
DESCENT VIA ISOGENY ON ELLIPTIC CURVES WITH LARGE RATIONAL
TORSION SUBGROUPS

E.V. FLYNN AND C. GRATTONI

Abstract. We outline PARI programs which assist with various algorithms related to descent via isogeny
on elliptic curves. We describe, in this context, variations of standard inequalities which aid the computation

of members of the Tate-Shafarevich group. We apply these techniques to several examples: in one case we use

descent via 9-isogeny to determine the rank of an elliptic curve; in another case we find nontrivial members
of the 9-part of the Tate-Shafarevich group, and in a further case, nontrivial members of the 13-part of the

Tate-Shafarevich group.

1. Introduction

We shall consider the technique of descent via d-isogeny for computing the rank of an elliptic curve E , de-

fined over Q, which has a Q-rational point of prime power order d. As we shall mention later, these techniques

can be extended to any curve that admits a rational isogeny; however, we restrict ourselves to elliptic curves

with a Q-rational torsion point for the sake of computational convenience. The descent technique we make

explicit in this article can be done over a quotient group of the rational numbers when a curve has a nontrivial

rational torsion point, while computations for curves with no rational torsion points, but admitting a rational

isogeny, must be done over a (sometimes large degree) number field. By a theorem of Mazur (see [20], The-

orem 4.1) we know that d ∈ {2, 3, 4, 5, 7, 8, 9}. Specific numerical examples of descent via d-isogeny for the

cases d ∈ {2, 3, 4, 5, 7, 8} can be found, for example, in [1],[2],[6],[7],[8],[10],[11],[12],[14],[21],[26],[27],[28],[30].

In addition, mwrank [22] can be used to perform a full 2-descent and Magma [18] can be used to per-

form various descents, including descent via 3-isogeny. Our main purpose here is to describe our programs in

PARI [23] which assist with descent via isogeny in this context. These include implementations of the method

of Vélu [31] for describing the isogenous curve Ê , for which there are d-isogenies φ : E → Ê and φ̂ : Ê → E ,

the method described by Schaefer [25] for constructing injections on E(Q)/φ̂(Ê(Q)) and Ê(Q)/φ(E(Q)) into

quotient groups of extensions of Q modulo dth powers, and various programs for performing local techniques

in the search for independent points in E(Qp)/φ̂
(
Ê(Qp)

)
, so that overall the Selmer bound on the rank can be

computed. These programs will help others to compute isogeny-Selmer bounds more easily. We demonstrate

these programs with examples of descent via 9-isogeny, in one case computing the rank, and in another case

proving the existence of a member of the 9-part of the Tate-Shafarevich group. We shall also derive an

inequality (which follows from combining special cases of several standard results) which allows members

of the Tate-Shafarevich group to be found, while bypassing much of the hard work of the d-Selmer group

computations. We apply this to the case d = 13 (where there can be a Q-rational subgroup of order 13 even

though there is no Q-rational point of order 13) to derive a member of the 13-part of the Tate-Shafarevich
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group. Specifically we shall show, as Example 3 in Section 5, that the elliptic curve

Ê : y2 + xy + y = x3 − x2 − 911138880x− 10586098442003.

is such that #X(Ê/Q)[13] ≥ 132.

We have placed at [13] all of the PARI programs, and a more detailed description of the following tech-

niques.

2. Isogenies

We first recall the fact (see [15], 4.1) that any elliptic curve, defined over Q, with a Q-rational point P ,

not of order 1, 2, 3, can be birationally transformed to Tate normal form:

(1) y2 + (1− w)xy + vy = x3 + vx2, where v, w ∈ Q,

where the identity is O, the point at infinity, and P has been mapped to (0, 0). If we now compute

d(0, 0) =
(
f(v, w)/h(v, w), g(v, w)/h(v, w)

)
, where f(v, w), g(v, w), h(v, w) ∈ Q[v, w], then h(v, w) = 0 gives

an equation sufficient for (0, 0) to be d-torsion. When d ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10, 12} the curve defined by

h(v, w) = 0 is of genus 0 (see [5]) and can be parametrized, giving

(2) Edt : y2 + jd(t)xy + kd(t)y = x3 + kd(t)x2, t ∈ Q, ∆(Edt ) 6= 0,

where jd(t), kd(t) are rational functions in t. For example, (0, 0) is a point of order 9 on

(3) E9
t : y2 + (t3 + t2 + 1)xy + t2(t3 + 2t2 + 2t+ 1)y = x3 + t2(t3 + 2t2 + 2t+ 1)x2, t ∈ Q, t 6= 0,−1.

