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Abstract

Previous approaches to modelling the deformation of breast tissue include using linear
elasticity and pseudo-nonlinear elasticity, in which the nonlinear deformation is broken up
into a series of small linear isotropic deformations, with the (constant) Young’s modulus of
each linear deformation an exponential function of the total nonlinear strain.

Here these two approaches are compared to the solution of the full nonlinear elastic prob-
lem for tissue with an exponential relationship between stress and strain. Having formulated
each model and related the coefficients between models, numerical simulations are performed
on a block of incompressible material which demonstrate that the simpler models may not
be appropriate when modelling deformations of the human breast under gravity.
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1 Introduction

A tumour in a woman’s breast is usually located using a clinical technique such as mammog-
raphy (X-rays), Magnetic Resonance (MR) imaging, or ultrasound. When mammography
is used, the woman stands upright and her breast is compressed between two plates. When
MR imaging is used, the woman lies prone with her breasts hanging downwards into the
machine used to detect the signal. For ultrasound, the woman sits upright with the breast
free to move. To combine data from more than one imaging process, an accurate soft tissue
model of the breast must be used to track the movement of internal tissue when the breast
is moved to different positions and compressed. Should the woman require surgery, she will
usually lie supine, with the breast taking yet another position. An accurate soft tissue model
of the breast will make the location of the tumour in this new position a much more reliable
procedure.

To develop an accurate soft tissue model of the breast, the stress–strain relationships
for breast tissues must be known. The limited experimental data available (Wellman and
Howe, 1998; Wellman, 1999) suggest that, for the large deformations of breast tissue that are
likely to occur in the situations described above, the relationship between stress and strain is
exponential, as is the case for some other biological tissues (Fung, 1993). The deformations
will therefore be governed by the nonlinear equations of finite deformation elasticity theory
(Malvern, 1969).

Classical linear elasticity theory was used by Schnabel et al. (2003) to model breast
deformations. This model was used to simulate deformations of a breast whose shape was
determined from an MR image. These simulated deformations were then compared with
an interpolation method that also simulated deformations (Rueckert et al., 1999). As no
physical deformations of the breast were compared with the predictions of this model, the
suitability of the linear elasticity model in this situation is unclear.

A different approach to modelling breast deformations was used by Azar et al. (2001,
2002). These authors modelled the whole deformation as consisting of a large number of
small deformations. Classical linear elasticity theory was used to calculate each of these
small deformations, with the Young’s modulus being a function of the strain tensor at each
step. This allows an exponential stress–strain relationship to be incorporated into the model,
as described above. A similar approach was employed by Samani et al. (2001), who also
allowed the Young’s modulus of each tissue type to be a nonlinear function of strain.

In this study we investigate whether the simpler models described above are good approx-
imations to the nonlinear equations governing incompressible finite deformation elasticity.
This is achieved by comparing the governing equations for each model and performing nu-
merical simulations using the simpler models with parameter values that have been used
by other authors. The results of these simulations are then compared with the results of
simulations that are calculated using finite deformation theory.

2 The models

We begin by describing the nonlinear finite deformation elasticity model. The governing
equations for this model are approximated for small strains, and are then compared with
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the governing equations for classical linear elasticity theory. This section is concluded by
describing the pseudo nonlinear model proposed by Azar et al. (2001, 2002) that attempts
to adapt the theory of linear elasticity to model large strains.

2.1 The finite deformation model

2.1.1 Strain

Let X denote position in the undeformed body, and x denote position in the deformed body,
so that the displacement is given by

u(X) = x(X)−X.

We define the deformation gradient tensor F = (FiM) by

FiM =
∂xi

∂XM

(1)

so that dx = FdX. A general deformation comprises both stretch and rigid body rotation;
we may extract the stretch component by considering the Lagrange-Green strain tensor,

E =
1

2

(
F T F − I

)
; EMN =

1

2

(
3∑

i=1

FiMFiN − δMN

)
, (2)

where δMN is the Kronecker delta, and I is the identity tensor. The tensor E is independent
of any rigid body rotation, and is such that

dx2 − dX2 = 2dXT EdX.

In terms of the displacement u,

EMN =
1

2

(
∂uM

∂XN

+
∂uN

∂XM

+
3∑

P=1

∂uP

∂XM

∂uP

∂XN

)
.

Thus, if we linearise in u we find

EMN =
1

2

(
∂uM

∂XN

+
∂uN

∂XM

)
, (3)

which is the usual expression for the strain tensor in linear elasticity.

