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Abstract. Much success in finding rational points on curves has been obtained by using Chabauty’s The-
orem, which applies when the genus of a curve is greater than the rank of the Mordell-Weil group of the

Jacobian. When Chabauty’s Theorem does not directly apply to a curve C, a recent modification has been

to cover the rational points on C by those on a covering collection of curves Di, obtained by pullbacks along
an isogeny to the Jacobian; one then hopes that Chabauty’s Theorem applies to each Di. So far, this latter

technique has been applied to isolated examples. We apply, for the first time, certain covering techniques

to infinite families of curves. We find an infinite family of curves to which Chabauty’s Theorem is not
applicable, but which can be solved using bielliptic covers, and other infinite families of curves which even

resist solution by bielliptic covers. A fringe benefit is an infinite family of Abelian surfaces with non-trivial

elements of the Tate-Shafarevich group killed by a bielliptic isogeny.

1. Introduction

The following result of Chabauty[6] gives a way of deducing information about the K-rational points on

a curve from its Jacobian.

Theorem 1. Let C be a curve of genus g defined over a number field K, whose Jacobian has Mordell-Weil

rank ≤ g − 1. Then C has only finitely many K-rational points.

This is a weaker result than Faltings’ Theorem; however, when applicable, Chabauty’s method can often

be used to give good bounds for the number of points on a curve. These ideas have been developed in [7],

[8], [14], [15]. When the conditions of Theorem 1 are satisfied, local considerations give a bound on the order

of C(K), which one hopes is attained by the known points. This has been applied to solve several naturally

occurring problems, such as [9], where Chabauty’s method is used to show that the curve

(1) Y 2 = X6 + 8X5 + 22X4 + 22X3 + 5X2 + 6X + 1

has only the six rational points: (0, 1), (0,−1), (−3, 1), (−3,−1),∞+,∞−, where ∞+,∞− denote the points

on the non-singular curve that lie over the singular point at infinity. It follows from this (as described in [9])

that there is no quadratic polynomial f(z) in Q[z] with a rational point of exact period 5 – that is to say, for

which f5(z) = z, but z is not equal to f i(z) for any 1 ≤ i ≤ 4. The Jacobian J of the curve in (1) satisfies

rank(J (Q)) = 1, and so Theorem 1 is directly applicable.

When the the genus of C is greater than 1, but the rank of J (K) is not less than the genus, then Falting’s

Theorem tells us that C(K) is still finite, but gives a bound on the number of points which is typically much

too large. In such cases, there has has been considerable success with techniques involving covers.
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Method 1. Suppose that C has at least one known K-rational point P0 and one wants to find all of C(K).

One first takes an isogeny φ, defined over K, from an Abelian variety A to J , the Jacobian of C. For

example, we could take A = J , with the isogeny being multiplication by some positive integer m. One tries

to compute J (K)/φ(A(K)) = {D1, . . . , Dm} using descent techniques. Let Ci be the image of C in J via

fi : P 7→ [P − P0] − Di. Let Di be the pullback of Ci to A via φ, and Ji be the Jacobian of Di. Every

Q ∈ C(K) maps to the identity in J (K)/φ(A(K)) under one of the maps fi, namely when Di = [Q − P0],

and so will correspond to a point in Di. Therefore, to find all of C(K), it sufficient to find all of Di(K)

for every i. One can then hope that the rank of Ji(K) is less than the genus of Di, for every i, and that

Chabauty’s Theorem can be applied to find all of Di(K).

There are, of course, many places where this method can potentially fail, but it does at least give a method

of attack when Chabauty’s Theorem is not directly applicable to the original curve C. One way of trying to

find the rank of J (K), at least in the case where J is the Jacobian of a hyperelliptic curve Y 2 = F (X) of

genus g, and F (X) has odd degree, is to use the injection

(2)
q : J (K)/2J (K) ↪→ K[T ]/F (T ) ∼= L∗1/(L∗1)

2 × . . .× L∗k/(L∗k)2

: [
∑

i ni(Xi, Yi)] 7→ [
∏

i(Xi − α1)ni , . . . ,
∏

i(Xi − αk)ni ].

Here, we have picked one root αi of each irreducible factor of F (X), and Li = K(αi). If we let S =

{2, p1, . . . , pm}, where p1, . . . , pm are the places of bad reduction, then the image of q is contained inside the

finite group M , consisting of those [d1, . . . , dk] such that all of the field extensions L1(
√

d1) : L1, . . . , Lk(
√

dk) :

Lk are unramified outside of primes lying over primes of S. Let p ∈ S, let Kp be the completion of K at p;

then we can use the following commutative diagram

(3)

J (K)/2J (K)
q−−−−→ Myip

yjp

J (Kp)/2J (Kp)
qp−−−−→ Mp

where qp,Mp are the local equivalents of q, M , and ip, jp are the maps induced by the natural map K ↪→ Kp.

Then, we can use the fact [5] that

(4) #J (Kp)/2J (Kp) = #J (Kp)[2] · (#p/2p)g

to know when we have found a complete set of generators for J (Kp)/2J (Kp). The commutativity of (3)

gives that im q 6 j−1
p (im qp). After intersecting over all p ∈ S, we obtain the 2-Selmer bound on #im q,

which is also a bound on #J (K)/2J (K), since q is an injection. In practice, we cannot guarantee to find

the rank of each Jacobian, and typically only an upper bound (such as the above 2-Selmer bound) can be

computed, which we hope to be the same as the lower bound obtained from known points.

The literature so far has applied these techniques to a small finite number of naturally occurring examples,

and so we do not yet have much of a feeling for the extent to which the techniques can be expected to work

generally, or whether there are significant impediments. A natural approach, which we shall adopt here,

is to look at infinite families of curves. We shall show that there are infinitely many curves for which a

certain covering technique (via bielliptic isogeny) succeeds, and an infinitely family for which it fails. In our
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first two families of examples, the Jacobians of the Di described in Method 1 split (up to isogeny) into a

product of five elliptic curves over Q. Our other family of genus 2 curves is more subtle; the interesting

piece of Jacobian of each Di is isogenous to the Weil restriction of an elliptic curve over a quadratic number

field, which in turn is isogenous to the Jacobian of another related genus 2 curve. We shall show that every

member of the family of elliptic curves has nontrivial elements of the Tate-Shafarevich which are killed by a

bielliptic isogeny. Furthermore, the new genus 2 curve allows for the potential reapplication of Method 1.

2. Bielliptic Curves of Genus 2

We shall consider curves of genus 2, defined over a number field K

(5) C : Y 2 = F (X) = f6X
6 + . . . + f0,

for which there exists an involution τ(X) = (aX + b)/(cX + d), defined over K, which swaps the roots

of F (X); let us say that that τ swaps the six roots of F (X) according to: α1 ↔ α′1, α2 ↔ α′2, α3 ↔ α′3. The

matrix
(

a
c

b
d

)
associated to τ must have its square equal to

(
k
0

0
k

)
for some k ∈ K, and so has eigenvalues

±
√

k. There are two involutions of C given by (X, Y ) 7→ (τ(X),±k
√

kY/(cX + d)3). These two involutions

differ by the hyperelliptic involution, and each has two fixed points, namely the two points on C above the

fixed point of τ corresponding to the eigenvalue. By the Riemann-Hurwitz formula, the quotient of C by each

of these involutions is an elliptic curve, and so C is bielliptic. The above summary can be made more explicit

as follows. Let (s1 t1), (s2 t2) be eigenvectors of
(

a
c

b
d

)
corresponding, respectively, to the eigenvalues

√
k

and −
√

k, so that (s1 t1)
(

a
c

b
d

)
=
√

k(s1 t1) and (s2 t2)
(

a
c

b
d

)
= −

√
k(s2 t2). When k 6∈ (K∗)2 we take s2, t2

to be the K(
√

k):K conjugates of s1, t1, respectively. Then σ(X) = (s1X + t1)/(s2X + t2) is negated by

