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Abstract. LetH be a separable infinite-dimensional C-linear Hilbert space, with sesquilinear inner product
〈·, ·〉H . Given any two orthonormal systems x1, x2, x3, . . . and y1, y2, y3, . . . inH , we show that

(1)
+∞∑
l=2

sl
∣∣∣∣∣ ∑

j,k: j+k=l

( jk)−
1
2 〈x j, yk〉H

∣∣∣∣∣2 ≤ 2s log
e1/2

1 − s
, 0 ≤ s < 1.

In terms of the weighted sums

S(l) :=
∑

j,k: j+k=l

( l
jk

) 1
2
〈x j, yk〉H ,

this means that
+∞∑
l=2

sl

l
|S(l)|2 ≤ 2 log

e1/2

1 − s
, 0 ≤ s < 1.

Expressed more vaguely, |S(l)|2 / 2 holds in the sense of averages. Concerning the optimality of the bound (1),
a construction due to Zachary Chase shows that the statement does not hold if the number 2 is replaced by the
smaller number 1.72. In the construction, the system y1, y2, y3, . . . is a permutation of the system x1, x2, x3, . . ..
We interpret our bound in terms of the correlation EΦ(z)Ψ(z) of two copies of a Gaussian analytic function
with possibly intricate Gaussian correlation structure between them. The Gaussian analytic function we study
arises in connection with the classical Dirichlet space, which is naturally Möbius invariant. The study of the
correlations EΦ(z)Ψ(z) leads us to introduce a new space, the mock-Bloch space, which is slightly bigger than
the standard Bloch space. Our bound has an interpretation in terms of McMullen’s asymptotic variance,
originally considered for functions in the Bloch space. Finally, we show that the correlations EΦ(z)Ψ(w) may
be expressed as Dirichlet symbols of contractions on L2(D), and show that the Dirichlet symbols of Grunsky
operators associated with univalent functions find a natural characterization in terms of a nonlinear wave
equation.

1. Introduction

1.1. Basic notation in the plane. We write Z for the integers, Z+ for the positive integers, R for the real
line, and C for the complex plane. Moreover, we write C∞ := C ∪ {∞} for the extended complex plane
(the Riemann sphere). For a complex variable z = x + iy ∈ C, let

ds(z) :=
|dz|
2π

, dA(z) :=
dxdy
π

,

denote the normalized arc length and area measures, as indicated. Moreover, we shall write

∆z :=
1
4

(
∂2

∂x2 +
∂2

∂y2

)
for the normalized Laplacian, and

∂z :=
1
2

(
∂
∂x
− i

∂
∂y

)
, ∂̄z :=

1
2

(
∂
∂x

+ i
∂
∂y

)
,

for the standard complex derivatives; then ∆ factors as ∆z = ∂z∂̄z. Often we will drop the subscript
for these differential operators when it is obvious from the context with respect to which variable they
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apply. We let D denote the open unit disk, T := ∂D the unit circle, and De the exterior disk:

D := {z ∈ C : |z| < 1}, De := {z ∈ C∞ : |z| > 1}.

We will find it useful to introduce the sesquilinear forms 〈·, ·〉C and 〈·, ·〉D, as given by

〈 f , g〉C :=
∫

C
f (z)ḡ(z)dA(z), 〈 f , g〉D :=

∫
D

f (z)ḡ(z)dA(z),

where we need f ḡ ∈ L1(C) in the first instance and f ḡ ∈ L1(D) in the second. These are standard Lebesgue
spaces with respect to normalized area measure dA. Here, generally, for a given complex-valued function
f , we denote by f̄ the function whose values are the complex conjugates of f . To simplify the notation
further, we write

〈 f 〉C = 〈 f , 1〉C, 〈 f 〉D = 〈 f , 1〉D.

As for operators T on a Hilbert function space, we let T∗ denote the adjoint, while T̄ means the operator
defined by

T̄ f = T f̄ .

1.2. Complex Gaussian Hilbert space. A Gaussian Hilbert space is a closed linear subspaceG of L2(Ω) =
L2(Ω,dP), where (Ω,dP) is a probability space with a given σ-algebra, with the property that each element
γ ∈ G has a Gaussian distribution with mean 0. Since we will be working with the complex field C, this
means that the real and imaginary parts of γ are jointly Gaussian, and that the mean is 0 of each one.
Here, the expectation (or mean) operation E is just given by Eγ := 〈γ〉Ω =

∫
Ω
γdP. We say that γ is symmetric

if E(γ2) = 0. Moreover, γ is a standard complex Gaussian variable if it has mean 0, is symmetric and has
E(|γ|2) = 1. In other words, the values of γ are distributed according to the density e−|z|

2
dA(z) in the

plane. We will assume for convenience thatG is conjugation-invariant, that is, γ ∈ G⇐⇒ γ̄ ∈ G. We refer
to [14] for an exposition on Gaussian Hilbert spaces. We will write 〈γ, γ′〉Ω = 〈γγ̄′〉Ω = Eγγ̄′ for the inner
product of G. We shall need the following observation. If G is separable and infinite-dimensional, then
there exists a sequence γ1, γ2, γ3, . . . in G consisting of i i d standard complex Gaussians, such that the
sequence γ1, γ̄1, γ2, γ̄2, . . . forms an orthonormal basis in G. In particular, G splits as an orthogonal sum
G = H⊕H∗, where H is the closed subspace spanned by γ1, γ2, γ3, . . ., while H∗ is spanned by γ̄1, γ̄2, γ̄3, . . ..

1.3. Gaussian analytic functions associated with the Dirichlet space. We now outline a more direct
approach to the analytic part of GFF outlined in the preceding subsection. Let A2(D) denote the subspace
of L2(D) consisting of the holomorphic functions, which is a closed subspace and hence a Hilbert space
in its own right, known as the Bergman space. The Dirichlet space is the space D(D) of analytic functions
f with f ′ ∈ A2(D), equipped with the Dirichlet inner product

〈 f , g〉∇ := 〈 f ′, g′〉D,

The importance of the Dirichlet space comes from its conformal invariance property. For instance, if φ
is a Möbius automorphism of the unit disk D, we have that

〈 f ◦ φ, g ◦ φ〉∇ = 〈 f , g〉∇.

The Dirichlet inner product gives rise to a seminorm

‖ f ‖2
∇

:= ‖ f ′‖2A2(D) = 〈 f ′, f ′〉D,

which vanishes on the constant functions. So, to make it a norm, we could add the requirement that the
functions should vanish at a given point λ ∈ D:

Dλ(D) := { f ∈ D(D) : f (λ) = 0}.

We will focus our attention to λ = 0, and study the space D0(D). By the Möbius invariance of the
seminorm, this choice is not restrictive as we may easily move any other point λ to the origin using a
Möbius automorphism.
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In recent years, Gaussian analytic functions has received increasing attention. For instance, see [19] and
the book [12]. In the spaceD0(D), we have a canonical orthogonal basis

e j(z) := j−
1
2 z j, j = 1, 2, 3, . . . ,

and we form aD0-Gaussian analytic function (D0-GAF)

(1.3.1) Φ(z) :=
+∞∑
j=1

α j e j(z) =

+∞∑
j=1

α j√
j

z j,

where the α j are i i d (independent identically distributed) standard complex Gaussian variables, taken
from a Gaussian Hilbert space G. Then for two points in the disk z,w ∈ D, we have the complex
correlation structure

(1.3.2) E(Φ(z)Φ(w)) = 0, E(Φ(z)Φ̄(w)) = log
1

1 − zw̄
.

Since Gaussian random variables are determined by their correlation structures, we may, depending
on the point of view, take (1.3.2) as the defining property instead of the more explicit (1.3.1). On the
right-hand side of (1.3.2), we recognize the reproducing kernel for the Dirichlet space,

(1.3.3) kD0 (z,w) = log
1

1 − zw̄
,

with the point evaluation property

f (w) = 〈 f ,kD0 (·,w)〉∇, f ∈ D0(D).

It is appropriate to think of the correlation structure (1.3.2) in terms of the matrix-valued correlation
structure

(1.3.4) k2×2[Φ](z,w) = E

(
Φ(z)
Φ̄(z)

) (
Φ̄(w) Φ(w)

)
=

(
EΦ(z)Φ̄(w) EΦ(z)Φ(w)
EΦ̄(z)Φ̄(w) EΦ̄(z)Φ(w)

)
=

(
log 1

1−zw̄ 0
0 log 1

1−z̄w

)
,

and the associated 4 × 4 matrix

(1.3.5)
(

k2×2[Φ](z, z) k2×2[Φ](z,w)
k2×2[Φ](z,w)∗ k2×2[Φ](w,w)

)
is positive semidefinite (the asterisque ∗ stands for the operation of taking the adjoint of the matrix). The
real part of Φ(z) may be understood, up to an additive constant, as the restriction of the Gaussian free
field (GFF) on C conditioned to be harmonic in D. For some background on GFF, we refer to the survey
paper [?] as well as to [8]. Alternatively, the process Φ(z) may be identified as the limit of the logarithm
of the characteristic polynomial for random unitary matrices as the size of the matrices tends to infinity
(see below).

