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Abstract. We first give a cleaner and more direct approach to the derivation

of the Fast model of the Kummer surface. We show how to construct efficient

(N,N)-isogenies, for any odd N , both on the general Kummer surface and on
the Fast model.

1. Introduction

Various models have been constructed of the Kummer surface related to curves
of genus 2, with more recent work emphasising models which are amenable to more
efficient computations. There has also been considerable recent interest in com-
puting isogenies on these surfaces. The intention of this article is to first give a
more explicit derivation of the Fast Kummer surface model (a model introduced
by Gaudry [Gau07] in the context of cryptography, and explored algorithmically
by Chudnovsky and Chudnovsky [CC86] which allows for particularly fast compu-
tations), and then to construct (N,N)-isogenies on this model, for any odd N .

In Section 2, we recall the General Kummer model of the Kummer surface in P3,
given on p.18 of [CF96], and summarise a number of associated ideas, such as the
linear map induced by adding a point of order 2, certain biquadratic forms which
relate to the group law on the Jacobian variety, and the Richelot isogeny.

In Section 3, we summarise the Squared Kummer model described by Cos-
set [Cos11, Ch. 4], and the linear map which relates it to the General Kummer of
the Rosenhain curve given by Chung, Costello and Smith [CCS16, §3]. In Section 4,
we summarise the Fast Kummer surface model, described by Gaudy [Gau07], which
also allows fast computations and is (2, 2)-isogenous to the model in Section 3. The
derivation by Gaudry [Gau07] uses several identities of theta functions as justifica-
tion, an extension of the ground field was used, and there was no explicit Jacobian
of which this was the Kummer Surface, but instead a (2, 2)-isogenous Jacobian was
given over the field extension. The first main contribution of this article is that,
in Section 4, we give an entirely algebraic rederivation of the Fast Kummer surface
Kfast by finding a curve D together with a linear map from the General Kummer
surface of D in Equation (4.2) to the Fast Kummer in Equation (4.1). Our aim is
that this will make both the derivation and application of this elegant form more
accessible to a wider audience who may use it over number fields for such things as
height constants and descents. Everything is performed over the ground field of the
parameters, and we now have an explicit Jacobian (namely the Jacobian variety
of D) of which Kfast is the Kummer surface.
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In Section 5, we describe a general method to construct (N,N)-isogenies between
Kummer surfaces with efficiently computable biquadratic forms, for any odd N , us-
ing purely algebraic methods. More specifically, we show how to obtain the (N,N)-
isogeny as a composition ϕ = λ◦ψ, where ψ has the desired kernel and λ is a linear
map which moves the image into the correct Kummer form. We give algorithms to
compute ψ for any Kummer surface model with efficiently computable biquadratic
forms. In the case of General and Fast Kummer surfaces, we explicitly show how to
obtain this final linear map λ in Sections 5.1 and 5.2, respectively. This culminates
in two further main contributions: an algorithm GetIsogeny (see Algorithm 7 in Sec-
tion 5) which recovers the explict formulæ describing the (N,N)-isogeny ϕ from
the N -torsion points generating the kernel; and an algorithm GetImage (see Algo-
rithm 6 in Section 5) which computes the image of the isogeny ϕ. In particular, we
considerably refine the scaling step of the algorithm by exploiting maps and sym-
metries on Kfast which allow us to avoid expensive square root operations in the
ground field. These explicit algebraic derivations and descriptions will be of poten-
tial use not only in the Cryptographic community, but also to those researchers in
Arithmetic Geometry who which to perform descent via isogeny over number fields.
Throughout, we provide concrete complexities for all our algorithms, highlighting
the main bottleneck of our work: finding degree-N homogeneous forms that are
invariant under translation by an N -torsion point on the Kummer surface.

Since the Fast Kummer surfaces yield the most efficient (N,N)-isogenies, in Sec-
tion 6 we provide concrete timings for running our methods on this model for odd
primes N ≤ 19.

