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Abstract

We describe recent advances in the study of random analogues of combinatorial theorems.

1 Introduction

Random graphs have played an integral role in extremal combinatorics since they were first used

by Erdős [30] to prove an exponential lower bound for Ramsey numbers. The binomial random

graph Gn,p is a graph on n vertices where each of the
(
n
2

)
possible edges is chosen independently

with probability p. In modern terminology, Erdős’ result says that with high probability Gn,1/2
contains no clique or independent set of order 2 log2 n. This then translates to a lower bound of

2t/2 for the Ramsey number R(t) (this will be defined in Section 2).

Although there were several applications of random graphs prior to their work, the first system-

atic study of random graphs was undertaken by Erdős and Rényi [32, 33]. The concept of random

graphs was also introduced independently by several other authors but, as explained by Bollobás

[10], ‘the other authors were all concerned with enumeration problems and their techniques were

essentially deterministic.’ Though it has its origins in applications to extremal combinatorics, the

theory of random graphs is now a rich and self-sustaining area of study (see, for example, [10, 67]).

Suppose that P is a graph property, that is, a family of graphs closed under isomorphism. In

studying random graphs, we are usually concerned with determining the probability that Gn,p is

in P for some property P. For many properties, this probability exhibits a phase transition as p

increases, changing abruptly from 0 to 1. The crossover point is known as the threshold. Formally,

we say that p∗ := p∗(n) is a threshold for P if

lim
n→∞

P[Gn,p is in P] =

{
0 if p = o(p∗),

1 if p = ω(p∗).

We note that, depending on the property P, the probability could also collapse from 1 to 0 as p

increases. However, for most properties considered in this paper, the behaviour is as above. To

give some simple examples, the properties of being connected and having a Hamiltonian cycle are

both known to have a threshold at p∗ = logn
n , while the property of containing a particular graph
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H has a threshold at n−1/m(H), where

m(H) = max

{
e(H ′)

v(H ′)
: H ′ ⊆ H

}
.

This function reflects the fact that a graph appears once its densest subgraph does.

Since the late eighties, there has been a great deal of interest in determining thresholds for

analogues of combinatorial theorems to hold in random graphs and random subsets of other sets

such as the integers. To give an example, we say that a graph G is K3-Ramsey if any 2-colouring

of the edges of G contains a monochromatic triangle. One of the foundational results in this area,

proved by Frankl and Rödl [40] and  Luczak, Ruciński and Voigt [86], then states that there exists

C > 0 such that if p > C/
√
n then

lim
n→∞

P[Gn,p is K3-Ramsey] = 1.

Frankl and Rödl used this theorem to prove that there are K4-free graphs which are K3-Ramsey, a

result originally due to Folkman [38]. However, this new method allowed one to prove reasonable

bounds for the size of such graphs, something which was not possible with previous methods.

From this beginning, a large number of papers were written on sparse random analogues of

combinatorial theorems. These included papers on analogues of Ramsey’s theorem, Turán’s theorem

and Szemerédi’s theorem, though in many cases these efforts met with only partial success. This

situation has changed dramatically in recent years and there are now three distinct, general methods

for proving sparse random analogues of combinatorial theorems, furnishing solutions for many of

the outstanding problems in the area.

The first two of these methods were developed by Gowers and the author [24] and, independently,

by Schacht [112] and Friedgut, Rödl and Schacht [45]. The third method was found later by Balogh,

Morris and Samotij [6] and, independently, by Saxton and Thomason [111]. Broadly speaking, the

method employed by Gowers and the author builds on the transference principle developed by

Green and Tao [60] in their proof that the primes contain arbitrarily long arithmetic progressions;

the method of Schacht and Friedgut, Rödl and Schacht extends a multi-round exposure technique

used by Rödl and Ruciński [98] in their study of Ramsey’s theorem in random graphs; and the third

method is a byproduct of general results about the structure of independent sets in hypergraphs,

themselves building on methods of Kleitman and Winston [69] and Sapozhenko [108, 109, 110]. Of

course, this summary does a disservice to all three methods, each of which involves the introduction

of several new ideas. Surprisingly, all three proofs are substantially different and all three methods

have their own particular strengths, some of which we will highlight below.

Rather than focusing on these three methods from the outset, we will further describe the

developments leading up to them, explaining how these new results fit into the broader context.

This will also allow us to review many of the important subsequent developments. We begin by

discussing random analogues of Ramsey-type theorems.

2 Ramsey-type theorems in random sets

Ramsey’s theorem [93] states that for any graph H and any natural number r there exists n such

that any r-colouring of the edges of the complete graph Kn on n vertices contains a monochromatic
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copy of H. The smallest such n is known as the r-colour Ramsey number of H and denoted R(H; r).

When r = 2, we simply write this as R(H) and when H = Kt, we just write R(t). The result of

Erdős mentioned in the introduction then says that R(t) ≥ 2t/2, while an upper bound due to Erdős

and Szekeres [37] says that R(t) ≤ 4t. Though there have been lower order improvements to both

of these estimates [17, 115], it remains a major open problem to give an exponential improvement

to either of them.

Given a graph H and a natural number r, we say that a graph G is (H, r)-Ramsey if in any

r-colouring of the edges of G there is guaranteed to be a monochromatic copy of H. Ramsey’s

theorem is the statement that Kn is (H, r)-Ramsey for n sufficiently large, while the overall aim of

graph Ramsey theory is to decide which graphs are (H, r)-Ramsey for a given H and r. Though

coNP-hard in general [15], this problem has borne much fruit and there is now a large theory with

many interesting and important results (see, for example, [59]). One of the highlights of this theory

is the following random Ramsey theorem of Rödl and Ruciński [96, 97, 98], which determines the

threshold for Ramsey’s theorem to hold in random graphs. As mentioned in the introduction, this

result built on earlier work of Frankl and Rödl [40] and  Luczak, Ruciński and Voigt [86]. Here

and throughout the paper, we will write v(H) and e(H) for the number of vertices and edges,

respectively, of a graph H.

Theorem 2.1. For any graph H that is not a forest consisting of stars and paths of length 3 and

any positive integer r ≥ 2, there exist positive constants c and C such that

lim
n→∞

P[Gn,p is (H, r)-Ramsey] =

{
0 if p < cn−1/m2(H),

1 if p > Cn−1/m2(H),

where

m2(H) = max

{
e(H ′)− 1

v(H ′)− 2
: H ′ ⊆ H and v(H ′) ≥ 3

}
.

There are two parts to this theorem, one part saying that for p < cn−1/m2(H) the random graph

Gn,p is highly unlikely to be (H, r)-Ramsey and the other saying that for p > Cn−1/m2(H) it is

almost surely (H, r)-Ramsey. Following standard usage, we will refer to these two parts as the

0-statement and the 1-statement, respectively.