We now recall the method described by Vélu [31] for constructing isogenies between elliptic curves with

a nontrivial torsion subgroup defined over Q. Let

(4) E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

be an elliptic curve with a point T ∈ E(Q) of order d, such that 〈T 〉, the subgroup generated by T , is defined

over Q. For any P0 = (x0, y0) let x(P0), y(P0) denote x0, y0, respectively. The intuitive idea behind Vélu’s

technique is to define X(P ), Y (P ) which are invariant under P 7→ P + P ′, for any P ′ ∈ 〈T 〉. We therefore

take sums over all members of 〈T 〉, in defining the functions

(5) X(P ) = x(P ) +
∑

Q∈〈T 〉−{O}

(
x(P +Q)− x(Q)

)
, Y (P ) = y(P ) +

∑
Q∈〈T 〉−{O}

(
y(P +Q)− y(Q)

)
.

The map P 7→ (X(P ), Y (P )) will be our required isogeny, and it remains to find the curve satisfied

by X(P ), Y (P ). We associate the following values to the elliptic curve given in (4):

(6) b2 = a2
1 + 4a2, b4 = 2a4 + a1a3, b6 = a2

3 + 4a6.

Let 〈T 〉2 denote the points of order 2 in 〈T 〉. Further, let R be a subset of 〈T 〉 − {O} − 〈T 〉2 such that

〈T 〉 − {O}− 〈T 〉2 = R ∪ (−R) and R ∩ (−R) = ∅. Let S = R ∪ 〈T 〉2, and define the following quantities for
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any Q ∈ E(Q):

gxQ = 3x(Q)2 + 2a2x(Q) + a4 − a1y(Q), gyQ = −2y(Q)− a1x(Q)− a3,

uQ = (gyQ)2 = 4x3
Q + b2x

2
Q + 2b4xQ + b6, sQ =

{
gxQ if Q ∈ 〈T 〉2
2gxQ − a1g

y
Q = 6x2

Q + b2xQ + b4 if Q 6∈ 〈T 〉2,

s =
∑
Q∈S

sQ, w =
∑
Q∈S

(uQ + xQtQ).

Theorem 1. (Vélu) Let E be as in (4), with T a point of order d, and s, w be the above quantities. Then

φ : P 7→
(
X(P ), Y (P )

)
of (5) is an isogeny with kernel E(C)[φ] = 〈T 〉 from E to the elliptic curve

(7) Ê : Y 2 + a1XY + a3Y = X3 + a2X
2 + (a4 − 5s)X + (a6 − b2s− 7w).

Proof: See [31], where this relation between X and Y is obtained via the formal groups of E and Ê . �

Applying Vélu’s method to Edt gives an isogeny φ to

(8) Êdt : Y 2 + jd(t)XY + kd(t)Y = X3 + kd(t)X2 + ld(t)X +md(t).

For example, as before, j9(t) = (t3 + t2 + 1), k9(t) = t2(t3 + 2t2 + 2t+ 1) and

l9(t) = 5t(t10 + t9 − 8t8 − 33t7 − 72t6 − 108t5 − 114t4 − 81t3 − 37t2 − 10t− 1),

m9(t) = t17 − 7t16 − 63t15 − 230t14 − 641t13 − 1639t12 − 3691t11 − 6707t10 − 9425t9

−10174t8 − 8456t7 − 5379t6 − 2559t5 − 865t4 − 190t3 − 24t2 − t.

