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Abstract. It has been conjectured that for N sufficiently large, there are no quadratic polynomials in Q[z]

with rational periodic points of period N . Morton proved there were none with N = 4, by showing that

the genus 2 algebraic curve that classifies periodic points of period 4 is birational to X1(16), whose rational
points had been previously computed. We prove there are none with N = 5. Here the relevant curve

has genus 14, but it has a genus 2 quotient, whose rational points we compute by performing a 2-descent

on its Jacobian and applying a refinement of the method of Chabauty and Coleman. We hope that our
computation will serve as a model for others who need to compute rational points on hyperelliptic curves.

We also describe the three possible Gal(Q/Q)-stable 5-cycles, and show that there exist Gal(Q/Q)-stable
N -cycles for infinitely many N . Furthermore, we answer a question of Morton by showing that the genus 14

curve and its quotient are not modular. Finally, we mention some partial results for N = 6.

1. Introduction

Let g(z) ∈ Q(z) be a rational function of degree d ≥ 2. We consider g as a map on P1(C). If x ∈ P1(C)
and the sequence

x, g(x), g(g(x)), . . . , g◦n(x), . . .

is eventually periodic, then x is called a preperiodic point for g. If furthermore g◦n(x) = x, then x is called
a periodic point of g of period n, and its orbit

{x, g(x), g(g(x)), . . . , g◦(n−1)(x)}

is called an n-cycle if x does not actually have smaller period. Northcott [31] proved in 1950 that for fixed g,
there are only finitely many preperiodic points in P1(Q). Moreover, these can be computed effectively given
g. This theorem also holds over any fixed number field, and also for morphisms of Pn of degree at least 2.
Since then, the theorem (in varying degrees of generality) has been rediscovered by many authors [30], [20],
[2].

It is much more difficult to obtain uniform results for rational functions of a given degree. Morton and
Silverman [28] have proposed the following conjecture.

Conjecture 1. Let K/Q be a number field of degree D, and let φ : Pn → Pn be a morphism of degree d ≥ 2
defined over K. The number of K-rational preperiodic points of φ can be bounded in terms of D, n, and d
only.

Silverman, in talks on the subject, has pointed out that even the case n = 1 and d = 4 is strong enough to
imply the recently proved strong uniform boundedness conjecture for torsion of elliptic curves [23], namely
that for any D there exists C > 0 such that for any elliptic curve E over a number field K of degree D over
Q, #E(K)tors < C. This is because torsion points of elliptic curves are exactly the preperiodic points of
the multiplication-by-2 map, and their x-coordinates are preperiodic points for the degree 4 rational map
that gives x(2P ) in terms of x(P ). A similar conjecture for polynomials over Fq(T ) and its finite extensions
would imply the uniform boundedness conjecture for Drinfeld modules [32], which is still open.
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Even the simplest cases of the conjecture seem to be difficult. Walde and Russo [37] asked whether a
quadratic polynomial in Q[z] can have rational points of period greater than 3, and this is not known. Pairs
consisting of a quadratic polynomial and a point of period N are classified by an algebraic curve, which we
denote C1(N). For N = 1, 2, 3, this curve is birational over Q to P1, so it is easy to find a quadratic g ∈ Q[z]
with a rational point of period 1, 2, or 3. Morton [26] proved that C1(4) is birational over Q to the modular
curve X1(16), and used this to show that there are no quadratic polynomials in Q[z] with rational points of
period 4. Our main theorem is for the case N = 5:

Theorem 1. There is no quadratic polynomial g(z) ∈ Q[z] with a rational point of exact period 5.

The curve C1(5) has genus 14, so we study it via a quotient curve C = C0(5) of genus 2. In Section 9, we
will use the description of endomorphism rings of quotients of the Jacobian J1(N) of X1(N) to show that
there is no surjective morphism of curves over C from X1(N) to C0(5) or C1(5), for any N ≥ 1. Because
of this, finding the set of rational points will be more challenging than it was for C1(4). To find all the
rational points on C, we first put C into hyperelliptic form, and then use a 2-descent to compute the rank
of its Jacobian, which turns out to be 1. The 2-descent is more difficult than the examples of descents for
hyperelliptic curves worked out in the literature ([9],[13],[36]) in that C has no Weierstrass points defined
over Q or even a quadratic extension; in fact, the smallest field over which all the Weierstrass points are
defined is the splitting field of a sextic with Galois group S6, the worst possible case. But because the rank
is less than the genus, it is possible afterwards to apply the method of Chabauty and Coleman to bound the
number of rational points on the curve. Although Coleman’s original method gives at best an upper bound
of 9 for the number of rational points, our refinements of the method are strong enough to show that there
are at most six rational points. On the other hand, it is easy to list six rational points, so we know that we
have found them all.

We will also list (in Table 2) all quadratic polynomials in Q[z] (up to linear conjugacy) with a Gal(Q/Q)-
stable 5-cycle. Each point in such a cycle generates a degree 5 cyclic extension of Q, which we describe. Also
we prove that Gal(Q/Q)-stable N -cycles exist for infinitely many N .

Finally, in Section 10, we describe the known Gal(Q/Q)-stable 6-cycles. If, as we believe, these are all,
then there is no quadratic polynomial g(z) ∈ Q[z] with a rational point of exact period 6. This leads us to
conjecture the following refinement of Conjecture 1 for the case of quadratic polynomials over Q.

Conjecture 2. If N ≥ 4, then there is no quadratic polynomial g(z) ∈ Q[z] with a rational point of exact
period N .

Throughout the paper, we will be using Mathematica (version 2.2) and the GP/PARI Calculator (version
1.39). Version 1.39 of PARI assumes the Generalized Riemann Hypothesis for certain number field calcula-
tions, but Michel Olivier has kindly verified these particular calculations for us using a newer not yet released
version that makes no such assumptions.

2. Periodic points of quadratic polynomials

If g(z) ∈ Q[z] is any quadratic polynomial, then there exists a linear function `(z) ∈ Q[z] such that
`(g(`−1(z))) is of the form z2 + c. Therefore, for the sake of arithmetic dynamics, it will suffice to consider
polynomials of the form g(z) = z2 + c. If z is periodic of exact period N for g (meaning that it is periodic
of period N , but not periodic of period n for any n < N), then z satisfies the equation

(1) g◦N (z)− z = 0.

But (1) is satisfied also by points of exact period d for d dividing N , so there is a factorization

g◦N (z)− z =
∏
d|N

Φd(z, c)

where

(2) Φd(z, c) =
∏
m|d

(g◦m(z)− z)µ(d/m) ∈ Z[z, c]
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is the polynomial whose roots z for generic c are the periodic points of exact period d. (Here µ is the Möbius
µ-function.) The z-degree of ΦN (z, c) is

ν2(N) def=
∑
d|N

2dµ(N/d).

By Theorem 1 in Chapter 3 of [1], ΦN (z, c) (where now c also is considered to be an indeterminate) is
irreducible in C[z, c], and hence

ΦN (z, c) = 0
defines a geometrically irreducible algebraic curve over Q in the (z, c)-plane. Although the affine part of this
curve is nonsingular (Proposition 1 in Chapter 3 of [1]), there is a singularity at infinity on its projective
closure if N > 2, so we let C1(N) denote the normalization, which is a nonsingular projective curve over Q.
Every pair consisting of a polynomial g(z) = z2+c together with a rational point of exact period N gives rise
to a rational point on the affine part of C1(N). The converse is true for almost all affine rational points, but
there can be exceptions, as noted in Section 1 of [29], and these can be explained by assigning multiplicities
to periodic points. For example, (z, c) = (−1/2,−3/4) is a point on C1(2), but −1/2 is actually a fixed point
of g(z) = z2 − 3/4 instead of a point of exact period 2. (In fact, it seems likely that there are no other such
examples for quadratic polynomials over Q; this would follow from Conjecture 2, for example.)

The curve C1(N) has an obvious automorphism σ given in the (z, c)-plane by (z, c) 7→ (z2 + c, c). (All we
are saying here is that if α is a point of exact period N for g(z) = z2+c, then so is g(α).) This automorphism
generates a group 〈σ〉 of order N , and we let C0(N) be the quotient curve C1(N)/〈σ〉. Then C0(N) is again
a nonsingular projective curve over Q, and its rational points correspond (with finitely many exceptions) to
pairs consisting of a polynomial g(z) = z2 + c, c ∈ Q, with a Gal(Q/Q)-stable N -cycle. For example, C0(4)
has a rational point corresponding to g(z) = z2 − 31/48 with the 4-cycle

1/4 +
√
−15/6 −−−−→ −1 +

√
−15/12x y

−1−
√
−15/12 ←−−−− 1/4−

√
−15/6

(The notation is intended to remind the reader of the modular curves X0(N) and X1(N), which parameterize
elliptic curves together with a cyclic subgroup of order N , or a point of order N , respectively.) Because field
automorphisms must preserve polynomial relations over Q, the action of an automorphism in Gal(Q/Q) on
a Gal(Q/Q)-stable N -cycle is a rotation. Thus we obtain a homomorphism Gal(Q/Q)→ Z/NZ, and a point
in such an N -cycle generates an abelian extension that is independent of which point was chosen, since any
such point can be expressed as a polynomial over Q in any other.

