since the edge groups of ΓP are precisely the images of the edge groups
of ΓM , the Bass–Serre tree TM of ΓM is the minimal Mh-invariant subtree of
TP and contains l. Fix an edge e in l. Then ge is an edge of l, so lies in TM .
There is only one Mh-orbit of e in TM , so there exists m ∈ Mh such that
me = ge. The stabilizer of e lies in Mh, so it follows that g ∈ Mh. Since A
was maximal abelian in Mh, g ∈ A. �
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2 Measure equivalence

We are now in a position to use the results of [7] to prove that elementarily
free group are measure equivalent to free groups. For motivation and back-
ground, we refer the reader to the papers of Damien Gaboriau, particularly
[5].

2.1 Definition and properties

Definition 2.1 Two countable groups G1, G2 are measure equivalent if there
exist commuting, measure-preserving, (essentially) free actions on some mea-
sure space (Ω,m), such that the action of Gi admits a finite measure funda-
mental domain. Write

G1
ME
∼ G2.

The standard examples of measure-equivalent groups are commensurable
groups and lattices in the same locally compact second countable group. We
will not use the definition of measure equivalence directly, but deduce our
result from the following properties.

Theorem 2.2 (PME7 in [7]) If G1 and G2 are measure equivalent to a free
group then so is G1 ∗G2.

Theorem 2.3 (PME8 in [7]) If G is measure equivalent to a free group and
H ⊂ G is a subgroup then H is measure equivalent to a free group.

Theorem 0.1 is a special case of:

Theorem 2.4 (Corollary 3.18 of [7]) Consider a countable group G mea-
sure equivalent to a free group, and C ⊂ G an infinite cyclic subgroup. If
Σ is a compact orientable surface of positive genus with a single boundary
component then G ∗C=〈∂Σ〉 π1(Σ) is also measure equivalent to a free group.

We generalize theorem 2.4 to the case of multiple boundary components.

Corollary 2.5 Consider a path-connected space X with G = π1(X) measure
equivalent to a free group. Let Σ be a compact, orientable surface of positive
genus with non-empty boundary. Let X ′ be the quotient of X tΣ obtained by
identifying the boundary curves of Σ with loops in X that generate infinite
cyclic subgroups of π1(X). Then π1(X ′) is measure equivalent to a free group.
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Proof. By cutting Σ along a certain simple closed curve γ, we can decompose
it as Σ1∪γΣ2, where Σ1 is a punctured sphere and Σ2 is of positive genus and
has one boundary component. X ′ acquires a similar decomposition as X1 ∪γ
Σ2, where X1 is obtained from X by amalgamating loops on X with all of
the boundary curves of Σ1 except γ. Note that Σ1 deformation retracts onto
the graph formed by the boundary circles c1, . . . , cn other than γ, together
with a disjoint collection of arcs αj (j = 2, . . . , n) connecting c1 to cj. This
deformation retraction extends to a deformation retraction of X1 onto the
union ofX and the arcs αj. It follows from theorem 2.2 that π1(X1) ∼= π1(X)∗
Fn−1 is measure equivalent to a free group. Thus π1(X ′) = π1(X1) ∗〈∂Σ2〉

π1(Σ2) is measure equivalent to a free group, by theorem 2.4. �

We are now ready to prove that elementarily free groups are measure
equivalent to free groups.

2.2 Elementarily free groups

Theorem 2.6 Every elementarily free group is measure equivalent to a free
group.

Proof. By theorem 1.11, it suffices to prove the result for positive-genus
elementarily free groups.

At height 0, X0 is a one-point union of graphs and hyperbolic surfaces.
Hyperbolic surface groups are lattices in PSL2(R), so are measure equivalent
to a free group. Thus, by corollary 2.2, π1(X0) is measure equivalent to a
free group.

At height h, assume that Xh is obtained as usual by gluing a surface Σ to
Xh−1. By induction, π1(Xh−1) is measure equivalent to a free group. There
are two cases to consider.

If Σ is orientable, then the result is given by corollary 2.5.
If Σ is non-orientable, then it has an orientable double cover Σ′ → Σ

of positive genus, with twice the number of boundary components. The
amalgam of Σ′ with two disjoint copies of Xh−1 gives a double cover X ′h → Xh.
Identify a point in each copy of Xh−1 to create a space Y . By proposition 2.2,
π1(Xh−1∨Xh−1) = π1(Xh−1)∗π1(Xh−1) is measure equivalent to a free group.

We have built Y by gluing the orientable surface of positive genus Σ′

to Xh−1 ∨ Xh−1, and each boundary component of Σ′ defines an element
of infinite order in one of the free factors of π1(Xh−1 ∨ Xh−1. It follows
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by corollary 2.5 that π1(Y ) is measure equivalent to a free group. Since
π1(Y ) ∼= π1(X ′h) ∗ Z, the result follows from theorem 2.3. �

3 The case of arbitrary limit groups

In the light of theorem 2.3, to show that all limit groups are measure equiva-
lent to free groups it would suffice to prove that ω-residually free towers are
measure equivalent to free groups. Even the case of FC = F ∗C=Z Zn, where
C is a maximal cyclic subgroup of F and Z is a direct factor of Zn, seems
non-trivial. The methods of the proof of theorem 2.4 in [7] suggest a possible
approach.

Let (X,µ) be a probability measure space, and consider an essentially
free measure-preserving action α of the group G on X. The orbit relation of
the action is the equivalence relation given by the orbits of G, and is denoted
Rα. There is a notion of free products for equivalence relations, motivated
by the normal form for free products of groups.

Definition 3.1 Consider measured equivalence relations R,A and B on X.
Write R = A ∗ B if:

1. R is generated by A and B;

2. for almost all 2p-tuples (xi)i∈Z/2pZ such that

x2j−1 ∼A x2j ∼B x2j+1

for each j, one has xi = xi+1 for some i.

Gaboriau defines a subgroup H ⊂ G to be a measure free factor if there
exists a free probability-measure-preserving action α of G and a subrelation
S of Rα so that

Rα = Rα|H ∗ S.

It follows from the normal form theorem for free products that free factors
are measure free factors. In [7], Gaboriau constructs a non-trivial example:
the boundary circle of a positive-genus orientable surface with one boundary
component generates a measure free factor. Theorem 2.4 is a special case of:
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Theorem 3.2 (Theorems 3.13 and 3.17 of [7]) If G and G′ are mea-
sure equivalent to free groups, C ⊂ G and C ′ ⊂ G′ are infinite cyclic sub-
groups, and C is a measure free factor in G, then G ∗C=C′ G

′ is measure
equivalent to a free group.

At present, the only non-trivial C for which we know that FC
ME
∼ F2 is

that given by Gaboriau’s example, in which C is generated by a boundary
component of an orientable surface. It is natural to ask if each maximal cyclic
subgroup of F is a measure free factor. If this were so, then it would follow
from theorem 3.2 that every FC is measure equivalent to a free group. It is
also natural to generalize the question to towers, and ask if each maximal
abelian cyclic subgroup of a tower is a measure free factor. Again, if so, it
would follow that every limit group is measure equivalent to a free group.
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