The threshold in Theorem 2.1 occurs at p∗ = n−1/m2(H). This is the largest probability for which

there is some subgraph H ′ of H such that the number of copies of H ′ in Gn,p is approximately the

same as the number of edges. For p significantly smaller than p∗, the number of copies of H ′ will

also be significantly smaller than the number of edges. A rather delicate argument [96] then allows

one to show that the edges of the graph may be colored so as to avoid any monochromatic copies

of H ′. For p significantly larger than p∗, almost every edge in the random graph is contained in

many copies of every subgraph of H. The intuition, which takes substantial effort to make rigorous

[98], is that these overlaps are enough to force the graph to be Ramsey.

That the proof of the 0-statement is delicate is betrayed by the omitted cases, which have smaller

thresholds. For example, if a graph contains the star K1,r(t−1)+1, then any r-colouring of the edges

of this graph will contain a monochromatic K1,t. However, the threshold for the appearance of

K1,r(t−1)+1 is lower than the threshold suggested by m2(K1,t). A more subtle case is when H = P4,

3



the path with 3 edges (and 4 vertices), and r = 2. In this case, a cycle of length five with a pendant

edge at each vertex is (P4, 2)-Ramsey. While the threshold for the appearance of these graphs is

at n−1, which is the same as n−1/m2(H), the threshold is coarse. This means that they start to

appear with positive probability already when p = c/n for any positive c. This implies that the

0-statement only holds when p = o(1/n).

It is worth saying a little about the proof of the 1-statement in Theorem 2.1. We will focus on

the case when H = K3 and r = 2. The key idea is to write Gn,p as the union of two independent

random graphs Gn,p1 and Gn,p2 , chosen so that

p = p1 + p2 − p1p2 and p2 = Lp1

for some large constant L. We first expose the smaller random graph Gn,p1 . With high probability,

every colouring of Gn,p1 will contain many monochromatic paths of length 2. If p1 is a sufficiently

large multiple of 1/
√
n, it is also possible to show that with high probability these monochromatic

paths are well distributed. In particular, for any given colouring of Gn,p1 , there are at least cn3

triangles in the underlying graph Kn such that there is a path of the same colour, say red, between

each pair of vertices in each triangle.

We now expose Gn,p2 . If this graph contains any of the cn3 triangles described above, we are

done, since each edge of this triangle must take the colour blue. Otherwise, together with the red

connecting path, we would have a red triangle. By Janson’s inequality [66], the probability that

Gn,p2 does not contain any of the cn3 triangles associated to this particular colouring is at most

2−c
′p2n2

, where c′ depends on c. However, we must remember to account for every possible colouring

of Gn,p1 . To do this, we take a union bound. Indeed, since there are at most 2p1n2
colourings of

Gn,p1 , the probability that there exists a colouring such that Gn,p2 does not intersect the associated

set of triangles is at most 2p1n2
2−c

′p2n2
. If we choose L sufficiently large, this probability tends to

zero, completing the proof.

This method also allowed Rödl and Ruciński to determine the threshold for van der Waerden’s

theorem to hold in random subsets of the integers. Van der Waerden’s theorem [124] states that

for any natural numbers k and r there exists n such that any r-colouring of [n] := {1, 2, . . . , n}
contains a monochromatic k-term arithmetic progression, that is, a monochromatic subset of the

form {a, a + d, . . . , a + (k − 1)d}. To state the random version of this theorem, we define [n]p to

be a random subset of [n] where each element is chosen independently with probability p. We also

say that a subset I of the integers is (k, r)-vdW if in any r-colouring of the points of I there is

a monochromatic k-term arithmetic progression. Rödl and Ruciński’s random van der Waerden

theorem [98, 99] is then as follows.

Theorem 2.2. For any positive integers k ≥ 3 and r ≥ 2, there exist positive constants c and C

such that

lim
n→∞

P[[n]p is (k, r)-vdW] =

{
0 if p < cn−1/(k−1),

1 if p > Cn−1/(k−1).

The threshold is again a natural one, since it is the point where we expect that most vertices

in [n]p will be contained in a constant number of k-term arithmetic progressions. We will say more

about this in the next section when we discuss density theorems.
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One question left open by the work of Rödl and Ruciński was whether Theorem 2.1 could be

extended to hypergraphs. While some partial progress was made [100, 101], the general problem

remained open, not least because of the apparent need to apply a hypergraph analogue of the

regularity lemma, something which has only been developed in recent years [55, 88, 104, 120].

Approaches which circumvent hypergraph regularity were developed independently by Friedgut,

Rödl and Schacht [45] and by Gowers and the author [24], so that the following generalisation of

Theorem 2.1 is now known. We write G
(k)
n,p for the random k-uniform hypergraph on n vertices,

where each edge is chosen independently with probability p.

Theorem 2.3. For any k-uniform hypergraph H and any positive integer r ≥ 2, there exists C > 0

such that

lim
n→∞

P[G(k)
n,p is (H, r)-Ramsey] = 1 if p > Cn−1/mk(H),

where

mk(H) = max

{
e(H ′)− 1

v(H ′)− k
: H ′ ⊆ H and v(H ′) ≥ k + 1

}
.

We note that the approach in [24] applies when H is strictly k-balanced, that is, when mk(H) >

mk(H
′) for every subgraph H ′ of H. However, almost all hypergraphs, including the complete

hypergraph K
(k)
t , satisfy this requirement. A similar caveat applies to many of the theorems stated

in this survey. We will usually make this explicit.

The 0-statement corresponding to Theorem 2.3 was considered by Gugelmann, Person, Steger

and Thomas (see [61, 62]). In particular, their results imply the corresponding 0-statement for

complete hypergraphs. However, there are again cases where the true threshold is smaller than

n−1/mk(H). Indeed, the picture seems to be more complicated than for graphs since there are

examples other than the natural generalisations of paths and stars for which the 1-statement may

be improved. We refer the reader to [61] for a more complete discussion.

One may also consider the threshold for asymmetric Ramsey properties. We say that a graph

G is (H1, H2, . . . ,Hr)-Ramsey if any colouring of the edges of G with colours 1, 2, . . . , r contains a

monochromatic copy of Hi in colour i for some i ∈ {1, 2, . . . , r}. A conjecture of Kohayakawa

and Kreuter [71], which generalises Theorem 2.1, says that if H1, H2, . . . ,Hr are graphs with

1 < m2(Hr) ≤ · · · ≤ m2(H1), then the (H1, H2, . . . ,Hr)-Ramsey property has a threshold at

n−1/m2(H1,H2), where

m2(H1, H2) = max

{
e(H ′1)

v(H ′1)− 2 + 1/m2(H2)
: H ′1 ⊆ H1 and v(H ′1) ≥ 3

}
.

Since the 0-statement fails to hold for certain forests, this statement should be qualified further,

but it seems likely to hold for most collections of graphs.