2.1.2 Stress

We define σ = (σij) to be the Cauchy stress tensor, i.e. the force measured per unit deformed
area acting on the deformed body. Then applying Newton’s law in the steady state the
equations governing the deformation are (Malvern, 1969)

3∑
i=1

∂σij

∂xi

+ ρgj = 0 j = 1, 2, 3, (4)
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where ρ is the density of tissue, and gj is the component of the gravitational force per unit
mass in the Xj direction.

Typically, the boundary of the deformed body, ∂Ω, must be partitioned into two non–
intersecting sets. On the first set, ∂ΩD, there are Dirichlet displacement boundary conditions.
On the second set, ∂ΩND, there are non–Dirichlet traction boundary conditions. These
boundary conditions are

xj = x0j
j = 1, 2, 3 on ∂ΩD, (5)

3∑
i=1

σijni = sj j = 1, 2, 3 on ∂ΩND, (6)

where (x01 , x02 , x03) are the displacement boundary conditions, (n1, n2, n3) is the outward
pointing unit normal vector to the deformed body and (s1, s2, s3) is the force per unit de-
formed area acting on the deformed body.

Equation (4) expresses the deformation with the coordinates of the deformed body as
the independent variables. It is often more convenient to use a Lagrangian formulation, with
the coordinates of the undeformed body as the independent variables, and the coordinates
of the deformed body (or equivalently the displacement) as the dependent variables. In this
case the natural stress tensor to use is T = (TMN), the second Piola-Kirchoff stress tensor,
which is the force per unit undeformed area acting on the undeformed body, and which is
related to the Cauchy stress tensor by (Malvern, 1969)

σ =
1

det F
FTF T . (7)

The governing equations for this formulation are (Malvern, 1969)

3∑
M,N=1

∂

∂XM

(
TMN

∂xj

∂XN

)
+ ρgj = 0 j = 1, 2, 3. (8)

Finally, (4) or (8) are closed by adding a constitutive relationship between stress and defor-
mation. Typically this is accomplished by introducing a strain energy function, W , which is
a function of F , and defining (Green & Adkins, 1970)

TMN =
1

2

(
∂W

∂EMN

+
∂W

∂ENM

)
. (9)

2.1.3 The strain energy function

For an isotropic material W must be independent of rigid body rotations and the particular
choice of coordinates, and must therefore be a function only of the three invariants of the
tensor F T F ,

I1 = trace(F T F ),

I2 =
1

2

(
(trace(F T F ))2 − trace((F T F )2)

)
,

I3 = det(F T F ).
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A typical strain energy function for biological tissue is given by

W = a
(
eb(I1−3) − 1

)− 1

2
f(I3 − 1), (10)

where a, b > 0 are constants and the function f is a measure of the compressibility of the
material. In terms of E, the invariants I1 and I3 are given by

I1 = 3 + 2(E11 + E22 + E33), (11)

I3 = 1 + 2(E11 + E22 + E33) +

4(E11E22 + E22E33 + E33E11 − E2
12 − E2

23 − E2
31) +

8(E11E22E33 − E11E
2
23 − E22E

2
13 − E33E

2
12 + 2E12E23E31). (12)

We note that when using the strain energy function given by (10) and the definition of TMN

given by (9) we have

TMN = 2(ab− f ′(0))δMN +O(EPQ) as EPQ → 0. (13)

Thus if the stress in the undeformed state is zero, we must have f ′(0) = ab.
With stress defined as in (9), equation (8) is the Euler-Lagrange equation associated with

the minimisation of the strain and potential energy of the material,

∫

Ω0

(W − ρg · x) dV0. (14)

To see this we note that under a small perturbation x → x + U the strain tensor becomes

EMN → EMN +
1

2

3∑
i=1

(
∂Ui

∂XM

∂xi

∂XN

+
∂Ui

∂XN

∂xi

∂XM

)
,

so that

∫

Ω0

W dV0 →
∫

Ω0

W dV0 +

∫

Ω0

1

2

3∑
M,N=1

∂W

∂EMN

3∑
i=1

(
∂Ui

∂XM

∂xi

∂XN

+
∂Ui

∂XN

∂xi

∂XM

)
dV0

=

∫

Ω0

W dV0 −
∫

Ω0

1

2

3∑
i=1

[
3∑

M,N=1

∂

∂XM

(
∂W

∂EMN

∂xi

∂XN

)
+

∂

∂XN

(
∂W

∂EMN

∂xi

∂XM

)]
Ui dV0,

on integrating by parts. Then, switching the labels M and N in the second term, the
Euler-Lagrange equations associated with minimising the energy (14) are