(9)

Further, we can apply Vélu’s method to Êdt (after first factoring the dth division polynomial of Êdt to compute

the kernel) to find an isogeny to ̂̂Edt , the dual curve to Êdt , which is birationally equivalent to Edt . This yields

the dual isogeny, φ̂ : Êdt → Edt .

We have made available at [13] tables of jd(t), kd(t), ld(t),md(t), as well as the short PARI [23] functions

TorsionCurve, DualCurve, IsogenyPhi and IsogenyDual, which find Edt , Êdt , φ, φ̂.

3. The φ̂-Selmer and Tate-Shafarevich Groups

Let φ̂ : Ê → E be a Q-rational isogeny of elliptic curves defined over Q, let G = Gal(Q/Q), Gp =

Gal(Qp/Qp), and define the φ̂-Selmer group Sel(
bφ)(Ê/Q) and the Tate-Shafarevich group X(Ê/Q) by

(10) Sel(
bφ)(Ê/Q) = ker

(
H1(G, Ê(Q)[φ̂])→

∏
p

H1(Gp, Ê(Qp))

)
and

(11) X(Ê/Q) = ker

(
H1(G, Ê(Q))→

∏
p

H1(Gp, Ê(Qp))

)
.

For future reference, we fix the notation ∆min(E) to denote the discriminant of a minimal model for E ,

let E0(Qp) denote the set of points in E(Qp) which are nonsingular after reduction modulo p, let cE,p =

#E(Qp)/E0(Qp) be the Tamagawa number for E at p, and similarly let cbE,p be the Tamagawa number for Ê
at p. Furthermore, let

S = {p : p|∆min(E) or p|d or p =∞}− {p : gcd(d, cE,p) = gcd(d, cbE,p) = 1},

Q(S, d) = {k ∈ Q∗/(Q∗)d : ordp(k) ≡ 0 mod d for all p 6∈ S}.
(12)

We recall the following standard result, which uses an explicit description of the Weil pairing in this context.
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Theorem 2. ([27], X.1.1 and Exercise 10.1) Let E be an elliptic curve defined over Q and let φ : E → Ê
be a degree-d Q-rational isogeny such that E(C)[φ] is generated by a point T ∈ E(Q) of order d. Then there

exists fT ∈ Q(E) is such that div(fT ) = d · T − d · O and fT ◦ φ̂ = gdT for some gT ∈ Q(Ê). Furthermore, the

map F : E(Q)/φ̂(Ê(Q))→ Q∗/(Q∗)d, P 7→ fT (P ) is an injective homomorphism, satisfying imF 6 Q(S, d).

It is worth briefly mentioning here what happens in the more general context when E(C)[φ] is defined

over Q, even though there is no Q-rational point T of order d. The simplest case of this is a curve of

the form E : y2 = x3 + k, where k ∈ Q∗ but k 6∈ (Q∗)2, when there is a 3-isogeny φ, defined over Q,

from E to the curve Ê : y2 = x3 − 27k. This situation is described, for example, on p.65 of [4]. In

this case E(C)[φ] = {O, (0,
√
k), (0,−

√
k)}, and the generalisation of the above map gives instead a map

F : E(Q)/φ̂(Ê(Q))→ K∗/(K∗)3, where K = Q(
√
k), the field of definition of a generator (0,

√
k) of E(C)[φ].

In the general case, when φ has order d, and E(C)[φ] is defined over Q, even though there is no Q-rational

point T of order d, the degree of the number field K will typically increase with d, and be bounded above

by d − 1. We shall not require this level of generality in our examples, as they will always have an actual

Q-rational point T of order d.