In analogy with [17], it might be of interest to study the random zeros of the function Φ(z), but since
one of them is deterministic (the origin), we should not expect full Möbius automorphism invariance.
By the Edelman-Kostlan formula (see [19]) the density of zeros is given by

(1.3.6) ∆ log kD0 (z, z) dA(z) = ∆ log log
1

1 − |z|2
dA(z),

which has a unit point mass at the origin due to the deterministic zero there. Here, one might also be
interested in the process for the critical points. We will not pursue any of these directions here. A rather
interesting object appears to be the random curve (or tree) structure we obtain by following the gradient
flow for the random harmonic function Re Φ(z) which stops at critical points. At each critical point we
would instead choose among the possible directions, for instance by maximizing the second directional
derivative (perhaps after precomposing with a Möbius mapping to put the critical point at the origin).
Although quite promising, We will not pursue this matter further here. A related setting of gradient
flow for the plane defined in terms of the Bargmann-Fock space was studied by Nazarov, Sodin, and
Volberg [16].
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1.4. D0-Gaussian analytic functions and random unitary matrices. Let Mn be a random n × n unitary
matrix with distribution given by Haar measure. Let

χMn (λ) = det(λIn −Mn)

be the associated random characteristic polynomial, where In is the n × n identity matrix. Diaconis
and Evans [6] found an interesting relationship connecting the characteristic polynomial of Mn with the
process given by (1.3.1). They showed that

tr log(In − zM∗n) = log det(In − zM∗n) = log
χMn (z)
χMn (0)

converges, as n → +∞, in distribution, to the D0-Gaussian analytic function Φ(z) given by (1.3.1). The
details are supplied in Example 5.6 of [6]. For the convenience of the reader, we mention that the master
relationship between their random function Fn(z) and χMn (z) has a typo, and should be replaced by

Fn(z) =
n

2π
−

z
π

χ′Mn
(z)

χMn (z)
.

Remark 1.4.1. The matters considered here, the possible correlation structure of two jointly GaussianD0-
GAFs, have their (finite-dimensional) counterpart for random matrices. Let Mn and M′n be two copies of
the random n × n unitary matrix enemble, with possibly complicated correlation structure between Mn
and M′n, but at least all their entries are jointly (complex) Gaussian variables. What could we say about
the structure of the C2-valued process of normalized random characteristic polynomials(χMn (z)

χMn (0)
,
χM′n (z)
χM′n (0)

)
?

1.5. Two interacting copies of theD0-Gaussian analytic function process. The topic here involves two
copies of the process (1.3.1),

(1.5.1) Φ(z) :=
+∞∑
j=1

α j√
j

z j, Ψ(z) :=
+∞∑
j=1

β j√
j

z j,

where Φ(z) is as before and the β j are i i d from NC(0, 1), taken from the same Gaussian Hilbert space
G ⊂ L2(Ω). We will refer to (Φ(z),Ψ(z)) as a pair of jointly Gaussian D0-GAFs. Consisting of jointly
Gaussian variables with zero mean, the vector-valued process (Φ(z),Ψ(z)) is governed by the correlation
matrix

(1.5.2) k4×4[Φ,Ψ](z,w) := E


Φ(z)
Φ̄(z)
Ψ(z)
Ψ̄(z)


(
Φ̄(w) Φ(w) Ψ̄(w) Ψ(w)

)

=


EΦ(z)Φ̄(w) EΦ(z)Φ(w) EΦ(z)Ψ̄(w) EΦ(z)Ψ(w)
EΦ̄(z)Φ̄(w) EΦ̄(z)Φ(w) EΦ̄(z)Ψ̄(w) EΦ̄(z)Ψ(w)
EΨ(z)Φ̄(w) EΨ(z)Φ(w) EΨ(z)Ψ̄(w) EΨ(z)Ψ(w)
EΨ̄(z)Φ̄(w) EΨ̄(z)Φ(w) EΨ̄(z)Ψ̄(w) EΨ̄(z)Ψ(w)


=


log 1

1−zw̄ 0 EΦ(z)Ψ̄(w) EΦ(z)Ψ(w)
0 log 1

1−z̄w EΦ̄(z)Ψ̄(w) EΦ̄(z)Ψ(w)
EΨ(z)Φ̄(w) EΨ(z)Φ(w) log 1

1−zw̄ 0
EΨ̄(z)Φ̄(w) EΨ̄(z)Φ(w) 0 log 1

1−z̄w

 ,
and the associated 8 × 8 matrix

(1.5.3)
(

k4×4[Φ](z, z) k4×4[Φ](z,w)
k4×4[Φ](z,w)∗ k4×4[Φ](w,w)

)
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is positive semidefinite. Note that although there are eight unknown entries in (1.5.2), in fact only two
are needed, as clearly,

E(Φ̄(z)Ψ̄(w)) = E(Φ(z)Ψ(w)), E(Φ̄(z)Ψ(w)) = E(Φ(z)Ψ̄(w)),

and the remaining four only involve exchanging the variables z and w.
So we need only be concerned with the quantities

(1.5.4) E(Φ(z)Ψ̄(w)) and E(Φ(z)Ψ(w)).

In a sense they complement each other, as we see below.

Proposition 1.5.1. We have that

|EΦ(z)Ψ̄(w)| + |EΦ(z)Ψ(w)| ≤
(

log
1

1 − |z|2

) 1
2
(

log
1

1 − |w|2

) 1
2

, z,w ∈ D.

Since for a given point with |z| = |w| each of the two terms on the left-hand side may reach up to the
right-hand side bound, the estimate tells us they cannot do so simultaneously. The proof of this estimate
is presented in Subsection 3.2.

1.6. The fundamental integral estimate. The following is our basic estimate of the correlations.

Theorem 1.6.1. For a, b ∈ C, we have the estimate∫
D

∣∣∣awEΦ(z)Ψ′(w) + bw̄EΦ(z)Ψ̄′(w)
∣∣∣2 dA(w)
|w|2

≤ (|a|2 + |b|2) log
1

1 − |z|2
, z ∈ D.

This may be interpreted as an estimate of the radial derivative (with respect to w) of the harmonic
function

aEΦ(z)Ψ(w) + bEΦ(z)Ψ̄(w).

Indeed, if F is holomorphic in D, then its radial derivative is

∂rF(reiθ) = eiθF′(reiθ),

so that the estimate of Theorem 1.6.1 asserts that (∂r(w) is the radial derivative in the w variable)

(1.6.1)
∫

D

∣∣∣∂r(w)

(
aEΦ(z)Ψ(w) + bEΦ(z)Ψ̄(w)

)∣∣∣2dA(w) ≤ (|a|2 + |b|2) log
1

1 − |z|2
, z ∈ D.

Interesting estimates are obtained for instance when (a, b) = (1, 0) and (a, b) = (0, 1). We shall mainly
focus on the first of these, when (a, b) = (1, 0). We defer the proof of this result to Section 5.

1.7. Growth of correlations in the mean along diagonals. We are interested in the behavior of the
correlations

EΦ(z)Ψ(w), EΦ(z)Ψ̄(w)

as z,w ∈ D approach the unit circle T. The first one we will refer to as the analytic correlation, and the
second the sesquianalytic correlation. We may study the growth behavior by looking along complex lines
through the origin w = λz for some parameter λ ∈ C in which case our correlations are

(1.7.1) EΦ(z)Ψ(λz), EΦ(z)Ψ̄(λz).

The alternative study of conjugate-linear lines w = µz̄ with µ ∈ C is completely analogous and essentially
only corresponds to reversing the order of these correlations (in the sense that w 7→ Ψ̄(µw̄) is a GAF).
For this reason we will not consider such conjugate-linear lines further. When |λ| < 1 the process Φ(z)
dominates in the correlations since Ψ(λz) is analytic in the disk D(0, |λ|−1), while if |λ| > 1 instead the
process Ψ(λz) dominates. The most interesting instance seems to be the balanced case when |λ| = 1, in
which case the line w = λz might be called a generalized diagonal. For |λ| = 1, the process Ψ(λz) is just
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another copy of the D0-GAF, so as long as λ is fixed we might as well consider λ = 1. So the study of
(1.7.1) for fixed λ with |λ| = 1 reduces to the diagonal case

(1.7.2) EΦ(z)Ψ(z), EΦ(z)Ψ̄(z).

We note that by Proposition 1.5.1,

(1.7.3) |EΦ(z)Ψ(z)| + |EΦ(z)Ψ̄(z)| ≤ log
1

1 − |z|2
.

Some examples should elucidate which term, if any, may be dominant on the left-hand side.

Remark 1.7.1. We supply some examples which help us understand the size of the two contributions on
the left-hand side of (1.7.3).
(a) If Ψ = Φ, then

EΦ(z)Ψ(z) = E(Φ(z)2) = 0, EΦ(z)Ψ̄(z) = E|Φ(z)|2 = log
1

1 − |z|2
.

In this case we have equality in (1.7.3), and on the left-hand side the first term vanishes, while the second
is dominant.
(b) If Ψ(z) and Φ(z) are stochastically independent, we have

EΦ(z)Ψ̄(z) = 0, EΦ(z)Ψ(z) = E(Φ(z)2) = 0,

so that both contributions to the left-hand side (1.7.3) collapse.
(c) Consider Ψ(z) = Φ̄(z̄), when

EΦ(z)Ψ(z) = EΦ(z)Φ̄(z̄) = log
1

1 − z2 , EΦ(z)Ψ̄(z) = EΦ(z)Φ(z̄) = 0.

So at least pointwise, EΦ(z)Ψ(z) may be the dominant contribution in (1.7.3).