3∑
M,N=1

∂

∂XM

[
1

2

(
∂W

∂EMN

+
∂W

∂ENM

)
∂xi

∂XN

]
+ ρgi = 0,

which are equivalent to (8) with TMN given by (9).
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2.1.4 Incompressibility

Often it is a good approximation to assume that biological materials are incompressible. We
can enforce incompressibility by imposing the constraint

det F = 1 (15)

on the deformation. However, we have now introduced a fourth equation, so we must intro-
duce another unknown if we are to retain a well-posed mathematical system. This extra term
is an isotropic internal force, often referred to as a pressure, so that an extra term −p(F T F )−1

must be incorporated into the second Piola-Kirchoff stress tensor (Spencer 1980):

T =
1

2

(
∂W

∂EMN

+
∂W

∂ENM

)
− p(F T F )−1. (16)

The pressure can be thought of as a Lagrange multiplier associated with the constraint I3 =
det F T F = 1. Suppose we try to minimise the energy under this constraint. Then

min
detF T F=1

∫

Ω0

(W − ρg · x) dV0 = min

∫

Ω0

(
W − ρg · x− 1

2
p(I3 − 1)

)
dV0, (17)

which gives the Euler-Lagrange equations as

3∑
M,N=1

∂

∂XM

[
1

2

(
∂W

∂EMN

+
∂W

∂ENM

− p

2

(
∂I3

∂EMN

+
∂I3

∂ENM

))
∂xi

∂XN

]
+ ρgi = 0.

Since
∂I3

∂E
=

∂I3

∂ET
= 2(F T F )−1,

(using (15)) we have

3∑
M,N=1

∂

∂XM

[(
1

2

(
∂W

∂EMN

+
∂W

∂ENM

)
− p(F T F )−1

)
∂xi

∂XN

]
+ ρgi = 0,

which is equivalent to (8) with the new stress tensor (16). We note that from (7) the
corresponding addition to the Cauchy stress tensor is simply −pI.

2.2 Classical linear elasticity

We may compare the theory of linear and nonlinear elasticity by taking the lowest order
terms in (10) and comparing this approximate strain energy function to the strain energy
function that arises in classical linear elasticity theory. It is unusual in linear elasticity to
enforce incompressibility, although some authors (Azar et al., 2001, 2002; Schnabel et al.,
2003; Zhang et al., 1997) have enforced near incompressibility by setting the Poisson ratio
to 0.5 − ε, with ε small and positive. Thus we begin by comparing the compressible finite
deformation model described earlier to the classical linear elasticity model. We will then
formulate the model for incompressible linear elasticity, and compare it to the incompressible
finite deformation model.
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2.2.1 Comparing the nonlinear model with classical linear elasticity

The strain energy function, Wlin, for classical linear elasticity with Lamé constants λ and µ
is (Malvern, 1969)

Wlin =
1

2
(λ + 2µ)

(
E2

11 + E2
22 + E2

33

)
+ 2µ

(
E2

12 + E2
23 + E2

31

)

+ λ (E11E22 + E22E33 + E33E11) . (18)

To compare the finite deformation formulation with the classical linear model for low strains,
we take the lower order terms in the strain energy function for the finite deformation formu-
lation given in (10), remembering that f ′(0) = ab, to give

W = 2(ab2 + f ′′(0))(E2
11 + E2

22 + E2
33) + 4ab(E2

12 + E2
23 + E2

31)

+ 4(ab2 − ab + f ′′(0))(E11E22 + E22E33 + E33E11) + O(E3). (19)

Comparing equations (18) and (19) we see that (19) is a strain energy function corresponding
to Lamé constants

λ = 4(ab(b− 1) + f ′′(0)), µ = 2ab, (20)

which correspond to Young’s modulus, EY , and Poisson ratio, ν, given by

EY =
µ(3λ + 2µ)

λ + µ
=

4ab(ab(3b− 2) + 3f ′′(0))

ab(2b− 1) + 2f ′′(0)
, ν =

λ

2(λ + µ)
=

ab(b− 1) + f ′′(0)

ab(2b− 1) + 2f ′′(0)
. (21)

Note that as we make the material less compressible, so that f ′′(0) →∞, then λ →∞ and
ν → 1/2 as expected.

Equation (21) allows us to interchange between the parameter values used in the strain
energy function given in (10) and the Young’s modulus and Poisson ratio of the linearised
form.