X 7→ τ(X), and σ(X)2 is invariant. It follows that there exist cubics Ga, Gb defined over K(
√

k) such that

φa : (X, Y ) 7→ (σ(X)2, Y/(s2X + t2)3) and φb : (X, Y ) 7→ (1/σ(X)2, Y/(s1X + t1)3) map C to

(6) Ea : y2 = Ga(x) = ga
3x3 + ga

2x2 + ga
1x + ga

0 , Eb : y2 = Gb(x) = gb
3x

3 + gb
2x

2 + gb
1x + gb

0,

respectively. When k 6∈ (K∗)2, our choice of σ forces φb, Gb to be the K(
√

k):K conjugates of φa, Ga,

respectively. When k 6∈ (K∗)2, let A be Weil restriction of Ea from K(
√

k) to K; when k ∈ (K∗)2, let

A = Ea × Eb. As in [21], these induce the isogeny φ = (φa)∗ + (φb)∗ : A → J , and the dual isogeny

φ′ = (φa)∗ × (φb)∗ : J → A. The compositions φ′ ◦ φ and φ ◦ φ′ are the multiplication by 2 maps on A

and J , respectively. Let Li be the smallest field over which Fi(X) = (X − αi)(X − α′i) is defined. We shall

require the injective homomorphism (a special case of [17]):

(7)
µ = [µ1, µ2, µ3] : J (K)/φ(A(K)) ↪→ L∗1/(L∗1)2 × L∗2/(L∗2)2 × L∗3/(L∗3)2

: {(X1, Y1), (X2, Y2)} 7→ [F1(X1)F1(X2), F2(X1)F2(X2), F3(X1)F3(X2)],

where {(X1, Y1), (X2, Y2)} is the common shorthand notation (see p.2 of [5]) used to denote the divisor class

[(X1, Y1) + (X2, Y2)−∞+ −∞−]. For the dual isogeny, there is a similar injective homomorphism

(8)
µ′ = [µ′1, µ

′
2, µ

′
3] : A(K)/φ′(J (K)) ↪→ (L′1)∗/((L′1)∗)2 × (L′2)∗/((L′2)∗)2 × (L′3)∗/((L′3)∗)2

: [(x1, y1), (x2, y2
)] 7→ [H1(x1, x2),H2(x1, x2),H3(x1, x2)],
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where Hi(x, x) = ga
3gb

3(x− σ(αi)2)(x− 1/σ(αi)2) and L′i is the smallest field over which Hi(x, x) is defined,

for i = 1, 2, 3. Suppose that we know at least one P0 ∈ C(K), and that we have computed J (K)/φ(A(K)) =

{D1, . . . , Dm}. Let Ci be the image of C in J via fi : P 7→ [P − P0] − Di. Let Di be the pullback of Ci

to A via φ, and Ji be the Jacobian of Di. From [21] we know that Di has genus 5 and that Ji is isogenous

to the Jacobian of C and the product of the Jacobians of the following three curves of genus 1, defined

over L1,L2,L3, respectively.

(9) Ei,j : y2
i,j = µj(Di)F (X)/Fj(X), j = 1, 2, 3.

In order to find all of C(K) it is sufficient, for each i, to find all (X, Y ) ∈ Ei,j(Lj) with X ∈ K, for at least

one of j = 1, 2, 3. This technique has been used to solve several Diophantine problems ([11],[12],[21]).

Note that, for each of (7) and (8), the third entry is redundant, being the product of the first two entries;

this third entry will be suppressed in the computations of the following sections.

3. Coverings of Infinite Families of Curves

If we wish to design an infinite family of examples for which the method fails, the easiest way is to start

with a parametrised family of curves such as

(10) Cα,β,γ,t : Y 2 = f1(X2)f2(X2)f3(X2) = (X2 − 1 + (t− α)2)(X2 − 1 + (t− β)2)(X2 − 1 + (t− γ)2),

where α, β, γ ∈ Z are distinct. An examination of the discriminant shows that this is guaranteed to be

of genus 2 provided that t 6= α ± 1, β ± 1, γ ± 1, (α + β)/2, (β + γ)/2, (γ + α)/2. In the notation of the

previous section, take τ(X) = −X, σ(X) = X and let φ be the bielliptic isogeny from A = Ea × Eb of (6)

to the Jacobian J of Cα,β,γ,t. There will be at least one member of the covering collection D1 of genus 5

corresponding to the identity element on the Jacobian. The rank of J (Q) is equal to the sum of the ranks of

Ea(Q), Eb(Q). Let us choose α, β, γ, t ∈ Z so that α, β, γ are not in arithmetic progression and no two of them

differ by 1. Then, consideration of discriminants shows that the points (1, (t − α)(t − β)(t − γ)) ∈ Ea(Q)

and (0, 1) ∈ Eb(Q) are non-torsion, so that the rank of J (Q) is at least 2. Furthermore, the Jacobian

of D1 is isogenous to the product of J and the elliptic curves (9) which, in our case, are isogenous under

(X, y1,j) 7→ (X2, Xy1,j) to the elliptic curves

(11) v2
1,1 = xf2(x)f3(x), v2

1,2 = xf3(x)f1(x), v2
1,3 = xf1(x)f2(x).

Our conditions on α, β, γ, t ensure that the points with x-coordinate equal to 1 are all non-torsion. Therefore,

the rank of each of these elliptic curves is at least 1 over Q, and the rank of the Jacobian of the genus 5

curve D1 is at least 5 over Q. This family of examples immediately gives the following negative result.

Lemma 1. There are infinitely many bielliptic curves C such that Method 1 fails, when φ is taken to be the

bielliptic isogeny; that is to say, Chabauty’s Theorem does not apply to C, and does not apply to at least one

member of the covering collection of curves.
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The above example is rather artificial, in the sense that we made sure that, for any α, β, γ, there was a

point defined over the function field Q(t), forcing the ranks to be at least 1. From now on, our examples

will not have such a guaranteed point. We shall include a non-Weierstrass Q-rational base point at infinity,

which will typically give a lower bound of 1 on the ranks over Q of Eb and the Jacobian of C. We shall

consider parametrised families at prime values of the parameter, concentrating on congruence classes where

Chabauty’s Theorem does not directly apply to C. However, there will be no a priori reason in our examples

for a lower bound on the ranks over Q of the 3-dimensional cofactors of each Di that remain after the

Jacobian of C has been removed. We shall initially consider genus 2 curves defined over Q, of the form

(12) Cp : Y 2 = (X2 + 2p)(X2 + 3p)(X2 + 4p), where p is prime and p ≡ 5 or 7 (mod 8).

In the notation of the previous section, we can take σ(X) = X, giving the maps φa : (X, Y ) 7→ (X2, Y ) and

φb : (X, Y ) 7→ (1/X2, Y/X3) to the elliptic curves

(13) Ea
p : y2 = (x + 2p)(x + 3p)(x + 4p), Eb

p : y2 = (2px + 1)(3px + 1)(4px + 1),

respectively. We first require the rank of each of these curves.