For example, if E9
t , Ê9

t are the 9-isogenous curves in (3),(8),(9), then F 9(P ), for any P = (x, y), is:

F 9(x, y) = (−t2 − 2)x4 + (−2t4 − t3 − 2t2 + (y − 1))x3 + (−t6 − 2t5 − 3t4 − 2t3 + (3y − 1)t2 + 3y)x2

+(3yt4 + 2yt3 + 3yt2 + y)x+ (yt6 + 2yt5 + 3yt4 + 2yt3 + yt2).
(13)

We let

(14) Fp : E(Qp)/φ̂(Ê(Qp))→ Q∗p/(Q∗p)d, P 7→ fT (P )

be defined in an analogous manner to F where p can be any prime, including the prime at infinity. We also

define βp : Q(S, d)→ Q∗p/(Q∗p)d as the map induced by the natural embedding Q∗ → Q∗p. Then

(15) E(Q)/φ̂(Ê(Q)) ∼= imF 6 Sel(
bφ)(Ê/Q) ∼=

⋂
p∈S

β−1
p

(
Fp

(
E(Qp)/φ̂

(
Ê(Qp)

)))
6 Q(S, d) 6 Q∗/(Q∗)d.

Let E , Ê be the isogenous elliptic curves of (4),(7), with φ((x, y)) = (X,Y ), and let z = −x/y and

Z = −X/Y be the respective local parameters around O, the point at infinity. (see [27], IV.1.1.2). Then Z

can be written as a power series Z = f(z) ∈ Q[[z]], and we define define γφ to be norm of the leading

coefficient of f(z). Similarly, we can write z = F (Z) ∈ Q[[Z]], and define γbφ. to be the norm of the leading

coefficient of F (Z). Note that for our Edt , Êdt of (2),(8), we always have γφ = 1 and γbφ = d.

Lemma 1. ([24], 3.8) Let E be an elliptic curve defined over Q and let φ : E → Ê be a degree-d Q-rational

isogeny where d is a power of a prime and E(C)[φ] is generated by a point T ∈ E(Q). Let p be a finite prime.

Then

(16) #E(Qp)/φ̂(Ê(Qp)) = |γbφ|−1
p #Ê(Qp)[φ̂]

cE,p
cbE,p .

Further, when p =∞, if d = 2k, k > 1, then #E(R)/φ̂(Ê(R)) = 1 or 2; otherwise, #E(R)/φ̂(Ê(R)) = 1.

For finite p, we can apply Hensel’s Lemma together with searches modulo a suitable power of p, until the

number of computed distinct members of E(Qp)/φ̂(Ê(Qp)) equals the right hand side of (16). At p =∞, we
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have Qp = R and the question of whether #E(R)/φ̂(Ê(R)) = 1 or 2 is easy to resolve, as it is equivalent to

deciding whether there exists P = (x, y) ∈ E(R) such that F∞(P ) < 0. If (x, y1(x)), (x, y2(x)) denote the

two points with the same x-coordinate, then this is merely a matter of examining the range of F∞(x, y1(x))

and F∞(x, y2(x)), for x ∈ R. In all cases, it is straightforward to compute E(Qp)/φ̂(Ê(Qp)). One can then

compute Sel(
bφ)(Ê/Q) by computing

⋂
p∈S β

−1
p

(
Fp
(
E(Qp)/φ̂

(
Ê(Qp)

)))
and applying (15). When this has the

same order as the known members of E(Q)/φ̂(Ê(Q)), then the latter is also computed. When there is a

nontrivial member of X(Ê/Q)[φ̂], then this method will not determine E(Q)/φ̂(Ê(Q)).

The IsPrincipal function in Magma [18] applied to d ·T −d ·O (which computes fT such that div(fT ) =

d · T − d · O), can be used to find the map F in Theorem 2. We have applied this to the Edt (Q) of (2) to

create, and place at [13], a table of the resulting map F in these cases, which we have also included in our

PARI function Fo. We have also placed at [13] our PARI functions ModuloPowLocalp, which computes βp(z),

FpSearchp, which performs a naive search for members of E(Qp)/φ̂(Ê(Qp)). Note also that the Tamagawa

numbers cE,p,cbE,p can be easily computed using functions built into Magma [18] or PARI [23]. A general

algorithm for computing Tamagawa numbers for elliptic curves can be found in [29]. Finally, determining

#Ê(Qp)[φ̂] is a direct application of Hensel’s Lemma.

