
ARBITRARILY LARGE TATE-SHAFAREVICH GROUP ON ABELIAN SURFACES

E.V. FLYNN

Abstract. We outline a method for demonstrating arbitrarily large Tate-Shafarevich groups which does

not require explicit homogenous spaces, and we show that the Tate-Shafarevich groups over Q of absolutely
simple Abelian surfaces (in particular, their 2-torsion) can be arbitrarily large.

1. Introduction

The 2-torsion and 3-torsion of the Tate-Shafarevich group of an elliptic curve over Q was shown to be

arbitrarily large in work of Cassels [2], Bölling [1] and Kramer [9]; more recently, Fisher [6] showed that the

5-torsion can be arbitrarily large and Matsuno [12] that the 7-torsion and 13-torsion can be arbitrarily large.

Lemmermeyer [10] showed that the 2-torsion of the Tate-Shafarevich group of an elliptic curve over Q is

arbitrarily large amongst quadratic twists of a specific curve, and there is a similar result of Lemmermeyer

and Molling in [11]. We note also the work of Kloosterman and Schaefer [8], that the p-Selmer groups of an

elliptic curve over Q can be arbitrarily large for p = 5, 7, 13, and for any p over number fields of degree which

is bounded for each p; Kloosterman [7] has also shown that, for any p, the p-torsion of the Tate-Shafarevich

group can be made arbitrarily large for an elliptic curve over a number fiend of degree which is bounded for

each p. For Abelian varieties, Creutz [5] has shown that for any principally polarized abelian variety A over

a number field K the p-torsion in the Tate-Shafarevich group can be arbitrarily large over a field extension L

of degree which is bounded in terms of p and the dimension of A, generalising work of Clark and Sherif [4].

Our interest here will be in finding arbitrarily large Tate-Shafarevich group over Q on something other

than an elliptic curve, and a natural place to investigate is amongst absolutely simple abelian surfaces over Q.

The method of Creutz requires field extensions. The methods for elliptic curves over Q of Lemmermeyer,

Mollin and Fisher use explicit models of homogeneous spaces and are difficult to generalise directly to higher

genus. In the next section we shall initially give a summary of the method of Lemmermeyer and Mollin (for

elliptic curves over Q), in which they describe Selmer groups by careful attention to the homogeneous spaces;

we give an alternative proof of their result which does not require homogeneous spaces, and so should be

more amenable to generalisation to higher genus. In the final section we shall illustrate this by showing that

the Tate-Shafarevich groups over Q of absolutely simple Jacobians of genus 2 curves (in particular, their

2-torsion) can be arbitrarily large.
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2. An Alternative Approach to an Example of Lemmermeyer and Mollin

We recall the example of Lemmermeyer and Mollin [11], which considers the family of elliptic curves

(1) Ek : y2 = x(x+ k)(x− k) = x(x2 − k2),

with k ∈ Q∗, which is 2-isogenous to

(2) Êk : y2 = x(x2 + 4k2),

under the 2-isogeny φ : Ek −→ Êk : (x, y) 7→ (y2/x2, y + k2y/x2), and dual isogeny φ̂. We take k = p1...pt,

where t is odd, each prime pi ≡ 5 (mod 8) and each Legendre(pi, pj) = 1, for distinct i, j.

We recall also the standard injection (described in Chapter X of [14]) qφ : Êk(Q)/φ(Ek(Q)) −→ Q∗/(Q∗)2 :

(x, y) 7→ x (together with the special cases that the point at infinity o maps to 1, and (0, 0) maps to 4k2 = 1

in Q∗/(Q∗)2), whose image is given by squarefree integers r such that

(3) Wr : r2`4 + 4k2m4 = rn2, for some `,m, n ∈ Z with hcf(`,m) = 1.

There is the corresponding injection qφ̂ : Ek(Q)/φ̂(Êk(Q)) −→ Q∗/(Q∗)2 : (x, y) 7→ x (together with special

cases that the point at infinity o maps to 1, and (0, 0) maps to −k2 = −1 in Q∗/(Q∗)2), whose image is

given by squarefree integers r such that

(4) Ŵr : r2`4 − k2m4 = rn2, for some `,m, n ∈ Z with hcf(`,m) = 1.