Lemma 2. Let Ea
p , Eb

p be as in (13), for p ≡ 5 or 7 (mod 8). Then Ea
p (Q)tors and Eb

p(Q)tors each consist

only of the identity and three points of order 2. The rank of Eb
p(Q) is 1, with (0, 1) being a generator for

Eb
p(Q) modulo torsion. The rank of Ea

p (Q) is also 1 and there is a generator (x, y) of Ea
p (Q) modulo torsion,

satisfying [x + 2p, x + 3p] = [−1,−1] modulo squares (when p ≡ 5 (mod 8)) and [2, 1] modulo squares (when

p ≡ 7 (mod 8)).

Proof First note that, for any p, the map (x, y) 7→ (px, y) is a birational equivalence between Eb
p and the

curve y2 = (2z + 1)(3z + 1)(4z + 1). Reductions modulo 5 and 7 show that Eb
p(Q)tors consists only of the

identity and three points of order 2, and a standard complete 2-descent and height argument on the curve

shows it to have rank 1 with generator (0, 1) of Eb
p(Q) modulo torsion.

The curves Ea
p genuinely depend on p. Reduction modulo 3 shows that Ea

p (Q)tors consists only of the

identity and three points of order 2. Further, Ea
p is birationally equivalent over Q to the curve y2 = s3− p2s,

which is a special case of the elliptic curve related to the congruent number problem, and is well known to have

rank proved unconditionally to be 1, since any prime congruent to 5 or 7 modulo 8 is known unconditionally

to be a congruent number (see [1],[16],[19]).

Let p ≡ 5 (mod 8). In Diagram (3), we can take our map q : Ea
p (Q)/2Ea

p (Q) ↪→ Q∗/(Q∗)2 × Q∗/(Q∗)2 :

(x, y) 7→ [x+2p, x+3p], with the redundant third entry x+4p omitted, since it is the product (x+2p)(x+3p).

We can also take M = 〈[−1, 1], [2, 1], [p, 1], [1,−1], [1, 2], [1, p]〉. Now, ker j∞ = 〈[2, 1], [p, 1], [1, 2], [1, p]〉 and

q∞ : (−3p, 0) 7→ [−p,−1], and so, in view of (4), Ea
p (R)/2Ea

p (R) = 〈(−3p, 0)〉. Similarly, since −1, but not 2,

is a quadratic residue mod p, we have ker jp = 〈[−1, 1], [1,−1]〉 and qp : (−2p, 0), (−3p, 0) 7→ [2, p], [−p,−1],

which are independent in Qp
∗/(Qp

∗)2×Qp
∗/(Qp

∗)2. In view of (4), Ea
p (Qp)/2Ea

p (Qp) = 〈(−2p, 0), (−3p, 0)〉.

Finally, ker j2 is trivial, and q2 : (−2p, 0), (−3p, 0), (p/4, ε) 7→ [2, p], [−p,−1], [p, 1], which are independent in
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Q2
∗/(Q2

∗)2×Q2
∗/(Q2

∗)2; here ε ∈ Q2 is such that ε2 = (p/4 + 2p)(p/4 + 3p)(p/4 + 4p) = 1989p3/64, which

exists since 1989p3 ≡ 1 (mod 8). In view of (4), Ea
p (Q2)/2Ea

p (Q2) = 〈(−2p, 0), (−3p, 0), (p/4, ε)〉. We can

now compute the 2-Selmer group as the intersection of j−1
p (qp(Ea

p (Qp)/2Ea
p (Qp))) over p = ∞, p, 2. From the

above computations, we see that this is:

(14) 〈ker j∞, [−p,−1]〉 ∩ 〈ker jp, [2, p], [−p,−1]〉 ∩ 〈ker j2, [2, p], [−p,−1], [p, 1]〉 = 〈[2, p], [−p,−1], [−1,−1]〉.

The first two generators are images under q of the known 2-torsion points. Since the rank is 1, there must

be a generator of Ea
p (Q) modulo torsion, which maps to [−1,−1] under q.

An almost identical argument shows that, for p ≡ 7 (mod 8), a generator of Ea
p (Q) modulo torsion maps

to [2, 1] under q. �

Since the Jacobian Jp of Cp is isogenous to Ea
p × Eb

p, the following is immediate.

Corollary 1. Let Cp be as in (12) with Jacobian Jp, for p ≡ 5, 7 (mod 8). Then the rank of Jp(Q) is 2.

In the other cases p ≡ 1, 3 (mod 8), it is straightforward to show that sign of the functional equation

corresponding to Ea
p is always +1, and so conjecturally Ea

p (Q) should have average rank 0 or close to 0 (see

[4],[13]). We are not interested in these cases, since typically the rank of Jp(Q) is 1 and the rank of Ea
p (Q)

is 0, so that it will typically be trivial to show that Cp(Q) = {∞+,∞−}.

Returning to the cases we are considering, namely p ≡ 5, 7 (mod 8), we have seen that the rank of Jp(Q)

is 2, and so we cannot apply Chabauty’s technique to find all of Cp(Q). In this respect, there is no distinction

between the cases p ≡ 5 (mod 8) and p ≡ 7 (mod 8). However, as we shall see in a moment, there is a

difference between the behaviours of these cases under pullbacks via the bielliptic isogeny.

Lemma 3. Let Jp be the Jacobian of the curve Cp in (12). If p ≡ 5 (mod 8) then Jp(Q)/φ(A(Q)) consists

only of the identity. If p ≡ 7 (mod 8) then Jp(Q)/φ(A(Q)) has order 2, consisting of the identity and a

non-identity element mapped to [2, 1] by µ of (7).

Proof Since φ, φ′ are 4-isogenies, the sum of the 2-ranks of Jp(Q)/φ(A(Q)) and A(Q)/φ′(Jp(Q)) has to

be 4 more than the rank of Jp(Q). The elements [(−2p, 0),∞], [(−3p, 0),∞], [∞, (−1/2p, 0)], [∞, (−1/3p, 0)],

[∞, (0, 1)] map to [2, p], [−p,−1], [6,−1], [1,−2], [3, 2] under the map µ′ of (8). These are all independent

members of Q∗/(Q∗)2 × Q∗/(Q∗)2. We know from Lemma 2 and Corollary 1 that Jp(Q) has rank 2 and

Ea(Q) has rank 1 with infinite generator P , where [P,∞] maps to [−1,−1] or [2, 1] when p ≡ 5, 7 (mod 8),

respectively. For the case p ≡ 5 (mod 8), this is independent of the above 5 members of Q∗/(Q∗)2×Q∗/(Q∗)2,

and so Jp(Q)/φ(A(Q)) is trivial. For the case p ≡ 7 (mod 8), we are missing a generator; a standard local

analysis of the maps µ, µ′ of (7),(8) shows that this must correspond to a nontrivial D ∈ Jp(Q)/φ(A(Q))

which is mapped to [2, 1] by µ. �

We first dispose of the case p ≡ 5 (mod 8).

Theorem 2. Let Cp be as in (12), with p ≡ 5 (mod 8). Then Cp(Q) = {∞+,∞−}.
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Proof In view of Lemma 3, it is only necessary to find the Q-rational points on any one of the curves E1,j

as in (9), where F1, F2, F3 are the three quadratic factors in (12). As in the previous example, we can use

(X, y1,j) 7→ (X2, Xy1,j) to the elliptic curves

(15) E1,1 : v2
1,1 = x(x + 3p)(x + 4p), E1,2 : v2

1,2 = x(x + 4p)(x + 2p), E1,3 : v2
1,3 = x(x + 2p)(x + 3p).

We can now imitate the proof of Lemma 2 to show that, when p ≡ 5 (mod 24), the 2-Selmer bounds on the

ranks are 1,0,0, respectively; when p ≡ 13 (mod 24), the 2-Selmer bounds on the ranks are 0,0,1, respectively.