Using the definition (9) with the strain energy (18) gives

TMN = 2µEMN + λ trace(E)δMN .

If we substitute into equation (8) and linearise in the displacement we are left with the
familiar equations of classical linear elasticity (see, for example, Landau & Lifshitz, 1986)

3∑
M=1

∂

∂XM

(
µ

(
∂uM

∂XN

+
∂uN

∂XM

)
+ λδMN

3∑
i=1

∂ui

∂Xi

)
+ ρgN = 0 N = 1, 2, 3, (22)

or

µ∇2u + (λ + µ)∇(∇ · u) + ρg = 0. (23)
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2.2.2 Incorporating incompressibility into classical linear elasticity

The linearised version of the incompressibility condition (15) is

trace(E) = E11 + E22 + E33 = 0,

or equivalently, in terms of displacement,

∇ · u = 0. (24)

A linear elastic material becomes incompressible in the limit that λ →∞. In this limit, (23)
gives that ∇·u → 0 in such a way that λ∇·u tends to a finite value, which we write as −P .
This function is unknown, and is determined by the constraint (24). Thus the equations of
incompressible linear elasticity are

µ∇2u−∇P + ρg = 0, (25)

∇ · u = 0. (26)

The linear elastic energy (18) may be rewritten

Wlin =
λ

2
(E11 + E22 + E33)

2 + µ

3∑
i,j=1

E2
ij. (27)

The function P can again be thought of as a Lagrange multiplier associated with minimising
the energy subject to the constraint (24). If the material is incompressible (27) becomes

Wlin = µ

3∑
i,j=1

E2
ij,

and when we minimise and introduce a Lagrange multiplier we have

min
∇·u=0

∫

Ω0

(Wlin − ρg · u) dV = min

∫

Ω0

(Wlin − ρg · u− P ∇ · u) dV, (28)

and the Euler-Lagrange equations are (25).

2.2.3 Comparing the incompressible nonlinear model with incompressible linear
elasticity

The easiest way to compare the linear and nonlinear models is to take the limit of small
strain in the nonlinear energy including the Lagrange multiplier (17) and compare it to the
corresponding linear energy (28). We find

W = (2ab− p)(E11 + E22 + E33) + 2ab2(E2
11 + E2

22 + E2
33) +

2(2ab2 − p)(E11E22 + E22E33 + E33E11) + 2p(E2
12 + E2

23 + E2
31) + O(E3).

Thus we see that the pressures are related according to

P = p− 2ab. (29)
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This means that in the nonlinear model, in the strain-free stress-free state, p = 2ab: the
pressure p is not the only isotropic force in this model, there is also a contribution from the
first term in (10). Substituting for p using (29) and retaining only quadratic terms in P and
E gives

W = 2ab2(E2
11 + E2

22 + E2
33) + 4ab(E2

12 + E2
23 + E2

31)

+ 4ab(b− 1)(E11E22 + E22E33 + E33E11)− P (E11 + E22 + E33)

= 2ab(b− 1)(E11 + E22 + E33)
2 + 2ab

3∑
i,j=1

E2
ij − P (E11 + E22 + E33).

Thus, as before, µ = 2ab.

2.3 Pseudo nonlinear models

In the model used by Azar et al. (2001, 2002) the compression of a breast between two
plates (without gravity) is modelled by dividing the whole displacement into a sequence of
small displacements. Classical linear elasticity is used to calculate each small displacement,
with the Young’s modulus being an exponential function of the strain before the current
displacement is imposed. More precisely, the Young’s modulus, EY , is defined as the gradient
of the stress–strain curve for uniaxial tension, and an exponential relationship is assumed,
so that

EY =
dT

dE
= c1e

c2E, (30)

where T is the stress, E is the strain, and c1, c2 are constants. For more general deformations
(30) is used with E defined as the largest eigenvalue of the (nonlinear) strain tensor (again,
evaluated before the current displacement is imposed). Azar et al. take the material to
be incompressible, but in fact impose this by modelling a compressible material with a
Poisson ratio ν = 0.49999. We can also consider an incompressible version of the model by
introducing the constraint ∇·u = 0 for each small displacement and the associated Lagrange
multiplier p. In this limit the Lamé constant µ = EY /3.