The example in Remark 1.7.1(a) shows that the sesquianalytic correlation EΦ(z)Ψ̄(z) may be maximally
big in the sense of modulus everywhere in the disk D. However, the example in Remark 1.7.1(c) only says
that the analytic correlation EΦ(z)Ψ(z) may be maximal in modulus along the radius [0, 1[ emanating
from the origin. This leaves open the possibility of bounding L2 means along concentric circles. The fact
that EΦ(z)Ψ(z) represents a holomorphic function in D limits to some extent the possible growth of the
function. However, from the work of Abakumov and Doubtsov [1], we see that this is not a very strong
restriction, and effectively knowing that EΦ(z)Ψ(z) is holomorphic does not add much to the growth
control beyond the pointwise bound (1.7.3), which may be understood as belonging to a Korenblum-type
growth space. For some other aspects on the growth behavior of functions in Korenblum-type spaces,
see [4]. To measure growth of functions in the Bloch space, the asymptotic variance of a function in the
Bloch space has been studied (see [15], [2], [13], [7]). We recall that the Bloch space B(D) consists of all
complex-valued holomorphic functions f : D→ C such that

‖ f ‖B := sup
z∈D

(1 − |z|2)| f ′(z)| < +∞.

Naturally, this defines a seminorm on B(D), as constants get seminorm value 0. The asymptotic variance
of a function f ∈ B(D) is the quantity

(1.7.4) σ( f )2 := lim sup
r→1−

1
log 1

1−r2

∫
T
| f (rζ)|2ds(ζ).

At least in dynamical situations, it captures very well the boundary growth of the given function. From
a probabilistic point of view, it is based on thinking of the evolution of the function r 7→ f (rζ) as a
Brownian motion in time log 1+r

1−r ∼ log 1
1−r2 . The analytic correlation f (z) = EΦ(z)Ψ(z) need not be an

element of the Bloch space B(D). However, it has a finite asymptotic variance nevertheless.
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Theorem 1.7.2. For all jointly Gaussian processes (Φ,Ψ) consisting ofD0-GAFs, we have the estimate∫
T
|EΦ(rζ)Ψ(rζ)|2ds(ζ) ≤ 2r2 log

1
1 − r2 + r2.

This means that in the L2-average sense on concentric circles, the function EΦ(z)Ψ(z) spends most of
its time on |z| = r with values bounded by a constant times the square root of log 1

1−r2 , which is of course
much smaller than what the bound (1.7.3) would allow for. In terms of the random variables α j, βk, the
left-hand side expresssion in the above theorem equals

(1.7.5)
∫

T
|EΦ(rζ)Ψ(rζ)|2ds(ζ) =

+∞∑
l=2

r2l
∣∣∣∣∣ ∑

j,k: j+k=l

( jk)−
1
2 〈α j, β̄k〉Ω

∣∣∣∣∣2.
It is natural to wonder if the bound σ( f )2

≤ 2 for the asymptotic variance of the analytic correlation
f (z) = EΦ(z)Ψ(z) in Theorem 1.7.2 is optimal. By a construction due to Zachary Chase [5], we have the
following.

Theorem 1.7.3. (Chase) There is a permutation π : Z+ → Z+ such that if β j = ᾱπ( j) and f (z) = EΦ(z)Ψ(z), we
have σ( f )2

≥ 1.72.

So, it remains to investigate the universal quantity Σ2 := sup f σ( f )2, where f runs over all possible
analytic correlations EΦ(z)Ψ(z).

1.8. Orthonormal systems in separable Hilbert space. In terms of the inner products 〈α j, β̄k〉Ω, the
condition that the elements belong to a Gaussian Hilbert space is inconsequential and may be removed.

Corollary 1.8.1. Let {x1, x2, x3, . . .} an {y1, y2, y3, . . .} be orthonormal systems in a separable complex Hilbert
spaceH . Then, for 0 ≤ r < 1, we have the estimate

+∞∑
l=2

r2l
∣∣∣∣∣ ∑

j,k: j+k=l

( jk)−
1
2 〈x j, yk〉H

∣∣∣∣∣2 ≤ 2 log
e

1 − r2 .

One possible interpretation of the corollary is that on average, the sums∣∣∣∣∣ ∑
j,k: j+k=l

( l
jk

) 1
2

〈x j, yk〉H

∣∣∣∣∣2
are bounded by 2.

1.9. The analytic correlation and Dirichlet operator symbols. For w ∈ D, let sw denotes the Szegő kernel

(1.9.1) sz(ζ) :=
1

1 − z̄ζ
.

For functions in the Bergman space A2(D), taking the inner product with sζ is the same as finding the
average

(1.9.2) 〈 f , sz〉D =

∫ 1

0
f (zt)dt, f ∈ A2(D).

Definition 1.9.1. Let T be a bounded C-linear operator on L2(D). The Dirichlet operator symbol associated
with T is the function

P[T](z,w) := 〈T(s̄z), sw〉D, z,w ∈ D,

which is holomorphic in D2, with diagonal restriction

�P[T](z) = 〈T(s̄z), sz〉D, z ∈ D.
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Remark 1.9.2. If T = Mµ, the operator of multiplication by µ ∈ L∞(D), then

(1.9.3) �P[Mµ](z) = 〈Mµ(s̄z), sz〉D =

∫
D

µ(ξ)dA(ξ)
(1 − zξ̄)2

, z ∈ D,

which shows that �P[T] is a generalization of the Bergman projection to the setting of general bounded
operators. There is a way to write P[T] which makes the analogy with (1.9.3) clearer:

P[T](z,w) = 〈T, sz ⊗ sw〉tr.

Here, we use the bilinear tensor product ( f ⊗ g)(h) = 〈h, ḡ〉 f , and the notation 〈A,B〉tr = tr(AB̄) = tr(B̄A)
for the trace inner product.

The next result characterizes the analytic correlations EΦ(z)Ψ(w) as the Dirichlet symbols associated
with contractions on L2(D).

Theorem 1.9.3. (a) Given a pair of jointly Gaussian D0-GAFs (Φ(z),Ψ(z)) there exists a norm contraction
T : L2(D)→ L2(D) such that

(i) EΦ(z)Ψ(w) = zw〈Ts̄z, sw〉D z,w ∈ D,

(b) Given a norm contraction T on L2(D), there exists a pair of jointly GaussianD0-GAFs (Φ(z),Ψ(z)) such that
(i) holds.

In particular, we see that in the sense of the theorem, the analytic correlations EΦ(z)Ψ(w) may be
identified with the Dirichlet operator symbols of contractions on L2D):

EΦ(z)Ψ(w) = zwP[T](z,w).

1.10. Analytic correlations and the Bloch space. The Bloch space B(D) consists of all complex-valued
holomorphic functions f : D→ C such that

‖ f ‖B := sup
z∈D

(1 − |z|2)| f ′(z)| < +∞.

This defines a seminorm on B(D), since constants get seminorm 0.

Definition 1.10.1. The mock-Bloch space Bmock(D) is the space of functions{
� P[T] : T is a bounded operator on L2(D)

}
.

This mock-Bloch space is naturally endowed with a norm, which equals the infimum of ‖T‖ over
all operators T representing the same symbol �P[T]. All functions in B(D) are in Bmock(D). This is
well-known an easy to see using multiplication operators Mµ, as in [7] (compare with (1.9.3)). On the
other hand, is Bmock(D) contained in B(D)? This is answered in the negative by the following.

Theorem 1.10.2. There exists a function f ∈ Bmock(D) which is not in B(D).

It is known thatB(D) is maximal among Möbius-invariant spaces [18], soBmock(D) cannot be Möbius-
invariant in the standard sense. For a Möbius automorphism φ : D→ D, let

(1.10.1) Uφ f (z) := φ′(z) f ◦ φ(z), Ūφ f (z) := φ̄′(z) f ◦ φ(z),

be the associated unitary transformations of L2(D).

Theorem 1.10.3. For a Möbius automorphism ϕ : D → D, and a bounded operator T on L2(D), we write Tφ :=
UφTŪ∗φ, which has the same norm as T. If we write Q[T](z,w) := zwP[T](z,w) and �Q[T](z) := z2

P[T](z, z),
we then have the identity

�Q[Tφ](z) = �Q[T] ◦ φ(z) − Q[T](φ(z), φ(0)) − Q[T](φ(0), φ(z)) + �Q[T](φ(0)).

Typically, in Möbius-invariant spaces, the correction after a Möbius transform amounts to the sub-
traction of an appropriate constant. Here, we instead subtract a function in the Dirichlet space.
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1.11. Symbolds of Grunsky operators. Let ϕ : D → C be a univalent function. In other words, ϕ is a
conformal mapping onto a simply connected domain. The associated Grunsky operator Γϕ is given by the
expression

(1.11.1) Γϕ f (z) :=
∫

D

( ϕ′(z)ϕ′(w)
(ϕ(z) − ϕ(w))2 −

1
(z − w)2

)
f (w)dA(w), z ∈ D.