Kohayakawa and Kreuter established the conjecture when H1, H2, . . . ,Hr are cycles. As noted

in [87], the same method shows that the K LR conjecture (which we discuss in Section 4) would imply

the 1-statement of the conjecture when H1 is strictly 2-balanced, that is, when m2(H1) > m2(H ′1)

for all proper subgraphs H ′1. Since the K LR conjecture is now an established fact, the following

theorem is known to hold (as was noted explicitly by Balogh, Morris and Samotij [6]).
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Theorem 2.4. For any graphs H1, H2, . . . ,Hr with 1 < m2(Hr) ≤ · · · ≤ m2(H1) and such that H1

is strictly 2-balanced, there exists C > 0 such that

lim
n→∞

P[Gn,p is (H1, H2, . . . ,Hr)-Ramsey] = 1 if p > Cn−1/m2(H1,H2).

A slightly weaker statement was established by Kohayakawa, Schacht and Spöhel [79] without

appealing to the K LR conjecture. Their proof is much closer in spirit to Rödl and Ruciński’s proof

of Theorem 2.1. A corresponding 0-statement when H1, H2, . . . ,Hr are cliques was established by

Marciniszyn, Skokan, Spöhel and Steger [87]. However, the 0-statement remains open in general.

The methods developed in [24] and [45] also allow one to extend Rödl and Ruciński’s results on

random analogues of van der Waerden’s theorem to a more general setting. A classical theorem of

Rado [92] generalises van der Waerden’s theorem by establishing necessary and sufficient conditions

for a system of homogeneous linear equations

k∑
j=1

aijxj = 0 for 1 ≤ i ≤ `

to be partition regular, that is, to be such that any finite colouring of the natural numbers contains

a monochromatic solution (x1, x2, . . . , xk) to this system of equations. To give an example, the

solutions to the system of equations xi + xi+2 = 2xi+1 for i = 1, 2, . . . , k − 2 are k-term arithmetic

progressions and so van der Waerden’s theorem implies that this system of equations is partition

regular. An extension of Theorem 2.2 was proved by Rödl and Ruciński in [99], but their 1-

statement only applied to density regular systems of equations (though see also [57]). These are

systems of equations, like the system defining k-term arithmetic progressions, whose solutions sets

are closed under translation and dilation.

An extension of this theorem which applies to all partition regular systems of equations was

proved by Friedgut, Rödl and Schacht [45]. More precisely, they proved a 1-statement, while the

0-statement had been established earlier by Rödl and Ruciński [99]. Since the details are somewhat

technical, we refer the interested reader to [45] for further particulars.

We have already mentioned that the result of Frankl and Rödl [40] may be used to prove that

there are K4-free graphs which are (K3, 2)-Ramsey. This was originally proved by Folkman [38]

using a constructive argument. More generally, he proved that for any positive integer t there is

a Kt+1-free graph which is (Kt, 2)-Ramsey. This beautiful result was subsequently extended to

r-colourings by Nešetřil and Rödl [90, 91].

Once we know that these graphs exist, it is natural to try and estimate their size. We define the

Folkman number F (t) to be the smallest natural number n such that there exists a Kt+1-free graph

G on n vertices with the property that every 2-colouring of the edges of G contains a monochromatic

Kt. The upper bounds on F (t) which come from the constructive proofs tend to have a dependency

on t which, with a conservative estimate, is at least tower-type, that is, a tower of twos of height

at least t. On the other hand, the lower bound is essentially the same as for Ramsey’s theorem,

that is, F (t) ≥ 2c
′t.

Very recently, it was noted that some of the methods for proving Ramsey-type theorems in

random sets yield significantly stronger bounds for Folkman numbers [25, 102]. In particular, the
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following result was proved by Rödl, Ruciński and Schacht [102]. Their proof relies heavily on

the hypergraph container results developed by Balogh, Morris and Samotij [6] and Saxton and

Thomason [111] and an observation of Nenadov and Steger [89] that allows one to apply this

machinery in the Ramsey setting.

Theorem 2.5. There exists a constant c such that

F (t) ≤ 2ct
4 log t.

This bound is tantalisingly close to the lower bound and it would be of great interest to improve

it further. Since we have now brought our discussions of Ramsey-type theorems in random sets

full circle, this provides a convenient departure point to move on to discussing density theorems in

random sets, a topic about which much less was known before recent developments.

3 Density theorems in random sets

Turán’s theorem [123] states that the largest Kt-free subgraph of Kn has at most
(

1− 1
t−1

)
n2

2

edges. Moreover, the unique Kt-free subgraph achieving this maximum is the (t− 1)-partite graph

with vertex sets V1, V2, . . . , Vt−1, where each set is of order b n
t−1c or d n

t−1e. In particular, for t = 3,

the triangle-free subgraph of Kn with the most edges is a bipartite graph with parts of order

bn2 c or dn2 e. A substantial generalisation of this theorem, known as the Erdős–Stone–Simonovits

theorem [34, 36], states that for any graph H the largest H-free subgraph of Kn has at most(
1− 1

χ(H)−1 + o(1)
) (

n
2

)
edges, where χ(H) is the chromatic number of H.

We say that a graph G is (H, ε)-Turán if every subgraph of G with at least
(

1− 1
χ(H)−1 + ε

)
e(G)

edges contains a copy of H. The original work of Frankl and Rödl [40] on Ramsey properties in

random graphs was actually motivated by a problem of Erdős and Nešetřil concerning an analogue

of Folkman’s theorem for the (H, ε)-Turán property. Specifically, they asked whether there exist

K4-free graphs which are (K3, ε)-Turán and Frankl and Rödl showed that there are. Though not

stated explicitly in their paper, Frankl and Rödl’s method implies that for any ε > 0 there exists

C > 0 such that if p > C/
√
n then

lim
n→∞

P[Gn,p is (K3, ε)-Turán] = 1.

Unlike Ramsey properties, the corresponding 0-statement is easy to prove. Indeed, for p a suffi-

ciently small multiple of 1/
√
n, the number of triangles in Gn,p will be significantly smaller than

the number of edges. We may therefore remove all copies of K3 by deleting one edge from each

copy, leaving a subgraph which is triangle-free but contains at least (1− δ)e(Gn,p) edges.

A similar argument provides a lower bound for all H. That is, if the number of copies of H is

significantly smaller than the number of edges, we can remove all copies of H by deleting one edge

from each copy. Therefore, if pe(H)nv(H) � pn2, that is, p� n−(v(H)−2)/(e(H)−1), the (H, ε)-Turán

property cannot hold. Since the same argument applies for any subgraph H ′ of H, it is easy to see

that for p� n−1/m2(H) the random graph Gn,p cannot be (H, ε)-Turán. Here m2(H) is defined as
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in Theorem 2.1, that is,

m2(H) = max

{
e(H ′)− 1

v(H ′)− 2
: H ′ ⊆ H and v(H ′) ≥ 3

}
,

The natural conjecture that the (H, ε)-Turán property holds in random graphs with p� n−1/m2(H)

was first stated by Haxell, Kohayakawa and  Luczak [63, 64] and reiterated by Kohayakawa,  Luczak

and Rödl [73].