The software accompanying this paper is written in MAGMA [BCP97] and Maple
[Map24], and is publicly available under the MIT license. It is available at

https://github.com/mariascrs/NN_isogenies.

1.1. Comparison to other methods. We briefly compare our methods for com-
puting (N,N)-isogenies between different models of Kummer isogenies for odd N
to those in previous literature. The case N = 3 and 5 for the General Kummer
surface was determined by Bruin, Flynn and Testa [BFT14] and by [Fly15], re-
spectively. We recover these isogenies in Section 5. Turning to a different model,
Corte-Real Santos, Costello and Smith [CCS24] give optimised formulæ for (3, 3)-
isogenies between Fast Kummer surfaces, and touch on how these methods could
be generalised to any odd N . We then extend these ideas to give a method for
computing (N,N)-isogenies between Fast Kummer surfaces for any odd N ≥ 5.

Bisson, Cosset, Lubicz, and Robert launched an ambitious program [Bis11,
Cos11, LR15, LR16, Rob10, Rob21, LR22] based on the theory of theta func-
tions [Mum84] to provide asymptotically efficient algorithms for arbitrary odd N
(and beyond dimension 2 to arbitrarily high dimension). AVIsogenies [BCR10] is
a software package written in MAGMA based on their results, and is publicly available.

We take a different perspective on the problem and analyse to what extent the
method depicted by Corte-Real Santos, Costello and Smith [CCS24] can be op-
timised. Our approach allows us to describe algorithms that output the isogeny
formulæ as well as the image Kummer surface, relying solely on simple linear al-
gebra. To the best of our knowledge, the line of work relying on theta functions
does not recover the formulæ describing the (N,N)-isogeny, which is interesting
in its own right. In this sense, the purposes of AVIsogenies and our algorithm

https://github.com/mariascrs/NN_isogenies
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are somewhat different. Indeed, AVIsogenies inputs an initial Kummer surface,
isogeny kernel and a point, and outputs the image point and (theta null point of)
the image Kummer surface; our algorithm inputs an initial Kummer surface and
isogeny kernel, and outputs the explicit defining equations of the image Kummer
surface and of the isogeny (which can then incidentally be used, if desired, to find
images of specific points).

Though the algorithms developed using theta functions boast better asymptotic
complexity, preliminary experimental evidence suggest that our software outper-
forms AVIsogenies for small odd N (see Section 6 for further details). However,
for a precise and fair comparison between implementations, exact operation counts
are needed.

Furthermore, our methods produce K-rational (N,N)-isogeny formulæ for any
Kummer surface model given K-rational kernel generators (provided it has effi-
ciently computable biquadratic forms). In this way, we do not require full K-
rational 2-torsion in order to have a K-rational theta structure.

1.2. Acknowledgements. We thank Craig Costello and Sam Frengley for many
fruitful discussions throughout the preparation of this paper. We further thank Ben-
jamin Smith for discussions that lead to the statement of Proposition 5.3 and Con-
jecture 5.4. We are greatful to Kamal Khuri-Makdisi for kindly explaining a proof
to Proposition 5.3, and allowing us to include it in this article. The first author
was supported by UK EPSRC grant EP/S022503.

2. Generalities on Kummer surfaces

Let K be any field (not of characteristic 2) and consider a general curve of genus 2

(2.1) y2 = F(x) = f6x
6 + f5x

5 + f4x
4 + f3x

3 + f2x
2 + f1x+ f0,

defined overK. We represent elements of the Jacobian variety by {(x1, y1), (x2, y2)},
as a shorthand for the divisor class of (x1, y1) + (x2, y2) −∞+ −∞−, where ∞ +

and∞− denote the points on the non-singular curve that lie over the singular point
at infinity. The Kummer surface has an embedding (see p.18 of [CF96]) in P3 given
by (k1, k2, k3, k4), where