In all cases, there is no Q-rational torsion outside 2-torsion. One sees that there is always a rank 0 curve

available (indeed, the second curve can always be used) which gives x = 0,−3p,−4p as the only available

x-coordinates of affine points, none of which have preimages in Cp(Q). �

Note that this is a nontrivial application of Method 1, since Chabauty is not directly applicable to the

original curve Cp which has genus 2 and rank of Jp(Q) equal to 2. The single covering curve has genus 5,

with Jacobian of rank at most 3.

Corollary 2. There are infinitely many curves for which Method 1 successfully finds all of C(Q).

When p ≡ 7 (mod 8), there are two covering curves D1,D2, and we shall see that Method 1 is defied

by D1 when p ≡ 23 (mod 24).

Theorem 3. Let Cp be as in (12), with p ≡ 7 (mod 8). The pullbacks Di, i = 1, 2, associated to the two

members of Jp(Q)/φ(A(Q)) have Jacobians isogenous to the product of Jp and elliptic curves Ei,j , j = 1, 2, 3,

where the 2-Selmer bounds on the ranks over Q of E1,j , j = 1, 2, 3, are 0, 1, 0 or 1, 1, 1 (for p ≡ 7 or 23 mod 24,

respectively) and the 2-Selmer bounds on the ranks over Q of E2,j , j = 1, 2, 3, are 2, 1, 1 or 1, 1, 2 (for p ≡ 7

or 23 mod 24, respectively), which are too large for Method 1 to be applied.

Proof To resolve D1, it is only necessary to find the Q-rational points on any one of the curves E1,j as

in (9), where F1, F2, F3 are the three quadratic factors in (12). As in the previous example, we can use

(X, y1,j) 7→ (X2, Xy1,j) to the elliptic curves

(16) E1,1 : v2
1,1 = x(x + 3p)(x + 4p), E1,2 : v2

1,2 = x(x + 4p)(x + 2p), E1,3 : v2
1,3 = x(x + 2p)(x + 3p).

We can now imitate the proof of Lemma 2 to show that these curves have 2-Selmer bounds on the ranks

over Q given by 0, 1, 0, respectively, when p ≡ 7 (mod 24), and have no Q-rational torsion outside 2-torsion.

Similarly, they have 2-Selmer bounds on the rank over Q given by 1, 1, 1, respectively, when p ≡ 7 (mod 24),

and have no Q-rational torsion outside 2-torsion.

For D2, the corresponding elliptic curves are

(17) E2,1 : v2
2,1 = 2x(x + 3p)(x + 4p), E2,2 : v2

2,2 = x(x + 4p)(x + 2p), E2,3 : v2
2,3 = 2x(x + 2p)(x + 3p).

An imitation of the proof of Lemma 2 shows that the 2-Selmer bounds on the ranks are as stated. �

The elliptic curves E1,2, E2,2 are both birationally equivalent over Q to y2 = s3 − (2p)2s, which is known

to have rank 1 over Q unconditionally, since twice any prime congruent to 7 modulo 8 is unconditionally
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a congruent number (see [1],[16],[19]). For p ≡ 23 (mod 24), the standard conjecture that the 2-Selmer

bound and actual rank have the same parity, gives that all three elliptic curves E1,j have rank 1, and so the

Jacobian of D1 has rank 5. This then gives another infinite family of curves for which Method 1 fails, as

in Lemma 1. Indeed, this is a less contrived example than that of Lemma 1, since we have not artificially

created a known Q-rational point of infinite order on the elliptic curves (16). For the instances of 2-Selmer

bound 2, both rank 0 and rank 2 are attained for particular values of p; for example, E2,1(Q) has rank 2

and 0 when p = 7, 31, respectively, and E2,3(Q) has rank 0 and 2 when p = 23, 47, respectively.

More subtle examples can be obtained when the elliptic curves associated to the covers are not defined

over Q. Consider the family of curves of genus 2

(18) Cp : Y 2 = (X2 + p)(X4 + p2) = (X2 + p)(X2 − pi)(X2 + pi), where p is prime and p ≡ 7 (mod 8).

In the notation of the previous section, we can again take σ(X) = X, giving the maps φa : (X, Y ) 7→ (X2, Y )

and φb : (X, Y ) 7→ (1/X2, Y/X3) to the elliptic curves

(19) Ea
p : y2 = (x + p)(x2 + p2), Eb

p : y2 = (px + 1)(p2x2 + 1),

as usual inducing an isogeny φ : A → Jp, where A = Ea
p×Eb

p and Jp is the Jacobian of Cp. The map µ of (7)

becomes, in this case,

(20)
µ = [µ1, µ2, µ3] : J(Q)/φ(A(Q)) ↪→ Q∗/(Q∗)2 ×Q(i)∗/(Q(i)∗)2 ×Q(i)∗/(Q(i)∗)2

: {(X1, Y1), (X2, Y2)} 7→ [(X2
1 + p)(X2

2 + p), ((X2
1 − pi)(X2

2 − pi), (X2
1 + pi)(X2

2 + pi)].

For any p, the map (x, y) 7→ (px, y) is a birational equivalence between Eb
p and the curve y2 = (z+1)(z2 +1);

it is straightforward to check directly that this has rank 1 over Q, with infinite generator (0, 1), and that the

torsion group over Q consists only of the identity and a point of order 2. The curves Ea
p genuinely depend

on p, and have fortunately been analysed in [20], where the rank over Q is shown to be bounded above

by 3, 0, 0, 1, when p ≡ 1, 3, 5, 7 (mod 8), respectively, on performing a descent via isogeny (and the torsion

group over Q is shown to consist only of the identity and a point (−p, 0) of order 2). We are not considering

the cases p ≡ 3, 5 (mod 8), since the rank of Jp(Q) is 1 and the rank of Ea
p(Q) is 0, so that it will typically be

trivial to show that Cp(Q) = {∞+,∞−}. We are also not considering the complicated case p ≡ 1 (mod 8),

where rank 1 and 3 both occur for Ea
p(Q). Returning to the case we are considering, namely p ≡ 7 (mod 8),

it is shown in [20] that the Selmer bound on the rank of Ea
p(Q) is 1. Therefore, the rank is exactly 1, subject

to standard parity conjectures. Indeed, the sign of the functional equation is shown to be −1 in [20], so that

rank = 1 also follows from the conjectures of Birch and Swinnerton-Dyer. It is also pointed out in [20] that

it should be possible to prove unconditionally that the rank is exactly 1 using Heegner points on a modular

curve, as explained in [1]. An actual generator is found for all p ≡ 7 (mod 8) and p < 300 in [20]. Overall,

then, we can be confident that each of the curves Ea
p,Eb

p has rank 1 over Q, and that Jp has rank 2 over Q.

Using similar arguments to Lemma 3 gives the following.

Lemma 4. Let Cp be as in (18), with Jacobian Jp, and let A = Ea
p × Eb

p, where Ea
p,Eb

p are as in (19), with

the natural bielliptic isogeny φ : A → Jp. Then Jp(Q) has rank 1 or 2. In the first case, Jp(Q)/φ(A(Q))
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consists only of the identity. in the second case, Jp(Q)/φ(A(Q)) = {D1, D2}, where D1 is the identity and

D2 maps to [2, 1 + i, 1− i] under the map µ in (20).