It is well-known that Γϕ is a norm contraction on L2(D), and it maps into the Bergman space A2(D). This
contractiveness is called the Grunsky inequalities, and in this form it was studied in, e.g., [3]. For a given
ϕ, we may consider instead the normalized mapping

ϕ̃(z) =
ϕ(z) − ϕ(0)
ϕ′(0)

,

which has ϕ̃(0) = 0 and ϕ̃′(0) = 1. It is easy to see that Γϕ̃ = Γϕ, so we might as well replace ϕ by its
normalized variant ϕ̃, and require of ϕ that ϕ(0) = 0 and ϕ′(0) = 1. The Dirichlet symbol associated with
Γϕ is then

(1.11.2) Q[Γϕ](z,w) = zwP[Γϕ](z,w) = log
zw(ϕ(z) − ϕ(w))
(z − w)ϕ(z)ϕ(w)

, (z,w) ∈ D2,

with diagonal restriction

�Q[Γϕ](z) = z2
� P[Γϕ](z) = log

z2ϕ′(z)
(ϕ(z))2 , z ∈ D.

We want to characterize the Dirichlet symbols of the above form (1.11.2) among all Dirichlet symbols
Q[T](z,w) of norm contractions T on L2(D).

Theorem 1.11.1. A function Q = Q(z,w) which is holomorphic on D2 is of the form Q[Γϕ](z,w) for a normalized
univalent function ϕ : D→ C if and only if
(a) Q(0,w) ≡ 0 and Q(z, 0) ≡ 0, and
(b) Q = Q(z,w) solves the nonlinear wave equation

∂z∂wQ + (∂zQ)(∂wQ) =
z2∂zQ − w2∂wQ

zw(z − w)
.

Remark 1.11.2. This result ties in nicely with deformation theory. Suppose we look for a solution Q = Qλ

with an additional parameter added, λ ∈ D, with respect to which Qλ depends holomorphically, and that
with λ = 0, Qλ = Q0 = 0. Then we expand Q =

∑
∞

j=1 λ
jQ̂ j and see that the the nonlinear wave equation

of Theorem 1.11.1 becomes a sequence of linear PDEs for the coefficient functions Q̂ j. First, Q̂1 solves a
homogeneous wave-type equation, and then for j = 2, 3, 4, . . ., Q̂ j solves an inhomogeneous wave-type
equation, where the inhomogeneity involves the lower order coefficient functions Q̂k for 1 ≤ k < j.

1.12. Acknowledgements and a comment. This paper is the result of joint project with Serguei Shimorin,
of which a preliminary version was available earlier [11]. Tragically Serguei passed away in July 2016
as the result of an accident. We thank several colleagues who helped organizing a conference in his
honor at the Mittag-Leffler Institute in June, 2018. Among the organizers were Catherine Bénéteau,
Dmitry Khavinson, Mihai Putinar, and Alan Sola. I also want to thank Eero Saksman for a conversation
on the fact that the mock-Bloch space is bigger than the Bloch space, Oleg Ivrii and Bassam Fayad for
their interest in asymptotic variance, and Zachary Chase for his contribution with the construction of a
permutation matrix with somewhat extremal properties.
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2. The duality induced by the bilinear form of GAF

2.1. The GAF as a duality. Let us for the moment write Φα(z) for the D0-Gaussian analytic function
given by (1.3.1), having in mind the notation α := (α1, α2, α3, . . .) for the Gaussian vector of elements
from G. The closure in G of the linear span of the vectors α j, j = 1, 2, 3, . . ., will be denoted by A. We
shall also need the closure in G of the linear span of the vectors ᾱ j, j = 1, 2, 3, . . ., and we denote it by
A∗. The independence and symmetry of of these random variables means that the vectors α j form an
orthonormal system in G, and that A is orthogonal to A∗.

Continuing along the same line of thinking, we would write Φβ(z) for Ψ(z), the second copy of the
same Gaussian process. Now, if M is a bounded linear operator on A, then Mα j ∈ A and hence has a
convergent expansion in basis vectors:

Mα j =

+∞∑
k=1

M j,kαk,

where the sequence k 7→M j,k is in l2. If we write Mα = (Mα1,Mα2,Mα3, . . .), we may speak of a Gaussian
analytic function process

(2.1.1) ΦMα(z) =

+∞∑
j=1

Mα j e j(z) =

+∞∑
j=1

+∞∑
k=1

M j,kαk e j(z) =

+∞∑
k=1

αk

+∞∑
j=1

M j,k e j(z) =

+∞∑
k=1

αk M†ek(z),

where e j(z) = j−
1
2 z j as before. Moreover, the GAF transpose of M, given by

(2.1.2) M†ek(z) :=
+∞∑
j=1

M j,ke j(z)

defines a bounded linear mapping onD0(D), as it just corresponds to the transpose of the matrix for M,
and shifting the basis from that of the Gaussian space A to that of D0(D). This way we have a natural
transpose mapping M → M†, and it is perhaps also natural to let its inverse be denoted the same way,
so that (M†)† = M.

Typically, (2.1.1) will define a Gaussian analytic function with a correlation kernel which is different
from that of Φα(z). Indeed, while EΦMα(z)ΦMα(w) = 0 automatically since A is orthogonal to A∗, we see
that

(2.1.3) EΦMα(z)Φ̄Mα(w) =

+∞∑
j,k=1

〈Mα j,Mαk〉Ω e j(z)ēk(w),

which need not coincide with the corresponding correlation for Φα. However, in the special case when
the restriction M|A = U is unitary on A, so that U∗U = I on A, (2.1.3) gives us

(2.1.4) EΦUα(z)Φ̄Uα(w) =

+∞∑
j,k=1

〈U∗Uα j, αk〉Ω e j(z)ēk(w) =

+∞∑
j=1

e j(z)ē j(w) = log
1

1 − zw̄
,

that is, the same correlation structure as for Φα(z). In other words, ΦUα is another copy of the D0-GAF.
When U : A→ A is unitary, its GAF transpose U† acts unitarily onD0(D), and the functions U†e j(z) form
an orthonormal basis for D0(D). Naturally, this goes the other way around as well, that is, if a unitary
transformation V onD0(D) is given, this defines another unitary transformation V† on A via (2.1.1) with
V in place of M†. An important instance is when the unitary transformation onD0(D) is generated by a
Möbius automorphism φ of the disk D. If φ : D → D is a Möbius automorphism, then the operator Vφ

given by
Vφ f (z) := f ◦ φ(z) − f ◦ φ(0)

is unitary onD0(D) and therefore corresponds to a unitary transformation V†φ acting on A such that

(2.1.5) ΦV†φα
(z) =

+∞∑
j=1

V†φα j e j(z) =

+∞∑
j=1

α j Vφe j(z) =

+∞∑
j=1

α j j−
1
2 (φ(z) j

− φ(0) j).
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2.2. GAF and Hankel-type duality. We describe a variation on the above-mentioned GAF duality
theme. Suppose that instead M is a bounded linear operator A → A∗ (like a Hankel operator). In the
same fashion as before, we write

Mα j =

+∞∑
k=1

M j,kᾱk,

and obtain that

(2.2.1) ΦMα(z) =

+∞∑
j=1

Mα j e j(z) =

+∞∑
j=1

+∞∑
k=1

M j,kᾱk e j(z) =

+∞∑
k=1

ᾱk

+∞∑
j=1

M j,k e j(z) =

+∞∑
k=1

ᾱk M‡ek(z),

with M‡, the GAF-Hankel transpose of M, given by the analogue of (2.1.2),

(2.2.2) M‡ek(z) :=
+∞∑
j=1

M j,ke j(z).

As with the GAF transpose, we let it be its own inverse, so that (M‡)‡ = M. If M : A → A∗ is isometric
and onto, then M‡ acts unitarily onD0(D). On the other hand, if V is unitary onD0(D), theD0-GAF

(2.2.3)
+∞∑
k=1

ᾱk Vek(z) =

+∞∑
k=1

ᾱk

+∞∑
j=1

Vk, j e j(z) =

+∞∑
j=1

+∞∑
k=1

Vk, jᾱk e j(z) =

+∞∑
j=1

V‡α j e j(z),

where

(2.2.4) V‡α j =

+∞∑
k=1

Vk, jᾱk.

2.3. Representation of the correlations EΦ(z)Ψ(w) and EΦ(z)Ψ̄(w). In view of the definitions of Φ(z)
and Ψ(w), we have that

(2.3.1) Φ(z)Ψ(w) =

+∞∑
j,k=1

α jβk√
jk

z jwk,

so that taking expectations, we obtain that

(2.3.2) EΦ(z)Ψ(w) =

+∞∑
j,k=1

( jk)−
1
2 (Eα jβk) z jwk =

+∞∑
j,k=1

( jk)−
1
2 〈α j, β̄k〉Ω z jwk, z,w ∈ D.

Next, let S : G → G be the bounded linear operator which maps A∗ → B∗ according to Sᾱ j = β̄ j for
j = 1, 2, 3, . . ., while Sγ = 0 holds for all γ ∈ G 	 X∗ = A ⊕ N. Then S is a partial isometry: it vanishes on
A ⊕N, and acts isometrically on A∗. In terms of this operator, we may rewrite (2.3.2):

(2.3.3) EΦ(z)Ψ(w) =

+∞∑
j,k=1

( jk)−
1
2 〈α j, β̄k〉Ω z jwk =

+∞∑
j,k=1

( jk)−
1
2 〈α j,Sᾱk〉 z jwk, z ∈ D.