(2.2) k1 = 1, k2 = x1 + x2, k3 = x1x2, k4 = (F0(x1, x2)− 2y1y2)/(x1 − x2)2,

and where

F0(x1, x2) =2f0 + f1(x1 + x2) + 2f2(x1x2) + f3(x1x2)(x1 + x2)

+ 2f4(x1x2)2 + f5(x1x2)2(x1 + x2) + 2f6(x1x2)3.
(2.3)

The defining equation of the Kummer surface is given by

(2.4) Kgen : F1(k1, k2, k3)k24 + F2(k1, k2, k3)k4 + F3(k1, k2, k3) = 0,
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where F1, F2, F3 are given by:

F1(k1, k2, k3) = k22 − 4k1k3,

F2(k1, k2, k3) = −2
(
2k31f0 + k21k2f1 + 2k21k3f2 + k1k2k3f3 + 2k1k

2
3f4

+k2k
2
3f5 + 2k33f6

)
,

F3(k1, k2, k3) = −4k41f0f2 + k41f
2
1 − 4k31k2f0f3 − 2k31k3f1f3 − 4k21k

2
2f0f4

+4k21k2k3f0f5 − 4k21k2k3f1f4 − 4k21k
2
3f0f6 + 2k21k

2
3f1f5

−4k21k
2
3f2f4 + k21k

2
3f

2
3 − 4k1k

3
2f0f5 + 8k1k

2
2k3f0f6 − 4k42f0f6

−4k1k
2
2k3f1f5 + 4k1k2k

2
3f1f6 − 4k1k2k

2
3f2f5 − 2k1k

3
3f3f5

−4k32k3f1f6 − 4k22k
2
3f2f6 − 4k2k

3
3f3f6 − 4k43f4f6 + k43f

2
5 .

We shall refer to this model as Kgen, the General Kummer model. We also recall
from p.65 of [CF96] that there are local parameters s1, s2 on the Jacobian variety,
and all coordinates of the Kummer surface can be written as formal power series in
these paramaters. We refer the reader to [CF96] for the definition of s1, s2, which
we shall not require here. We merely note, for future reference, that the coordinates
of the General Kummer model are as follows up to the degree 6 terms, when written
as formal power series in the local parameters.

k1 =s22 − f2s42 − f6s41 + 4f0f4s
6
2 + 8f0f5s1s

5
2 + 18f0f6s

2
1s

4
2 − f1f3s62

+ f1f5s
2
1s

4
2 + 4f1f6s

3
1s

3
2 + 2f22 s

6
2 + 2f2f6s

4
1s

2
2 + 2f4f6s

6
1 + O(8),

k2 =2s1s2 + f1s
4
2 + f3s

2
1s

2
2 + f5s

4
1 + f0f3s

6
2 + 8f0f4s1s

5
2 + 16f0f5s

2
1s

4
2

+ 40f0f6s
3
1s

3
2 − 2f1f2s

6
2 + 2f1f4s

2
1s

4
2 + 6f1f5s

3
1s

3
2 + 16f1f6s

4
1s

2
2 − f2f3s21s42

+ 2f2f5s
4
1s

2
2 + 8f2f6s

5
1s2 − f3f4s41s22 + f3f6s

6
1 − 2f4f5s

6
1 + O(8),

k3 =s21 − f0s42 − f4s41 + 2f0f2s
6
2 + 2f0f4s

2
1s

4
2 + 4f0f5s

3
1s

3
2 + 18f0f6s

4
1s

2
2

+ f1f5s
4
1s

2
2 + 8f1f6s

5
1s2 + 4f2f6s

6
1 − f3f5s61 + 2f24 s

6
1 + O(8),

k4 =1,

(2.5)

where by O(8) we mean terms of degree at least 8 in s1, s2.
We note that if we perform a quadratic twist on the curve given in Equation (2.1)

to give cy2 = F(x), then this induces a linear map (k1, k2, k3, k4) 7→ (k1, k2, k3, ck4)
between the Kummer surfaces.