In view of Lemma 4, we can try to resolve D1 by considering the curves E1,j as in (9), where F1, F2, F3

are the three quadratic factors in (18). As before, we can use (X, y1,j) 7→ (X2, Xy1,j) to the elliptic curves

(21) E1,1 : v2
1,1 = x(x2 + p2), E1,2 : v2

1,2 = x(x + p)(x + pi), E1,3 : v2
1,3 = x(x + p)(x− pi).

The first of these, E1,1, is an elliptic curve over Q, and standard techniques bound the rank above by 1.

Indeed this is 2-isogenous over Q to y2 = s3 − (2p)2s which, as we have already commented (immediately

after the proof of Theorem 3), is known to have rank 1 over Q unconditionally. Therefore, this curve is of no

use in resolving D1. It is also sufficient to find all points over Q(i) on the second curve, E1,2, with x ∈ Q. We

can attempt to apply elliptic curve Chabauty techniques, as in [2],[3],[10], provided that the rank over Q(i)

is at most 1. The second and third curves are conjugates, and so only one of them need be considered.

Lemma 5. Let E1,2 be the elliptic curve v2
1,2 = x(x + p)(x + pi), defined over Q(i), where p is a prime and

p ≡ 7 (mod 8). Then E1,2(Q(i))tors consists only of the identity and three points of order 2, and the 2-Selmer

bound on the rank over Q(i) of E1,2 is 2.

Proof Reduction modulo 3 to Ẽ1,2(F3(i)) gives the group Z/2Z×Z/4Z; but none of the points of order 2 in

E1,2(Q(i))tors is in 2E1,2(Q(i)). This shows that E1,2(Q(i))tors consists only of the identity and three points

of order 2.

In Diagram (3), our map q : E1,2(Q(i))/2E1,2(Q(i)) ↪→ Q(i)∗/(Q(i)∗)2×Q(i)∗/(Q(i)∗)2 : (x, y) 7→ [x, x+p]

can have the redundant third entry x + pi omitted, since it is the product x(x + p). We can also take M =

〈[i, 1], [1 + i, 1], [p, 1], [1, i], [1, 1 + i], [1, p]〉. No information can be obtained at infinity, since C∗/(C∗)2 is the

trivial group. Since 2, but not −1, is a quadratic residue mod p, we have ker jp = 〈[i, 1], [1+i, 1], [1, i], [1, 1+i]〉

and qp : (0, 0), (−p, 0) 7→ [i, p], [p, i(1+i)], which are independent in Q(i)∗p/(Q(i)∗p)
2×Q(i)∗p/(Q(i)∗p)

2. In view

of (4), Ea
p (Q(i)p)/2Ea

p (Q(i)p) = 〈(0, 0), (−p, 0)〉. Finally, we localise at Q(i)1+i; here ker j1+i = 〈[p, 1], [1, p]〉,

and q1+i : (0, 0), (−p, 0), (4i, ε1), (3 + i
2 , ε2) 7→ [i, p], [p, i(1 + i)], [i, 3], [1 + 2i, 3], which are independent in

Q(i)∗1+i/(Q(i)∗1+i)
2 × Q(i)∗1+i/(Q(i)∗1+i)

2; here ε1, ε2 ∈ Q(i)1+i are such that ε21 = 4i(4i + p)(4i + pi), ε22 =

(3+ i
2 )(3+ i

2 +p)(3+ i
2 +pi). In view of (4), E1,2(Q(i)1+i)/2E1,2(Q(i)1+i) = 〈(0, 0), (−p, 0), (4i, ε1), (3+ i

2 , ε2)〉.

Note that none of 〈[i, 3], [1 + 2i, 3]〉, apart from the identity [1, 1], have preimages under j1+i. We can now

compute the 2-Selmer group as the intersection of j−1
p (qp(E1,2(Q(i)p)/2E1,2(Q(i)p))) over p = ∞, p, 1 + i.

From the above computations, we see that this is:

(22) 〈ker jp, [i, p], [p, i(1 + i)]〉 ∩ 〈ker j1+i, [i, p], [p, i(1 + i)]〉 = 〈[p, 1], [1, p], [i, p], [p, i(1 + i)]〉.

The last two generators are images under q of the known 2-torsion points. It follows that the 2-Selmer bound

on the rank is 2 and that, if the rank is 2 then there are generators of E1,2(Q(i)) modulo torsion, which map

to [p, 1], [1, p] under q. �
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After experimentation, one suspects that this is not the best bound that can be attained. This is due to

members of the Tate-Shafarevich group, as will become apparent in the next section.

For D2, the corresponding elliptic curves are

(23) E2,1 : v2
2,1 = 2x(x2 + p2), E2,2 : v2

2,2 = (1 + i)x(x + p)(x + pi), E2,3 : v2
2,3 = (1− i)x(x + p)(x− pi).

The first of these is 2-isogenous over Q to y2 = s3−p2s, which is known to have rank 1 over Q unconditionally,

since any prime congruent to 7 modulo 8 is known unconditionally to be a congruent number (see [1],[16],[19]).

The second and third curves are conjugate and so, as before, only one of them needs to be considered. The

situation here is as for Lemma 5.

Lemma 6. Let E2,2 be the elliptic curve v2
2,2 = (1+ i)x(x+ p)(x+ pi), defined over Q(i), where p is a prime

and p ≡ 7 (mod 8). Then E2,2(Q(i))tors consists only of the identity and three points of order 2, and the

2-Selmer bound on the rank over Q(i) of E2,2 is 2.

Proof Everything is as for the proof of Lemma 5, except that (3+i, ε′1), (
7
2 + 5

2 i, ε′2) are the two new generators

of E2,2(Q(i)1+i)/2E2,2(Q(i)1+i); these are mapped by q1+i to [i(1 + 2i), 3i(1 + i)(1 + 2i)], [3(1 + 2i), 3i],

respectively, Again, none of 〈[i(1 + 2i), 3i(1 + i)(1 + 2i)], [3(1 + 2i), 3i]〉, apart from the identity [1, 1], have

preimages under j1+i, and so the same argument as in Lemma 5 gives that the 2-Selmer bound on the rank

is 2 and that, if the rank is 2 then there are generators of E2,2(Q(i)) modulo torsion, which map to [p, 1], [1, p]

under q. �

4. Members of the Tate-Shafarevich Group killed by the bielliptic Isogeny

The elliptic curves defined over Q(i) in (21),(23), are of the form v2 = q(x)`(x), where q(x) is defined

over Q and `(x) is defined over the quadratic field Q(i). We are trying to find all points defined over Q(i)

on these curves with x ∈ Q. Letting v = r + si, we get two equations in x, r, s; we can eliminate r, and get

a single polynomial equation in x, s, in which s only occurs to even powers. This is a genus 0 equation in

x, t, where t = s2/q(x). If this genus 0 equation has no Q-rational points, then there are no points on our

original elliptic curve with x ∈ Q, and we are finished. Otherwise, we can find a parametrisation x(z), t(z)

of the genus 0 curve. Then s2 = t(z)q(x(z)) gives a curve of genus 2, defined over Q, and it is sufficient to

find all Q-rational points on this curve. Furthermore, the map (z, s) 7→ (x, v) induces a Q-rational isogeny

from the Jacobian of this genus 2 curve to the Weil restriction from Q(i) to Q of the original elliptic curve.

Applying this process to the second elliptic curve in (21), we let v1,2 = r + si, and equate the coefficients

of 1 and i to get the two equations

(24) 2rs = px2 + p2x, r2 − s2 = x3 + px2.