Bousch [1] derived a formula for the genus of C1(N). Later, Morton [27, Theorem C] generalized the
formula to some other families of polynomials, and also derived a formula for the genus of C0(N), which is
birational to his curve δN (x, c) = 0. Here are the formulas, which are given in terms of ν(N) def= ν2(N)/2:

g(C1(N)) = 1 +
(

N − 3
2

)
ν(N)− 1

2

∑
d|N,d6=N

dν(d)φ
(

N

d

)
.

g(C0(N)) =

{
1 +

(
1
2 −

3
2N

)
ν(N)− 1

2

∑
d|N,d6=N ν(d)φ

(
N
d

)
, if N is odd

1 +
(

1
2 −

3
2N

)
ν(N)− 1

2

∑
d|N,d6=N ν(d)φ

(
N
d

)
− 1

4N

∑
r|N,2|r,N/r odd µ

(
N
r

)
2r/2, if N is even

Table 1 gives these for N ≤ 10.
For N = 1, 2, or 3, C1(N) is in fact birational over Q to P1, so examples of quadratic polynomials in Q[x]

with points of period 1, 2, or 3 exist in abundance. These are classified explicitly in [37]. In [26], it is proved
that C1(4) is birational over Q to the curve

v2 = u(u2 + 1)(1 + 2u− u2),

which also happens to be an equation for X1(16). Although at first this may appear to be a surprising
coincidence, we can give a partial explanation: the Jacobian of a genus 2 curve with an automorphism of
order 4 defined over Q is automatically an abelian variety of GL2-type, and hence conjecturally is a quotient
of the Jacobian J1(N) of the modular curve X1(N) for some N ≥ 1. (See [35].) It has been known since
1908 that (in modern terminology) no elliptic curve over Q has a rational point of order 16, so the only
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N g(C0(N)) g(C1(N))
1 0 0
2 0 0
3 0 0
4 0 2
5 2 14
6 4 34
7 16 124
8 32 285
9 79 745
10 162 1690

Table 1. Genus of C0(N) and C1(N) for N ≤ 10.

rational points of X1(16) are the rational cusps [19]. This fact is what enabled Morton [26] to prove that all
rational points on C1(4) were at infinity.

Morton [26] asked whether C1(N) was modular also for N > 4. We will prove in Section 9 that C0(5)
and C1(5) are not modular. The curve C1(5) is of genus 14 and is of degree 30 in the (z, c)-plane, so it is
much too complicated to be studied directly. Instead we will work with C def= C0(5), which has genus 2. Of
course, every rational point of C1(5) maps to a rational point of C.

Before proceeding with the calculation of the rational points of C, let us show that the “affine part” of
C0(N) has rational points for infinitely many N . This contrasts with the modular curve situation, since for
N > 163, the only rational points of X0(N) are the rational cusps. (The result for X0(N) involved many
cases, which were worked out by several different authors. See [15] for a brief summary.)

Theorem 2. There are infinitely many N for which there exists a quadratic polynomial g(z) ∈ Q[z] with a
Gal(Q/Q)-stable N -cycle.

Proof. For each k ≥ 1, the image of 2 is a generator of (Z/3kZ)∗. Then under the map g(z) = z2, the orbit
of a primitive 3k-th root of unity ζ is a (2 · 3k−1)-cycle consisting of all primitive 3k-th roots of unity, which
is clearly Gal(Q/Q)-stable. (A similar argument could be used with g(z) = z2 − 2 and ζ + ζ−1.) �

Although the proof was disappointingly simple, it does raise an interesting question.

Question . Is it true that for sufficiently large N , if g(z) = z2 + c has a Gal(Q/Q)-stable N -cycle, then
c = 0 or c = −2?

For many N (for example, N = 7), not even z2 and z2−2 have Gal(Q/Q)-stable N -cycles. More precisely,
it is easy to show that z2 has a Gal(Q/Q)-stable N -cycle if and only if N = φ(n) where n is a positive integer
for which the image of 2 is a generator of (Z/nZ)∗ (which forces n to be an odd prime power). Similarly,
z2−2 has a Gal(Q/Q)-stable N -cycle if and only if N = φ(n)/2 where the image of 2 generates (Z/nZ)∗/〈−1〉
(which forces n to be the product of at most two odd prime powers).

3. A hyperelliptic form of C

Because C has genus 2, it is hyperelliptic. Since it has a rational point (for instance above c = −2), more
specifically it is birational to a curve C of the form y2 = f(x), where f(x) ∈ Q[x] is of degree 5 or 6 and
has distinct roots. For the future calculations, it will be necessary to find f(x) explicitly. This will be the
concern of this section.

Following Morton [26], we define the trace of an N -cycle in C of g(z) = z2 + c to be the sum of the
elements in the cycle. Then we let τN (z, c) ∈ Z[z, c] be the polynomial whose roots for generic c are the
traces of all the N -cycles. The curve τN (z, c) = 0 is birational over Q to C0(N). (See [27].) In [26], Morton
also gives an efficient method for computing τN (z, c) for small N .

We will start with his result for N = 5:
τ5(z, c) =

(
32 + 28c + 40c2 + 9c3

)
+
(
36− 24c + 17c2

)
z +

(
44 + 19c + 19c2

)
z2

+ (11 + 18c) z3 + (3 + 11c) z4 + z5 + z6.
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Solving the system
τ5 = ∂τ5/∂z = ∂τ5/∂c = 0,

we find that the only singularity of the curve τ5(z, c) = 0 in the affine (z, c)-plane is (−1,−4/3), which is
a node. Therefore we substitute z = r − 1 and c = s − 4/3 and clear denominators to obtain a new model
with the node at (0, 0):

238r2 + 213r3 − 15r4 − 45r5 + 9r6 + 36rs− 177r2s− 234r3s + 99r4s + 54s2 − 189rs2 + 171r2s2 + 81s3 = 0.

Next we perform a quadratic transformation centered at the node by substituting s = rt, and dividing by
r2:

238 + 213r − 15r2 − 45r3 + 9r4 + 36t− 177rt− 234r2t + 99r3t + 54t2 − 189rt2 + 171r2t2 + 81rt3 = 0.

The curve now has no affine singularities, but there must be a singularity at infinity, because a nonsingular
plane curve cannot have genus 2. A calculation shows that there is a singularity at infinity on the line
r + t = 0, which we move to an axis by setting r = q − t:

238 + 213q − 15q2 − 45q3 + 9q4 − 177t− 147qt− 99q2t + 63q3t + 216t2 + 144qt2 − 72q2t2 = 0.

Now the left hand side is a quadratic in t, so the curve is birational to

p2 = −174303− 269082q + 15471q2 + 115668q3 + 5103q4 − 30618q5 + 6561q6,

where the right hand side is the discriminant of that quadratic. Although this is in hyperelliptic form, it is to
our advantage to simplify as much as possible before continuing. We substitute p = 192y and q = −1−4x/3,
and cancel 1922 = 36864 from both sides to obtain

(3) C : y2 = x6 + 8x5 + 22x4 + 22x3 + 5x2 + 6x + 1.

Let f(x) be the sextic on the right hand side. Since f(x) has no rational roots, the curve C is not birational
over Q to a curve of the form y2 = h(x) with deg h(x) = 5.

4. Six rational points on C

There are a few easy to find rational points on C. First of all, f(0) = f(−3) = 1, so we find four affine
points: (0, 1), (0,−1), (−3, 1), and (−3,−1). Also, since deg f is even, C has two points at infinity. Since the
leading coefficient of f(x) is a square in Q, these points are rational. (See [4, p. 50].) The rational function
y/x3 takes values 1 and −1 at these two points, which we call ∞+ and ∞−, respectively.

We will eventually show that these six points are the only rational points on C. For now, we will describe
the 5-cycles of quadratic polynomials to which they correspond. By tracing back through the substitutions
of Section 3, we obtain two equivalent formulas for c in terms of the rational functions x and y on C:

c =
P0(x) + P1(x)y

8x2(3 + x)2
=

64 + 110x + 325x2 + 452x3 + 271x4 + 74x5 + 8x6

2(P0(x)− P1(x)y)
,

where

P0(x) = −9− 24x− 95x2 − 104x3 − 46x4 − 10x5 − x6

P1(x) = −9 + 3x + 6x2 + x3.