Until recently, this conjecture was only known to hold for a small collection of graphs, including

K3, K4 and K5 [40, 73, 53] and all cycles [46, 63, 64] (see also [76, 117]). A verification of the

conjecture for all graphs was completed by Schacht [112] and by Gowers and the author [24],

although we must qualify this statement by saying that the results of [24] apply when H is strictly

2-balanced, that is, when m2(H ′) < m2(H) for all H ′ ⊂ H. However, the class of strictly 2-balanced

graphs includes many of the graphs one normally considers, such as cliques and cycles.

Theorem 3.1. For any graph H and any ε > 0, there exist positive constants c and C such that

lim
n→∞

P[Gn,p is (H, ε)-Turán] =

{
0 if p < cn−1/m2(H),

1 if p > Cn−1/m2(H).

As mentioned in the introduction, Schacht’s proof of Theorem 3.1 builds on Rödl and Ruciński’s

proof of Theorem 2.1. In the last section, we gave a brief description of their method, showing how

it was best to think of the random graph Gn,p as the union of two independent random graphs

Gn,p1 and Gn,p2 . In Schacht’s method, this multi-round exposure is taken further, the rough idea

being to expose Gn,p over several successive rounds and to apply a density increment argument.

The method employed in [24] relies upon proving a transference principle, an idea which origi-

nates in the work of Green and Tao [60] (see also [56, 94]). In the case of triangles, this transference

principle says that for p ≥ C/
√
n any subgraph G of Gn,p may be modelled by a subgraph K of

the complete graph Kn in such a way that the proportion of edges and triangles in K is close to

the proportion of edges and triangles in G. That is, if the sparse graph G contains c1pn
2 edges and

c2p
3n3 triangles, then the dense model K will contain approximately c1n

2 edges and c2n
3 triangles.

Suppose now that we wish to prove Turán’s theorem for triangles relative to a random graph.

Given a subgraph G of Gn,p with
(

1
2 + ε

)
p
(
n
2

)
edges, we know, once our approximation is sufficiently

good, that its dense model K has at least
(

1
2 + ε

2

) (
n
2

)
edges. A robust version of Turán’s theorem

[35] then implies that K contains at least cn3 triangles for some c > 0 depending on ε. Provided

again that our approximation is sufficiently good, this implies that G contains at least c
2p

3n3

triangles, which is even more than we required.

Though the analogue of Turán’s theorem for hypergraphs is rather poorly understood (see, for

example, [68]), a similar strategy shows that it is still possible to transfer it to the random setting.

To state the result, we need some definitions. Given a k-uniform hypergraph H, we let ex(n,H)

be the largest number of edges in an H-free subgraph of K
(k)
n and

πk(H) = lim
n→∞

ex(n,H)(
n
k

) .
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We then say that a k-uniform hypergraph G is (H, ε)-Turán if every subgraph of G with at least

(πk(H) + ε) e(G) edges contains a copy of H. Let mk(H) be defined as in the previous subsection,

that is,

mk(H) = max

{
e(H ′)− 1

v(H ′)− k
: H ′ ⊆ H and v(H ′) ≥ k + 1

}
.

Then the analogue of Theorem 3.1, proved in [24, 112], states that the property of being (H, ε)-

Turán for a k-uniform hypergraph H has a threshold at n−1/mk(H).

Theorem 3.2. For any k-uniform hypergraph H and any ε > 0, there exist positive constants c

and C such that

lim
n→∞

P[G(k)
n,p is (H, ε)-Turán] =

{
0 if p < cn−1/mk(H),

1 if p > Cn−1/mk(H).

One structural counterpart to Turán’s theorem is the Erdős-Simonovits stability theorem [114].

This says that for any graph H with χ(H) ≥ 3 and any ε > 0, there exists δ > 0 such that any

H-free subgraph of Kn with at least
(

1− 1
χ(H)−1 − δ

) (
n
2

)
edges may be made (χ(H) − 1)-partite

by removing at most εn2 edges. The following sparse analogue of this result was originally proved

in [24] for strictly 2-balanced graphs. Later, Samotij [107] found a way to amend Schacht’s method

so that it applied to stability statements, extending this result to all graphs.

Theorem 3.3. For any graph H with χ(H) ≥ 3 and any ε > 0, there exist positive constants δ

and C such that if p ≥ Cn−1/m2(H) the random graph Gn,p a.a.s. has the following property. Every

H-free subgraph of Gn,p with at least
(

1− 1
χ(H)−1 − δ

)
p
(
n
2

)
edges can be made (χ(H)− 1)-partite

by removing at most εpn2 edges.

For cliques, Turán’s theorem has a much more precise corresponding structural statement,

saying that the largest Kt-free subgraph is (t−1)-partite. One may therefore ask when this property

holds a.a.s. in the random graph Gn,p. This question was first studied by Babai, Simonovits and

Spencer [4] who showed that for p > 1
2 the size of the maximum triangle-free subgraph is a.a.s. the

same as the size of the largest bipartite subgraph. This result was extended to the range p > n−c

by Brightwell, Panagiotou and Steger [14]. Recently, DeMarco and Kahn [27] proved the following

much more precise result.

Theorem 3.4. There is a positive constant C such that if p > C
√

log n/n then a.a.s. every

maximum triangle-free subgraph of Gn,p is bipartite.

The threshold here is different from the 1/
√
n we have come to expect. However, the result is

sharp up to the constant C. Indeed, for p = 0.1
√

log n/n, the random graph Gn,p will typically

contain a 5-cycle none of whose edges are contained in a triangle. In a forthcoming paper, DeMarco

and Kahn [28] prove the following extension of this result to all cliques. Once again, the extra log

factors are essential.

Theorem 3.5. For any natural number t, there exists C > 0 such that if

p > Cn−
2

t+1 log
2

(t+1)(t−2) n

then a.a.s. every maximum Kt-free subgraph of Gn,p is (t− 1)-partite.

9



We note that a related question, where one wishes to determine the range of m for which most

Kt-free graphs with n vertices and m edges are (t − 1)-partite, was solved recently by Balogh,

Morris, Samotij and Warnke [7].

The methods of [24] and [112] also allow one to prove sparse analogues of density statements

from other settings. For example, Szemerédi’s theorem [118] states that for any natural number k

and any δ > 0 there exists n0 such that if n ≥ n0 any subset of [n] of density at least δ contains a k-

term arithmetic progression. This is the density version of van der Waerden’s theorem and trivially

implies that theorem by taking δ = 1
r and considering the largest colour class. This theorem and

the tools arising in its many proofs [48, 54, 95] have been enormously influential in the development

of modern combinatorics.