To apply this pseudo nonlinear model to the problem of deformation due to gravity we
need to divide the deformation due to gravity into a sequence of small deformations. We
can do this by imagining increasing the gravitational constant g from zero to its true value
in a sequence of small steps. The pseudo nonlinear model corresponds to linearising the
nonlinear model about a state of finite strain to calculate the next displacement. Since the
equations are solved with respect to displacements from the current deformation it is easiest
to work in terms of the Eulerian formulation (4) when comparing with the full nonlinear
model. If we increase the strength of gravity by a small amount by setting

g = g0 + εg1

and expand all variables in powers of ε as

σij = σ
(0)
ij + εσ

(1)
ij + · · · , (31)

Eij = E
(0)
ij + εE

(1)
ij + · · · , (32)

Xj = X
(0)
j + εX

(1)
j + · · · (33)
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etc., then the pseudo nonlinear model corresponds to writing down isotropic linear elasticity
for the correction terms σ(1) etc., with a Young’s modulus which is a function of E(0). We
can compare this approach with the actual equations which would result from substituting
the expansions (31)-(33) into equation the full nonlinear problem. In the incompressible
case, (4) becomes

∇ · σ(1) + ρg(1) = 0, (34)

which simply represents a balance of forces at order ε. The difficulty is in relating the
correction to the stress σ(1) to the correction to the strain E(1). If we label the increment in
the displacement X

(1)
j by uj as would be normal in linear elasticity, then the perturbation

to the deformation tensor is

F (1) =
∂ui

∂XM

=
∑

j

∂ui

∂xj

∂xj

∂XM

= DF (0), (35)

where D = (Dij) is the deformation tensor for linear elasticity,

Dij =
∂ui

∂xj

.

The easiest way to proceed is to write

σ = FTF T − pI,

where in a slight abuse of notation T is the second Piola-Kirchoff stress tensor minus the
contribution from the pressure. Then the first correction to the stress tensor satisfies

σ(1) = F (1)T (0)F (0)T + F (0)T (0)F (1)T + F (0)T (1)F (0)T − p(1)I

= DF (0)T (0)F (0)T + F (0)T (0)F (0)T DT + F (0)T (1)F (0)T − p(1)I

= Dσ(0) + σ(0)DT + p(0)(D + DT ) + F (0)T (1)F (0)T − p(1)I. (36)

¿From (2) the first correction to the Lagrange-Green strain tensor is

E(1) =
1

2

(
F (0)T F (1) + F (1)T F (0)

)
=

1

2
F (0)T

(
D + DT

)
F (0). (37)

Finally, from (9), the correction to T is

T
(1)
MN =

1

2

∑
K,L

(
∂2W

∂EMN∂EKL

+
∂2W

∂ENM∂EKL

)
E

(1)
KL. (38)

Now, if W = W (I1) (as in the incompressible version of (10)), then

∂W

∂EMN

= 2W ′(I1)δMN ,
∂2W

∂EMN∂EKL

= 4W ′′(I1)δMNδKL.
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In this case

T
(1)
MN = 4W ′′(I1)δMN

∑
K

E
(1)
KK . (39)

Combining (36), (37) and (39) gives σ(1) as a linear function of D, which completes the
specification of the linear elastic problem. The pseudo nonlinear model assumes that this
relationship is isotropic, i.e. that it is of the form

σ(1) = µ(D + DT ).

Clearly this will not be the case in general. In Section 3 we examine the numerically the
effect of this simplification on a test problem.

To compare the full nonlinear problem with the pseudo nonlinear model we need to
relate the parameters c1 and c2 in (30) to the parameters a and b in (10). To do this let us
consider the case of uniaxial stress, in which the pseudo nonlinear model should be a good
approximation to the full nonlinear model.

We consider first incompressible linear elasticity in uniaxial stress, for which the displace-
ment is u = (u1(x1), u2(x2), u3(x3)), so that

E = D =




du1

dx1
0 0

0 du2

dx2
0

0 0 du3

dx3


 , σ = 2µ




du1

dx1
0 0

0 du2

dx2
0

0 0 du3

dx3


− p




1 0 0
0 1 0
0 0 1


 .

Then σ22 = σ33 = 0 implies

p = 2µ
du2

dx2

= 2µ
du3

dx3

.