4. Ratio Theorems and X(E/Q)[d]

We first recall the standard observation that we can compute the rank r of E(Q) by finding E(Q)/[d]E(Q)

for some integer d > 1, since E(Q) ∼= Etors(Q) × Zr implies E(Q)/[d]E(Q) ∼= Etors(Q)/[d]Etors(Q) × (Z/2Z)r

and Etors(Q)/[d]Etors(Q) is straightforward to compute. The previous section has described how to compute

Sel(
bφ)(Ê/Q), which sometimes allows the computation of E(Q)/φ̂(Ê(Q)). Furthermore, when [d] = φ̂φ, we

have available the following lemma.

Lemma 2. (see [26]) Let φ : E → Ê be degree-d Q-rational isogeny, with [d] = φ̂φ. Then the sequence

0→ Ê(Q)[φ̂]/φ(E(Q)[d])→ Sel(φ)(E/Q)→ Sel(d)(E/Q)

→ Sel(
bφ)(Ê/Q)→X(Ê/Q)[φ̂]/φ(X(E/Q)[d])→ 0.

(17)

and its subsequence

0→ Ê(Q)[φ̂]/φ(E(Q)[d])→ Ê(Q)/φ(E(Q))
bφ−→ E(Q)/[d]E(Q)→ E(Q)/φ̂(Ê(Q))→ 0(18)

are both exact.

From this, it is apparent that Sel(d)(E/Q) (and therefore the rank of E(Q) if there are no nontrivial

members of X(E/Q)[d]) can be deduced from Selφ(E/Q) and Sel(
bφ)(Ê/Q), each of which can be computed

as in the previous section. However, it can happen that one of these is much easier to compute, in which

case the following result (used in [26] to perform descent via isogeny) is helpful.

Theorem 3 (Cassels [3]). Let E be as in (4) and φ : E → Ê be as in Lemma 2. Then

(19)
#Sel(φ)(E/Q)

#Sel(
bφ)(Ê/Q)

=
#E(Q)[φ] ΩbE ∏

p cbE,p
#Ê(Q)[φ̂] ΩE

∏
p cE,p

, where ΩE =
∫
E(R)

∣∣∣∣ dx

2y + a1x+ a3

∣∣∣∣ .
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The quantities ΩE ,ΩbE (as with cE,p, cbE,p) can be easily computed using functions built into Magma [18]

or PARI [23]. Now we see that Cassels’ ratio theorem gives us a method for trying to compute E(Q)/[d]E(Q)

(and thus the rank of E(Q)) simply by finding Sel(
bφ)(Ê/Q). Explicitly, we can combine Theorem 3 and (18)

from Lemma 2 to give

#Sel(d)(E/Q) 6
#Sel(φ)(E/Q) ·#Sel(

bφ)(Ê/Q)

#Ê(Q)[φ̂]/φ(E(Q)[d])
=

#E(Q)[φ] ΩbE ∏
p cbE,p

#Ê(Q)[φ̂] ΩE
∏
p cE,p

· #Sel(
bφ)(Ê/Q)

#Ê(Q)[φ̂]/φ(E(Q)[d])
.

In addition, as long as X(Ê/Q)[φ̂]/φ(X(E/Q)[d]) is trivial, this will be an equality. Now the standard

exact sequence (see [27], X.4.2.a)

(20) 0→ E(Q)/[d]E(Q)→ Sel(d)(E/Q)→X(E/Q)[d]→ 0.

gives that #E(Q)/[d]E(Q) 6 #Sel(d)(E/Q) and so, in summary,

(21) #E(Q)/[d]E(Q) 6 #Sel(d)(E/Q) 6
#E(Q)[φ] ΩbE ∏

p cbE,p
#Ê(Q)[φ̂] ΩE

∏
p cE,p

· #Sel(
bφ)(Ê/Q)

#Ê(Q)[φ̂]/φ(E(Q)[d])
,

where everything becomes an equality when X(Ê/Q)[φ̂]/φ(X(E/Q)[d]) and X(E/Q)[d] are trivial. We

now outline the descent process we have used; see [9],[25],[26] for examples using a similar approach.