Note that 22+rankEk(Q) = #Êk(Q)/φ(Ek(Q)) · #Ek(Q)/φ̂(Êk(Q)). The Selmer group Selφ(Ek/Q) can be

represented by those r for which Wr(Qp) is nonempty for all p 6∞, and similarly for Selφ̂(Êk/Q). Any r for

which Wr or Ŵr violates the Hasse principle gives a member of the 2-part of X(Ek/Q). A brief summary of

the argument of Lemmermeyer and Mollin in [11] (or at least the portion required to show that the 2-part of

X(Ek/Q) can be arbitrarily large) is as follows. First they show that, for any r ∈ 〈p1, . . . , pt〉, Ŵr has points

in every Qp. They then show that, for any r ∈ 〈p1, . . . , pt〉 with r 6= 1, r 6= k, Ŵr has no points over Q, using

a nonlocal argument which exploits the factorisation of the left hand side as (r`2 + km2)(r`2 − km2).

If we wish to prove similar results in higher dimension, it is preferable to have a line of argument which

avoids explicit homogeneous spaces, so we first give an alternative proof of the above result, in a style which

does not require them. Note that, if we define qφp : Êk(Qp)/φ(Ek(Qp)) −→ Qp∗/(Qp∗)2 : (x, y) 7→ x then, for

any r ∈ Q∗/(Q∗)2, we have r ∈ im qφp ⇐⇒ Wr(Qp) 6= ∅ (where on the left hand side, we are identifying

r ∈ Q∗/(Q∗)2 with its natural image in Qp∗/(Qp∗)2), and we also note that it is sufficient to check p = 2,∞

and each pi (and the equivalent definition and statement applies for qφ̂p ).

We first consider Selφ(Ek/Q). For r = pi, we have that pi is square in R and in Qpj , for any j 6= i, so

that pi = qφ∞(o) ∈ im qφ∞ and pi = qφpj (o) ∈ im qφpj . Since pi ≡ 5 (mod 8), there exists α ∈ Q∗pi such that

α2 = −1 and 2α ∈
(
Q∗pi
)2

. Then (2αk, 0) ∈ Êk(Qpi) and qφpi : (2αk, 0) 7→ 2αk = k = pi in Qpi
∗/(Qpi

∗)2.

Hence pi ∈ im qφpi . Furthermore, since k ≡ 5 (mod 8), there exists β ∈ Q∗2 such that β2 = k(k2 + 4k2), and

then: qφ2 : (k, β) 7→ k = pi in Q2
∗/(Q2

∗)2 so pi ∈ im qφ2 . We have now shown that any pi ∈ Selφ(Ek/Q) and

so Selφ(Ek/Q) contains 〈p1, . . . , pt〉.
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We now consider Selφ̂(Êk/Q). For r = pi, as before, we have that pi is square in R and in Qpj , for

any j 6= i, so that pi = qφ̂∞(o) ∈ im qφ̂∞ and pi = qφ̂pj (o) ∈ im qφ̂pj . Furthermore, qφ̂pi : (k, 0) 7→ k = pi in

Qpi
∗/(Qpi

∗)2, so that pi ∈ im qφ̂pi . Also, qφ̂2 : (k, 0) 7→ k = pi in Q2
∗/(Q2

∗)2, so that pi ∈ im qφ̂2 . Hence

Selφ̂(Êk/Q) also contains 〈p1, . . . , pt〉. At this stage, we see that the bound on the rank of E(Q) obtained

from combining these two Selmer bounds is at least 2t− 2.

Our strategy now, rather than attempting a direct argument on any homogenous space, is to find a bound

on the rank using complete 2-descent, which differs from 2t−2 by an arbitrarily large amount as t increases.

We first recall the standard Cassels map for complete 2-descent (following Chapter X of [14]):

(5) q : Ek(Q)/2Ek(Q) −→ Q∗/(Q∗)2 ×Q∗/(Q∗)2 : (x, y) 7→ [x, x+ k],

whose image is contained in the group generated by the units and the bad finite primes:

(6) im q 6M := 〈−1, 2, p1, . . . , pt〉 × 〈−1, 2, p1, . . . , pt〉.

We exploit the usual commutative diagram (as described, for example, in Chapter 11 of [3] and in [13]).