We know (see p.22 of [CF96]) that addition by any point of order 2 gives a
linear map on the Kummer surface. Specifically, if our curve has the form y2 =
(g2x

2 + g1x + g0)(h4x
4 + h3x

3 + h2x
2 + h1x + h0), and r1, r2 are the roots of

g2x
2 + g1x+ g0, then addition by {(r1, 0), (r2, 0)} induces on Kgen the linear map

(2.6)


k1
k2
k3
k4

 7→W


k1
k2
k3
k4
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where W is the matrix (reproducing (3.2.10) from [CF96]):
(2.7)

g22h0 + g0g2h2 − g20h4 g0g2h3 − g0g1h4 g1g2h3 − g21h4 + 2g0g2h4 g2
−g0g2h1 − g0g1h2 + g20h3 g22h0 − g0g2h2 + g20h4 g22h1 − g1g2h2 − g0g2h3 −g1
−g21h0 + 2g0g2h0 + g0g1h1 −g1g2h0 + g0g2h1 −g22h0 + g0g2h2 + g20h4 g0

w41 w42 w43 w44


and where the entries w41, w42, w43, w44 of the bottom row are:

w41 := −g1g
2
2h0h1 + g21g2h0h2 + g0g

2
2h

2
1 − 4g0g

2
2h0h2 − g0g1g2h1h2 + g0g1g2h0h3 − g20g2h1h3,

w42 := g21g2h0h3 − g31h0h4 − 2g0g
2
2h0h3 − g0g1g2h1h3 + 4g0g1g2h0h4 + g0g

2
1h1h4 − 2g20g2h1h4,

w43 := −g0g
2
2h1h3 − g0g1g2h2h3 + g0g1g2h1h4 + g0g

2
1h2h4 + g20g2h

2
3 − 4g20g2h2h4 − g20g1h3h4,

w44 := −g22h0 − g0g2h2 − g20h4.

(2.8)

The eigenvalues of this matrix are the square roots of the resultant of g2x
2 +

g1x + g0 and h4x
4 + h3x

3 + h2x
2 + h1x + h0, so this map will be diagonalisable

over K exactly when this resultant is square in K. Furthermore, if {(r1, 0), (r2, 0)}
and {(r3, 0), (r4, 0)} are points of order 2, where r1, r2, r3, r4 are distinct, then the
corresponding matrices commute as affine matrices. If they have a point in common
then they anticommute.

As described in Theorem 3.4.1 of [CF96], there is a 4× 4 matrix of biquadratic
forms Bij such that, for any points A,B on the Jacobian variety,

(2.9)
(
Bij(k(A), k(B))

)
=
(
ki(A + B)kj(A−B) + ki(A−B)kj(A + B)

)
,

where k(A) denotes (k1(A), k2(A), k3(A), k4(A)), the image of A in Kgen, and simi-
larly for k(B).

If the genus 2 curve has the form

(2.10) y2 = H1(x)H2(x)H3(x),

and we define the hij by Hj = Hj(x) = hj2x
2+hj1x+hj0, then the Jacobian admits

a Richelot isogeny (described on p.89 of [CF96]) to the Jacobian of the following
curve:

(2.11) y2 = ∆
(
H ′2H3 −H2H

′
3

)(
H ′3H1 −H3H

′
1

)(
H ′1H2 −H1H

′
2

)
,

where ∆ = det(hij). This induces a (2, 2)-isogeny on the associated Kummer
surfaces, whose kernel consists of the identity and the elements of order 2 corre-
sponding to H1, H2, H3. There is also a Richelot isogeny in the other direction (the
dual isogeny), and the compisition of these gives multiplication by 2.

We note that all of the above identities are derivable purely algebraically; for
example, the defining equation of the above Kummer surface can be verified directly,
merely from the fact that y21 = F(x1) and y22 = F(x2), where we recall here that
{(x1, y1), (x2, y2)} is an element of the Jacobian variety.
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3. The Squared Kummer model

In this section, we shall briefly recall a model of the Kummer surface from [Cos11,
Ch. 4], which we shall call Ksqr, the Squared Kummer surface, for reasons which
will become apparent in Section 4.