Input: d ∈ {4, 5, 7, 8, 9} and t ∈ Q corresponding to the elliptic curve E = Edt of (2).

Output:
#Sel(φ)(E/Q) ·#Sel(

bφ)(Ê/Q)

#Ê(Q)[φ̂]/φ(E(Q)[d])
, which serves as an upper bound for #E(Q)/[d]E(Q).

Step 1: Compute Sel(
bφ)(Ê/Q) using (15), by finding

⋂
p∈S β

−1
p

(
Fp
(
E(Qp)/φ̂

(
Ê(Qp)

)))
.

Step 2: Use Theorem 3 to compute the size of Sel(φ)(E/Q).

Step 3: Use the inequality in (21), to find upper bounds for #Sel(d)(E/Q) #E(Q)/[d]E(Q).

Recall that as long as X(Ê/Q)[φ̂]/φ(X(E/Q)[d]) and X(E/Q)[d] are both trivial, then our upper bound

on #E(Q)/[d]E(Q) is actually an equality. We can then perform a näıve search on E(Q) to try to determine

whether our bound is attained. We can use, for example, the PARI function of Womack [33] which uses

height pairing matrices to determine when points are independent. If we find enough points to verify that

the above bound is an equality, we terminate the algorithm and return the rank of E(Q).

Remark 1. We have made available at [13] the PARI function SelmerBound(d, t). For example:

SelmerBound(5, 4) returns 5, giving that the rank of E5
4 : y2 + 5xy + 4y = x3 + 4x2 is 0 and E5

4 (Q) ∼= Z/5Z.

While we will use Theorem 3 theorem mainly for the purpose of finding the order of Sel(φ)(E/Q) from the

order of Sel(
bφ)(Ê/Q), we show that a variation allows X(E/Q)[d] to be proved nontrivial, without performing

the hard work of a descent via φ-isogeny. [16], [17], and [19] have used Theorem 3 to obtain similar results.

Proposition 1. Let φ : E → Ê be as in Lemma 2. Then

#X(E/Q)[d] >

(
#E(Q)[φ] ΩbE ∏

p cbE,p
#Ê(Q)[φ̂] ΩE

∏
p cE,p

)(
1

#Ê(Q)[φ̂]/φ(E(Q)[d])

)(
1

#E(Q)/[d]E(Q)

)
.
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Proof: Combining Theorem 3 and (17) from Lemma 2 gives

#Sel(d)(E/Q) >
#Sel(φ)(E/Q)

#Ê(Q)[φ̂]/φ(E(Q)[d])
>

(
#Sel(φ)(E/Q)

#Sel(
bφ)(Ê/Q)

)(
1

#Ê(Q)[φ̂]/φ(E(Q)[d])

)

=

(
#E(Q)[φ] ΩbE ∏

p cbE,p
#Ê(Q)[φ̂] ΩE

∏
p cE,p

)(
1

#Ê(Q)[φ̂]/φ(E(Q)[d])

)
.

Furthermore, sequence (20) gives #Sel(d)(E/Q) = #E(Q)/[d]E(Q) · #X(E/Q)[d] which, when combined

with the above inequality, gives the required result. �

Suppose now that φ : E → Ê is a degree-d Q-rational isogeny of Q-rational elliptic curves, and suppose

that X(E/Q)[2] is trivial so that a complete 2-descent on E yields that the rank of E(Q) is some r ∈ Z+.

By also computing Etors(Q), we can immediately find #E(Q)/[d]E(Q) ⊆ Sel(d)(E/Q). It is similarly an easy

task to compute the other quantities on the right hand side of Proposition 1. If this exceeds 1, then we have

verified that X(E/Q)[d] is nontrivial, without having actually performed a descent via φ-isogeny.

5. Worked Examples

We shall give several examples to illustrate the above ideas, emphasising descent via 9-isogeny and 13-

isogeny. We shall give here only the main steps of each example, and have placed the details at [13].