The second formula is determinate (i.e., the numerator and denominator do not both vanish) at the four
affine rational points, and this gives the c-values shown in Table 2. At ∞+, we have the formal expansion

y = x3 + 4x2 + 3x− 1 + 2x−1 + · · · .
Substituting this into the second formula, we see that

c = −2 + (terms involving powers of 1/x)

so c = −2 at ∞+. Similarly, at ∞−, we have

y = −(x3 + 4x2 + 3x− 1 + 2x−1 + · · · ),
and substitution into the first formula shows that

c = −x2/4 + (lower order terms),

so c has a pole at ∞−.
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Point c Conductor n Gal(Q(ζn)/K)
(0, 1) ∞

(0,−1) −16/9 41 〈3〉 ⊂ (Z/41Z)∗

(−3, 1) −64/9 275 = 52 · 11 〈−1, 3〉 ⊂ (Z/275Z)∗

(−3,−1) ∞
∞+ −2 11 〈−1〉 ⊂ (Z/11Z)∗

∞− ∞
Table 2. The six rational points of C.

For the three values c = −2,−16/9,−64/9, we know there is a Gal(Q/Q)-stable 5-cycle of g(z) = z2 + c.
The action of Gal(Q/Q) on the cycle can only be a rotation, so the points of the cycle generate an abelian
extension K of Q, whose Galois group is a subgroup of Z/5Z. In Table 2, we will describe K in each case
by giving its conductor (the smallest n for which K is contained in the n-th cyclotomic field Q(ζn)) and the
subgroup Gal(Q(ζn)/K) of Gal(Q(ζn)/Q) ∼= (Z/nZ)∗ it corresponds to under Galois theory. The quintic
polynomial whose roots are the points of the cycle is a factor of Φ5[z, c]. A computation shows that for each
of the three values of c above, there is a unique quintic factor in Q[z], and none of smaller degree, so already
we know that the 5-cycles in question are not defined pointwise over Q, and that in each case K is a degree 5
cyclic extension of Q.

For c = −2, PARI tells us that the field K, which is generated by a root of this quintic, has discriminant
114, so the conductor of K must be a power of 11. Since (Z/11kZ)∗ is cyclic, Q(ζ11k) has a unique quintic
subfield, namely the totally real subfield of Q(ζ11). Thus the conductor of K equals 11, and under Galois
theory K corresponds to the subgroup 〈−1〉 of (Z/11Z)∗. This is easy to explain: the 5-cycle of z2 − 2
consists of all conjugates of ζ11 + ζ−1

11 .
For c = −16/9, K has discriminant 414, so a similar argument as for c = −2 shows that K is the unique

quintic subfield of Q(ζ41). Thus K has conductor 41, and corresponds to the unique subgroup of (Z/41Z)∗

of index 5, which is generated by the image of 3.
For c = −64/9, K has discriminant 58 · 114, so the conductor of K is of the form n = 5k · 11l. By Hensel’s

Lemma, every element of (Z/nZ)∗ congruent to 1 modulo 275 = 52 · 11 is a 5-th power in (Z/nZ)∗, and
hence is in H

def= Gal(Q(ζn)/K), which has index 5 in (Z/nZ)∗. Thus n divides 275. PARI tells us that
the prime 3 splits completely in K, so the Frobenius element at 3 acts trivially on K, and the image of 3
lies in H. Also, the image of −1 lies in H, since H has odd index. But the subgroup generated by −1 and
3 in (Z/275Z)∗ has index 5, so the images of −1 and 3 in (Z/nZ)∗ generate H. Finally, this subgroup of
(Z/275Z)∗ does not come from a subgroup of (Z/55Z)∗, so the conductor is actually 275.

5. Generalities on 2-descents on Jacobians of hyperelliptic curves

This section outlines and elaborates upon the descent method described in [4] for Jacobians of genus 2
curves over Q. (See also [9], [13] and [36].) Later, in Section 7, we will apply the results of this section to
show that the Mordell-Weil rank of the Jacobian of our curve C is exactly 1. We hope that the separation of
the general method from the application will be useful for others who need to do 2-descents on hyperelliptic
curves.

Let C be a hyperelliptic curve over Q of genus g ≥ 2. Let J be the Jacobian of C, which is an abelian
variety over Q. We will assume C(Q) is nonempty, so that Div0(C)(K) maps onto J(K) for any field
extension K of Q (see [25, p. 168]). Without this assumption, the map (x− T ) below could be defined only
as a map on Div0(C)(K). This assumption also implies that the quotient of C by its hyperelliptic involution
is isomorphic to P1 over Q, so that C has a (singular) plane model y2 = f(x), with f(x) ∈ Z[x] a separable
polynomial of even degree d = 2g + 2. We will call a degree 0 divisor of C a good divisor if it is defined over
K and its support does not include ∞+, ∞− or points with y-coordinate 0.

Proposition 1. Every divisor class of J(K) contains a good divisor.

Proof. As mentioned above, since C has a K-rational point, every K-rational divisor class contains a K-
rational divisor. Every K-rational divisor has a linearly equivalent K-rational divisor whose support avoids
any given finite set of points (see [17, p. 166]). �
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For any field K of characteristic 0, define LK = K[T ]/(f(T )). Let xP and yP denote the coordinates of
a point P . For a good divisor D =

∑
nP P , we define

(x− T )(D) =
∏
P

(xP − T )nP ∈ L∗K .

Proposition 2. The map (x−T ) is a well-defined map from J(K) to the kernel of the norm from L∗K/L∗2K K∗

to K∗/K∗2.

Proof. Let α1, . . . , αd be the zeros of f(x) in K. We can define

LK = K[T ]/(f(T )) ∼= K[T ]/(T − α1)× . . .×K[T ]/(T − αd) ∼= K × . . .×K

by T 7→ (α1, . . . , αd).

Let Gal(K/K) act trivially on T ; this makes LK a Gal(K/K)-module and LK is the set of Gal(K/K)-
invariants. Then we can consider (x−T ) to be a Gal(K/K)-invariant d-tuple of functions ((x−α1), . . . , (x−
αd)) whose divisors are (2(α1, 0)−∞+ −∞−, . . . , 2(αd, 0)−∞+ −∞−). We denote this d-tuple of divisors
by 2(T, 0)−∞+ −∞−.

To show that (x − T ) is a well-defined map from J(K) to L∗K/L∗2K K∗, we first note from Proposition 1
that every element of J(K) contains a good divisor. Let D1 and D2 be two good divisors that are linearly
equivalent. Then there is a K-defined function h with D1 −D2 = div h. We have the following equalities of
d-tuples:

(x− T )(D1 −D2) = (x− T )(div h)

= h(div(x− T )) (Weil reciprocity)

= h
(
2(T, 0)−∞+ −∞−)

= h((T, 0))2/h(∞+)h(∞−) ∈ L∗2K K∗.

Now let us show that the image of (x − T ) is contained in the kernel of the norm to K∗/K∗2. Let
D =

∑
nP P be a good divisor. If c is the leading coefficient of f(x), then

NLK/K((x− T )(D)) =
∏
P

d∏
j=1

(xP − αj)nP =
∏
P

(y2
P /c)nP =

(∏
P

ynP

P

)2

∈ K∗2.

�

Let L = LQ = Q[T ]/(f(T )) ∼=
∏r

i=1 Li, where the Li are fields corresponding to the irreducible factors of
f(x). Let S be a finite set of primes of Q containing the primes 2,∞, and all primes dividing the discriminant
of f(x). (In particular, S contains all primes dividing the leading coefficient of f(x).) Suppose l ∈ L∗ maps to
li in L∗i . Then we say that l is unramified outside S if for each i, the field extension Li(

√
li)/Li is unramified

outside of primes lying over primes of S. This property of l depends only on the image of l in L∗/L∗2, and
it is easy to see that the subset G of elements of L∗/L∗2 which are unramified outside S is a subgroup. Let
G′ be the image of G in L∗/L∗2Q∗, and let H be the kernel of the norm from G′ to Q∗/Q∗2.

Proposition 3. The image of the map (x− T ) on J(Q) is contained in the subgroup H of L∗/L∗2Q∗.

Proof. By Proposition 2, the image of (x−T ) is contained in the kernel of the norm to Q∗/Q∗2. So it suffices
to show that the image of (x− T ) on any good divisor D =

∑
P nP P is contained in G′.

For each p 6∈ S, fix an embedding Q → Qp. Let v be the additive p-adic valuation on Qp with v(p) = 1.
Since D is Gal(Q/Q)-stable,

∏
v(xP )<0 xnP

P is fixed by the inertia group of Gal(Qp/Qp) and hence its valuation
is an integer ap. Moreover since the embedding Q→ Qp is unique up to the action of Gal(Q/Q) on the left,
ap is independent of the embedding.