While the representation (2.3.3) has some good properties, it is not too convenient to give useful estimates.
We split

β̄ j = Sᾱ j = PASᾱ j + P⊥
A

Sᾱ j ⇐⇒ β j = S̄α j = PA∗ S̄α j + P⊥
A∗

S̄α j,

so that the process Ψ(w) takes the form

Ψ(w) =

+∞∑
j=1

β j e j(w) =

+∞∑
j=1

PA∗ S̄α j e j(w) +

+∞∑
j=1

P⊥
A∗

S̄α j e j(w) =: Ψ1(w) + Ψ2(w),

with the obvious splitting of the process in two. Since

EΦ(z)Ψ2(w) = 〈Φ(z), Ψ̄2(w)〉Ω = 0
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as a consequence of the properties of the projections, we see that

EΦ(z)Ψ(w) = EΦ(z)Ψ1(w),

and from the GAF-Hankel duality of (2.2.1),

Ψ1(w) =

+∞∑
j=1

(PA∗ S̄α j) e j(w) =

+∞∑
j=1

ᾱ j (PA∗ S̄)‡e j(w).

It is now immediate that

(2.3.4) EΦ(z)Ψ(w) = EΦ(z)Ψ1(w) =

+∞∑
j=1

e j(z) (PA∗ S̄)‡e j(w), z ∈ D.

Turning our attention to the other correlation EΦ(z)Ψ̄(w), we split

β̄ j = Sᾱ j = PA∗Sᾱ j + P⊥
A∗

Sᾱ j ⇐⇒ β j = S̄α j = PAS̄α j + P⊥
A

S̄α j,

so that the process Ψ(w) takes the form

Ψ(w) =

+∞∑
j=1

β j e j(w) =

+∞∑
j=1

PAS̄α j e j(w) +

+∞∑
j=1

P⊥
A

S̄α j e j(w) =: Ψ3(w) + Ψ4(w),

with the obvious splitting of the process in two. Since

EΦ(z)Ψ̄4(w) = 〈Φ(z),Ψ4(w)〉Ω = 0

as a consequence of the properties of the projections, we find that

EΦ(z)Ψ̄(w) = EΦ(z)Ψ̄3(w).

In addition, by the duality of (2.1.2),

Ψ3(w) =

+∞∑
j=1

(PAS̄α j) e j(w) =

+∞∑
j=1

α j (PAS̄)†e j(w).

which gives the equality

(2.3.5) EΦ(z)Ψ̄(w) =

+∞∑
j=1

e j(z) (PAS̄)†e j(w), z,w ∈ D.

To simplify the notation, we write Q = (PA∗ S̄)‡ and R = (PAS̄)† which are both contractions on D0(D).
Then our main formulas become, for z,w ∈ D:

(2.3.6) EΦ(z)Ψ(w) =

+∞∑
j=1

e j(z) Qe j(w), EΦ(z)Ψ̄(w) =

+∞∑
j=1

e j(z) Re j(w).

3. Proofs of the fundamental bounds

3.1. The joint pointwise bound of correlations.

Proof of Proposition 1.5.1. Essentially, we just need to use the property that the 8 × 8 matrix (1.5.3) is
positive semidefinite. Since for complex constants a, b, c, d,

0 ≤
∣∣∣aΦ(z) + bΦ̄(z) − cΨ(w) − dΨ̄(w)

∣∣∣2 = (|a|2 + |b|2)|Φ(z)|2 + (|c|2 + |d|2)|Ψ(w)|2 + 2 Re(ab̄(Φ(z))2)

− 2 Re(ac̄Φ(z)Ψ̄(w)) − 2 Re(ad̄Φ(z)Ψ(w)) − 2 Re(b̄cΦ(z)Ψ(w)) − 2 Re(b̄dΦ(z)Ψ̄(w)) + 2 Re(cd̄(Ψ(w))2),

the inequality survives after taking the expectation:

0 ≤ E
∣∣∣aΦ(z) + bΦ̄(z) − cΨ(w) − dΨ̄(w)

∣∣∣2 = (|a|2 + |b|2) log
1

1 − |z|2
+ (|c|2 + |d|2) log

1
1 − |w|2

− 2 Re((ac̄ + b̄d)EΦ(z)Ψ̄(w)) − 2 Re((ad̄ + b̄c)EΦ(z)Ψ(w)).
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In other words, we have the inequality

2 Re((ad̄ + b̄c)EΦ(z)Ψ(w)) + 2 Re((ac̄ + b̄d)EΦ(z)Ψ̄(w)) ≤ (|a|2 + |b|2) log
1

1 − |z|2
+ (|c|2 + |d|2) log

1
1 − |w|2

.

We now restrict the values of our parameters, and assume that b = ā and d = c̄. The above inequality
then gives that

2 Re(acEΦ(z)Ψ(w)) + 2 Re(ac̄EΦ(z)Ψ̄(w)) ≤ |a|2 log
1

1 − |z|2
+ |c|2 log

1
1 − |w|2

.

We write ac = |ac|ω1 and ac̄ = |ac|ω2, where |ω1| = |ω2| = 1. Then

2 Re(ω1EΦ(z)Ψ(w)) + 2 Re(ω2EΦ(z)Ψ̄(w)) ≤
|a|
|c|

log
1

1 − |z|2
+
|c|
|a|

log
1

1 − |w|2
.

On the right-hand side, we are free to minimize over |a| and |c|, while on the left-hand side, we are free
to maximize over the (freely choosable) unit vectors ω1 and ω2. After optimization, we arrive at the
asserted estimate. �

3.2. The proof of the fundamental integral estimate.

Proof of Theorem 1.6.1. The first observation is that by L2(D)-orthogonality,∫
D

∣∣∣awEΦ(z)Ψ′(w) + bw̄EΦ(z)Ψ̄′(w)
∣∣∣2 dA(w)
|w|2

= |a|2
∫

D

∣∣∣EΦ(z)Ψ′(w)
∣∣∣2dA(w) + |b|2

∫
D

∣∣∣EΦ(z)Ψ̄′(w)
∣∣∣2dA(w).

Next, we observe that by the representation (2.3.6) and the norm contractive property of Q,∫
D

∣∣∣EΦ(z)Ψ′(w)
∣∣∣2dA(w) =

∥∥∥∥ +∞∑
j=1

e j(z)Qe j

∥∥∥∥2

∇

≤

∥∥∥∥ +∞∑
j=1

e j(z)e j

∥∥∥∥2

∇

=

+∞∑
j=1

|e j(z)|2 = log
1

1 − |z|2
,

and, that analogously, by the norm contractive property of R,∫
D

∣∣∣EΦ(z)Ψ̄′(w)
∣∣∣2dA(w) =

∥∥∥∥ +∞∑
j=1

ē j(z)Re j

∥∥∥∥2

∇

≤

∥∥∥∥ +∞∑
j=1

ē j(z)e j

∥∥∥∥2

∇

=

+∞∑
j=1

|e j(z)|2 = log
1

1 − |z|2
.

The proof is complete. �

4. Dirichlet symbols of contractions on L2(D) and analytic correlations of GAFs

4.1. The correspondence between Dirichlet symbols and the analytic correlation. We show the indi-
cated relationship between the analytic correlation EΦ(z)Ψ(w) and the Dirichlet symbols P[T](z,w) for
contractions T on L2(D).

Proof of Theorem 1.9.3. We begin with part (a), so we are given the orthonormal systems {α j} j and {β j} j in
the Gaussian Hilbert space G, and need to construct the norm contractive operator T on L2(D) with the
indicated property. We let S : G → G be the bounded linear operator with Sᾱ j = β̄ j for j = 1, 2, 3, . . .
while Sγ = 0 for all γ ∈ G 	 A∗. Given that S is a contraction, the product PAS is a contraction as well,
and we may decompose

PAβ̄k = PASᾱk =

+∞∑
j=1

Ak, jα j,

where
∑

j |Ak, j|
2
≤ 1. For j = 1, 2, 3, . . ., we write f j(z) = e′j(z) = j

1
2 z j−1, which constitutes an orthonormal

basis in A2(D), and put

T∗ fk =

+∞∑
l=1

Ak,l f̄l, k = 1, 2, 3, . . . .
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By linearity and norm boundedness of the matrix (A j,k) j,k, this defines T∗ on A2(D). Then

〈 f̄ j,T∗ fk〉D =

+∞∑
l=1

Ak,l〈 f̄ j, f̄l〉D = Ak, j =

+∞∑
l=1

Ak,l〈α j, αl〉Ω = 〈α j,PASᾱk〉Ω = 〈α j,Sᾱk〉Ω = 〈α j, β̄k〉Ω,

and since

(4.1.1) z̄sz(ζ) =
z̄

1 − z̄ζ
=

+∞∑
j=1

z̄ jζ j−1 =

+∞∑
j=1

ē j(z) f j(ζ),

it now follows that

zw 〈s̄z,T∗s̄w〉D =

+∞∑
j,k=1

e j(z)ek(w)〈 f̄ j,T∗ fk〉D =

+∞∑
j,k=1

〈α j, β̄k〉Ωe j(z)ek(w) = EΦ(z)Ψ(w),

so that condition (i) holds if T is the adjoint of T∗. But to properly define T, we need to extend T∗ to
all of L2(D). To this end, we simply declare that T∗ f = 0 holds for f ∈ L2(D) 	 A2(D). It remains to
check that so constructed, T∗ is a contraction on L2(D), for then the adjoint T is contractive as well. For
a polynomial f ∈ A2(D), we decompose it as a finite sum f =

∑
k bk fk where ‖ f ‖2L2(D) =

∑
k |bk|

2, and since
T∗ f =

∑
l,k Ak,lbk f̄l, we find that

‖T∗ f ‖2L2(D) =
∑

l

∣∣∣∣∣∑
k

Ak,lbk

∣∣∣∣∣2 =

∥∥∥∥∥PAS
∑

k

bkᾱk

∥∥∥∥∥2

≤

∥∥∥∥∥∑
k

bkᾱk

∥∥∥∥∥2

=
∑

k

|bk|
2 = ‖ f ‖2L2(D),

and it follows that T∗ defines a contraction on A2(D) and hence in a second step on all of L2(D). This
concludes the demonstration of part (a).