We say that a subset I of the integers is (k, δ)-Szemerédi if any subset of I with at least δ|I|
elements contains an arithmetic progression of length k. Szemerédi’s theorem says that for n

sufficiently large the set [n] is (k, δ)-Szemerédi, while a striking corollary of Green and Tao’s work

on arithmetic progressions in the primes [60] says that for n sufficiently large the set of primes up

to n is (k, δ)-Szemerédi.

For random subsets of the integers, the (k, δ)-Szemerédi property was first studied by Ko-

hayakawa,  Luczak and Rödl [72], who proved that the property of being (3, δ)-Szemerédi has a

threshold at 1/
√
n. In general, the natural conjecture is that the (k, δ)-Szemerédi property has

a threshold at n−1/(k−1). The lower bound is again straightforward, since for p � n−1/(k−1) the

number of k-term arithmetic progressions is significantly smaller than the number of elements in

the random set [n]p, allowing us to remove one element from each arithmetic progression without

significantly affecting the density. The corresponding 1-statement was provided in [24] and [112].

Theorem 3.6. For any integer k ≥ 3 and δ > 0, there exist positive constants c and C such that

lim
n→∞

P[[n]p is (k, δ)-Szemerédi] =

{
0 if p < cn−1/(k−1),

1 if p > Cn−1/(k−1).

A particularly satisfying approach to density theorems in random sets is provided by the recent

hypergraph containers method of Balogh, Morris and Samotij [6] and Saxton and Thomason [111],

the only probabilistic input being Chernoff’s inequality and the union bound. In the context of

Szemerédi’s theorem, one of the main corollaries of this method is the following theorem.

Theorem 3.7. For any integer k ≥ 3 and any ε > 0, there exists C > 0 such that if m ≥
Cn1−1/(k−1), then there are at most

(
εn
m

)
subsets of {1, 2, . . . , n} of order m which contain no k-

term arithmetic progression.

Given this statement, which is completely deterministic, it is straightforward to derive the 1-

statement in Theorem 3.6, so much so that we may now give the entire calculation. For brevity,

we write (k, δ)-Sz rather than (k, δ)-Szemerédi and Ik(n, δpn/2) for the collection of subsets of
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{1, 2, . . . , n} of order δpn/2 which contain no k-term arithmetic progression. We have

P[[n]p is not (k, δ)-Sz] ≤ P[|[n]p| < pn/2] + P[|[n]p| ≥ pn/2 and [n]p is not (k, δ)-Sz]

≤ exp(−Ω(pn)) + P[[n]p ⊇ I for some I ∈ Ik(n, δpn/2)]

≤ exp(−Ω(pn)) +

(
εn

δpn/2

)
pδpn/2

≤ exp(−Ω(pn)) +

(
2eεpn

δpn

)δpn/2
= exp(−Ω(pn)),

provided ε < δ/2e.

Deriving Theorem 3.1 from the results of [6] and [111] involves a little more work. To describe

the idea, we focus on the case where H = K3. We begin by considering the 3-uniform hypergraph G
whose vertex set is the collection of edges in Kn and whose edge set is the collection of triangles in

Kn. Turán’s theorem for triangles may then be restated as saying that this 3-uniform hypergraph

has no independent set of order greater than
(

1
2 + o(1)

)
|V (G)|. We would now like to show that

if p ≥ C/
√
n then the random set V (G)p formed by choosing each element of V (G) independently

with probability p contains no independent set of order greater than
(

1
2 + ε

)
p|V (G)|.

One approach would be to use the union bound and Chernoff’s inequality to show that with high

probability the intersection of the random set with each independent set is as required. An argument

of this variety worked in the proof of Theorem 3.6 above, but usually there are far too many

independent sets for this approach to be feasible. The main results in both [6] and [111] circumvent

this difficulty by showing that there is a substantially smaller collection of almost independent sets

which contain all independent sets. Since these sets are almost independent, we know, by the robust

version of Turán’s theorem, that they must also have size at most
(

1
2 + ε

2

)
|V (G)|, say. Applying

the union bound over this smaller set then allows us to derive the result.

4 Regularity in random graphs

Szemerédi’s regularity lemma [119] is one of the cornerstones of modern graph theory (see [81, 103]).

Roughly speaking, it says that the vertex set of every graph G may be divided into a bounded

number of parts in such a way that most of the induced bipartite graphs between different parts

are pseudorandom. To be more precise, we need some definitions.

We say that a bipartite graph between sets U and V is ε-regular if, for every U ′ ⊆ U and V ′ ⊆ V
with |U ′| ≥ ε|U | and |V ′| ≥ ε|V |, the density d(U ′, V ′) of edges between U ′ and V ′ satisfies

|d(U ′, V ′)− d(U, V )| ≤ ε.

A partition of the vertex set of a graph into t pieces V1, . . . , Vt is an equipartition if, for every

1 ≤ i, j ≤ t, we have ||Vi| − |Vj || ≤ 1. Finally, a partition is ε-regular if it is an equipartition and,

for all but at most εt2 pairs (Vi, Vj), the induced graph between Vi and Vj is ε-regular. Szemerédi’s

regularity lemma can now be stated as follows.
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Theorem 4.1. For any ε > 0, there exists an integer T such that every graph G admits an ε-regular

partition V1, . . . , Vt of its vertex set into t ≤ T pieces.

For sparse graphs – that is, graphs with n vertices and o(n2) edges – the regularity lemma

stated above is vacuous, since every equipartition into a bounded number of parts is ε-regular for

n sufficiently large. However, as observed independently by Kohayakawa [70] and Rödl, there is a

meaningful analogue of the regularity lemma for sparse graphs, provided one is willing to restrict

consideration to a well-behaved class of graphs.

To make this more precise, we say that a bipartite graph between sets U and V is (ε, p)-regular

if, for every U ′ ⊆ U and V ′ ⊆ V with |U ′| ≥ ε|U | and |V ′| ≥ ε|V |, the density d(U ′, V ′) of edges

between U ′ and V ′ satisfies

|d(U ′, V ′)− d(U, V )| ≤ εp.

That is, we alter the definition of regularity so that it is relative to a particular density p, usually

chosen to be comparable to the total density between U and V . A partition of the vertex set of

a graph into t pieces V1, . . . , Vt is then said to be (ε, p)-regular if it is an equipartition and, for all

but at most εt2 pairs (Vi, Vj), the induced graph between Vi and Vj is (ε, p)-regular.