Let m =
∏

p6∈S pap ∈ Q∗. We claim that m−1(x − T )(D) ∈ L∗/L∗2 is unramified outside S (i.e., is in
G), or what is the same thing, that for any p 6∈ S and any ring homomorphism ι : Q[T ]/(f(T )) → Qp,
v(m−1(x − T )(D)) is an even integer. (We extend v to Q[T ]/(f(T )) by applying ι when necessary.) Let
α1, . . . , αd be the zeros of f(x) in Qp, and without loss of generality assume ι(T ) = α1. If v(xP − T ) > 0,



8 E. V. FLYNN, BJORN POONEN, AND EDWARD F. SCHAEFER

then v(xP − αi) = 0 for 2 ≤ i ≤ d, since the αi lie in distinct residue classes of the ring of integers of Qp. In
this case,

v(xP − T ) = v

(
d∏

i=1

(xP − αi)

)
= v(y2

P /c) = 2v(yP ),

where c is the leading coefficient of f(x), which by assumption is an S-unit. Hence

v((x− T )(D)) =
∑

v(xP−T )>0

v((xP − T )nP ) +
∑

v(xP−T )<0

v((xP − T )nP )(4)

= 2v

 ∏
v(xP−T ))>0

ynP

P

+ v(m)(5)

since v(xP − T ) = v(xP ) when either is negative. The product in (5) is again stable under the inertia group
of Gal(Qp/Qp), so its valuation is an integer. Thus v(m−1(x− T )(D)) is an even integer. �

Let Lp = LQp
= Qp[T ]/(f(T )). We have a commutative diagram

(6)

0 −−−−→ J(Q)/ ker(x− T ) x−T−−−−→ L∗/L∗2Q∗y y
0 −−−−→

∏
p∈S J(Qp)/ ker(x− T ) x−T−−−−→

∏
p∈S L∗p/L∗2p Q∗

p.

From this diagram and Proposition 3, we deduce that x − T maps J(Q)/ ker(x − T ) injectively into the
subgroup H ′ of elements of H that for each p ∈ S map in L∗p/L∗2p Q∗

p into the image of J(Qp) under x− T .
The latter is something that can be calculated, and this will give bounds on the size of J(Q)/ ker(x− T ).

In order to convert these bounds into bounds on the size of J(Q)/2J(Q), which will let us bound the
rank of J(Q), we need to know how ker(x − T ) compares with 2J(Q). Since (x − T ) maps J(Q) into an
elementary 2-group, clearly 2J(Q) ⊆ ker(x − T ). We will describe the difference between these two groups
in Proposition 5 below, for the genus 2 case. The result is stated over arbitrary fields of characteristic not
equal to 2, since we will need it for the completions of Q as well as for Q itself. We will make use of the
following well known consequence of the Riemann-Roch theorem.

Proposition 4. Suppose deg f(x) = 6, so the genus of C is 2. Then any divisor class in J(K) may be
represented by a divisor of the form P1 + P2 −∞+ −∞− where either P1, P2 ∈ C(K) or P1, P2 ∈ C(K ′),
with [K ′ : K] = 2 and P1, P2 conjugate over K. This representation is unique (up to interchanging P1

and P2), except for the group identity O of J(K), which can be represented by any divisor of the form
(x, y) + (x,−y)−∞+ −∞− or ∞+ +∞− −∞+ −∞−.

Proposition 5. Suppose that f(x) ∈ K[x] is a separable sextic polynomial over a field K with char(K) 6= 2,
and that the genus 2 curve C : y2 = f(x) has a point P defined over K. Let J be the Jacobian of C. Then
the index of 2J(K) in ker(x− T ) is

1 if f(x) has a zero in K, or if there is some Gal(Ksep/K)-stable partition of the six
zeros into two indistiguished 3-element subsets {{α1, α2, α3}, {α4, α5, α6}}

2 otherwise.

Proof. The index of 2J(K) in ker(x− T ) is 1 or 2 and ker(x− T )/2J(K) is generated by [2P −∞+ −∞−]
(see [4, lemma 5.2,theorem 5.3]). So the index is 1 exactly when [2P − ∞+ − ∞−] is in 2J(K). Now
[2P −∞+ −∞−] is in 2J(K) if and only if one of the 16 divisor classes with double [2P −∞+ −∞−] is in
J(K).

We now find these 16 divisor classes. Let α1, . . . , α6 be the roots of f(x) in some algebraic closure. We
will use repeatedly and without further mention the fact that the divisors 2(αi, 0) and∞+ +∞− are linearly
equivalent. Since

2[P + (α1, 0)−∞+ −∞−] = [2P −∞+ −∞−],

the 16 halves of [2P −∞+ −∞−] can be obtained by adding [P + (α1, 0) −∞+ −∞−] to each of the 16
elements of J [2]. By Proposition 4, the 15 divisor classes [(αi, 0)+(αj , 0)−∞+−∞−] with i < j are distinct,
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Element Definition Norm
u1 (T 3 + 4T 2 + 3T − 1)/2 1
u2 (T 4 + 5T 3 + 7T 2 + 2T + 1)/2 1
u3 (T 4 + 6T 3 + 11T 2 + 5T )/2 −1
−1 −1 1
α (T 5 + 8T 4 + 22T 3 + 23T 2 + 7T + 5)/2 23

β1 (−T 5 − 5T 4 − 5T 3 + 2T 2 − 3T + 6)/2 3701
β2 (T 4 + 7T 3 + 15T 2 + 14T + 9)/2 −3701
β3 (14T 5 + 155T 4 + 497T 3 + 439T 2 − 174T + 143)/2 37013

Table 3. Some elements of L.

and each has order 2. Thus the 16 halves of [2P −∞+ −∞−] are the 6 divisor classes of the form

[P + 2(α1, 0) + (αi, 0)− 2∞+ − 2∞−] = [P + (αi, 0)−∞+ −∞−]

and the 10 divisor classes of the form

[P + (α1, 0) + (αj , 0) + (αk, 0)− 2∞+ − 2∞−]

with 1 < j < k.
The action of Gal(Ksep/K) on the first 6 halves is the same as the action on the roots α1, . . . , α6. To

deduce the action on the other 10 halves, note that if 1 < j < k and l, m, n are the other three possible
indices, then

[P + (αl, 0) + (αm, 0) + (αn, 0)− 2∞+ − 2∞−] = [P + (α1, 0) + (αj , 0) + (αk, 0)− 2∞+ − 2∞−]

because the difference of the two divisors is div((x−α1)(x−αj)(x−αk)/y). Hence the action of Gal(Ksep/K)
on these 10 halves is the same as the action on the 10 partitions of the six roots into two indistinguished
3-element subsets.

Thus the conditions given in the proposition are necessary and sufficient for [2P −∞+ −∞−] to be in
2J(K). By our earlier remarks, this completes the proof. �

We conclude this section with a few remarks on computing the function (x−T ). Although P+Q−∞+−∞−

is not a good divisor, the image of (x − T ) on its divisor class can be found in terms of P and Q. This is
described in [4, p. 50]. As an example, if P and Q are both affine and have nonzero y-coordinates, then the
image of [P + Q −∞+ −∞−] is (xP − T )(xQ − T ). In addition, the image of [P +∞± −∞+ −∞−] is
(xP − T ).

6. Facts about the number field L = Q[T ]/(f(T ))

From now on, we specialize to our curve C, for which

f(x) = x6 + 8x5 + 22x4 + 22x3 + 5x2 + 6x + 1.

Let L = Q[T ]/(f(T )). (We will abuse notation by writing T for its image in L.) In this section we will
record some data on L obtained from PARI, to be used later, mainly for the 2-descent. The polynomial
f(x) is irreducible over Q, so L is a number field. The Galois group of the normal closure M of L is the full
symmetric group S6. The class number of L is 1. (This can be verified without using PARI, without too
much difficulty, since the Minkowski bound is only about 12.2.) Two of the six zeros of f(x) are real, so the
unit group U has rank 3. The torsion of the unit group is only {±1}, and the quotient U/{±1} is generated
by the elements u1, u2, u3 listed in Table 3. The discriminant of f is 212 · 3701, and the prime factorizations
of the ramified prime ideals (2) and (3701) in L are (α)2 and (β1)(β2)2(β3), respectively, where α, β1, β2, β3

are defined as in Table 3. The factorization of 2 and 3701 into irreducible elements of L will be given in
Table 4.

Let Lp = Qp[T ]/(f(T )) be the completion of L at a prime p of Q. This will be a field if and only if there
is only one prime of L above p, which happens when p = 2, for instance. For p = 3701, we have

L3701
∼= Q3701 × E × F
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where E is a totally ramified extension of Q3701 of degree 2, and F is the unramified extension of Q3701 of
degree 3. The element T maps in Q3701 to something that is 1371 modulo 3701, and in E to something that
is 1727 modulo the maximal ideal.

Finally we will need to know how 2 splits in the subfield K of M corresponding to the subgroup G of
S6 of elements that stabilize the partition {{1, 2, 3}, {4, 5, 6}} of {1, 2, 3, 4, 5, 6} into two indistinguishable
subsets. Since the orbit of {{1, 2, 3}, {4, 5, 6}} under the action of S6 consists of

(
6
3

)
/2 = 10 partitions,

[K : Q] = (S6 : G) = 10. Let α1, . . . , α6 be the roots of f(x) in M , which we consider as a subfield of C.
Then α1α2α3 + α4α5α6 ∈ K, and its conjugates are similar sums corresponding to the other partitions. We
can construct numerically the degree 10 polynomial h(x) whose roots are these sums, and since these sums
are the conjugates of an algebraic integer, the coefficients are integers, and we find the polynomial exactly:

h(x) = x10 + 22x9 + 53x8 + 654x7 + 2186x6 + 8976x5 + 38705x4 + 89560x3 + 244664x2 + 565728x + 477968.