We proceed with the remaining task of obtaining part (b), which amounts to constructing the Gaussian
Hilbert spaceG and the sequence β j and associated partial isometry S for a given contraction T on L2(D).
We recall that A and A∗ are two orthogonal subspaces in G. However, the sum A ⊕ A∗ need not be all
of G. We will assume that N := G 	 (A ⊕ A∗) is separable and infinite-dimensional which just amounts to
considering a sufficiently big (separable) Gaussian Hilbert spaceG. We splitN =M⊕M∗, whereM is the
closed linear span of certain elements ν1, ν2, ν3, . . . of N, which are all i i d standard complex Gaussian
variables (see Subsection 1.2). The space M∗ is then the closed linear span of the complex conjugates
ν̄1, ν̄2, ν̄3, . . .. As for notation, we will need the orthogonal (Bergman) projection PA2 : L2(D)→ A2(D), and
its conjugate P̄A2 defined by

P̄A2 ( f ) = PA2 ( f̄ ).
We begin with the observation that

〈T f̄ j, fk〉D = 〈 f̄ j,T∗ fk〉D = 〈 f̄ j, P̄A2 T∗ fk〉D. j, k = 1, 2, 3, . . . ,

We need to find i i d standard Gaussian vectors β1, β2, β3, . . . in the Gaussian Hilbert space G such that

Eα jβk = 〈α j, β̄k〉Ω = 〈T f̄ j, fk〉D = 〈 f̄ j, P̄A2 T∗ fk〉D, j, k = 1, 2, 3, . . . ,

since by summing over j, k we arrive at

EΦ(z)Ψ(z) =

+∞∑
j,k=1

e j(z)ek(w) Eα jβk =

+∞∑
j,k=1

e j(z)ek(w) 〈T f̄ j, fk〉D

=

+∞∑
j,k=1

e j(z)ek(w) 〈 f̄ j, P̄A2 T∗ fk〉D = 〈s̄z, P̄A2 T∗sw〉D = 〈P̄A2 s̄z,T∗sw〉D = 〈s̄z,T∗sw〉D = 〈Ts̄z, sw〉D,

where we used (4.1.1).
The element P̄A2 T∗ fk is in the space of complex conjugates of A2(D), and as such it has an expansion

P̄A2 T∗ fk =

+∞∑
l=1

Ak,l f̄l,
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where
∑

j |Ak, j|
2
≤ 1. We need S to have the property that in terms of the above expansion,

PASᾱk = Aᾱk :=
+∞∑
j=1

Ak, jα j,

which defines A as an operator A∗ → A. As such, it is a contraction. Indeed, if γ ∈ A∗ has expansion
γ =

∑
k bkᾱk, we obtain that

‖Aγ‖2Ω =
∑

j

∣∣∣∣∣∑
k

Ak, jbk

∣∣∣∣∣2 =

∥∥∥∥∥P̄A2 T
∑

k

bkēk

∥∥∥∥∥2

≤

∥∥∥∥∥∑
k

bkēk

∥∥∥∥∥2

=
∑

k

|bk|
2 = ‖γ‖2,

which verifies the norm contractivity of A. We proceed to define the operator S and hence the Gassian
vectors β̄ j = Sᾱ j. To do this, we appeal to a standard procedure in operator theory. Since A mapsA∗ → A,
it has an adjoint A~ which maps A→ A∗. We now form the defect operator

D := (IA∗ −A~A)1/2,

which maps A∗ → A∗. The square root is well-defined given that we are taking the square root of a
positive (semidefinite) operator. We use this defect operator to define an associated operator D̃ on M,
by declaring that if Dᾱ j =

∑
k D j,kᾱk, then

D̃ν j =
∑

k

D j,kνk, j = 1, 2, 3, . . . .

Then D̃ becomes a contraction onM, and we may now define the operator S. For γ ∈ G	A∗, we declare
Sγ = 0. For γ ∈ A∗, we expand in basis vectors γ =

∑
k bkᾱk, and define the Gaussian vectors

(4.1.2) β̄k = Sᾱk := Aᾱk + D̃νk ∈ A ⊕M, k = 1, 2, 3, . . . ,

where PAS is as before. Since D̃νk ∈M ⊂ N, we see that

PASᾱk = PAAᾱk + PAD̃νk = Aᾱk,

since Aᾱk ∈ A and we know that N is orthogonal to A, so things are as they should be. Moreover, S acts
isometrically on A∗, as we see from

‖Sγ‖2L2(D) = ‖Aγ‖2L2(D) + ‖Dγ‖2 = ‖γ‖2.

It follows that the functions β̄k := Sᾱk form an orthonormal system in G. It remains to verify that they
are i i d standard complex Gaussians, which requires in addition to orthonormality that Eβ̄ jβ̄k = 0 holds
for all j and k. In view of (4.1.2),

Eβ̄ jβ̄k = 〈β̄ j, βk〉Ω = 0,
given that β̄ j ∈ A ⊕M while βk ∈ A∗ ⊕M∗ and the subspaces A ⊕M and A∗ ⊕M∗ are orthogonal to one
another in G. This tells us how to construct the sequence β1, β2, β3, . . . stanrting from the contraction T
on L2(D), and concludes the proof of part (b). �

4.2. Orthonormal systems in Hilbert space and operator symbols. We recall the setting of Corollary
1.8.1, where x1, x2, x3, . . . and y1, y2, y3, . . . are two orthonormal systems in complex Hilbert spaceH . Let
X denote the closed linear span of the vectors x1, x2, x3, . . ., and PX the orthogonal projectionH → X.

Proof of Corollary 1.8.1. We recall the notation f j(z) = e′j(z) = j1/2z j−1, and let T∗ be a linear operator with
the property that

(4.2.1) T∗ f j =
∑

k

〈y j, xk〉H f̄k.

Then we have for scalars c j (only finitely many nonzero) that∥∥∥∥∥T∗
∑

j

c j f j

∥∥∥∥∥2

D
=

∥∥∥∥∥∑
j,k

c j〈y j, xk〉H f̄k

∥∥∥∥∥2

D
=

∥∥∥∥∥∑
j,k

c j〈y j, xk〉Hxk

∥∥∥∥∥2

H

=

∥∥∥∥∥PX
∑

j

c jy j

∥∥∥∥∥2

H

≤

∥∥∥∥∥∑
j

c j f j

∥∥∥∥∥2

H
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which shows that T∗ defines a norm contraction A2(D) → conj A2(D). In a second step, we extend T∗ to
all of A2(D) by declaring that T∗ f = 0 for all f ∈ L2(D) 	 A2(D), and we see that this defines a contraction
on L2(D). The Dirichlet symbol of T is then, in view of (4.1.1),

zwP[T](z,w) = zw〈Ts̄z, sw〉D = zw〈s̄z,T∗sw〉D =

+∞∑
j,k=1

e j(z)ek(w)〈 f̄ j,T∗ fk〉D =

+∞∑
j,k=1

e j(z)ek(w)〈x j, yk〉D.

Taking the diagonal restriction, we have that

z2
P[T](z, z) =

+∞∑
l=2

zl
∑

j,k: j+k=l

( jk)−
1
2 〈x j, yk〉D,

and it follows that the claim is a direct consequence of Theorem 1.7.2. �

5. Hilbert spaces and diagonal restriction on the bidisk

5.1. Weighted Bergman spaces on the disk and bidisk. For real α > −1, we write A2
α(D) for the Hilbert

space of holomorphic functions f : D→ C subject to the norm boundedness condition

‖ f ‖2A2
α(D) = (α + 1)

∫
D
| f (z)|2(1 − |z|2)αdA(z) < +∞.

Moreover, we write A2
−1,0(D2) for the Hilbert space of holomorphic functions f : D → C subject to the

norm boundedness condition

‖ f ‖2A2
−1,0(D) =

∫
D

∫
T
| f (z,w)|2ds(z)dA(w) < +∞.

For analytic functions f on the bidisk, we let � denote the operation of taking the diagonal restriction,
� f (z) := f (z, z). We may for instance write ∂ j

z � (∂k
w f ) to denote the function

∂ j
z

(
∂k

w f (z,w)
∣∣∣
w:=z

)
.

In [9], the following diagonal norm expansion theorem was obtained.

Theorem 5.1.1. For f ∈ A2
−1,0(D2), we have that

‖ f ‖2A2
−1,0(D) =

+∞∑
n=0

(n + 2)n

(n + 1)!

∥∥∥∥∥ n∑
k=0

(−1)k(k + 2)n−k

k!(n − k)!(n + k + 2)n−k
∂n−k

z � (∂k
w f )

∥∥∥∥∥2

A2
2n+1(D)

.

5.2. The implementation of the fundamental estimate into the diagonal norm expansion. Our starting
point is the instance of (a, b) = (1, 0) in Theorem 1.6.1:∫

D

∣∣∣a(z)EΦ(z)Ψ′(w)
∣∣∣2dA(w) ≤ |a(z)|2 log

1
1 − |z|2

, z ∈ D.