Example 1. The elliptic curve

E : y2 + 13xy + 84y = x3 + 84x2

has rank(E(Q)) = 1.

Proof We show this by performing a 9-descent on E . Let d = 9 and t = 2, so that our curves Edt and Êdt
of (3),(8),(9) are:

E : y2 + 13xy + 84y = x3 + 84x2 and Ê : y2 + 13xy + 84y = x3 + 84x2 − 154410− 41506050.

Further, S = {2, 3, 7, 37}. Our injection (13) then becomes

F : E(Q)/φ̂(Ê(Q))→ Q(S, 9), (x, y) 7→ −6x4 + (y − 49)x3 + (15y − 196)x2 + 77yx+ 196y.

Now, we can apply Lemma 1 to give:

β−1
2

(
F2

(
E(Q2)/φ̂

(
Ê(Q2)

)))
= 〈2, 3, 7, 37〉, β−1

7

(
F7

(
E(Q7)/φ̂

(
Ê(Q7)

)))
= 〈21 · 31, 23 · 73, 33 · 73〉,

β−1
3

(
F3

(
E(Q3)/φ̂

(
Ê(Q3)

)))
= 〈2, 3, 7, 37〉, β−1

37

(
F37

(
E(Q37)/φ̂

(
Ê(Q37)

)))
= 〈21 · 31, 35 · 71〉,

with no further information provided at infinity. We apply (15) and take the intersection of these, to give

Sel(
bφ)(Ê/Q) = 〈21 · 31, 23 · 73, 33 · 73〉

⋂
〈21 · 31, 35 · 71〉

⋂
〈2, 3, 7, 37〉 = 〈21 · 31, 23 · 73〉 ∼= Z/9Z× Z/3Z,

so that #Sel(
bφ)(Ê/Q) = 27. Using the formula from Theorem 3, we see that this implies #Sel(φ)(E/Q) = 3.

Since also #Ê(Q)[φ̂] = 1, the exact sequence (17) from Lemma 2, gives:

#Sel(9)(E/Q) 6
#Sel(

bφ)(Ê/Q) ·#Sel(φ)(E/Q)
#E(Q)[φ]

= 92,

so that #E(Q)/[9]E(Q) 6 92. A short search on E(Q) yields the point (−21/4, 315/8) of infinite order. Since

also #Etors(Q)/9Etors(Q) = #Etors(Q) = 9, it follows #E(Q)/[9]E(Q) = 92, and that E(Q) has rank 1. We
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have therefore computed the rank using only computations in Q and various Qp, whereas a 2-descent would

have required computations over a cubic number field. �

Example 2. The elliptic curve

E : y2 +
11
8
xy +

21
32
y = x3 +

21
32
x2

has rank(E(Q)) = 1. Further,

Ê : y2 +
11
8
xy +

21
32
y = x3 +

21
32
x2 − 190905

2048
x− 49989225

131072
is such that X(Ê/Q)[3∞] ∼= Z/3Z× Z/3Z.

Proof Let d = 9 and t = 1/2, so that our curves Edt and Êdt of (3),(8),(9) are:

E : y2 +
11
8
xy +

21
32
y = x3 +

21
32
x2 and Ê : y2 +

11
8
xy +

21
32
y = x3 +

21
32
x2 − 190905

2048
x− 49989225

131072
.

Applying Proposition 1, with E , Ê interchanged, and computing all of the values for c,Ω, and E(Q)/[d]E(Q)

(from E(Q)/[2]E(Q)) in Magma, gives:

(22) #X(Ê/Q)[9] >
(

1 · (9ΩbE) · 243
9 · (ΩbE) · 3

)(
1
9

)(
1
1

)
= 9.