The class of graphs to which the Kohayakawa-Rödl regularity lemma applies are the so-called

upper-uniform graphs [75]. Suppose that 0 < η ≤ 1, D > 1 and 0 < p ≤ 1 are given. We will

say that a graph G is (η, p,D)-upper-uniform if for all disjoint subsets U1 and U2 with |U1|, |U2| ≥
η|V (G)|, the density of edges between U1 and U2 satisfies d(U1, U2) ≤ Dp. This condition is satisfied

for many natural classes of graphs, including all subgraphs of random graphs of density p. The

sparse regularity lemma of Kohayakawa and Rödl is now as follows.

Theorem 4.2. For any ε > 0 and D > 1, there exists η > 0 and an integer T such that for every

p ∈ [0, 1], every graph G that is (η, p,D)-upper-uniform admits an (ε, p)-regular partition V1, . . . , Vt
of its vertex set into t ≤ T pieces.

A recent variant of this lemma, due to Scott [113], requires no upper-uniformity assumption on

G, although it is often useful to impose such a constraint in practice. Since the two statements

are interchangeable when one is dealing with a subgraph of the random graph, we have chosen to

describe the original version.

In applications, the regularity method is usually applied in combination with a counting lemma.

Roughly speaking, a counting lemma says that if we start with an arbitrary graph H and replace

its vertices by large independent sets and its edges by ε-regular bipartite graphs with non-negligible

density, then this blow-up will contain roughly the expected number of copies of H. To state this

result formally, we again need some definitions.

Given a graphH with vertex set {1, 2, . . . , k} and a collection of disjoint vertex sets V1, V2, . . . , Vk
in a graph G, we say that a k-tuple (v1, v2, . . . , vk) is a canonical copy of H in G if vi ∈ Vi for every

i ∈ V (H) and vivj ∈ E(G) for every ij ∈ E(H). We write G(H) for the number of canonical copies

of H in G. The counting lemma may now be stated as follows.

Lemma 4.3. For any graph H with vertex set {1, 2, . . . , k} and any δ > 0, there exists a positive

constant ε and an integer n0 such that the following holds. Let n ≥ n0 and let G be a graph whose
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vertex set is a disjoint union V1 ∪ V2 ∪ · · · ∪ Vk of sets of size n. Assume that for each ij ∈ E(H),

the bipartite subgraph of G induced by Vi and Vj is ε-regular and has density dij. Then

G(H) =

 ∏
ij∈E(H)

dij ± δ

nk.

When combined with the regularity lemma, this result allows one to prove a number of well-

known theorems in extremal graph theory, including the Erdős–Stone–Simonovits theorem, its

stability version and the graph removal lemma. In order to extend these results to sparse graphs,

one plausible approach, championed by Kohayakawa,  Luczak and Rödl [73], would be to extend

Lemma 4.3 to sparse graphs. For example, it would be ideal if we could replace the densities dij
with dijp, the ε-regularity condition with an (ε, p)-regularity condition and the conclusion with

G(H) =

 ∏
ij∈E(H)

dij ± δ

 pe(H)nk.

We will initially aim for less, only asking to embed a single canonical copy of H. Unfortunately,

for reasons with which we are now familiar, we cannot hope that such a statement holds for small

p. Indeed, if p � n−1/m2(H), there is a subgraph H ′ of H for which pe(H
′)nv(H′) � pn2. We may

therefore remove all copies of H ′, and hence H, from Gn,p while deleting only a small fraction of

the edges. The resulting graph is both (ε, p)-regular, for some small ε, and H-free.

Frustratingly, this embedding lemma also fails for larger values of p. To see this, take a coun-

terexample of the kind just described but with the sets Vi of order r for some r that is much smaller

than n. Now replace each vertex of this small graph by an independent set with n/r vertices and

each edge with a complete bipartite graph. This yields a graph with n vertices in each Vi. It is easy

to see that the counterexample survives this blowing-up process, implying that the sought-after

sparse embedding lemma is false whenever p = o(1) (see [52, 74]).

However, these counterexamples have a very special structure, an observation that led Ko-

hayakawa,  Luczak and Rödl to conjecture that they might be rare. Roughly speaking, their

conjecture, known as the K LR conjecture, stated that if p � n−1/m2(H), then the number of

counterexamples to the embedding lemma is so small that Gn,p should not typically contain any

such counterexample as a subgraph. Before stating the conjecture (or theorem as it is now), we

introduce some notation.

As above, let H be a graph with vertex set {1, 2, . . . , k}. We denote by G(H,n,m, p, ε) the

collection of all graphs G obtained in the following way. The vertex set of G is a disjoint union

V1 ∪ V2 ∪ · · · ∪ Vk of sets of size n. For each edge ij ∈ E(H), we add an (ε, p)-regular bipartite

graph with m edges between the pair (Vi, Vj). These are the only edges of G. We also write

G∗(H,n,m, p, ε) for the set of all G ∈ G(H,n,m, p, ε) that do not contain a canonical copy of H.

Since the sparse regularity lemma could yield graphs with different densities between the various

pairs of vertex sets, it may seem surprising that we are restricting attention to graphs where all the

densities are equal. However, it is sufficient to consider just this case. In fact, the K LR conjecture,

which we now state, is more specific still, since it also takes p = m/n2. Again, it turns out that

from this case one can deduce any other cases that may be needed.
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Theorem 4.4. Let H be a fixed graph and let β > 0. Then there exist positive constants C and ε

such that

|G∗(H,n,m,m/n2, ε)| ≤ βm
(
n2

m

)e(H)

for every m ≥ Cn2−1/m2(H).

The K LR conjecture has attracted considerable attention over the past two decades and was

resolved for a number of special cases. The cases H = K3, K4 and K5 were solved in [72], [51],

and [53], respectively. For cycles, the conjecture was proved in [9, 49] (see also [71] for a slightly

weaker version). Related results were also given in [50] and [76]. We state it as a theorem because

it has now been proved in full generality by Balogh, Morris and Samotij [6] and by Saxton and

Thomason [111].

Many of the results discussed in this survey, including Theorems 3.1 and 3.3, follow easily from

the K LR conjecture. Indeed, these applications were the original motivation for the conjecture.

However, there are situations where an embedding result is not enough: rather than just a single

copy of H, one needs to know that there are many copies. That is, one needs something more like a

full counting lemma. Such a counting lemma was provided in a paper of Gowers, Samotij, Schacht

and the author [26], the main result of which is the following. We allow for different densities

between parts by replacing m with a vector m = (mij)ij∈E(H).

Theorem 4.5. For any graph H and any δ, d > 0, there exist positive constants ε and ξ with the

following property. For any η > 0, there is C > 0 such that if p ≥ CN−1/m2(H) then a.a.s. the

following holds in GN,p:

(i) For any n ≥ ηN , m with mij ≥ dpn2 for all ij ∈ E(H) and any subgraph G of GN,p in

G(H,n,m, p, ε),

G(H) ≥ ξ

 ∏
ij∈E(H)

mij

n2

nv(H).