We dilate each variable using r, 0 < r < 1, multiply by |a(z)|2 for some a ∈ H2(D), and integrate over T×D:

r2
∫

T

∫
D(0, 1

r )

∣∣∣a(z)EΦ(rz)Ψ′(rw)
∣∣∣2dA(w)ds(z) ≤ ‖a‖2H2 log

1
1 − r2 .

We now throw away a part of the domain of integration (but, by monotonicity, we may remove the r2

factor at the same time):

(5.2.1)
∫

T

∫
D

∣∣∣a(z)EΦ(rz)Ψ′(rw)
∣∣∣2dA(w)ds(z) ≤ ‖a‖2H2 log

1
1 − r2 .

We recognize the left-hand side expression as the norm-square in the space A2
−1,0(D2) of the function

f (z,w) = a(z)EΦ(rz)Ψ′(rw). Clearly,

�(∂k
w f )(z) = rka(z)EΦ(rz)Ψ(k+1)(rz),
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so an application of Theorem 5.1.1 gives that

(5.2.2)
+∞∑
n=0

2(n + 2)n

n!

∫
D

∣∣∣∣∣ n∑
k=0

(−1)k(k + 2)n−k rk

k!(n − k)!(n + k + 2)n−k
∂n−k

z

(
a(z)EΦ(rz)Ψ(k+1)(rz)

)∣∣∣∣∣2(1 − |z|2)2n+1dA(z)

≤ ‖a‖2H2 log
1

1 − r2 .

We choose for simplicity a(z) ≡ 1, and expand the higher order derivative using the Leibniz rule

∂n−k
z

(
EΦ(rz)Ψ(k+1)(rz)

)
= rn−k

n−k∑
l=0

(n − k)!
l!(n − k − l)!

EΦ(n−k−l)(rz)Ψ(k+l+1)(rz).

It follows that

(5.2.3)
n∑

k=0

n−k∑
l=0

(−1)k(k + 2)n−k rk

k!(n − k)!(n + k + 2)n−k
∂n−k

z

(
EΦ(rz)Ψ(k+1)(rz)

)
= rn

n∑
k=0

n−k∑
l=0

(−1)k(k + 2)n−k

k!l!(n − k − l)!(n + k + 2)n−k
EΦ(n−k−l)(rz)Ψ(k+l+1)(rz)

= rn
n∑

m=0

(−1)m(n + 1)[(n −m + 1)m]2

m!(m + 1)!(n + 2)n

(
EΦ(n−m)(rz)Ψ(m+1)(rz)

)
since it happens to be true for integers m with 0 ≤ m ≤ n that∑

k,l≥0:k+l=m

(−1)k(k + 2)n−k

k!l!(n −m)!(n + k + 2)n−k
=

(−1)m(n + 1)[(n −m + 1)m]2

m!(m + 1)!(n + 2)n
.

As we implement (5.2.3) into (5.2.2), we arrive at

+∞∑
n=0

2(n + 1)3 r2n

(2n + 1)!

∫
D

∣∣∣∣∣ n∑
m=0

(−1)m[(n −m + 1)m]2

m!(m + 1)!

(
EΦ(n−m)(rz)Ψ(m+1)(rz)

)∣∣∣∣∣2(1 − |z|2)2n+1dA(z)

≤ log
1

1 − r2 .

If we only keep the first term with n = 0 on the left-hand side we are left with

(5.2.4) 2
∫

D

∣∣∣EΦ(rz)Ψ′(rz)
∣∣∣2(1 − |z|2)dA(z) ≤ log

1
1 − r2 .

We are free to switch the roles of Φ and Ψ, so that we also have

(5.2.5) 2
∫

D

∣∣∣EΦ′(rz)Ψ(rz)
∣∣∣2(1 − |z|2)dA(z) ≤ log

1
1 − r2 .

Since
∂zEΦ(rz)Ψ(rz) = rEΦ′(rz)Ψ(rz) + rEΦ(rz)Ψ′(rz),

it follows from (5.2.4) and (5.2.5) that

(5.2.6)
∫

D

∣∣∣∂zEΦ(rz)Ψ(rz)
∣∣∣2(1 − |z|2)dA(z)

≤ 2r2
∫

D

(∣∣∣EΦ(rz)Ψ′(rz)
∣∣∣2 +

∣∣∣EΦ′(rz)Ψ(rz)
∣∣∣2)(1 − |z|2)dA(z) ≤ 2r2 log

1
1 − r2 .

Proof of Theorem 1.7.2. A variant of the Littlewood-Paley identity states that for an analytic function f in
the Hardy space H2(D),∫

D
| f ′(z)|2(1 − |z|2)dA(z) =

∫
T
| f (z)|2ds(z) −

∫
D
| f (z)|2dA(z),
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so that with F(z) = EΦ(rz)Ψ(rz), (5.2.6) asserts that

(5.2.7)
∫

T
|F(rz)|2ds(z) −

∫
D
|F(rz)|2dA(z) ≤ 2r2 log

1
1 − r2 .

In terms of the Taylor expansion of F,

F(z) =

+∞∑
j=2

F̂( j)z j,

the estimate (5.2.7) amounts to

(5.2.8)
+∞∑
j=2

j r2 j

j + 1
|F̂( j)|2 ≤ 2r2 log

1
1 − r2 .

By integration, we see from (5.2.9) that

(5.2.9)
∫

D
|F(rz)|2dA(z) =

+∞∑
j=2

r2 j

j + 1
|F̂( j)|2 ≤ 2

∫ r

0

+∞∑
j=2

j t2 j−1

j + 1
|F̂( j)|2dt

≤ 2
∫ r

0
t log

1
1 − t2 dt = (1 − r2) log(1 − r2) + r2

≤ r2.

It now follows from (5.2.7) combined with the estimate (5.2.9) that

(5.2.10)
∫

T
|F(rz)|2ds(z) ≤ 2r2 log

1
1 − r2 + r2,

as claimed. �

6. Möbius invariance and the mock-Bloch space

6.1. Möbius invariance of the Dirichlet symbol. For a Möbius automorphism φ of the unit disk D,
let Uφ and Vφ be the unitary transformations on L2(D) given by (1.10.1). If φ,ψ are two such Möbius
automorphisms, we see that

UψUφ f = Uψ(φ′( f ◦ φ)) = ψ′(φ′ ◦ ψ)( f ◦ φ ◦ ψ) = (φ ◦ ψ)′( f ◦ φ ◦ ψ) = Uφ◦ψ( f ),

which puts us in the context of representation theory. In particular, we find that U∗φ = U−1
φ = Uφ−1 .

Lemma 6.1.1. We have that

w̄ U∗φsw = φ̄(w) sφ(w) − φ̄(0) sφ(0), w ∈ D.

Proof. This is a direct computation. �

Proof of Theorem 1.10.3. In view of the definition of the operator Tφ = UφTŪ∗φ, we see that

�W[Tφ](z) = z2
〈UφTŪ∗φs̄z, sz〉D = z2

〈TŪ∗φs̄z,U∗φsz〉D,

and by Lemma 6.1.1, it follows that

z2
〈TŪ∗φs̄z,U∗φsz〉D = φ(z)2

〈Ts̄φ(z), sφ(z)〉D − φ(0)φ(z)〈Ts̄φ(z), sφ(0)〉D

− φ(0)φ(z)〈Tsφ(0), sφ(z)〉D + φ(0)2
〈Tsφ(0), sφ(0)〉D,

which is the claimed invariance. �
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6.2. The mock-Bloch space is bigger than the Bloch space. We show that the product of two Dirichlet
space functions need not be in the Bloch space.

Proof of Theorem 1.10.2. Let r1, r2, r3, . . . be a increasing sequence on ]0, 1[ tending rapidly to 1. We let f
and g be the functions

f (z) :=
+∞∑
j=1

j−1(1 − r2
j )

z
1 − r jz

, g(z) :=
+∞∑
j=1

j−1√
log 1

1−r2
j

log
1

1 − r jz
.

Then

‖ f ‖2
∇

=

∫
D
| f ′|2dA =

∫
D

∣∣∣∣∣ +∞∑
j=1

j−1 1−r2
j

(1−r jz)2

∣∣∣∣∣2dA(z) =

+∞∑
j,k=1

( jk)−1
(1 − r2

j )(1 − r2
k)

(1 − r jrk)2 < +∞

if the sequence {r j} j is sparse enough. In a similar manner,

‖g‖2
∇

=

∫
D
|g′|2dA =

∫
D

∣∣∣∣∣ +∞∑
j=1

j−1√
log 1

1−r2
j

r j

1 − r jz

∣∣∣∣∣2dA(z) =

+∞∑
j,k=1

( jk)−1
log 1

1−r jrk√
log 1

1−r2
j

√
log 1

1−r2
k

< +∞

if the sequence is sparse enough. We could require for instance that simultaneously the following
conditions should hold:

log
1

1 − r jrk
≤ 2−| j−k|

√
log

1
1 − r2

j

√
log

1
1 − r2

k

and
1

(1 − r jrk)2 ≤ 2−| j−k| 1
(1 − r2

j )(1 − r2
k)
.