This polynomial is irreducible over Q, and it follows that K = Q(α1α2α3 + α4α5α6). Finally, the prime 2
factors in K as p4q2 where p is of degree 1 and q is of degree 3, so in particular h(x) has no zeros in Q2.

7. The 2-descent on C

From now on, J will denote the Jacobian of the curve C. We will compute the Mordell-Weil rank of J by
performing the 2-descent outlined in Section 5. Since f has discriminant 212 ·3701, we take S = {2, 3701,∞},
which contains all possible primes of bad reduction for J . (In fact, our curve has good reduction at 2, because
substituting y = 2z + x3 + x + 1 and dividing by 4 yields the model

z2 + x3z + xz + z = 2x5 + 5x4 + 5x3 + x2 + x,

which has bad reduction only at 3701. But because we are doing a 2-descent, we must include 2 in S anyway.)
Let J(Q)tors denote the torsion subgroup of the finitely generated abelian group J(Q).

Proposition 6. J(Q)tors is trivial.

Proof. For any prime p of good reduction for J , the reduction mod p map from J(Q) to J(Fp) is injective
on torsion. (See [14], for example.) By [13, p. 822],

#J(Fp) =
1
2
#C(Fp2) +

1
2
(#C(Fp)2)− p.

This can be obtained alternatively by evaluating the characteristic polynomial at 1. (For a formula for the
characteristic polynomial, see the proof of Proposition 9 in Section 9.) Using this, we find #J(F3) = 9 and
#J(F5) = 41. But gcd(9, 41) = 1, so #J(Q)tors = 1. �

An immediate corollary is that [∞+ −∞−] generates an infinite subgroup of J(Q) so the rank of J(Q) is
at least 1. Also, the fact #J(F5) = 41 easily implies the following:

Proposition 7. J is not isogenous over Q to a product of two elliptic curves E1, E2 over Q.

Proof. If J were isogenous over Q to E1×E2, then E1 and E2 would have good reduction at 5 as well. Also
#J(F5) = #E1(F5)#E2(F5), so #E1(F5) and #E2(F5) would be 1 and 41 in some order. Both of these
violate Hasse’s bound

|#E(Fp)− (p + 1)| ≤ 2
√

p.

�

In Proposition 9 of Section 9, we will prove the much stronger result that J is absolutely simple, and that
J has no nontrivial endomorphisms over C. This rules out the possibility of reducing the computation of
the rank of J(Q) to the computation of ranks of elliptic curves, so we will need to use the general method
outlined in Section 5. We proceed by first calculating the groups G, G′,H, H ′ of Section 5 for our curve.

Lemma 1. The images of the 8 elements listed in Table 3 in L∗/L∗2 are a basis for the F2-vector space G.

Proof. If l ∈ L∗, then the field extension L(
√

l)/L is unramified at all finite primes of L except possibly those
occuring in l and those above 2. Hence the images of the 8 elements in Table 3 are in G. On the other hand,
if l ∈ L∗ maps to something in L∗/L∗2 outside the span of these 8 elements, then there must be a prime of
L not above 2, 3701 or ∞ that occurs to an odd power in the prime factorization of l, and then L(

√
l)/L is

ramified at that prime. �
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p (ei, fi) Factorization in L #J(Qp)[2] #J(Qp)/2J(Qp) #J(Qp)/ ker(x− T )
2 (2, 3) α2u2 1 4 2

3701 (1, 1); (2, 1); (1, 3) β1β
2
2β3 2 2 2

∞ (1, 1); (1, 1); (2, 1); (2, 1) 4 1 1
Table 4. The primes in S.

Lemma 2. The images of u1 and u3β1β2 in L∗/L∗2Q∗ form a basis for the F2-vector space H.

Proof. If a prime p other than 2 or 3701 occurs to an odd power in the factorization of q ∈ Q∗, then Q(
√

q)/Q
is ramified at p, and L/Q is unramified at p, so L(

√
q)/L is ramified at any prime above p and q 6∈ G. On

the other hand, by Table 4, the images of −1, 2, 3701 equal the images of −1, u2, and β1β3 in G. Therefore
G′ ⊂ L∗/L∗2Q∗ is the quotient of G by the latter three elements, and the images of u1, u3, α, β1, β2 form
a basis. By Table 3, the kernel of the norm map from G′ to Q∗/Q∗2 is the subspace generated by u1 and
u3β1β3. �

Lemma 3. The last three columns of Table 4 are accurate.

Proof. The nontrivial 2-torsion points of J over Qp are of the form [(αi, 0) + (αj , 0) −∞+ −∞−], where
αi, αj are two of the six zeros of f(x). Over Q2, f(x) is irreducible, so Gal(Q2/Q2) acts transitively on the
six zeros, and hence no pair can be Galois-stable. Thus J(Q2)[2] is trivial.

Over Q3701, f(x) factors into polynomials of degrees 1, 2, 3. Here the only pair of zeros that is stable
under Gal(Q3701/Q3701) is the pair of zeros of the quadratic factor. Hence J(Q3701)[2] has one nontrivial
point.

Over R, f(x) factors into polynomials of degrees 1, 1, 2, 2. The pairs of zeros stable under complex
conjugation are the pair of real zeros, and the pairs of zeros of each quadratic factor. Hence J(R)[2] has
three nontrivial points.

The multiplication-by-2 map on J(Qp) is an n-to-1 map onto its image, where n = #J(Qp)[2], and locally
it multiplies Haar measure by |2|2p since J(Qp) is a 2-dimensional Lie group over Qp. Hence the measure of
2J(Qp) is |2|2p/n times the measure of J(Qp), so

#J(Qp)/2J(Qp) = |2|−2
p ·#J(Qp)[2],

which gives the values of the second to last column of Table 4.
From the factorization of 2 in L, we know that f(x) has no roots in Q2. From Section 6, the polynomial

h(x) has no roots in Q2, so there is no Gal(Q2/Q2)-stable partition of the roots of f(x) into two indistin-
guishable 3-element subsets. Thus by Proposition 5, 2J(Q2) has index 2 in the kernel of x − T on J(Q2).
On the other hand, f(x) has a zero in Q3701 and in R, so Proposition 5 implies that the kernel of x− T on
J(Qp) equals 2J(Qp) for p = 3701 or p =∞. �

Next we will need to find generators for J(Qp)/ ker(x− T ) for each prime p in S.

Lemma 4. The 1-dimensional F2-vector spaces J(Q2)/ ker(x− T ) and J(Q3701)/ ker(x− T ) are generated
by [(2,

√
881)−∞−] ∈ J(Q2) and [(−4,

√
185)−∞−] ∈ J(Q3701), respectively.

Proof. For p = 2, we have 881 ≡ 1 (mod 8), so Hensel’s Lemma implies that (2,
√

881) is in C(Q2). (Fix a
square root.) Thus it will suffice to show that 2− T 6∈ L∗22 Q∗

2. Let g(x) be the characteristic polynomial of
2−T . PARI tells us that there is only one prime above 2 in the number field generated by a root of g(x2), and
it follows that L2(

√
2− T ) is a field of degree 12, so 2−T 6∈ L∗22 . Similarly, for each r ∈ {±1,±2,±3,±6}, a

set of representatives for Q∗
2/Q∗2

2 , we can check that r(2− T ) 6∈ L∗22 , and it follows that 2− T 6∈ L∗2/L∗22 Q∗
2.

(It should be remarked here, that it took PARI a few hours to do these calculations with degree 12 number
fields. We speculate that this is because the PARI command initalg, which must precede the command
primedec that computes the decomposition of primes, computes many other pieces of information that are
irrelevant for our purposes. Of course, there are other methods that could be used to test if an element x of
L∗2 is a square; for instance, if x is a unit, this is determined by x mod 8.)

For p = 3701, we first verify that the Legendre symbol
(

185
3701

)
is 1, so Hensel’s Lemma implies that

(−4,
√

185) ∈ C(Q3701). To complete the proof, we must check that −4 − T 6∈ L∗23701Q∗
3701. This time we
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can avoid the PARI computations with degree 12 number fields by exploiting the decomposition of L3701

into fields. As before, it suffices to prove that r(−4 − T ) 6∈ L∗23701 for r ∈ {1, 2, 3701, 2 · 3701}, which is a
set of representatives for Q∗

3701/Q∗2
3701, since

(
2

3701

)
= −1. Now −4 − T maps in Q3701 to something that

is −4 − 1371 = −1375 modulo 3701, and
(−1375

3701

)
= 1, so by Hensel’s Lemma, −4 − T maps to a square

in Q3701, and r(−4 − T ) can map to a square in Q3701 only if r = 1. On the other hand −4 − T maps in
E (the ramified field component of L3701) to something that is −4 − 1727 = −1731 modulo the maximal
ideal, and

(−1731
3701

)
= −1, so −4 − T does not map to a square in E, and hence −4 − T 6∈ L∗23701. Thus

−4− T 6∈ L∗23701Q∗
3701, and we are done. �

Lemma 5. J(Q)/ ker(x− T ) is trivial.