We define the following quantities in terms of our parameters a, b, c, d ∈ K.

A = a2 + b2 + c2 + d2, B = a2 + b2 − c2 − d2,
C = a2 − b2 + c2 − d2, D = a2 − b2 − c2 + d2,

(3.1)

and let γ =
√
CD/(AB). We define the Rosenhain curve

(3.2) Crosen : y2 = x(x− 1)(x− λ)(x− µ)(x− ν),

where

(3.3) λ =
a2c2

b2d2
, µ =

c2(1 + γ)

d2(1− γ)
, ν =

a2(1 + γ)

b2(1− γ)
.

We impose a non-degeneracy condition on a, b, c, d that the roots of Crosen are
distinct, so that it is of genus 2. This curve is defined over K(γ); even when
γ 6∈ K, it is birationally equivalent to its K(γ)/K-conjugate.

Remark 3.1. In previous literature, for example in [CCS16], the parameters
for the squared Kummer surface are often constructed from a, b, c, d rather than
a2, b2, c2, d2, as above. However, since we shall be primarily interested in the fast
Kummer surface model, to be described in the next section, our main aim here
is just to link the two models, for which it will be convenient to assume that the
parameters are squares in our ground field K.

It is noted by Chung, Costello and Smith in [CCS16, §3] that we can apply the
following linear map to the coordinates k1, k2, k3, k4 of Kgen(Crosen), the general
Kummer model for Rosenhain curve, to obtain the coordinates X,Y, Z, T of the
squared Kummer surface, namely:

(3.4)


X
Y
Z
T

 = M


k1
k2
k3
k4

 ,

where

(3.5) M =


a2µ(λ+ ν) −a2µ a2(µ+ 1) −a2
b2λν(1 + µ) −b2λν b2(λ+ ν) −b2
c2ν(λ+ µ) −c2ν c2(ν + 1) −c2
d2λµ(1 + ν) −d2λµ d2(λ+ µ) −d2

 .

We note that there is an error in [CCS16, §3], as some of the factors were omitted
from the entries of the above matrix, and we have corrected that error here.

After applying the above linear map, the Kummer equation is transformed to
the following model.

Ksqr :
(

(X2 + Y 2 + Z2 + T 2)− F (XT + Y Z)

−G(XZ + Y T )−H(XY + ZT )
)2

= 4E2XY ZT,
(3.6)
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where

E = abcdABCD/
(
(a2d2 − b2c2)(a2c2 − b2d2)(a2b2 − c2d2)

)
,

F = (a4 − b4 − c4 + d4)/(a2d2 − b2c2),

G = (a4 − b4 + c4 − d4)/(a2c2 − b2d2),

H = (a4 + b4 − c4 − d4)/(a2b2 − c2d2).

(3.7)

We note that Ksqr is defined over K, even when Kgen is defined over K(γ).
If we consider the identity element and the points of order 2 on the Jacobian

of Crosen given by {∞, (0, 0)}, {(µ, 0), (ν, 0)} and {(1, 0), (λ, 0)}, then addition by
these induces on Ksqr the linear maps which take (X,Y, Z, T ) to, respectively

(3.8) (X,Y, Z, T ), (Y,X, T, Z), (Z, T,X, Y ), (T,Z, Y,X).

The change in coordinates given in M has therefore not diagonalised these maps,
but has certainly greatly simplified them.

4. Rederivation of the Fast Kummer Surface

In this section, we recall another elegant and efficient model of the Kummer
surface, described in [Gau07]:

Kfast : X4 + Y 4 + Z4 + T 4 − F (X2T 2 + Y 2Z2)−G(X2Z2 + Y 2T 2)

−H(X2Y 2 + Z2T 2) + 2EXY ZT = 0,
(4.1)

where A,B,C,D,E, F,G,H are as defined in Equation (3.1) and Equation (3.7).
We shall refer to this as Kfast, the Fast model of the Kummer surface, and it will
be our main focus here.