Solving the first equation for r and substituting into the second equation gives an equation in x, s which can

be written

(25) 4tx = −4t2 + p2,
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where t = s2/(x2 + px). The general solution to this genus 0 equation can be parametrised by x(z) =

(−4z2 + p2)/4z and t(z) = z. Then s2 = t(z)(x(z)2 + px(z)) gives the genus 2 curve

(26) s2 = (4z2 − p2)(4z2 − p2 − 4pz)/16z,

so that

(27) C1,2 : Y 2 = X(X + 2p)(X + 4p)(X2 − 8p2),

where X = 4z − 2p, Y = 32sz. Combining these transformations gives the following map from C1,2 to E1,2.

(28) (X, Y ) 7→
(
−X(X + 4p)/4(X + 2p), Y (iX + 2ip + 2p)/8(X + 2p)2

)
.

For the second elliptic curve in (23), we let v2,2 = r + si and, proceeding as above, we get

(29) x2 = 4t2 + 4xt− 2px− 4pt− p2,

where t = s2/(x2 + px). We can use x = −p, t = 0 as a base point to give the parametrisation x(z) =

−p(4z2 − 4z − 1)/(4z2 + 4z − 1) and t(z) = 8pz2/(4z2 + 4z − 1). Then s2 = t(z)(x(z)2 + px(z)) gives the

genus 2 curve

(30) s2 = −64p3z3(4z2 − 4z − 1)/(4z2 + 4z − 1)3,

so that

(31) C2,2 : Y 2 = X5 − 24p2X3 + 16p4X = X(X2 + 4pX − 4p2)(X2 − 4pX − 4p2),

where X = −p/z, Y = 8ps(4z2 +4z−1)2/z4. Combining these transformations gives the following map from

C2,2 to E2,2.

(32) (X, Y ) 7→
(
−p(X2 − 4pX − 4p2)/(X2 + 4pX − 4p2), 4Y (X − 2ip)p2/(X2 + 4pX − 4p2)2

)
.

In summary, we have the following connection between C1,2, C2,2 and E1,2, E2,2.

Lemma 7. Let E1,2, E2,2 be as in Lemmas 5,6, and let C1,2, C2,2 be as in (27),(31), with Jacobians J1,2, J2,2,

respectively. Then J1,2, J2,2 are isogenous over Q to the Weil restrictions from Q(i) to Q of E1,2, E2,2, respec-

tively, and so the ranks of J1,2(Q), J2,2(Q) are the same as the ranks of E1,2(Q(i)), E2,2(Q(i)), respectively.

Note that we now have a description, up to isogeny, of the Jacobians of two genus 5 curves D1,D2 which

cover the genus 2 curve Cp of (18). The Jacobian of D1 is isogenous to the product of: the Jacobian

of Cp, the elliptic curve E1,1 in (21), and the Jacobian of the genus 2 curve C1,2 in (27). Since the first

two of these factors have ranks 2 and 1 over Q, it is C1,2 which is the important piece of D1. Similarly,

the Jacobian of D2 is isogenous to the product of: the Jacobian of Cp, the elliptic curve E2,1 in (23), and

the Jacobian of the genus 2 curve C2,2 in (31). Again, the first two of these factors have ranks 2 and 1

over Q, and it is C2,2 which is the important piece. In order to compute Cp(Q) it is sufficient to compute

C1,2(Q) and C2,2(Q). The ranks of J1,2(Q), J2,2(Q) are the same as the ranks of E1,2(Q(i)), E2,2(Q(i)), for

which we have already computed the 2-Selmer bounds in the last section. However, as we shall see, there

is a potential benefit in attempting a complete 2-descent directly on J1,2(Q), J2,2(Q), since there may be an



12 E.V. FLYNN AND J. REDMOND

improvement in the 2-Selmer bounds. It turns out that the Selmer group computations are different for the

subclasses p ≡ 7 (mod 16) and p ≡ 15 (mod 16). The difference is partly a consequence of the following

technical lemma about quadratic residues, whose proof was provided for us independently by Noam Elkies

and Hendrik Lenstra.

Lemma 8. Let p ≡ 7 (mod 8) be prime, and let γ ∈ Fp be such that γ2 = 2 in Fp. When p ≡ 7 (mod 16),

we have γ ∈ (F∗p)2 ⇐⇒ 1 + γ 6∈ (F∗p)2. When p ≡ 15 (mod 16), we have γ ∈ (F∗p)2 ⇐⇒ 1 + γ ∈ (F∗p)2.

Proof Let z be a primitive 16th root of unity, and let x = z2 + 1/z2, y = z + 1/z so that Fp ⊆ Fp(x) ⊆

Fp(y) ⊆ Fp(z), with each extension being of degree at most 2. Then x2 = z4 + 2 + 1/z4 = 2, so that γ = x

or −x. Let p ≡ 7 (mod 16). Then: (x + 2)(p−1)/2 = (y2)(p−1)/2 = yp−1 = (yp)/y = ((z + 1/z)p)/y =

(zp + 1/zp)/y = (z7 + 1/z7)/y = z8(1/z + z)/y = −1, so that x + 2 6∈ (F∗p)2. Similarly, −x + 2 6∈ (F∗p)2.

Whether γ = x or −x we have γ(1 + γ) = γ + 2 6∈ (F∗p)2, so that γ ∈ (F∗p)2 ⇐⇒ 1 + γ 6∈ (F∗p)2, as required.

Let p ≡ 15 (mod 16). Then: (x + 2)(p−1)/2 = (y2)(p−1)/2 = yp−1 = (yp)/y = ((z + 1/z)p)/y = (zp +

1/zp)/y = (z15 + 1/z15)/y = (1/z + z)/y = 1, so that x + 2 ∈ (F∗p)2. Similarly, −x + 2 ∈ (F∗p)2. Whether

γ = x or −x we have γ(1 + γ) = γ + 2 ∈ (F∗p)2, so that γ ∈ (F∗p)2 ⇐⇒ 1 + γ ∈ (F∗p)2, as required. �

Since (2(p+1)/4)2 = 2 in Fp, for any p ≡ 7 (mod 8), we can express the above result as an evaluation of a

Legendre symbol.

Corollary 3. Let p ≡ 7 (mod 8) be prime. Then
(

2(p+1)/4+1
p

)
= (−1)(p+1)/8.

Another reason for the difference between the subclasses is the following lemma.

Lemma 9. Let p ≡ 7 (mod 8) be prime; then there exist positive a, b ∈ Z such that a2−2b2 = p. For any such

a, b, the group 〈−1, 1 +
√

2, a + b
√

2〉 is of order 8 or 4 in Q2(
√

2)∗/(Q2(
√

2)∗)2 when p ≡ 7 or 15 (mod 16),

respectively.

Proof The existence of a, b is an immediate consequence of the fact that 2 is a quadratic residue mod p,

and unique factorisation in Z[
√

2]. For p ≡ 7 (mod 16), it is a finite computation to check that any such a, b

satisfy a ≡ 3, 5 (mod 8) and b ≡ 1, 3, 5, 7 (mod 8); it is then a further finite computation to check that none of

−1,±(1+
√

2),±(a+b
√

2),±(1+
√

2)(a+b
√

2) are squares in Z[
√

2] modulo 8, and so −1, 1+
√

2, a+b
√

2 are

independent in Q2(
√

2)∗/(Q2(
√

2)∗)2, as required. For p ≡ 15 (mod 16), it is a finite computation to check

that any such a, b satisfy a ≡ 1, 7 (mod 8) and b ≡ 1, 3, 5, 7 (mod 8); it is then a further finite computation to

check that none of −1,±(1+
√

2) are squares in Z[
√

2] modulo 8, but that exactly one of ±(1+
√

2)(a+b
√

2)

is a square in Z[
√

2] modulo 8 and so, by Hensel’s Lemma, is in (Q2(
√

2)∗)2. �

We are now in a position to compute the 2-Selmer groups of our two Jacobians.