Then the condition of incompressibility, div u = 0, gives

du2

dx2

=
du3

dx3

= −1

2

du1

dx1

= constant,

and so

σ11 = 3µ
du1

dx1

= EY E11,

since the Young’s modulus EY = 3µ. The generalisation to nonlinear elasticity is as follows.
The displacement is x = (x1(X1), x2(X2), x3(X3)), so that1

F =




x′1 0 0
0 x′2 0
0 0 x′3


 , E =

1

2




(x′1)
2 − 1 0 0

0 (x′2)
2 − 1 0

0 0 (x′3)
2 − 1


 ,

and the condition of incompressibility is

x′1x
′
2x
′
3 = 1. (40)

1To ease the notation we use a prime to denote differentiation of a function with respect to its argument.
Thus ′ may represent d/dX1, d/dX2 or d/dX3 depending on whether it is attached to x1, x2 or x3. Since
each is a function of one variable only there is no ambiguity.
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The Piola-Kirchoff stress tensor is

T = 2ab exp
[
b
(
(x′1)

2
+ (x′2)

2
+ (x′3)

2 − 3
)]




1 0 0
0 1 0
0 0 1


−




p

(x′1)
2 0 0

0 p

(x′2)
2 0

0 0 p

(x′3)
2




Then T22 = T33 = 0 implies

p = (x′2)
2
2ab exp

[
b
(
(x′1)

2
+ (x′2)

2
+ (x′3)

2 − 3
)]

= (x′3)
2
2ab exp

[
b
(
(x′1)

2
+ (x′2)

2
+ (x′3)

2 − 3
)]

.

Incompressibility then implies

x′2 = x′3 = (x′1)
−1/2

= constant,

so that

p =
2ab

x′1
exp

[
b

(
(x′1)

2
+

2

x′1
− 3

)]
,

T11 = 2ab

(
1− 1

(x′1)
3

)
exp

[
b

(
(x′1)

2
+

2

x′1
− 3

)]
,

σ11 = 2ab

(
(x′1)

2 − 1

x′1

)
exp

[
b

(
(x′1)

2
+

2

x′1
− 3

)]

Let us examine the linearisation in the case of uniaxial tension. We find

E(1) =




(x′1)
2 du1

dx1
0 0

0 (x′2)
2 du2

dx2
0

0 0 (x′3)
2 du3

dx3


 ,

T (1) = T ∗I,

where

T ∗ = 4ab2 exp

[
b

(
(x′1)

2
+

2

x′1
− 3

)](
(x′1)

2du1

dx1

+ (x′2)
2du2

dx2

+ (x′3)
2du3

dx3

)

= 4ab2 exp

[
b

(
(x′1)

2
+

2

x′1
− 3

)]
du1

dx1

(
(x′1)

2 − 1

x′1

)

= 2bσ
(0)
11

du1

dx1

.

We find

σ(1) =




2du1

dx1
σ

(0)
11 0 0

0 0 0
0 0 0


 + 2p(0)




du1

dx
0 0

0 −1
2

du1

dx
0

0 0 −1
2

du1

dx




+ T ∗




(x′1)
2 0 0

0 1/x′1 0
0 0 1/x′1


− p(1)I.
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Therefore

p(1) =
T ∗

x1

− p(0)du1

dx1

,

giving

σ
(1)
11 =

(
2σ

(0)
11 + 3p(0)

) du1

dx1

+ T ∗
(

(x′1)
2 − 1

x′1

)

=
du1

dx1

(
2σ

(0)
11 + 3p(0) + 2bσ

(0)
11

(
(x′1)

2 − 1

x′1

))

=
du1

dx1

2ab exp

[
b

(
(x′1)

2
+

2

x′1
− 3

)] (
2

(
(x′1)

2 − 1

x′1

)
+ 2b

(
(x′1)

2 − 1

x′1

)2

+
3

x′1

)
.

Hence the Young’s modulus EY is

EY = 2ab exp

[
b

(
(x′1)

2
+

2

x′1
− 3

)](
2

(
(x′1)

2 − 1

x′1

)
+ 2b

(
(x′1)

2 − 1

x′1

)2

+
3

x′1

)
. (41)

Note that

dσ11

dE11

=
2ab

(x′1)2
exp

[
b

(
(x′1)

2
+

2

x′1
− 3

)] (
2

(
(x′1)

2 − 1

x′1

)
+ 2b

(
(x′1)

2 − 1

x′1

)2

+
3

x′1

)
.