Proof. By Proposition 3, diagram (6) and Lemma 4, J(Q)/ ker(x − T ) maps into the subgroup H ′ of H
that maps in L∗2/L∗22 Q∗

2 into the group generated by 2−T , in L∗3701/L∗23701Q∗
3701 into the group generated by

−4− T , and in L∗∞/L∗2∞R∗ to the identity. So it will suffice to show that H ′ is trivial.
First of all, the β2-adic valuation E → Z induces a map v : L∗3701/L∗23701Q∗

3701 → Z/2Z, since the
ramification index of E over Q3701 is 2. By Section 6, −4 − T maps in E to something that is −1731
modulo the maximal ideal, so v is trivial on the image of −4 − T . But v maps the two generators u1 and
u3β1β2 of H to 0 and 1, respectively, so H ′ is contained in the image of {1, u1}.

The same method used in the proof of Lemma 4 to show that 2 − T was nontrivial in L∗2/L∗22 Q∗
2 shows

that u1 and u1(2−T ) are nontrivial there, so u1 does not map into the subgroup of L∗2/L∗22 Q∗
2 generated by

2− T . Thus H ′ is trivial. (The information from the prime ∞ was not used, but in fact it would not have
helped either, since the kernel of the norm from L∗∞/L∗2∞R∗ to R∗/R∗2 is trivial.) �

Theorem 3. J(Q) ∼= Z as an additive group.

Proof. By Proposition 5, 2J(Q) has index 2 in ker(x− T ), so by Lemma 5, #J(Q)/2J(Q) = 2. By Proposi-
tion 6, J(Q) ∼= Zr for some r ≥ 1. Then J(Q)/2J(Q) ∼= (Z/2Z)r, so by the above, r = 1. �

8. Applying Chabauty’s method

We recall the following consequence of Chabauty’s result [5], which gives a way of deducing information
about the Q-rational points on a curve from its Jacobian.

Proposition 8. Let C be a curve of genus g defined over Q, whose Jacobian has Mordell-Weil rank ≤ g−1.
Then C has only finitely many Q-rational points.

This is a weaker result than Faltings’ Theorem; however, when applicable, Chabauty’s method can often
be used to give good bounds for the number of points on a curve. Recent work in Coleman [6] (see also [21,
22]) has improved Chabauty’s technique; however, the bounds obtained seem only rarely to resolve C(Q)
completely. For our curve C, the best bound that can be obtained from the results in [6] is that #C(Q) ≤ 9.
We shall adopt a more flexible approach that will allow us to sharpen this bound to 6, as required. It is
hoped that a generalisation of the following ideas to any curve of genus 2 over a number field will at some
stage be presented in [11], but we make no direct use of this, and present a largely self contained account
tailored to the needs of our specific example. We shall, however, need to refer to the equations in [7, 8]
relating to the Jacobian and formal group. We shall first establish a few easily computed facts about J(Q).
Let D = [∞+ −∞−] ∈ J(Q).

Lemma 6. We have J(Q) = 〈E〉, for some E ∈ J(Q) of infinite order, and D = k · E with 36 | k.

Proof. By Theorem 3, we can pick a generator E for J(Q) ∼= Z. To complete the proof, we must show that
D 6∈ 3J(Q). Since J(F3) is a cyclic group of size 9 generated by D̃, the reduction of D mod 3, we find that
D̃ 6∈ 3J(F3), from which it follows that D 6∈ 3J(Q), as required. �

It would be nice to have the theory of heights sufficiently well developed to determine whether k = ±1,
which would give J(Q) = 〈D〉. However, the method in [10] would require significant enhancements before
it could realistically be applied to C. In fact, all of our local arguments will be 3-adic and so the fact that
D 6∈ 3J(Q) will turn out to be sufficient for our purposes.

Table 5 lists the first 11 multiples of D, which will be relevant to our later computations. The last column
gives the corresponding multiples of D̃, the reduction of D mod 3 to J(F3). For simplicity, we represent
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n n ·D n · D̃
0 O O
1 [∞+ +∞+] [∞+ +∞+]
2 [(0, 1) + (−3, 1)] [(0, 1) + (0, 1)]
3 [(0,−1) +∞−] [(0,−1) +∞−]
4 [(0,−1) +∞+] [(0,−1) +∞+]
5 [(−3, 1) +∞−] [(0, 1) +∞−]
6 [(−3, 1) +∞+] [(0, 1) +∞+]
7 [(0,−1) + (0,−1)] [(0,−1) + (0,−1)]
8 [P + P ] [∞− +∞−]
9 [(0,−1) + (−3, 1)] O
10 [Q + Q] [∞+ +∞+]
11 [(−3, 1) + (−3, 1)] [(0, 1) + (0, 1)]

Table 5. The first 11 multiples of D and D̃.

multiples of D in Pic2(C), where Pic0(C) ∼= Pic2(C) by [V ] 7→ [V +∞+ +∞−]. In abuse of notation we will
write D = [∞+−∞−] in Pic0(C) and D = [∞++∞+] in Pic2(C). In the table, P = (−2+ 1

3

√
33,− 17

3 + 10
9

√
33)

and Q = (− 1
2 + 1

6

√
−87, 22

3 + 5
9

√
−87), and P and Q are their algebraic conjugates.

The multiples `·D, for ` = −1, . . . ,−11, can be deduced from the above by using the rule that −[(x1, y1)+
(x2, y2)] = [(x1,−y1) + (x2,−y2)]. The divisor 9 ·D, which is in the kernel of reduction mod 3, will play a
special role, and so we denote:

D′ = 9 ·D = [(0,−1) + (−3, 1)].
The following lemma is immediate from the fact that the k of Lemma 6 is coprime to 3.

Lemma 7. Let E be as in Lemma 6, and let E′ = 9 · E. Then any member of J(Q) can be written as
`′ ·D + m′ · E′, for some `′,m′ ∈ Z.

If we now let:
M3 = the kernel of the reduction map from J(Q3) to J(F3),

thenM3 contains no non-trivial k-torsion, since 36 | k, and there is a well defined map 1/k onM3 that takes
any D0 ∈ M3 to the unique E0 ∈ M3 such that D0 = k · E0. Note that since J(F3) is cyclic of order 9,
E′ ∈ M3 and so E′ = (1/k)D. We can therefore legitimately say that any divisor in J(Q) can be written
uniquely in the form:

(7) ` ·D + n ·D′, with − 4 ≤ ` ≤ 4, n = m/k, 36 | k,

where it is to be understood that 1/k refers to the above 3-adic map onM3. Here, n need not be a rational
integer, but must still be a 3-adic integer, which will be sufficient for our purposes.

Our next observation is that C(Q) is in 1-1 correspondence with the members of J(Q) that have the special
form: [P + P ]. From Table 5, we see that all of the known Q-rational points correspond to: ±D, ±7 ·D and
±11 ·D. Suppose now that we have a divisor D0 ∈ J(Q) that is of the special form [P + P ]; we can write
D0 = ` ·D + n ·D′ as in equation (7). If D0 were in M3 (that is, ` = 0), then P̃ would have to be of the
form (x, 0), which is impossible since the sextic f(x) has no roots in F3. Otherwise, the reduction of D0,
which is also the reduction of `D, must be of the form [P̃ + P̃ ], giving that ±1,±2 are the only possibilities
for `. Suppose we can show that D + n ·D′ is of the form [P + P ] only when n = 0 and that 2 ·D + n ·D′

is of that form only when n = ±1. Using the fact that −[(x, y) + (x, y)] = [(x,−y) + (x,−y)], it would then
follow that −D + n ·D′ is of that form only when n = 0 and that −2 ·D + n ·D′ is of that form only when
n = ±1. This would show that C(Q) consists only of the 6 known points. We summarise the above in the
following lemma.

Lemma 8. Let M3 be the kernel of the reduction map from J(Q3) to J(F3). Let D1 = D = [∞+ +∞+]
and D2 = 2 · D = [(0, 1) + (−3, 1)]. Then D′ = 9 · D = [(0,−1) + (−3, 1)] ∈ M3. Suppose that, for
n = m/k, m, k ∈ Z, 36 | k, we have D1 + n ·D′ of the form [P + P ] only when n = 0, and D2 + n ·D′ is of
that form only when n = ±1. Then #C(Q) = 6.
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For each Di, i = 1, 2, our strategy will be to derive, to a sufficient degree of 3-adic accuracy, a power series
θi(n) ∈ Z3[[n]] that must be satisfied by n whenever Di + n ·D′ is of the form [P + P ]. We shall show the
stronger result that the known solutions to θi(N) give all of the solutions n ∈ Z3. The following standard
theorem of Strassman is proved in [3, p.62].