Lemma 10. Let C1,2, C2,2 be as in (27),(31), with Jacobians J1,2, J2,2, respectively. The 2-Selmer bound on

the rank of J1,2(Q) is 0 when p ≡ 7 (mod 16), and is 2 when p ≡ 15 (mod 16). The 2-Selmer bound on the

rank of J2,2(Q) is 2 for all p ≡ 7 (mod 8). In all cases, there is no torsion over Q outside 2-torsion.
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Proof We shall present the details only for the curve C1,2, for the case p ≡ 7 (mod 16), the proof of the other

cases being similar. The 2-torsion subgroup of J1,2(Q) is of order 8, generated by

(33) A1 = [(0, 0)−∞], A2 = [(−2p, 0)−∞], A3 = [(−4p, 0)−∞].

The only finite primes dividing the discriminant are 2, p. A finite computation shows that #J̃p(F3) = 8, and

so J1,2(Q)tors | 8. Since we already know eight members of J1,2(Q)tors, these must give all of J1,2(Q)tors.

To show that J1,2(Q) has rank zero it is sufficient to show that A1,A2,A3 generate J1,2(Q)/2J1,2(Q). We

can take the injective map of (2) to be

q : J1,2(Q)/2J1,2(Q) ↪→ Q∗/(Q∗)2 ×Q∗/(Q∗)2 ×Q(
√

2)∗/
(
Q(
√

2)∗
)2

,

:
[∑

(Xi, Yi)
]
7→

[∏
(Xi + 2p),

∏
(Xi + 4p),

∏
(Xi − 2p

√
2)

]
.(34)

Note that the other two linear components can be suppressed since
∏

(Xi +2p
√

2) is the Q(
√

2):Q conjugate

of
∏

(Xi − 2p
√

2), and
∏

Xi =
∏

(Xi + 2p)(Xi + 4p)(Xi − 2p
√

2)(Xi + 2p
√

2) in Q∗/(Q∗)2.

Since 2, p are the only finite primes of bad reduction,

im q ≤ M = 〈[−1, 1, 1], [2, 1, 1], [p, 1, 1], [1,−1, 1], [1, 2, 1], [1, p, 1],

[1, 1,−1], [1, 1, 1 +
√

2], [1, 1,
√

2], [1, 1, a + b
√

2], [1, 1, a− b
√

2]〉,

where a, b ∈ Z+ are such that a2− 2b2 = p, which must exists since p ≡ 7 (mod 8). Now we can see that the

members of Jp(Q) given in (33) map as follows,

(35) A1 7→ [2p, p,−p
√

2], A2 7→ [1, 2p,−p(1 +
√

2)], A3 7→ [−2p, 1,−p(1 +
√

2)
√

2],

so that H ≤ im q, where

(36) H = 〈[2p, p,−p
√

2], [1, 2p,−p(1 +
√

2)], [−2p, 1,−p(1 +
√

2)
√

2]〉.

At p = ∞ we have in (3),

(37) ker j∞ = 〈[2, 1, 1], [p, 1, 1], [1, 2, 1], [1, p, 1], [1, 1,
√

2(1 +
√

2)], [1, 1, a + b
√

2], [1, 1, a− b
√

2]〉,

so that A2,A3 are independent members of J1,2(R)/2J1,2(R). We know #J1,2(R)/2J1,2(R) = 22 from (4),

so that J1,2(R)/2J1,2(R) = 〈A2,A3〉. The commutativity of Diagram (3) tells us that

(38) im q ≤ 〈[1, 2p,−p(1 +
√

2)], [−2p, 1,−p(1 +
√

2)
√

2], ker j∞〉.

Now consider p = p. Since p ≡ 7 (mod 8), we have 2 ∈ (Q∗
p)

2, but −1,−2 6∈ (Q∗
p)

2. Since p ≡ 7 (mod 16),

Lemma 8 implies that −2−
√

2 ∈ (Q∗
p)

2, for either choice of
√

2 ∈ Qp. In (3) we now have

(39) ker jp = 〈[2, 1, 1], [1, 2, 1], [1, 1,−2−
√

2]〉,

so that A1,A2,A3,A4 are independent members of J1,2(Qp)/2J1,2(Qp), where A4 = [(2pγ, 0) −∞] and γ is

chosen so that γ2 = 2 and γ ∈ (Q∗
p)

2 (the facts that 2 ∈ (Q∗
p)

2 and −1 6∈ (Q∗
p)

2 guarantee the existence

of such a γ). Note that jp([−p,−p, δ]) = qp(A4), where δ is one of the four possibilities ±(a ± b
√

2); it

makes no difference to the structure of the following computations which of these four possibilities occurs,
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so without loss of generality say that δ = −(a− b
√

2). We know #J1,2(Qp)/2J1,2(Qp) = 24 from (4), so that

J1,2(Qp)/2J1,2(Qp) = 〈A1,A2,A3,A4〉. The commutativity of Diagram (3) tells us that

im q ≤ 〈[2p, p,−p
√

2], [1, 2p,−p(1 +
√

2)], [−2p, 1,−p(1 +
√

2)
√

2], [−p,−p,−(a− b
√

2)], ker jp〉.(40)

Finally let us consider p = 2. Since p ≡ 7 (mod 8) we have −p ∈ (Q∗
2)

2 and indeed a finite computation,

together with Lemma 9, shows that in (3),

(41) ker j2 = 〈[−p, 1, 1], [1,−p, 1], [1, 1,−p]〉,

so that A1,A2,A3 are independent members of J1,2(Q2)/2J1,2(Q2). We know #J1,2(Q2)/2J1,2(Q2) = 25

from (4), and so we are still missing two generators. Let A5 = [(6, ε1) −∞],A6 = [(7, ε2) −∞] ∈ J1,2(Q2),

where ε1, ε2 ∈ Q2 satisfy ε21 = 6(6 + 2p)(6 + 4p)(62 − 8p2) and ε22 = 7(7 + 2p)(7 + 4p)(72 − 8p2). Then

A5 7→ [−3, 2, 3 +
√

2] and A6 7→ [−3, 3,−1 + 2
√

2] under q2. These images are independent from each other

and from the images of A1,A2,A3, and so A1,A2,A3,A5,A6 generate J1,2(Q2)/2J1,2(Q2). No member of M

maps to 3 under j2, and so A5,A6 do not contribute any new preimages under j2. Hence we have from

commutativity of Diagram 3

(42) im q ≤ 〈[2p, p,−p
√

2], [1, 2p,−p(1 +
√

2)], [−2p, 1,−p(1 +
√

2)
√

2], ker j2〉.

Intersecting the three groups in (38),(40),(42) gives H, so that im q = H and the rank of J1,2(Q)/2J1,2(Q) =

0, as required. �

The difference between the Selmer rank bounds in Lemmas 5,10 immediately proves the existence of

members of the Tate-Shafarevich group killed by the bielliptic isogeny, for every curve in an infinite family.

Theorem 4. Let E1,2 : v2
1,2 = x(x + p)(x + pi), as in Lemma 5. Then there are nontrivial members of the

2-part of the Tate-Shafarevich group when p ≡ 7 (mod 16).