(7)
Ek(Q)/2Ek(Q)

q→ M
↓ ip ↓ jp

Ek(Qp)/2Ek(Qp)
qp→ Mp

where qp and Mp are the local equivalents of q and M , and the maps ip and jp are induced by the natural

injection Q ↪→ Qp. If we let S = {∞, 2, p1, . . . , pt}, the set of bad finite primes and∞, we may then compute

the 2-Selmer group using

(8)
⋂
p∈S

j−1p (im qp) ∼= Sel(2)(Ek/Q),

which contains im q, and so give an upper bound on the order of Ek(Q)/2Ek(Q). We note that q : (0, 0) 7→

[−1, k] and (−k, 0) 7→ [−k, 2]; for any i, these are independent in Qpi
∗/(Qpi

∗)2 × Qpi
∗/(Qpi

∗)2, and so

Ek(Qpi)/2Ek(Qpi) = 〈(0, 0), (−k, 0)〉, using the result that Ek(Qp)/2Ek(Qp) = #Ek(Qp)[2], when p 6= 2,∞.

We note that

ker(jpi) = 〈[1,−1], [1, p1], . . . , [1, pi−1], [1, pi+1], . . . , [1, pt],

[−1, 1], [p1, 1], . . . , [pi−1, 1], [pi+1, 1], . . . , [pt, 1]〉,
(9)

and so

j−1pi (qpi(Ek(Qpi)/2E(Qpi)) = 〈[1,−1], [1, p1], . . . , [1, pt],

[−1, 1], [p1, 1], . . . , [pi−1, 1], [pi, 2], [pi+1, 1], . . . , [pt, 1]〉.
(10)

We now intersect this information over all pi, and we note that 2 divides the second component if and only

if all pi divide the first component, so that

Sel(2)(Ek/Q) 6
⋂
pi

j−1pi (im qpi)

= 〈[1,−1], [1, p1], . . . , [1, pt], [−1, 1], [k, 2]〉.
(11)

If we had wished, we could also have used R to remove [1,−1], but this is not needed, since we have already

bounded #Ek(Q)/2Ek(Q) above by 2t+3 and so the rank of Ek(Q) by t+ 3−2 = t+ 1. The Selmer bound for

the rank using descent via 2-isogeny was previously found to be at least 2t− 2, and we have now shown the
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Selmer bound using complete 2-descent is at most t+ 1; therefore the 2-part of X(Êk/Q) is at least t− 3,

which becomes arbitrarily large as t increases.

We briefly comment on what was needed in the above example in order to force the 2-part of X(Êk/Q)

to become arbitrarily large. For both descent via 2-isogeny and complete 2-descent, there is an a priori

bound on the rank of Ek(Q) of the form 2t + constant. First note that for the Selmer bound using descent

via 2-isogeny, it was not necessary to compute completely Êk(Qp)/φ(Ek(Qp)) or Ek(Qp)/φ̂(Êk(Qp)), but only

to find explicit elements which mapped to sufficiently many r ∈ Q∗/(Q∗)2 that we could be sure the Selmer

bound for descent via 2-isogeny was at least 2t+constant. For the complete 2-descent, we used (7) and found

Ek(Qpi)/2Ek(Qpi) completely, in order to show that the Selmer bound for complete 2-descent was at most

t + constant. Crucial was the role performed by the prime 2, which appeared explicitly when applying the

map q to the points of order 2; the condition that 2 was not a quadratic residue mod pi assisted in lowering

the Selmer bound for complete 2-descent. On the other hand, the prime 2 did not appear when applying qφ

or qφ̂ to (0, 0); this is not the entire story, as we still used the information at 2 in our 2-isogeny argument; but

it turned out that there were congruence conditions on the pi which allowed the Selmer bound for descent

via 2-isogeny to remain 2t+ constant.

3. Application in Genus 2

Our strategy in this section will be to play descent via Richelot isogeny against complete 2-descent. There

have been a number of examples in the literature which have performed such descents in detail, so the aim

here is to give a brief summary. However, it will be necessary to set up the relevants maps in order to

convey the keys steps which force the Tate-Shafarevic group to be arbitrarily large. So, we begin with a brief

summary of the generalities, following Chapter 11 of [3].

For a curve of genus 2 given by C : y2 = f(x), where f(x) ∈ Q[x], we let∞+,∞− denote the points on the

non-singular curve that lie over the singular point at infinity on C when f(x) is sextic; when f(x) is quintic

we let∞ denote the unique such point. We denote members of the Mordell-Weil group of the Jacobian J(Q)

by {(x1, y1), (x2, y2)}, as a shorthand notation for the divisor class [(x1, y1) + (x2, y2) −∞+ −∞−], where

either (x1, y1), (x2, y2) ∈ C(Q) or they are in some C
(
Q(
√
d)
)

and conjugate.