We note that there is a map (X,Y, Z, T ) 7→ (X2, Y 2, Z2, T 2) from the Fast
Kummer surface in Equation (4.1) to the Squared Kummer surface model in Equa-
tion (3.6) in the previous section, hence justifying its name.

The derivation of this model in [Gau07] uses identities of theta functions. A
connection is given with the Rosenhain curve Crosen in Equation (3.2), namely that
its Jacobian is (2, 2)-isogenous to that related to the Fast Kummer, and a ratio-

nality assumption is given, namely that γ =
√
CD/(AB) is in the ground field K.

However, it is difficult from the literature to derive the Kummer surface equation
for Kfast purely algebraically or to find an explicit map from a General Kummer;
even if one were to follow through the map from the Kummer of the Rosenhain
curve, this would be a (2, 2)-isogeny, rather than a linear map. Our intention in
this section is to show how to derive the Fast Kummer purely algebraically, with a
linear map from the General Kummer of a curve which is defined over the ground
field of a, b, c, d.

To find a plausible candidate, we note that Kfast and Ksqr are (2, 2)-isogenous
via the map (X,Y, Z, T ) 7→ (X2, Y 2, Z2, T 2), and we saw in the last section that
there is a linear map between Ksqr and the General Kummer of the Rosenhain
curve. So, a natural candidate for our desired curve is one which is (2, 2)-isogenous
to the Rosenhain curve. If we apply the Richelot formula in Equation (2.11) to
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the Rosenhain curve Crosen in Equation (3.2) we obtain (up to quadratic twist) the
following curve.

(4.2) D : y2 = x(x− 1)(x− ρ)(x− σ)(x− τ),

where

(4.3) ρ = CD/(AB), σ = (ac+ bd)C/((ac− bd)A), τ = (ac+ bd)D/((ac− bd)B).

There is a Richelot isogeny from Kgen(Crosen) to Kgen(D), and a Richelot isogeny
(the dual isogeny) from Kgen(D) to Kgen(Crosen). We shall not require here the
explicit equations for these Richelot isogenies, since from now onwards we shall
work entirely with Kgen(D).

We note that, unlike Crosen, the curve D is automatically defined over the ground
field of a, b, c, d, without the need for any rationality assumption. We do, however,
impose a non-degeneracy condition on a, b, c, d that ∞, 0, 1, ρ, τ, σ are distinct, so
that D is a curve of genus 2.

We also note that the Fast Kummer surface has several diagonalised involutions,
namely if one negates any two of X,Y, Z, T . This suggests that this model might be
derivable from the General Kummer of D by finding a linear map which diagonalises
these involutions. Let E0 denote the identity element of the Jacobian of D, and note
that the following points of order 2 have no overlap in support: E1 = {(σ, 0), (τ, 0)},
E2 = {∞, (0, 0)} and E3 = {(1, 0), (ρ, 0)}.

Our aim is to find linear change in coordinates which simultaneously diago-
nalises addition by E1, E2, E3. Since E1 = E2 + E3, it is sufficient if we simul-
taneously diagonalise E2 and E3. After using Equation (2.7) to find the matrix
which gives addition by E2 on the General Kummer, we see that it has eigenval-
ues (ac + bd)CD/((ac − bd)AB) and −(ac + bd)CD/((ac − bd)AB), each with an
eigenspace of dimension 2. Similarly, the matrix which gives addition by E3 on the
General Kummer has eigenvalues 4(a2d2 − b2c2)(a2b2 − c2d2)CD/(AB(ac − bd))2

and −4(a2d2 − b2c2)(a2b2 − c2d2)CD/(AB(ac − bd))2, each with an eigenspace of
dimension 2. These commute as affine matrices and so are simultaneously diago-
nalisable. We find that there is a dimension 1 intersection of each eigenspace of the
first matrix and each eigenspace of the second matrix, which provides four linearly
independent vectors which are common eigenvectors of both matrices. We put these
as the columns of the following change of basis matrix P .