By construction, we have

f ′(z)g(z) =

+∞∑
j,k=1

( jk)−1
1 − r2

j

(1 − r jz)2

log 1
1−rkz√

log 1
1−r2

k

,

so that

(1 − r2
l ) f ′(rl)g(rl) =

+∞∑
j,k=1

( jk)−1
1 − r2

j

(1 − r jrl)2

log 1
1−rkrl√

log 1
1−r2

k

≥ l−2

√
log

1
1 − r2

l

which with a sufficiently sparse sequence {r j} j can be made to tend to infinity. Since both f and g have
nonnegative Taylor coefficients,

( f g)′(x) = f ′(x)g(x) + f (x)g′(x) ≥ f ′(x)g(x), 0 ≤ x < 1,

so it would follow that

‖ f g‖B = sup
z∈D

(1 − |z|2)|( f g)′(z)| ≥ sup
l

(1 − r2
l ) f ′(rl)g(rl) = +∞.

On the other hand, there is a rank 1 operator T such that f (z)g(z) = �P[T](z), so f g definitely belongs to
the mock-Bloch space Bmock(D). �

7. Characterization of Dirichlet symbols of Grunsky operators

7.1. Grunsky operators. Let ϕ : D → C be a univalent function. In other words, ϕ is a conformal
mapping onto a simply connected domain. The associated Grunsky operator Γϕ is given by (1.11.2), and
it is well-known that Γϕ is a norm contraction on L2(D), and that it maps into the Bergman space A2(D).
This contractiveness is usually referred to as the Grunsky inequalities, and in this form it was studied in,
e.g., [3]. Without loss of generality, we assume that ϕ(0) = 0 and ϕ′(0) = 1. We recall that the Dirichlet
symbol associated with Γϕ is given by (1.11.2).
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Proof of Theorem 1.11.1. We first show that any symbol Q(z,w) = Q[Γϕ](z,w) for a normalized univalent
function ϕ has the properties (a) and (b). Since Q[Γϕ](z,w) = zwP[Γϕ](z,w) it follows that (a) holds. We
note that if ψ(z) := 1/ϕ(1/z) and if ξ := 1/z, η := 1/w, then

Q(z,w) = Q[Γϕ](z,w) = log
zw(ϕ(z) − ϕ(w))
(z − w)ϕ(z)ϕ(w)

= log
ξ−1η−1(ϕ(ξ−1) − ϕ(η−1))
(ξ−1 − η−1)ϕ(ξ−1)ϕ(η−1)

= log
ψ(ξ) − ψ(η)
ξ − η

.

In other words,
ψ(ξ) − ψ(η) = (ξ − η) eQ(ξ−1,η−1),

so that

(7.1.1) 0 = ∂ξ∂η(ψ(ξ) − ψ(η)) = ∂ξ∂η
{
(ξ − η) eQ(ξ−1,η−1)

}
=

{
ξ−2∂zQ(ξ−1, η−1) − η−2∂wQ(ξ−1, η−1) + (ξ − η)ξ−2η−2

(
∂z∂wQ(ξ−1, η−1)

+ (∂zQ(ξ−1, η−1))(∂zQ(ξ−1, η−1))
)}

eQ(ξ−1,η−1).

Changing back to (z,w)-coordinates, we obtain that

0 = z2∂zQ(z,w) − w2∂wQ(z,w) + (w − z)zw
(
∂z∂wQ(z,w) + (∂zQ(z,w))(∂zQ(z,w))

)
,

which is the same as

w2∂wQ(z,w) − z2∂zQ(z,w)
(w − z)zw

= ∂z∂wQ(z,w) + (∂zQ(z,w))(∂zQ(z,w)),

that is, property (b).
We turn to the reverse implication, to show that a holomorphic function Q in D2 with the properties

(a) and (b) is necessarily of the form Q[Γϕ] for some normalized conformal mapping ϕ. In view of the
above calculation (7.1.1), condition (b) asserts that

∂ξ∂η
{
(ξ − η) eQ(ξ−1,η−1)

}
= 0

which means that locally in D2
e,

(ξ − η) eQ(ξ−1,η−1) = G1(ξ) + G2(η),

where G1,G2 are holomorphic but with possible logarithmic branching at infinity. Letting η → ξ, we
find that G1(ξ) + G2(ξ) = 0, so that G2(η) = −G1(η). So the above identity becomes

(7.1.2) (ξ − η) eQ(ξ−1,η−1) = G1(ξ) − G1(η).

We still need to know that G1 is a globally well-defined function in De (without logarithmic branching).
We differentiate both sides with respect to ξ:

G′1(ξ) = ∂ξ
(
(ξ − η) eQ(ξ−1,η−1)

)
=

{
1 − ξ−2(ξ − η)∂zQ(ξ−1, η−1)

}
eQ(ξ−1,η−1) = eQ(ξ−1,ξ−1),

where in the last step we plugged in η = ξ, which is allowed since the expression is independent of η.
As |ξ| → +∞, we have Q(ξ−1, ξ−1) = O(|ξ|−2), so that eQ(ξ−1,ξ−1) = 1 + O(|ξ|−2), which rules out a ξ−1 term,
and hence there is no logarithmic branching. In addition, we see that G′1(∞) = 1. If we put, for some
constant c, ψ := G1 + c, then by (7.1.2),

eQ(ξ−1,η−1) =
ψ(ξ) − ψ(η)
ξ − η

.

Since the left-hand side is holomorphic and does not vanish in D2
e, it follows thatψ is univalent on De. But

then there must exist a point in the complex plane C which is not in the image ψ(De), and by adjusting c
we can make sure that 0 < ψ(De). Then winding things backwards we get ϕ from ψ in the above fashion,
and Q(z,w) is seen to be of the form (1.11.2), as claimed. �
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8. Zachary Chase’s construction of a permutation

8.1. Permutation of bases. We consider a permutation π : Z+ → Z+. We use the permutation to define
that β j := ᾱπ( j), which in turn defines the second Gaussian process Ψ(z). In this case, the formula (1.7.5)
reduces to

(8.1.1)
∫

T
|EΦ(rζ)Ψ(rζ)|2ds(ζ) =

+∞∑
l=2

r2l
( ∑

j,k: j+k=l

( jk)−
1
2 δ j,π(k)

)2

,

where δ j,k denotes the Kronecker delta, which equals 1 if j = k and 0 otherwise. Since the sum of
Kronecker deltas is squared, it makes sense to try to concentrate the times they equal 1 to certain values
of l.

Proof of Theorem 1.7.3. Let d ≥ 3 be an integer. We define the permutation π = πd in terms of a disjoint
partition into intervals Z+ = I1 ∪ I2 ∪ I3 ∪ . . ., where Im is an interval on Z+ which moves toward the
right as m increases. On each interval Im we let πd permute the interval in question. The first interval is
I1 := {1, . . . , d − 1}, and we put πd( j) := d − j for j ∈ I1. The second interval is I2 := {d, . . . , d2

− d}, and we
put πd( j) := d2

− j for j ∈ I2. The third interval is I3 := {d2
− d + 1, . . . , d3

− d2 + d − 1} and on it we put
πd( j) := d3

− j. The fourth interval is I4 := {d3
− d2 + d, . . . , d4

− d3 + d2
− d}, and on it we put πd( j) := d4

− j.
The general formula is πd( j) := dm

− j on Im, but the endpoints of interval Im depend on whether m is
even or odd. If m is odd, then m = 2n − 1 for some n = 1, 2, 3, . . ., and

Im = I2n−1 :=
{d2n−1 + 1

d + 1
, . . . ,

d2n
− 1

d + 1

}
while if m is even, then m = 2n for some n = 1, 2, 3, . . ., and

Im = I2n :=
{d2n + d

d + 1
, . . . ,

d2n+1
− d

d + 1

}
.

The permutation πd is now well-defined, and we see that for k ∈ Im, δ j,πd(k) = δ j,dm−k = 0 unless j + k = dm.
This means that only the parameter values l that are powers of d contribute to the sum (8.1.1). When
l = dm, we find that∑

j,k: j+k=dm

( jk)−
1
2 δ j,πd(k) =

∑
j∈Im

j−
1
2 (dm

− j)−
1
2 =

1
dm

∑
j∈Im

( j
dm

)− 1
2
(
1 −

j
dm

)− 1
2

=

∫ 1− 1
d+1

1
d+1

t−
1
2 (1 − t)−

1
2 dt + O(d−m+1),

by thinking of the sum as the Riemann sum of the integral with step length d−m. The integral is the
incomplete Beta function, since by symmetry∫ 1− 1

d+1

1
d+1

t−
1
2 (1 − t)−

1
2 dt = π − 2

∫ 1
d+1

0
t−

1
2 (1 − t)−

1
2 dt = π − 4(d + 1)−

1
2 2F1

(
1
2 ,

1
2 ; 3

2 ; 1
d+1

)
,

where the last equality relates it to the standard hypergeometric function. As it is well-known that

lim
r→1−

1
log 1

1−r2

+∞∑
m=1

r2dm
=

1
log d

,

it follows from the obtained asymptotics that

lim
r→1−

1
log 1

1−r2

+∞∑
m=1

r2dm
( ∑

j,k: j+k=dm

( jk)−
1
2 δ j,πd(k)

)2

=
1

log d

{
π − 4(d + 1)−

1
2 2F1

(
1
2 ,

1
2 ; 3

2 ; 1
d+1

)}2
.

Finally, choosing d = 29 gives us the value ≈ 1.7208. This is the asymptotic variance of the correlation
f (z) = EΦ(z)Ψ(z) based on using the permutation to define that β j = ᾱπd( j). �
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