Suppose our curve is of the form

(12) C : y2 = F (x) = G1(x)G2(x)G3(x), where Gj(x) = gj2x
2 + gj1x+ gj0,

and where each gji ∈ Q. Then there is a Richelot isogeny φ from J , the Jacobian of C, to Ĵ , the Jacobian

of the following curve.

(13) Ĉ : ∆y2 = H(X) = L1(x)L2(x)L3(x),

where each Li(x) = G′j(x)Gk(x)−Gj(x)G′k(x) (for [i, j, k] = [1, 2, 3], [2, 3, 1], [3, 1, 2]), and where ∆ = det(gij),

which we assume to be nonzero. The kernel of φ consists of the identity O and the three divisors of order 2
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given by Gj = 0. Similarly for the dual isogeny φ̂ : Ĵ → J . We have the injections

qφ : Ĵ(Q)/φ
(
J(Q)

)
−→Mφ 6 Q∗/(Q∗)2 ×Q∗/(Q∗)2

: {(x1, y1), (x2, y2)} 7→ [L1(x1)L1(x2), L2(x1)L2(x2)],

qφ̂ : J(Q)/φ̂
(
Ĵ(Q)

)
−→M φ̂ 6 Q∗/(Q∗)2 ×Q∗/(Q∗)2

: {(x1, y1), (x2, y2)} 7→ [G1(x1)G1(x2), G2(x1)G2(x2)],

(14)

where Mφ,M φ̂ are generated by the units and the bad finite primes. Note the following special cases:

when xj is a root of Gi then Gi(xj) should be taken to be
∏
`∈{1,2,3}\{i}G`(xj); when xj is a root of Li

then Li(xj) should be taken to be ∆
∏
`∈{1,2,3}\{i} L`(xj); when F (x) has odd degree and (xj , yj) =∞ then

Gi(xj) should be taken to be 1; when H(x) has odd degree and (xj , yj) =∞ then Li(xj) should be taken to

be 1 (there are further special cases for when F (x) or H(x) has even degree, but we shall not require these).

We also let qφp and qφ̂p denote the analagous maps on Ĵ(Qp)/φ
(
J(Qp)

)
and J(Qp)/φ̂

(
Ĵ(Qp)

)
, respectively.

This provides the maps used in performing descent via Richelot isogeny.

Suppose now that our genus 2 curve has the form

(15) C : y2 = λ(x− e1)(x− e2)(x− e3)(x− e4)(x− e5), with λ ∈ Q and each ei ∈ Q.

Then we have the standard injection

q :J(Q)/2J(Q) −→M 6 Q∗/(Q∗)2 ×Q∗/(Q∗)2 ×Q∗/(Q∗)2 ×Q∗/(Q∗)2

:{(x1, y1), (x2, y2)} 7→ [(x1 − e1)(x2 − e1), (x1 − e2)(x2 − e2), (x1 − e3)(x2 − e3), (x1 − e4)(x2 − e4)],
(16)

where M is generated by the units and the bad finite primes. Note the following special cases which are not

covered by the above definition: when (xj , yj) =∞ then xj−ei should be taken to be λ; when (xj , yj) = (ei, 0)

then xj − ei should be taken to be λ
∏
`∈{1,...,5}\{i}

(
ei − e`

)
. We have the standard commutative diagram:

(17)
J(Q)/2J(Q)

q→ M
↓ ip ↓ jp

J(Qp)/2J(Qp)
qp→ Mp

where qp and Mp are the local equivalents of q and M , and the maps ip and jp are induced by the natural

injection Q ↪→ Qp. If we let S consist of 2,∞ and all primes dividing the discriminant of C, then we may

then compute the 2-Selmer group using

(18)
⋂
p∈S

j−1p (im qp) ∼= Sel(2)(J/Q),

which contains im q, and so give an upper bound on the order of J(Q)/2J(Q); one can then deduce an

upper bound on the rank r of J(Q), since 24+rankJ(Q) = #J(Q)/2J(Q). This gives the Selmer bound on the

rank using complete 2-descent. In order to determine each im qp, it is helpful to use the following (equation

(11.2.3) of [3]) to know when all of J(Qp)/2J(Qp) has been found:

(19) #J(Qp)/2J(Qp) = J(Qp)[2]/|2|2p.