Note that the above global Tamagawa number of 243 for E in the numerator, was obtained as the product

of the Tamagawa numbers at 2,3,7, which were 9,9,3, respectively. The global Tamagawa number of 3 for Ê
in the above denominator, was obtained as the Tamagawa number at 7, which was 3. Now the same method

of descent via isogeny as in the previous example allows us to determine the precise order of #X(Ê/Q)[9]:

Sel(
bφ)(Ê/Q) = β−1

7

(
F7

(
E(Q7)/φ̂

(
Ê(Q7)

)))⋂
〈2, 3, 7〉

= 〈73〉{2k2 · 3k3 · 17k17 : 0 6 ki 6 8 and k2 + 2 · k3 ≡ 0 mod 3},

so that #Sel(
bφ)(Ê/Q) = 92. Using the formula from Theorem 3, we see that this implies #Sel(φ)(E/Q) = 1.

Since also #E(Q)[φ] = 9, #Ê(Q)[9] = 1, the exact sequence (17) from Lemma 2, with E , Ê interchanged,

gives that #Sel(9)(Ê/Q) = 9, and so #X(Ê/Q)[9] 6 9. From (22) it follows that #X(Ê/Q)[9] = 9, and

that Ê(Q) has rank 0. Hence, we may conclude that X(Ê/Q)[3∞] ∼= Z/3Z× Z/3Z. �

We now illustrate how Proposition 1 can be used, with minimal computation, to prove the existence of

nontrivial members of X(Ê/Q)[13].

Example 3. The elliptic curve

Ê : y2 + xy + y = x3 − x2 − 911138880x− 10586098442003.

is such that #X(Ê/Q)[13] ≥ 132.

Proof Consider

E : y2 + xy + y = x3 − x2 − 1005630x+ 571521997

and

Ê : y2 + xy + y = x3 − x2 − 911138880x− 10586098442003.

There exists a Q-rational isogeny of degree 13 such that φ : E → Ê . Using Magma [18] to perform a

complete 2-descent on E , we see that rank(E(Q)) = rank(Ê(Q)) = 0. Further, recall that elliptic curves
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cannot have rational torsion points of order 13. Hence, we have from Proposition 1, with E , Ê interchanged,

that

#X(Ê/Q)[13] >

(
#Ê(Q)[φ̂] ΩE

∏
p cE,p

#E(Q)[φ] ΩbE ∏
p cbE,p

)(
1

#E(Q)[φ]/φ̂(Ê(Q)[13])

)(
1

#Ê(Q)/[13]Ê(Q)

)

=

(
ΩE

∏
p cE,p

ΩbE ∏
p cbE,p

)
=
(

(13ΩbE) · 52
(ΩbE) · 4

)
= 132.

Note that the above global Tamagawa number of 52 for E in the numerator, was obtained as the product of

the Tamagawa numbers at 2,5,17, which were 13,2,2, respectively. The global Tamagawa number of 4 for Ê
in the above denominator, was obtained as the product of the Tamagawa numbers at 5,17, which were 2,2,

respectively. So we have found an elliptic curve with nontrivial 13-part of X(Ê/Q). However, to find the

actual size of X(Ê/Q)[13], we would need to actually compute Sel(13)(Ê/Q). As a point of interest, note

that we can use Magma [18] to see that the Birch and Swinnerton-Dyer conjecture (see [32]) predicts that

#X(Ê/Q) = 132, which coincides with the above lower bound for #X(Ê/Q)[13]. �

We finally note some possible future generalisations. First, our restriction that d is a prime power was

merely for computational convenience, and minor modifications of the above should also deal with elliptic

curves with rational points of order d = 10, 12, while still working over the ground field. Second, the

requirement that the ground field should be Q was again merely for computational convenience, and in

principle could be extended to any number field. Furthermore, as we have already noted in Example 3, there

are isogenies of degree d defined over the ground field, even when there does not exist a rational point of

order d; when d is a prime power, this makes families of curves available for d ∈ {2, 3, 4, 5, 7, 8, 9, 13, 16, 25},
and sporadically occurring curves for d ∈ {11, 17, 19, 27, 37, 43, 67, 163}. This gives us a range of curves

for which we can find the rank, with a method other than a complete 2-descent, and a means of finding

interesting orders of the Tate-Shafarevich group.
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