(4.4) P =


cn21A

2B2 −dn21A2B2 −an21A2B2 bn21A
2B2

2an1ABm1 2bn1ABm2 −2cn1ABm3 2dn1ABm4

cn1n2ABCD dn1n2ABCD −an1n2ABCD −bn1n2ABCD
2an2CDm1 −2bn2CDm2 −2cn2CDm3 −2dn2CDm4

 ,

where

m1 = c2(a4 + b4 − c4 + d4)− 2a2b2d2, m2 = d2(a4 + b4 + c4 − d4)− 2a2b2c2,

m3 = a2(a4 − b4 − c4 − d4) + 2b2c2d2, m4 = b2(a4 − b4 + c4 + d4)− 2a2c2d2,

n1 = ac− bd, n2 = ac+ bd.

(4.5)
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We define the following map:

(4.6)


X
Y
Z
T

 = P−1


k1
k2
k3
k4

 .

Direct substitution (which we have verified in the Maple file in [CF24a]) now gives
that General Kummer equation is converted to the Fast Kummer equation, as
desired, which proves the following result.

Theorem 4.1. The map in Equation (4.6) is a linear map from the General Kum-
mer of D from Equation (4.2) to the Fast Kummer from Equation (4.1).

We now have a direct linear map between the General Kummer and the Fast
Kummer, which was our aim in this section, so that we now have a direct alge-
braic derivation of the Fast Kummer. It also gives a simpler approach any time
computations on the associated Jacobian variety are required. Indeed, one can use
the Jacobian variety of D if operations are required which are not defined on the
Kummer surface, and can help with pseudo-addition on the Kummer surface. This
approach also removes the need for any arithmetic assumption about γ, since all of
our varieties and maps are defined over the ground field of a, b, c, d.

The relationship between the objects discussed so far is summarised in the fol-
lowing commutative diagram.

(4.7)
Kgen(D)

Richelot−−−→ Kgen(Crosen)yP−1 yM
Kfast S−−−→ Ksqr,

where: surfaces Kgen, Ksqr and Kfast are as in Equations (2.4), (3.6) and (4.1),
respectively; curves Crosen, D are as in Equations (3.2) and (4.2), respectively;
linear maps M , P are as in Equations (3.5) and (4.4), respectively; and S denotes
the squaring map S : (X,Y, Z, T ) 7→ (X2, Y 2, Z2, T 2).

Additions by E1, E2, E3 on the Fast Kummer surface have all been diagonalised.
Explicitly, addition by E1 induces the map (X,Y, Z, T ) 7→ (X,Y,−Z,−T ), addition
by E2 induces the map (X,Y, Z, T ) 7→ (X,−Y,Z,−T ) and addition by E3 induces
the map (X,Y, Z, T ) 7→ (X,−Y,−Z, T ). If we let E0, . . . , E15 denote the entire
2-torsion subgroup, the addition by these induce the map which takes (X,Y, Z, T )
to, respectively:

(X,Y, Z, T ), (X,Y,−Z,−T ), (X,−Y,Z,−T ), (X,−Y,−Z, T ),

(Y,X, T, Z), (Y,X,−T,−Z), (Y,−X,T,−Z), (Y,−X,−T,Z),

(Z, T,X, Y ), (Z, T,−X,−Y ), (Z,−T,X,−Y ), (Z,−T,−X,Y ),

(T,Z, Y,X), (T,Z,−Y,−X), (T,−Z, Y,−X), (T,−Z,−Y,X).