Our aim is to force these bounds to differ by an arbitrarily large amount. The search for likely examples

was conducted amongst curves of the form (15), so that both descent via Richelot isogeny and complete
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2-descent would be possible working entirely over Q; it turns out to be helpful if Ĉ also completely splits.

We also placed the restriction that the prime 3 should appear amongst the components of the images of the

points of order 2 under the map q, but should not appear when the map qφ is applied to the three points of

order 2 given by Lj = 0 and similarly for qφ̂. When we apply a quadratic twist by k = p1 . . . pt, the a priori

bound on the rank is of the form 4t + constant, regardless of which method is applied. However, we can

hope that, by including a congruence condition on the pi that forces Legendre(3, pi) = −1, we can reduce

this bound for complete 2-descent; by making our other congruence conditions as nice as possible (in the

sense of making as many bad primes be quadratic residues modulo other bad primes), we can hope to keep

the bound using descent via Richelot isogeny of the form 4t+ constant.

After some searching, a successful example was found, namely

(20) y2 = F (x) = (x+ 2)x(x− 6)(x+ 1)(x− 7),

for which, if we apply the Richelot isogeny using G1(x) = x + 2, G2(x) = x(x− 6), G3(x) = (x + 1)(x− 7),

then the curve with isogenous Jacobian is y2 = 2F (x), so that there is real multiplication by
√

2. We also see

that 3 performs exactly the desired role (in particular, q : {(0, 0), (7, 0)} 7→ [2, 3,−6, 2]). We now show our

desired result that, if we apply a quadratic twist by k = p1 . . . pt, for suitably chosen congruence conditions

on the pi, then we can force our bounds to be arbitrarily far apart.

Theorem 1. Let Ck : y2 = Fk(x) = (x+ 2k)x(x− 6k)(x+ k)(x− 7k), where k = p1 . . . pt and where t ∈ N

is arbitrary, each pi is prime, each Legendre(pi, pj) = 1, for i, j distinct, each pi ≡ 1 (mod 8), each pi ≡ 2

(mod 3) and each pi ≡ 1, 2 or 4 (mod 7), and let Jk be the Jacobian of Ck. Then Jk and Ĵk are absolutely

simple, and X(Ĵk/Q)[2] becomes arbitrarily large as t increases.

Proof We first note that, using the technique in [15] (also described in Chapter 14 of [3]) at the prime 17

shows Jk and Ĵk to be absolutely simple.

The set of bad primes is S = {∞, 2, 3, 7, p1, . . . , pt}; define also S′ = {−1, 2, 3, 7, p1, . . . , pt}. By Dirichlet’s

theorem on primes in arithmetic progressions, there exist p1, . . . , pt satisfying the given conditions, for

arbitrary t ∈ N. The congruence conditions give that −1, 2, 7, pj are squares and 3, pi are nonsquares in Q∗pi
(for i 6= j); they also give that pi is square in Q∗2,Q∗7,Q∗pj (for i 6= j), but pi is nonsquare in Q∗3,Q∗pi .

We first examine the Selmer bound using descent via Richelot isogeny. Taking G1(x) = (x+ 2k), G2(x) =

x(x− 6k) and G3(x) = (x+ k)(x− 7k), and applying the formula (13), we find that L1(x) = −14k2(x− 3k),

L2(x) = (x − k)(x + 5k), L3(x) = −(x − 2k)(x + 6k) and ∆ = −7k2; therefore Ĉ is birationally equivalent

over Q (as can be seen by replacing x with −x + k) to y2 = 2Fk(x), so that Jk is isogenous to a twist of

itself.