(ii) Moreover, if H is strictly 2-balanced, then

G(H) = (1± δ)

 ∏
ij∈E(H)

mij

n2

nv(H).

We note that Theorem 4.5(i) follows from Samotij’s adaptation [107] of Schacht’s method [112]

(and may also be derived from the work of Saxton and Thomason [111]), while Theorem 4.5(ii)

follows from the work of Gowers and the author [24]. Though stronger than Theorem 4.4 in some

obvious ways, it is worth noting that Theorem 4.5 does not return the estimate for the number

of counterexamples provided by that theorem. This estimate is important for some applications,

Theorem 2.4 being a notable example.

One sample application where we need a counting result rather than an embedding result is

for proving a random analogue of the graph removal lemma. This theorem, usually attributed to

Ruzsa and Szemerédi [106] (though see also [3, 31, 47]), is as follows: for any δ > 0, there exists
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ε > 0 such that if G is a graph on n vertices containing at most εnv(H) copies of H, then G may be

made H-free by deleting at most δn2 edges. Though simple in appearance, this result is surprisingly

difficult to prove (see, for example, [18, 39]). It also has some striking consequences, including the

k = 3 case of Szemerédi’s theorem, originally due to Roth [105]. A sparse random version of the

graph removal lemma was conjectured by  Luczak in [85] and proved, for strictly 2-balanced H,

in [24]. The following statement, which applies for all H, may be found in [26].

Theorem 4.6. For any graph H and any δ > 0, there exist positive constants ε and C such that

if p ≥ Cn−1/m2(H) then the following holds a.a.s. in Gn,p. Every subgraph of Gn,p which contains

at most εpe(H)nv(H) copies of H may be made H-free by removing at most δpn2 edges.

Note that if p ≤ cn−1/m2(H), for c sufficiently small, this statement is trivially true. Indeed,

in this range, there exists a subgraph H ′ of H such that the number of copies of H ′ in Gn,p is

smaller than δpn2, so we can simply remove one edge from each copy of H ′. One might then

conjecture, as  Luczak did, that Theorem 4.6 holds for all values of p. For 2-balanced graphs, those

with m2(H ′) ≤ m2(H) for all H ′ ⊂ H, we may verify this conjecture by taking ε to be sufficiently

small in terms of C, δ, and H. For p ≤ Cn−1/m2(H) and ε < δC−e(H), the number of copies of H

is at most εpe(H)nv(H) ≤ εCe(H)pn2 < δpn2. Deleting an edge from each copy yields the result.

5 Further directions

5.1 Sharp thresholds for Ramsey properties

A graph property P is said to be monotone if it is closed under the addition of edges, that is,

G ∈ P and G ⊂ G′ implies that G′ ∈ P. A result of Bollobás and Thomason [11] shows that any

monotone property has a threshold. For example, since Ramsey properties are clearly monotone,

this immediately implies that the (H, r)-Ramsey property and the (k, r)-vdW property, both defined

in Section 2, have thresholds.

Once we have proved that a given property has a threshold, it is often interesting to study this

threshold more closely. We say that P has a sharp threshold at p∗ := p∗(n) if, for any ε > 0,

lim
n→∞

P[Gn,p is in P] =

{
0 if p < (1− ε)p∗,
1 if p > (1 + ε)p∗.

For example, the properties of being connected and having a Hamiltonian cycle have sharp thresh-

olds, while the property of containing a particular graph H has a non-sharp or coarse threshold.

A seminal result of Friedgut [41] gives a criterion for assessing whether a monotone property

has a sharp threshold or not. Roughly speaking, this criterion says that if the property is globally

determined the threshold is sharp, while if it is locally determined it is not. This fits in well with the

examples given above, since connectedness and Hamiltonicity are clearly global properties, while

having a single copy of a particular H is decidedly local.

The question of whether Ramsey properties have sharp thresholds was first studied by Friedgut

and Krivelevich [43]. They proved, amongst other things, that the (H, r)-Ramsey property is sharp

when H is any tree other than a star or a path of length three. However, the first substantial
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breakthrough was made by Friedgut, Rödl, Ruciński and Tetali [44], who proved that the (K3, 2)-

Ramsey property has a sharp threshold. Their result may be stated as follows.

Theorem 5.1. There exists a bounded function ĉ := ĉ(n) such that for any ε > 0,

lim
n→∞

P[Gn,p is (K3, 2)-Ramsey] =

{
0 if p < (1− ε)ĉ/

√
n,

1 if p > (1 + ε)ĉ/
√
n.

A close look at this result reveals an unusual feature: though we know that the threshold is

sharp, we do not know exactly where it lies. In principle, the function ĉ(n) could depend on n

and wander up and down between constants c and C. However, we expect that the true behaviour

should be that it tends towards a constant. It would be very interesting to prove that this is the

case. It would also be of great interest to extend Theorem 5.1 to other graphs and a higher number

of colours.

More recently, Friedgut, Hàn, Person and Schacht [42] proved that there is a sharp threshold

for the appearance of k-term arithmetic progressions in every 2-colouring of [n]p. That is, they

showed that the (k, 2)-vdW property has a sharp threshold. Their proof relies in a fundamental

way on the hypergraph containers results discussed throughout this survey.

Theorem 5.2. For every integer k ≥ 3, there exists a bounded function ĉk := ĉk(n) such that for

any ε > 0,

lim
n→∞

P[Gn,p is (k, 2)-vdW] =

{
0 if p < (1− ε)ĉkn−1/(k−1),

1 if p > (1 + ε)ĉkn
−1/(k−1).

It would again be interesting to determine the asymptotic behaviour of ĉk(n) or to extend this

result to a higher number of colours.

5.2 Large subgraph theorems in random graphs

One of the most active areas of research in extremal combinatorics is in finding conditions under

which a graph contains certain large or even spanning sparse subgraphs (see, for example, [83]). It

is therefore natural to ask whether these results also have random analogues.

One of the standard examples in this area is Dirac’s theorem [29], which says that if a graph on

n vertices has minimum degree at least n/2 then it contains a Hamiltonian cycle, that is, a cycle

which meets every vertex. The study of random analogues of Dirac’s theorem was initiated by

Sudakov and Vu [116] and the state of the art is now the following result of Lee and Sudakov [84].

Theorem 5.3. For any ε > 0, there exists C > 0 such that if p ≥ C logn
n then a.a.s. every subgraph

of Gn,p with minimum degree at least
(

1
2 + ε

)
pn contains a Hamiltonian cycle.

There has also been considerable work on studying random analogues of the bandwidth theorem

of Böttcher, Schacht and Taraz [13]. The bandwidth of a graph G is the smallest b for which there

is an ordering v1, v2, . . . , vn of the vertices of G such that |i − j| ≤ b for all edges vivj . The

theorem then states that for any positive integers r and ∆ and any γ > 0, there exists an integer

n0 and β > 0 such that if n ≥ n0 and H is an n-vertex graph with chromatic number r, maximum
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degree ∆ and bandwidth at most βn, then any graph on n vertices with minimum degree at least(
1− 1

r + γ
)
n contains a copy of H.