Proof The map (28) induces a Q-rational isogeny from J1,2 to the Weil restriction from Q(i) to Q of E1,2,

so that the rank of J1,2(Q) is the same as the rank of E1,2(Q(i)). The complete 2-descent in Lemma 5 gave

a 2-Selmer bound of 2 on the rank of E1,2(Q(i)). Lemma 10 showed the rank of J1,2(Q), and hence the rank

of E1,2(Q(i)) to be 0, giving the required member of the 2-part of the Tate-Shafarevich group. �

Recall that, at the end of the proof of Lemma 5, it was shown that E1,2(Q(i)) modulo torsion is mapped

by q to 〈[p, 1], [1, p]〉, and so we can use the formula in [18], p.281, to write explicit models for the three

homogeneous spaces, defined over Q(i),

(43)
H[p, 1] : p(z2

1 + 1) = z2
2 , z2

1 + i = z2
3 ,

H[1, p] : z2
1 + p = pz2

2 , z2
1 + pi = pz2

3 ,
H[p, p] : z2

1 + 1 = z2
2 , p(z2

1 + i) = z2
3 .

The three left hand equations are conics in z1, z2, which can be parametrised using the base points (i, 0),

(0, 1), (0, 1), respectively, and the parametrisation of z1 can be substituted into each right hand equation to

get a plane curve. We can then obtain the birational transformations

(44)
(z1, z2, z3) 7→ (z, w) = (z2(z1 + i)/(z2

1 + 1), z3(z2
2 − pz2

1 + 2piz1 + p)/(z1 − i)2),
(z1, z2, z3) 7→ (z, w) = ((z2 − 1)/z1, z3(−z2

1 + pz2
2 − 2pz2 + p)/z2

1),
(z1, z2, z3) 7→ (z, w) = ((z2 − 1)/z1, z3(z2 + z1 − 1)(z2 − z1 − 1)/z2

1),
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from the three curves in (43) to the following three plane curve models of the homogeneous spaces:

(45)
H′[p, 1] : w2 = (i− 1)(z4 + 2piz2 + p2),
H′[1, p] : w2 = i(p2z4 − 2pz2 − 4piz2 + 1),
H′[p, p] : w2 = pi(z4 − 2z2 − 4iz2 + 1).

In view of Lemmas 5,10, each of these three curves, defined over Q(i), must violate the Hasse principle

when p ≡ 7 (mod 16).

As well as determining the rank for a subcongruence class of primes, obtaining the equations for C1,2

and C2,2 also has the benefit that we are now set up, if we desire, to perform a repeated application of the

process. For example, the x-coordinates of the Weierstrass points on C1,2 are permuted by the involution

X 7→ −2p(X+4p)/(X+2p). The Fi of (7) are then F1(X) = X+2p, F2(X) = X(X+4p), F3(X) = X2−8p2,

and we already have for free the isogeny φ1,2 from the Q(i):Q Weil restriction of E1,2 to J1,2, namely the

isogeny induced by the map (28). If we now perform a repeated application of the method described in

Section 2, pulling back along φ, the Jacobians of our covers will include pieces isogenous to the Jacobians

of, for example, twists of the genus 1 curves y2
1 = x(x + 4p)(x2 − 8p2) and y2

2 = (x + 2p)(x2 − 8p2). Taking

v = 1
4 (x2 − 8p2)/(x + 2p), which is invariant under the involution, we see that v(v2 + 2pv + 2p2) and

(v + p)(v2 + 2pv + 2p2) are both squares, giving rise to elliptic curves in Weierstrass form isogenous to the

Jacobians of these genus 1 curves. The common quadratic in v allows us to deduce that v(v + p) is a square,

and so (repeating our usual trick) the parametrisation v(t) = p/(t2 − 1) can be substituted into the first

cubic to give a new genus 2 curve: s2 = v(t)(v(t)2 + 2pv(t) + 2p2), which will be one of the covering curves

in the second application of the method.

Note that the method is ‘up-down’ with respect to each involution τ . We move ‘up’ from two elliptic curves

Ea, Eb, as in (6), to the genus 2 curve C : Y 2 = F (X) such that the X-coordinate maps from C to Ea, Eb are

invariant under the involution. Our covering process gives rise to genus 1 curves y2
1 = Q1(X), y2

2 = Q2(X),

using (9); we then obtain quadratic maps invariant under the same involution τ , which take us back ‘down’ to

elliptic curves in Weierstrass form, as in (11),(15),(16),(17). In our example, we have performed this process

first with the involution X 7→ −X and then with the involution X 7→ −2p(X + 4p)/(X + 2p). The resulting

genus 2 curves will continue to be bielliptic; there seems to be no explosion in the discriminants of the new

curves, and we suppose (although have not proved) that the sequence of curves of genus 2 over Q obtained

in this way, have only 2, p as finite primes of bad reduction. This would mean that there are only finitely

many available, and the process would eventually repeat. This has methodological implications, since it is

possible to imagine curves which are entirely resistant to repeated applications. In such cases, there are still

many other options for trying to determine C(Q), such as pulling back along the entire multiplication by 2

map.

When covering techniques are applied, as here, to obtain a collection of curves Di whose rational points

cover those of our starting curve C, the portions which determine the success or failure of the method are

the cofactors of the Jacobians of the Di, once the Jacobian of C has been removed, and whether Chabauty

techniques can be applied to these cofactors. These techniques are primarily required when Chabauty’s
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Theorem fails to be applicable to the original curve C. A heuristic analysis of the likelihood of success of

covering methods will be a difficult task; however, one aspect of such an analysis will be the question of

whether larger than average rank of the Jacobian of C will lead to larger than average rank of these cofactors.

When there are points on C(Q) apart from the point P0 (and its hyperelliptic involute) required as a base

point to derive the covers, then there will surely be some such bias, as each such rational point will induce

nonzero rank on one of the cofactors, as was certainly the case in (10), where the points with X = 1 on (10)

induced non-torsion points with x = 1 on the elliptic curves (11) occurring in the cofactor. However, our

subsequent families of examples (12),(18) were constructed without a bias of this type (note that ∞+,∞−

in all of our examples (10),(12),(18) map to torsion on (11),(15),(16),(17),(21),(23) and do not contribute to

the ranks). For the genus 2 curve given in (12), with p ≡ 5, 7 (mod 8), we have a bias in the Jacobian of our

starting curve towards high rank, since it is the product of two elliptic curves over Q, each of rank 1, which

is higher than the ‘expected’ average of 1/2, or at least very close to 1/2 (see [4],[13]), as opposed to the

cases we have ignored, namely p ≡ 1, 3 (mod 8), where we expect Ea
p (Q) to have average rank 0, or at least

very close to 0. Interestingly, this bias in our choice of starting curve (12) does create a mild bias towards

large rank of the elliptic curves involved in the 3-dimensional cofactors of the Jacobians of D1,D2. Using

Theorems 2,3, and giving equal weight to each of p ≡ 5, 7, 13, 23 (mod 24), we see that there are 18 elliptic

curves occurring, with a Selmer bound of 0 (and so rank 0) occurring 6 times, a Selmer bound of 1 (and so

conjecturally rank 1) occurring 10 times, and a Selmer bound of 2 (with both ranks 0 and 2 occurring for

particular values of p, but with expected average rank 0, or at least very close to 0) occurring 2 times. The

18 elliptic curves involved in the cofactors therefore conjecturally have, on average, a rank total of 10, and

so the average rank per curve is 1/18 more than the conjectured ‘average’ rank of 1/2 (or at least very close

to 1/2) over all elliptic curves, in the sense explained in [4]. We observe that the amount that this rank total

of 10 is above what one would expect of a ‘random’ collection of 18 elliptic curves is 1 = 10 − 9, which is

the same amount that our starting elliptic curves Ea
p , Eb

p in (13) have rank sum larger than expected, namely

1 = 2− 1.
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