Theorem 4. Let θ(X) = c0 + c1X + c2X
2 + . . . ∈ Zp[[X]] satisfy cn → 0 in Qp. Define r uniquely by:

|cr|p ≥ |ci|p for all i ≥ 0, and |cr|p > |ci|p for all i > r. Then there are at most r values of x ∈ Zp such that
θ(x) = 0.

In order to derive the power series θ1(n) and θ2(n), we shall make use of the formal group. As remarked
in Section 3, C cannot be put in the simpler form y2 = (quintic in x), so instead of using the development of
the formal group in [12], we must use the general y2 = (sextic in x) development as in [7, 8]. The derivation
of the equations that we shall use for both the formal group law and the global group law are described
in [8]. These equations for a general curve of genus 2, are available at: www.maths.ox.ac.uk/̃ flynn/genus2
First note that for any curve of genus 2

(8) y2 = f6x
6 + f5x

5 + f4x
4 + f3x

3 + f2x
2 + f1x + f0, fi ∈ Z,

the following functions s1, s2 of a point D0 = [(x1, y1) + (x2, y2)] ∈ J(Q) can be used as a pair of local
parameters at O:

s1 = (G1(x1, x2)y1 −G1(x2, x1)y2)(x1 − x2)/(F0(x1, x2)− 2y1y2)2,(9)

s2 = (G0(x1, x2)y1 −G0(x2, x1)y2)(x1 − x2)/(F0(x1, x2)− 2y1y2)2,(10)

where
F0(x1, x2) = 2f0 + f1(x1 + x2) + 2f2(x1x2) + f3(x1x2)(x1 + x2)

+2f4(x1x2)2 + f5(x1x2)2(x1 + x2) + 2f6(x1x2)3,
G0(x1, x2) = 4f0 + f1(x1 + 3x2) + f2(2x1x2 + 2x2

2) + f3(3x1x
2
2 + x3

2)
+4f4(x1x

3
2) + f5(x2

1x
3
2 + 3x1x

4
2) + f6(2x2

1x
4
2 + 2x1x

5
2),

G1(x1, x2) = f0(2x1 + 2x2) + f1(3x1x2 + x2
2) + 4f2(x1x

2
2) + f3(x2

1x
2
2 + 3x1x

3
2)

+f4(2x2
1x

3
2 + 2x1x

4
2) + f5(3x2

1x
4
2 + x1x

5
2) + 4f6(x2

1x
5
2).

The following lemma summarises the information we need from [7, 8] and introduces the standard formal
exponential and logarithm maps on the formal group.

Theorem 5. Let C be as in (8). There is a formal group law with respect to the local parameters of

equation (9), given by F =
(
F1

F2

)
where F1,F2 are power series in s1, s2, t1, t2 defined over Z, which contain

terms only of odd degree. Define the formal exponential of F as E =
(

E1

E2

)
, where E1, E2 are power series

in s over Q, by: E(s) = s + terms of higher degree, and E(s + t) = F(E(s), E(t)). Similarly define the

formal logarithm of F as L =
(

L1

L2

)
where L1, L2 are power series in s over Q, by: L(E(s)) = s, or

equivalently: L(s) = s + terms of higher degree, and L(F(s, t)) = L(s) + L(t). Then each of E1,E2,L1,L2

can be written in the form:
∑

(aij/i!j!)si
1s

j
2, where aij ∈ Z and aij = 0 when i + j is even. Let p be a prime

of good reduction, and let A,B,C be in Mp, the kernel of reduction from J(Qp) to J(Fp), with C = A + B.

Suppose now that s =
(

s1

s2

)
are the local parameters corresponding to A, and similarly t, u those for B, C

respectively. Then each si, ti, ui ∈ pZp and F(s, t) converges in pZp with u = F(s, t).

The power series F gives a description of the group law on Mp. It is described in [7, 8] how to compute
terms of the formal group up to terms of arbitrary degree. We require here the formal group up to terms of
degree 3 in s:

F1 = s1 + t1 + 2f4s
2
1t1 + 2f4s1t

2
1 − f1s

2
2t2 − f1s2t

2
2 + (degree ≥ 5)

F2 = s2 + t2 + 2f2s
2
2t2 + 2f2s2t

2
2 − f5s

2
1t1 − f5s1t

2
1 + (degree ≥ 5)

For any A in Mp, with local parameter s, note also that the power series E(s) and L(s) converge in pZp

also, since |s1|p, |s2|p ≤ p−1 and so |si
1s

j
2/i!j!|p converges to 0 as i + j →∞. Once terms of the formal group
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have been computed, the terms of E and L may be computed inductively from their definitions. We shall
again only require terms up to degree 3 in s:

L1(s) = s1 + 1
3 (−2f4s

3
1 + f1s

3
2) + . . . E1(s) = s1 + 1

3 (2f4s
3
1 − f1s

3
2) + . . .

L2(s) = s2 + 1
3 (−2f2s

3
2 + f5s

3
1) + . . . E2(s) = s2 + 1

3 (2f2s
3
2 − f5s

3
1) + . . .

Let us now return to our specific curve C of equation (3). The local parameters of D′ = [(0,−1) + (−3, 1)] ∈
M3 are determined by substituting x1 = 0, y1 = −1, x2 = −3, y2 = 1 into (9), giving: s1 = −9/14 and
s2 = 426/49, both of which have 3-adic valuation less than or equal to 3−1. It is immediate that L1,L2

evaluated at s1 = −9/14, s2 = 426/49, are both 3-adic integers, and that (even after taking denominators
into account) the terms up to degree 3 determine L1,L2 mod 34. This gives: L1 ≡ 36 (mod 34) and
L2 ≡ 3 (mod 34). From the properties of E and L we see that E(n · L(s)) gives the local parameters t1, t2
for T = n ·D′ ∈M3, where n is as in (7), and so is in Z3. This expresses each of t1, t2 as members of Z3[[n]],
given (mod 34) by:

(11) t1 ≡ 36n + 27n3 and t2 ≡ 3n + 9n3 (mod 34).

Since any member of M3 is uniquely determined by its local parameters, this describes T = n · D′

as a power series in n. We now wish to describe D1 + T and D2 + T , where D1,D2 are as specified in
Lemma 8. Applying the standard global group law to the sum [(x1, y1) + (x2, y2)] = D1 + T gives (as
described in [8]) expressions for k1, k2, k3 ∈ Z[[t1, t2]] such that the triple (k1, k2, k3) is the same projectively
as (1, x1 + x2, x1x2). The terms up to degree 3 in t are:

k1 = −12t2 − 12t21 + 8t1t2 + 36t22 + 8t31 − 72t21t2 − 48t1t
2
2 − 8t32 + · · ·

k2 = 12t1 + 48t2 − 8t21 − 104t1t2 − 132t22 + 72t31 + 648t21t2 + 408t1t
2
2 + 104t32 + · · ·

k3 = −6 + 4t1 − 72t21 − 24t1t2 − 4t22 − 24t31 − 104t21t2 − 104t1t
2
2 − 24t32 + · · ·

On substituting (11) into these expressions gives each of k1, k2, k3 as members of Z3[[n]]. Now note that if
a divisor [(x1, y1) + (x2, y2)] is of the form [P + P ] then θ1(n) = k2

2 − 4k1k3 = 0. This gives:

θ1(n) ∈ Z3[[n]], with θ1(n) ≡ 27n (mod 34),

where θ1(n) = 0 if D1 + n ·D′ is of the form [P + P ].
Repeating the same process for D2 first gives:

k1 = −2− 12t1 − 40t2 − 16t21 + 64t1t2 + 100t22 − 64t31 − 472t21t2 − 64t1t
2
2 − 64t32 + . . .

k2 = 6 + 36t1 + 116t2 + 52t21 − 224t1t2 − 392t22 + 208t31 + 1408t21t2 + 72t1t
2
2 + 160t32 + . . .

k3 = 4t1 + 12t2 + 28t21 + 176t1t2 + 272t22 + 32t31 + 208t21t2 + 104t1t
2
2 + 16t32 + . . .

which then gives:

θ2(n) ∈ Z3[[n]], with θ2(n) ≡ 36 + 27n + 18n2 + 54n3 + 27n4 (mod 34),

where θ2(n) = 0 if D2 + n ·D′ is of the form [P + P ]. We are now in a position to prove the desired result.

Theorem 6. The curve C of equation (3) has only the six Q-rational points (0, 1), (0,−1), (−3, 1), (−3,−1),
∞+, and ∞− listed in Table 2.