The difference is due to the fact that

E
(1)
11 = (x′1)

2du1

dx1

,

so that the increment in the Lagrange-Green strain is not just du1/dx1.
Since x′1 = (2E11 + 1)1/2, in terms of the strain E11 (41) is

EY = 2ab exp

[
b

(
2E11 +

2

(2E11 + 1)1/2
− 2

)]
×

(
4E11 + 2 + 2b

(
2E11 + 1− 1

(2E11 + 1)1/2

)2

+
1

(2E11 + 1)1/2

)
. (42)

The Young’s modulus (42) is not of the form (30), but has a similar behaviour. We estimate
the constants a and b in terms of c1 and c2 given by Azar et al. (2002) by matching the
principle part of the exponent. This requires setting

b =
1

2
c2. (43)

We then choose a so that the linear behaviour is the same in both models. For small strains
EY = 6ab = c1, giving

a =
c1

3c2

. (44)
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3 Numerical simulations

3.1 Description of simulations

In this section we perform numerical simulations to investigate the theoretical results of the
previous section. In the absence of a function f that may be used in (10) to use as a measure
of the compressibility of the body we restrict ourselves to comparing the incompressible
models described earlier.

We have described two simplifications to the incompressible finite elasticity model: (i)
incompressible linear elasticity; and (ii) incompressible pseudo nonlinear elasticity. Our sim-
ulations compare both of these simplifications to the incompressible finite elasticity model,
using parameters that have been used by other authors. We simulate fatty tissue because
this is one of the main tissue types in the breast, and parameter values for this tissue are
readily available. In all simulations we use the cylindrical domain

X2 + Y 2 < R2, 0 < Z < Zmax,

where R and Zmax are constants. We apply zero displacement boundary conditions on the
face Z = 0, and stress–free boundary conditions elsewhere. In our simulations we take
R = Zmax = 0.1 m, so that the domain is similar in shape and size to a human breast. We
simulate a woman lying, both prone and supine, and a woman standing up. For the woman
lying prone we have g1 = g2 = 0, g3 = g, where g is the magnitude of the gravitational force
per unit mass. For the woman lying supine we have g1 = g2 = 0, g3 = −g, and for the
woman standing, we have g1 = g, g2 = g3 = 0. In all simulations we take g = 9.8 m/s2 and
ρ = 940 kg/m3.

We use the parameters c1 = 4460 N/m2 and c2 = 7.4 that were used in the calculation
of the Young’s modulus (30) by Azar et al. (2002). These may be related to the constants
a and b in (10) by using (43) and (44). These parameters may then be related to the Lamé
coefficient µ using (20), and to our approximation of the pseudo nonlinear model using (42).

When comparing one of the simplified models listed above with finite deformation elas-
ticity theory, we simulate displacements using both models. We denote the coordinates of
the deformed body predicted by the finite deformation calculation by x1(X), and the coor-
dinates of the model that it is being compared to by x2(X). To compare the models, for
each simulation we calculate the following quantities:

1. Vfrac, the ratio of the volume of the body defined by x2(X) to the volume of the body
defined by x1(X);

2. umax, the maximum displacement calculated using the finite deformation calculation;

3. Dmax = max |x1(X)− x2(X)|;
4. the volume–averaged difference between the solutions given by

Dave =

∫
Ω0
|x1(X)− x2(X)| dV∫

Ω0
dV

(45)

where Ω0 is the volume occupied by the undeformed body; and
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5. E1, the maximum eigenvalue of the strain tensor calculated from x1, and E2, the
maximum eigenvalue of the strain tensor calculated from x2.

3.2 Numerical techniques

The governing equations for each model were solved using the finite element method: see, for
example, Reddy (1993). The three–dimensional volume was discretised into elements with
eight nodes, and a trilinear approximation was used for the dependent spatial variables in
each of these elements. For a stable approximation to the pressure as element size is reduced,
a lower order approximation must be used to calculate the pressure (in the calculations in
which pressure appears) than is used to calculate the displacements (Reddy, 1993). We
therefore use a piecewise constant approximation on each element to calculate pressure. The
nonlinear equations arising in the finite deformation calculations were solved using Newton’s
method (see, for example, Atkinson, 1989) with damping.

3.3 Results of the simulations

In Fig. 1 we plot the simulations described in Section 3.1. The subplots in Fig. 1 are as
follows: (a) finite deformation, g = (0, 0, g)t; (b) linear elasticity, g = (0, 0, g)t; (c) pseudo
nonlinear elasticity, g = (0, 0, g)t; (d) finite deformation, g = (0, 0,−g)t; (e) linear elasticity,
g = (0, 0,−g)t; (f) pseudo nonlinear elasticity, g = (0, 0,−g)t; (g) finite deformation, g =
(g, 0, 0)t; (h) linear elasticity, g = (g, 0, 0)t; (i) pseudo nonlinear elasticity, g = (g, 0, 0)t. The
values of Vfrac, umax, Dmax, Dave, E1 and E2 described in Section 3.1 are listed in Table 1.