For the r = 2 case, that is, for bipartite H, the following random analogue of this theorem was

proved by Böttcher, Kohayakawa and Taraz [12].

Theorem 5.4. For any integer ∆ ≥ 2 and any η, γ > 0, there exist positive constants β and C such

that if p ≥ C(log n/n)1/∆ the random graph Gn,p a.a.s. has the following property. Any subgraph

of Gn,p with minimum degree at least
(

1
2 + γ

)
pn contains any bipartite graph on at most (1− η)n

vertices with maximum degree ∆ and bandwidth at most βn.

Related results were also proved by Huang, Lee and Sudakov [65]. In particular, they showed

that if H is an r-partite graph on n vertices such that every vertex is contained in a triangle, then

there exist subgraphs of the random graph Gn,p with minimum degree at least
(
1− 1

r + γ
)
pn such

that at least cp−2 vertices are not contained in a copy of H. That is, we cannot hope to cover all

vertices when considering random analogues of the bandwidth theorem. However, as suggested by

results in [5] and [65], it may still be possible to embed graphs with as many as n−Cp−2 vertices.

A celebrated result of Chvátal, Rödl, Szemerédi and Trotter [16] (see also [19, 58]) states that

for any positive integers ∆ and r, there exists C > 0 such that if H is any graph with n vertices and

maximum degree ∆, then R(H; r) ≤ Cn. That is, the Ramsey number of bounded degree graphs

grows linearly in the number of vertices. However, one can do even better.

Given a graph H and a natural number r, we define the size-Ramsey number R̂(H; r) to be

the smallest number of edges in an (H, r)-Ramsey graph. So we are now interested in minimising

the number of edges rather than the number of vertices. A striking result of Beck [8] says that

R̂(Pn; r) ≤ Cn for some C depending only on r. Using random graphs, Kohayakawa, Rödl, Schacht

and Szemerédi [78] recently proved that if H is any graph with n vertices and maximum degree

∆, then R̂(H; r) ≤ n2− 1
∆

+o(1). That is, the size-Ramsey number of bounded degree graphs is

subquadratic in the number of vertices. Precisely stated, their main result is the following.

Theorem 5.5. For any integers ∆ ≥ 2 and r ≥ 2, there exists C > 0 such that if p ≥ C(logN/N)1/∆

the random graph GN,p with N = Cn a.a.s. has the following property. Any r-colouring of the edges

of Gn,p contains a colour class which contains every graph on n vertices with maximum degree ∆.

In a forthcoming paper, Allen, Böttcher, Hàn, Kohayakawa and Person [1] prove a sparse

random version of the blow-up lemma. For dense graphs, this result, proved by Komlós, Sárközy

and Szemerédi [80], is a standard tool for embedding spanning subgraphs. Its sparse counterpart

should allow one to reprove many of the results mentioned in this section in a unified way.

5.3 Combinatorial theorems relative to a pseudorandom set

While this survey has focused on combinatorial theorems relative to random sets, analogous ques-

tions may also be asked for pseudorandom sets. Much of the work in this direction has focused

on the combinatorial properties of the class of (p, β)-jumbled graphs. These graphs, introduced by

Thomason [121, 122], have the property that if X and Y are vertex subsets, then

|e(X,Y )− p|X||Y || ≤ β
√
|X||Y |.
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As one would expect of a pseudorandom property, the random graph Gn,p is itself (p, β)-jumbled.

In this case, with high probability, we may take β to be O(
√
pn). This is essentially optimal, that

is, there are no (p, β)-jumbled graphs with β = o(
√
pn). An explicit example of a jumbled graph

is the Paley graph. This is the graph with vertex set Zp, where p is a prime of the form 4k + 1,

and edge set given by joining x and y if and only if their difference is a quadratic residue. This

graph is again optimally jumbled with p = 1
2 and β = O(

√
n). For many more examples, we refer

the reader to the survey [82].

For (p, β)-jumbled graphs, one is usually interested in questions of the following form: given a

graph property P, an integer n and a density p, for what values of β is it the case that a (p, β)-

jumbled graph on n vertices satisfies P? To give an example, for any integer t ≥ 3, there exists

c > 0 such that if β ≤ cpt−1n then any (p, β)-jumbled graph on n vertices contains a copy of Kt.

For t = 3, this condition is known to be tight, as shown by an example of Alon [2].

Very recently, a general method for transferring combinatorial theorems to pseudorandom

graphs was found by Fox, Zhao and the author [20]. Though we will not attempt an exhaustive

survey, the following sample result is representative.

Theorem 5.6. For any integer t and any ε > 0, there exist positive constants δ and c such that if

β ≤ cptn then any (p, β)-jumbled graph G on n vertices has the following property. Any subgraph

of G containing at most δp(
t
2)nt copies of Kt may be made Kt-free by deleting at most εpn2 edges.

That is, we have an extension of the removal lemma to subgraphs of pseudorandom graphs.

Although we have only stated this result for cliques, there is also a more general statement that

applies to all graphs. Moreover, with similar conditions on β, it is possible to prove analogues of

many different combinatorial statements. For example, the (Kt, r)-Ramsey property and (Kt, ε)-

Turán property both hold in pseudorandom graphs with β ≤ cptn.

Unfortunately, there is still a gap in these results, even for triangles. For t = 3, Theorem 5.6

(which in this case was first proved by Kohayakawa, Rödl, Schacht and Skokan [77]) says that if

β ≤ cp3n then the triangle removal lemma holds for subgraphs of a (p, β)-jumbled graph on n

vertices. However, it may well be the case that β ≤ cp2n is sufficient. If true, Alon’s example

would imply that such a result was optimal.

The method of [20] was extended to hypergraphs in [21], under a different type of pseudoran-

domness hypothesis (though see also [22]). This result was then used to prove a pseudorandom

analogue of Szemerédi’s theorem. Such a result was a key ingredient in Green and Tao’s proof that

the primes contain arbitrarily long arithmetic progressions. Their original result states that if a

subset of the integers satisfies two pseudorandomness conditions, the linear forms condition and the

correlation condition, then it is (k, δ)-Szemerédi. Our results allow one to remove the correlation

condition from this statement. Due to space constraints, we are unable to say more here. However,

we refer the reader to [23] for further details.
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[12] J. Böttcher, Y. Kohayakawa and A. Taraz, Almost spanning subgraphs of random graphs after

adversarial edge removal, Combin. Probab. Comput. 22 (2013), 639–683.
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[100] V. Rödl and A. Ruciński, Ramsey properties of random hypergraphs, J. Combin. Theory Ser.

A 81 (1998), 1–33.
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