Proof. The coefficient of n in θ1(n) ∈ Z3[[n]] has 3-adic valuation strictly larger than all of the other
coefficients, and so by Strassman’s Theorem (Theorem 4) there is at most 1 solution, which is the known
solution: n = 0. For θ2(n), we further reduce mod 33, giving: θ2(n) ≡ 9 + 18n2. By Strassman’s Theorem,
there are at most 2 solutions, which must be the 2 known solutions: n = −1,−2. The result now follows
from Lemma 8. �

9. Non-modularity of C0(5) and C1(5)

Recall that C1(4) turned out to be isomorphic over Q to the modular curve X1(16). Morton [26] asked
whether C1(N) could be parameterized by modular functions also for N > 4. If C0(5) or C1(5) were
isomorphic over C to X1(N) or X0(N), then N could not be a multiple of 3701, because by [16, Corollary
9.11] the genus of X0(3701) already is (3701 − 5)/12 = 308, whereas by Table 1, C0(5) and C1(5) have
genus 2 and 14, respectively. Hence C0(5) or C1(5) would have potential good reduction at 3701. Using
Lange’s theorem [18] that potential good reduction of a geometrically connected smooth projective curve is
inherited by any other such curve it surjects onto (or the more general result mentioned in the Appendix by
Matignon and Youssefi to [39] that the same is true for good reduction), we find that in either case, C0(5)
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would have potential good reduction at 3701. But it can be shown that this contradicts the fact that the
exponent of 3701 in the discriminant of f(x) is 1, so neither C0(5) nor C1(5) is isomorphic over C to X0(N)
or X1(N) for any N ≥ 1.

We have been slightly sketchy in the previous argument, because below we will provide a complete proof
for the stronger result that there is no surjective morphism from X1(N) to C0(5) or C1(5) for any N ≥ 1,
even over C. As before, let J denote the Jacobian of C = C0(5). Let End J denote the ring of endomorphisms
of J defined over C.

Proposition 9. J is absolutely simple, and End J ∼= Z.

Proof. We will model our argument on that used in [33, Appendix A]. Suppose p is a prime of good reduction
for J . Then reduction modulo p embeds End J in EndFp

J , the endomorphisms defined over Fp of the reduced
abelian variety over Fp (which we will also denote J). By [24, Lemma 3], the characteristic polynomial of
the Frobenius endomorphism πp on J is

(12) X4 − tX3 + sX2 − ptX + p2,

where

t = p + 1−#C(Fp), s =
1
2
[
#C(Fp)2 + #C(Fp2)

]
+ p− (p + 1)#C(Fp).

Moreover, it follows from [38, Theorem 8] that if the characteristic polynomial of πn
p is irreducible over Q

for all n ≥ 1, then (EndFp
J)⊗Q = Q(πp) is a number field of degree 4.

For p = 3, (12) becomes X4 − X2 + 9, so the characteristic polynomial of π2
3 is (X2 − X + 9)2. Hence

we move on to p = 5, for which (12) is P (x) = X4 + X3 + 9X2 + 5X + 25. This is irreducible over Q,
so Q(π5) ∼= Q[X]/(P (x)) is a number field of degree 4. We wish to show that no positive power of π5 lies
in a proper subfield. PARI tells us that the Galois group of P (X) is dihedral of order 8, so Q(π5) has an
automorphism σ of order 2, even though it is not Galois over Q. By Galois theory, the (quadratic) fixed
field F of σ is the only nontrivial subfield of Q(π5). We find that π5 + σ(π5) is a root of x2 + x = 1, so
F = Q(

√
5). If πn

5 ∈ F , then σ(π5)/π5 would be an n-th root of unity. But PARI shows that the only
roots of unity in Q(π5) are 1 and −1, and that σ(π5)/π5 is neither of these. Thus we now know that
(EndF5

J)⊗Q ∼= Q[X]/(P (X)), which already is enough to imply that J is absolutely simple.
The characteristic polynomial of π7 is R(X) = X4 + 2X3 + 4X2 + 14X + 49, and exactly the same

argument as in the previous paragraph shows (EndF7
J) ⊗ Q ∼= Q[X]/(R(X)). Now (EndJ) ⊗ Q embeds

into both number fields Q[X]/(P (X)) and Q[X]/(R(X)), but PARI tells us that the only nontrivial subfield
F = Q(

√
5) of Q[X]/(P (X)) is not a subfield of Q[X]/(R(X)), so (EndJ)⊗Q = Q. Thus EndJ = Z. �

Let J1(N) denote the Jacobian of X1(N). We will write EndQ A for the ring of endomorphisms defined
over Q of an abelian variety A over Q.

Proposition 10. Let B be an absolutely simple abelian variety over C which is a quotient of J1(N) over C.
Then the rank of EndB over Z is dim B or 2 dim B.

Proof. Let A be a simple abelian variety over Q which is a quotient of J1(N) over Q, and which contains B
in its decomposition into absolutely simple abelian varieties over C up to isogeny. If B is an elliptic curve
with complex multiplication, the result is trivial, so assume this does not hold. Then by [34, Theorem 1],
(EndA) ⊗ Q is a matrix algebra D = Mn(H) over a division algebra H that is finite dimensional over its
center F , and E

def= (EndQ A)⊗Q is a maximal subfield of D. Moreover [E : Q] = dim A, and [H : F ] = r2

with r = 1 or 2. Let f = [F : Q]. Since E is a maximal subfield of D, [E : F ] =
√

[D : F ] =
√

n2r2 = nr, so

dim B = (dim A)/n = [E : Q]/n = [E : F ]f/n = rf.

Finally,
rank(EndB) = [(EndB)⊗Q : Q] = [H : Q] = r2f

so rank(EndB) = r dim B, and we are done. �

Theorem 7. Let N ≥ 1. There is no nonzero morphism of abelian varieties over C from J1(N) to J . Thus
there is no surjective morphism of curves from X1(N) to C0(5) or C1(5).
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(x, c) Generator of 6-cycle K Conductor
(0, 0) ζ9 Q(ζ9) 9

(−1,−2) ζ13 + ζ−1
13 Q(ζ13 + ζ−1

13 ) 13
(1,−2) ζ21 + ζ−1

21 Q(ζ21 + ζ−1
21 ) 21

(−3,−4) (ζ2
7 + ζ−2

7 ) + 1+
√

5
2 (ζ7 + ζ−1

7 ) Q(ζ7 + ζ−1
7 ,
√

5) 35
(−7/2,−71/48) −1 +

√
33

12 Q(
√

33) 33
Table 6. The known affine rational points on C0(6).

Proof. By Proposition 10, any 2-dimensional quotient of J1(N) must have an endomorphism ring larger than
Z. Thus the first statement follows from Proposition 9. Since C1(5) maps to C0(5), and since surjective
maps on curves induce surjective maps on their Jacobians, the final statement follows from the first. �

For the modular curves X0(N) and X1(N), the Manin-Drinfeld theorem states the divisor class of the
difference of two cusps is a torsion element in the Jacobian. It is natural to ask whether the same is true for
C0(N) and C1(N), with cusps replaced by points with c = ∞. (All of these points are rational, as follows
from the “q-expansions” in [26].) For N = 4, the result holds, simply because C1(4) is isomorphic to X1(16)
and the points with c =∞ correspond to cusps. But the result fails for N = 5, even for the quotient C0(5),
since the divisor class of the difference of two of its rational points at c = ∞ is a nonzero element of J(Q),
and hence is not torsion, by Proposition 6.

10. Rational points and cycles of period 6

We conclude the paper with a few remarks about the next unsolved case, N = 6. The curve C0(6) is of
genus 4 (see Table 1) and is birational to the curve given by the equation τ6(x, c) = 0, where

τ6(x, c) = (−384c− 592c2 − 256c3) +
(
448 + 416c− 304c2 − 256c3

)
x +

(
196 + 552c + 480c2 + 256c3

)
x2

+
(
140− 136c + 160c2 + 256c3

)
x3 +

(
175 + 16c + 112c2

)
x4 +

(
49 + 16c + 144c2

)
x5

+ (14 + 8c) x6 + (2 + 24c)x7 − x8 + x9.

(This is taken from [26].) Recall that x is the trace of a 6-cycle for g(z) = z2 + c.
For each rational number x = r/s with |r|, |s| ≤ 100, we checked the polynomial τ6(x, c) in c for rational

roots. We then did the same with x and c reversed. This let us find all affine rational points on τ6(x, c) = 0
having at least one coordinate with numerator and denominator bounded by 100 (in absolute value). These
are listed in Table 6. Because each of these points in fact has a coordinate with numerator and denominator
bounded by 7, it is likely that we have found all the affine rational points. (There are also 5 points at infinity
on the nonsingular model, and these are all rational.)

Each affine point on C0(6) corresponds to a Gal(Q/Q)-stable 6-cycle, whose elements generate abelian
extensions of Q of degree dividing 6. Table 6 lists an element of this cycle for each known point (in terms of
a primitive n-th root of unity ζn), and also gives the abelian extension K of Q it generates, together with its
conductor. (It is straightforward to verify these using PARI.) In particular, note that none of the cycles are
defined pointwise over Q. Therefore, if we have truly found all affine rational points on C0(6), then there is
no quadratic polynomial g(z) ∈ Q[z] with a periodic point of exact period 6.
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