We see in Table 1 that, although incompressibility is enforced when simulating the pseudo
nonlinear model, the linear incompressible model does not always enforce incompressibility
exactly. This is because the incompressibility constraint in this model neglects quadratic
and higher order terms in the displacements. In the simulations presented here these terms
are beginning to have an effect on the total volume. For the pseudo nonlinear model the
size of the displacement calculated on each increment is much smaller than the displacement
calculated using the linear model, and so incompressibility is enforced more strictly.

We can see, by comparing the values of Dmax and umax, that the pseudo nonlinear model
is a better approximation to the finite deformation model than the linear model. For the
comparison between the linear and finite deformation models the value of Dmax/umax varies
between 0.14 and 0.45 for the simulations carried out here: for the comparison between
the pseudo nonlinear and finite deformation models Dmax/umax varies between 0.043 and
0.079. There are also significant errors in the calculation of the maximum eigenvalue of the
strain tensor using the linear model, most notably for the simulation with gravity in the
X-direction.

The discrepancies between the linear model and the finite deformation model may be
attributed to the displacements computed for the linear model being too large for linear
elasticity to be valid. The discrepancies between the pseudo nonlinear model and the finite
deformation model are due mainly to the assumption of isotropy in each increment, even in
later increments where the body is stressed, and clearly will not be truly isotropic.
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4 Discussion

We have described the finite deformation elasticity model for biological tissue, and compared
it to simpler models that are based on classical linear and pseudo-nonlinear elasticity theory.
For the special case of incompressible tissue we have performed numerical simulations to
illustrate the differences between the models, using parameter values that have been used
for fatty tissues by other authors.

It is perhaps not surprising that linear elasticity does not give good results (although
this has not stopped it being used to model breast deformations in the past). An order of
magnitude estimate for the strain in linear theory is given by

ρgL

µ
,

where L is the height of the breast (taken to be 0.1m). Using the values ρ = 940kg/m3 and
µ = 2230N/m2 this gives a typical strain of about 0.4, which is outside the linear range of
most materials.

More surprising is the significant error in the pseudo-nonlinear model. Azar et al. (2001,
2002) suggest that the error in this model is due to an accumulation of discretisation error,
as the large deformation is modelled as a series of small linear deformations. However, more
significant is that fact that while each small deformation can accurately be modelled as a
linear deformation, it should not be modelled as a deformation of an isotropic material,
because of the non-isotropic nature of the underlying stress distribution. This is where most
of the errors arise.

Although we have focussed on biological tissues with strain energy given by equation (10),
of course with minor modifications similar comparisons can be made for other materials (for
example materials with a Mooney–Rivlin strain energy function).
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Table 1: Results of simulations comparing both incompressible linear elasticity and incom-
pressible pseudo nonlinear elasticity with finite deformation elasticity. See text for details of
the simulations.

Model Gravity Vfrac umax (m) Dmax (m) Dave (m) E1 E2

Linear (0, 0, g)t 1.000 7.40× 10−3 1.05× 10−3 3.44× 10−4 0.156 0.196
Linear (0, 0,−g)t 1.000 6.59× 10−3 1.29× 10−3 8.05× 10−4 0.190 0.273
Linear (g, 0, 0)t 1.032 3.15× 10−2 1.42× 10−2 8.35× 10−3 0.471 1.366

Pseudo nonlinear (0, 0, g)t 1.000 7.40× 10−3 5.52× 10−4 3.21× 10−4 0.156 0.151
Pseudo nonlinear (0, 0,−g)t 1.000 6.59× 10−3 5.21× 10−4 1.84× 10−4 0.190 0.227
Pseudo nonlinear (g, 0, 0)t 1.000 3.15× 10−2 1.36× 10−3 2.82× 10−4 0.471 0.535
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Figure Legends

Figure 1. Results of simulations comparing the incompressible models described in the text.
In all cases both the deformed and undeformed body are shown. (a) finite deformation,
g = (0, 0, g)t; (b) linear elasticity, g = (0, 0, g)t; (c) Azar model, g = (0, 0, g)t; (d)
finite deformation, g = (0, 0,−g)t; (e) linear elasticity, g = (0, 0,−g)t; (f) Azar model,
g = (0, 0,−g)t; (g) finite deformation, g = (g, 0, 0)t; (h) linear model, g = (g, 0, 0)t; (i)
Azar model, g = (g, 0, 0)t.
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