Let pi, pj be distinct. Since qφ : {(−k, 0),∞} 7→ [2k, 7] = [pipj , 1] in both Q∗pi/(Q
∗
pi)

2 × Q∗pi/(Q
∗
pi)

2 and

Q∗pj/(Q
∗
pj )2 × Q∗pj/(Q

∗
pj )2, and since also pipj = 1 mod (Q∗2)2, (Q∗3)2, (Q∗7)2, (R∗)2 and any (Q∗pk)2 (for

k 6∈ {i, j}), we see that any [pipj , 1] ∈ Selφ(Jk/Q). Similarly, since qφ : {(0, 0), (−k, 0)} 7→ [2,−k] = [1, pipj ]
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in both Q∗pi/(Q
∗
pi)

2 ×Q∗pi/(Q
∗
pi)

2 and Q∗pj/(Q
∗
pj )2 ×Q∗pj/(Q

∗
pj )2, and since also pipj = 1 mod (Q∗2)2, (Q∗3)2,

(Q∗7)2, (R∗)2 and any (Q∗pk)2 (for k 6∈ {i, j}), we see that any [1, pipj ] ∈ Selφ(Jk/Q).

It follows that there are at least 2t − 2 independent members of Selφ(Jk/Q); for example, the following

are independent: [p1p2, 1], [p1p3, 1], . . . , [p1pt, 1] and [1, p1p2], [1, p1p3], . . . , [1, p1pt].

We can now use qφ̂ : {(−k, 0),∞} 7→ [k, 7], qφ̂ : {(0, 0), (−k, 0)} 7→ [2,−2k] and a virtually identical

argument to see that the same elements represent 2t − 2 independent members of Selφ̂(Ĵk/Q). So, the

Selmer bound via Richelot isogeny on the rank of Jk(Q) is at least 2t− 2 + 2t− 2− 4 = 4t− 8. We have not

found the bound precisely, but we have already done enough to see that it grows at rate 4t+ constant, the

same rate as the a priori bound. Note that the prime 3 did not appear in any of the images under qφ or qφ̂

which we needed to consider.

We now examine the Selmer bound via complete 2-descent. Under the map q of (16) with e1 = −2k,

e2 = 0, e3 = 6k, e4 = −k, we see that {(−2k, 0), (7k, 0)}, {(0, 0), (7k, 0)}, {(6k, 0), (7k, 0)}, {(−k, 0), (7k, 0)}

map, respectively, to

(21) H = {[k,−14,−2,−2], [2, 3k,−6, 2], [2, 42,−21k, 14], [1,−7,−7,−7k]}.

First consider im qpi . Note that 〈S′〉 ∩ (Q∗pi)
2 = 〈−1, 2, 7, (p`)all 6̀=i〉. We see that the members of H are

locally independent and, since #J(Qpi)/2J(Qpi) = #J(Qpi)[2] = 24, it follows that these give all of im qpi .

Hence

j−1pi

(
qpi
(
J(Qpi)/2J(Qpi)

))
= 〈H, [−1, 1, 1, 1], [1,−1, 1, 1], [1, 1,−1, 1], [1, 1, 1,−1],

[2, 1, 1, 1], [1, 2, 1, 1], [1, 1, 2, 1], [1, 1, 1, 2],

[7, 1, 1, 1], [1, 7, 1, 1], [1, 1, 7, 1], [1, 1, 1, 7],

[p`, 1, 1, 1]all ` 6=i, [1, p`, 1, 1]all ` 6=i, [1, 1, p`, 1]all ` 6=i, [1, 1, 1, p`]all ` 6=i〉.

(22)

Note that 〈S′〉 ∩ (Q∗2)2 = 〈−7, (p`)all `〉. We see that only three members of H are locally indepen-

dent and, since #J(Q2)/2J(Q2) = #J(Q2)[2]/|2|22 = 26, it follows that we are still missing three gen-

erators, namely {(5k, β1),∞}, {(−3k, β2),∞} and {(−5k, β3),∞}, where β1, β2, β3 ∈ Q∗2 are such that

β2
1 , β

2
2 , β

2
3 equal Fk(5k), Fk(−3k), Fk(−5k), respectively. These map under q2, respectively, to [−1,−3,−1, 6],

[−1,−3,−1,−2], [−3, 3,−3,−1] so that

j−12

(
q2
(
J(Q2)/2J(Q2)

))
= 〈H, [−1,−3,−1, 6], [−1,−3,−1,−2], [−3, 3,−3,−1],

[−7, 1, 1, 1], [1,−7, 1, 1], [1, 1,−7, 1], [1, 1, 1,−7],

[p`, 1, 1, 1]all `, [1, p`, 1, 1]all `, [1, 1, p`, 1]all `, [1, 1, 1, p`]all `〉.

(23)

Note that 〈S′〉 ∩ (Q∗3)2 = 〈−2, 7, (−p`)all `〉. We see that only three members of H are locally independent

and, since #J(Q3)/2J(Q3) = #J(Q3)[2] = 24, it follows that we are still missing one generator. When t is

odd, this is {(k, γ1),∞}, where γ1 ∈ Q∗3 is such that γ21 = Fk(k). This is mapped by q3 to [−3,−1,−1, 1].

When t is even, this is {(k(2 + i), γ2), (k(2− i), γ̄2)}, where γ2 ∈ Q3(i)∗ is such that γ22 = Fk(k(2 + i)) and
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γ̄2 is its conjugate. This is mapped by q3 to [−1,−1,−1, 1]. Hence

j−13

(
q3
(
J(Q3)/2J(Q3)

))
= 〈H, {[−3,−1,−1, 1] (when t odd) OR [−1,−1,−1, 1] (when t even)},

[−2, 1, 1, 1], [1,−2, 1, 1], [1, 1,−2, 1], [1, 1, 1,−2],

[7, 1, 1, 1], [1, 7, 1, 1], [1, 1, 7, 1], [1, 1, 1, 7],

[−p`, 1, 1, 1]all `, [1,−p`, 1, 1]all `, [1, 1,−p`, 1]all `, [1, 1, 1,−p`]all `〉.

(24)

Note that 〈S′〉 ∩ (Q∗7)2 = 〈2,−3, (p`)all `〉. We see that the members of H are locally independent and, since

#J(Q7)/2J(Q7) = #J(Q7)[2] = 24, it follows that these give all of im q7. Hence

j−17

(
q7
(
J(Q7)/2J(Q7)

))
= 〈H, [2, 1, 1, 1], [1, 2, 1, 1], [1, 1, 2, 1], [1, 1, 1, 2],

[−3, 1, 1, 1], [1,−3, 1, 1], [1, 1,−3, 1], [1, 1, 1,−3],

[p`, 1, 1, 1]all `, [1, p`, 1, 1]all `, [1, 1, p`, 1]all `, [1, 1, 1, p`]all `〉.

(25)

Finally note that 〈S′〉 ∩ (R∗)2 = 〈2, 3, 7, (p`)all `〉. We see that two members of H are locally independent

and, since #J(R)/2J(R) = #J(Q7)[2]/|2|2∞ = 22, it follows that these give all of im q∞. Hence

j−1∞

(
q∞
(
J(Q∞)/2J(Q∞)

))
= 〈H, [2, 1, 1, 1], [1, 2, 1, 1], [1, 1, 2, 1], [1, 1, 1, 2],

[3, 1, 1, 1], [1, 3, 1, 1], [1, 1, 3, 1], [1, 1, 1, 3],

[7, 1, 1, 1], [1, 7, 1, 1], [1, 1, 7, 1], [1, 1, 1, 7],

[p`, 1, 1, 1]all `, [1, p`, 1, 1]all `, [1, 1, p`, 1]all `, [1, 1, 1, p`]all `〉.

(26)

The intersection of (22), (23), (24), (25) and (26) gives the 2-Selmer group; it is straightforward to check

that this intersection is contained inside

(27) 〈H, [p`, 1, 1, 1]all `, [1, p`, 1, 1]all `, [1, 1, p`, 1]all `, [1, 1, 1, p`]all `〉.

This still only gives a bound of the form 4t + constant, so we aim now to prove a further restriction that

will reduce the 4t to 3t. Let T = {p1, . . . , pt}. Consider an arbitrary member [a1, a2, a3, a4] of the 2-Selmer

group.

Consider the case where there does not exist any pi dividing either a2 or a3. Then the product of all

members of T which divide a2 is 1, and the product of all members of T which divide a3 is 1,

Consider the case where there exists some pi which divides both a2 and a3. Then from (22) we see that

3 - a2 and 3 - a3. Hence, for all j, using (22) but with i = j, we see that pj |a2 ⇐⇒ pj |a3. Hence the

product of all members of T which divide a2 is the same as the product of all members of T which divide a3.

Consider the case where there exists some pi which divides a2 but does not divide a3. Then from (22) we

see that 3|a2 and 3|a3. Hence, for all j, using (22) but with i = j, we see that pj |a2 ⇐⇒ pj - a3. Hence the

product of all members of T which divide a2 times the product of all members of T which divide a3 gives k.

The remaining case, where there exists some pi which divides a3 but does not divide a2, similarly gives

that the product of all members of T which divide a2 times the product of all members of T which divide a3

gives k.
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It now follows that the 2-Selmer group is at most

(28) 〈H, [p`, 1, 1, 1]all `, [1, p`, p`, 1]all `, [1, 1, k, 1], [1, 1, 1, p`]all `〉.

Hence the Selmer bound on the rank of Jk(Q) using complete 2-descent is at most 3t+ 5− 4 = 3t+ 1.

In summary, the Selmer bound on the rank of Jk(Q) using descent via Richelot isogeny is at least 4t− 8

and the Selmer bound using complete 2-descent is at most 3t+ 1, so that the 2-part of X(Ĵk/Q) becomes

arbitrarily large as t increases. �

We conclude by suggesting the following conjecture.

Conjecture 1. Let f(x) ∈ Q[x]. Then there is arbitrarily large 2-part ofX(Jk/Q) amongst the Jacobians Jk

of the hyperelliptic curves Ck : y2 = kf(x), for k ∈ Q.

It is hard to see how to prove this in general, but the above argument makes it seem plausible at least

when f(x) is of degree at most 6, with all roots ei ∈ Q, subject to certain requirements on the roots. For

example, in the genus 2 case, it seems plausible that the above style of argument could typically be used

when all roots are in Q for both Ck and Ĉk, and there exists a prime ρ which divides some difference of

the roots to an odd power, but which does not divide to an odd power the resultant of any x− ei and any

quadratic (x− ej)(x− ek) that corresponds to a member of the kernel of the Richelot isogeny.

References

[1] R. Bölling. Die Ordnung der Schafarewitsch-Tate-Gruppe kann beliebig gross werden. Math. Nachr. 67 (1975), 157-179.

[2] J.W.S. Cassels. Arithmetic on curves of genus 1, VI. The Tate-Shafarevich group can be arbitrarily large. J. Reine Angew.

Math. 214/215 (1964), 65-70.
[3] J.W.S. Cassels and E.V. Flynn. Prolegomena to a Middlebrow Arithmetic of Curves of Genus 2. LMS–LNS 230. Cambridge

University Press, Cambridge (1996).

[4] P.L. Clark and S. Sharif. Period, index and potential X. Algebra Number Theory 4 (2010) 151-174.

[5] B. Creutz. Potential X for abelian varieties. J. Number Theory 131 (2011), 2162-2174.

[6] T. Fisher. Some examples of 5 and 7 descent for elliptic curves over Q. J. Eur. Math. Soc. 3 (2001), 169-201.
[7] R. Kloosterman. The p-part of the Tate-Shafarevich groups of elliptic curves can be arbitrarily large. J. Thér. Nombres

Bordeaux 17 (2005), 787-800.

[8] R. Kloosterman and E.F. Schaefer. Selmer groups of elliptic curves that can be arbitrarily large. J. Number Theory 99
(2003), 148–163.

[9] K. Kramer. A family of semistable elliptic curves with large Tate-Shafarevich groups. Proc. Am. Math. Soc. 89 (1983),

379-386.
[10] F. Lemmermeyer. On Tate-Shafarevich groups of some elliptic curves. Algebraic number theory and Diophantine analysis

(Graz, 1998), 277-291, de Gruyter, Berlin (2000).

[11] F. Lemmermeyer and R. Mollin. On Tate-Shafarevich groups of y2 = x(x2 − k2). Acta Math. Univ. Comenian. 72 (2003),
73-80.

[12] K. Matsuno. Construction of elliptic curves with large Iwasawa λ-invariants and large Tate-Shafarevich groups.

Manuscripta Math. 122 (2007), 289-304.
[13] E.F. Schaefer. 2-descent on the Jacobians of Hyperelliptic Curves. J. Number Theory 51 (1995), 219–232.

[14] J.H. Silverman. The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics 106, Springer-Verlag, 2009.
[15] M. Stoll. Two simple 2-dimensional abelian varieties defined over Q with Mordell-Weil rank at least 19. C. R. Acad. Sci.

Paris, Série I, 321 (1995), 1341–1344.

Mathematical Institute, University of Oxford, 24–29 St. Giles, Oxford OX1 3LB, United Kingdom

E-mail address: flynn@maths.ox.ac.uk