(4.8)

The identity element on Kfast is (a, b, c, d). If we apply the above maps to this, we
get the complete set of 2-torsion elements on Kfast, namely:

(a, b, c, d), (a, b,−c,−d), (a,−b, c,−d), (a,−b,−c, d),

(b, a, d, c), (b, a,−d,−c), (b,−a, d,−c), (b,−a,−d, c),
(c, d, a, b), (c, d,−a,−b), (c,−d, a,−b), (c,−d,−a, b),
(d, c, b, a), (d, c,−b,−a), (d,−c, b,−a), (d,−c,−b, a),

(4.9)



10 MARIA CORTE-REAL SANTOS AND E. VICTOR FLYNN

which are the same as the list of nodes given by Gaudry in [Gau07, §3.4]. We
denote the action by the two torsion point Ei by σi : Kfast → Kfast as described
by Equation (4.8). For example, σ1 : (X,Y, Z, T ) 7→ (X,Y,−Z,−T ), and σ4 :
(X,Y, Z, T ) 7→ (Y,X, T, Z).

After applying the linear change of basis P , we recover the biquadratic forms
given by [RS17], which are much simpler version than the biquadratic forms on the
General Kummer surface, as follows.

Corollary 4.2. Let P,Q be points on the Jacobian of D, and let (XP , YP , ZP , TP ),
(XQ, YQ, ZQ, TQ) be their images on the Fast Kummer surface. Define the following
4× 4 matrix of biquadratic forms.

B11 =(X2
P + Y 2

P + Z2
P + T 2

P )(X2
Q + Y 2

Q + Z2
Q + T 2

Q)/(4A)

+ (X2
P + Y 2

P − Z2
P − T 2

P )(X2
Q + Y 2

Q − Z2
Q − T 2

Q)/(4B)

+ (X2
P − Y 2

P + Z2
P − T 2

P )(X2
Q − Y 2

Q + Z2
Q − T 2

Q)/(4C)

+ (X2
P − Y 2

P − Z2
P + T 2

P )(X2
Q − Y 2

Q − Z2
Q + T 2

Q)/(4D),

B22 =(X2
P + Y 2

P + Z2
P + T 2

P )(X2
Q + Y 2

Q + Z2
Q + T 2

Q)/(4A)

+ (X2
P + Y 2

P − Z2
P − T 2

P )(X2
Q + Y 2

Q − Z2
Q − T 2

Q)/(4B)

− (X2
P − Y 2

P + Z2
P − T 2

P )(X2
Q − Y 2

Q + Z2
Q − T 2

Q)/(4C)

− (X2
P − Y 2

P − Z2
P + T 2

P )(X2
Q − Y 2

Q − Z2
Q + T 2

Q)/(4D),

B33 =(X2
P + Y 2

P + Z2
P + T 2

P )(X2
Q + Y 2

Q + Z2
Q + T 2

Q)/(4A)

− (X2
P + Y 2

P − Z2
P − T 2

P )(X2
Q + Y 2

Q − Z2
Q − T 2

Q)/(4B)

+ (X2
P − Y 2

P + Z2
P − T 2

P )(X2
Q − Y 2

Q + Z2
Q − T 2

Q)/(4C)

− (X2
P − Y 2

P − Z2
P + T 2

P )(X2
Q − Y 2

Q − Z2
Q + T 2

Q)/(4D),

B44 =(X2
P + Y 2

P + Z2
P + T 2

P )(X2
Q + Y 2

Q + Z2
Q + T 2

Q)/(4A)

− (X2
P + Y 2

P − Z2
P − T 2

P )(X2
Q + Y 2

Q − Z2
Q − T 2

Q)/(4B)

− (X2
P − Y 2

P + Z2
P − T 2

P )(X2
Q − Y 2

Q + Z2
Q − T 2

Q)/(4C)

+ (X2
P − Y 2

P − Z2
P + T 2

P )(X2
Q − Y 2

Q − Z2
Q + T 2

Q)/(4D),

B12 =4(ab(XPYPXQYQ + ZPTPZQTQ)− cd(XPYPZQTQ + ZPTPXQYQ))/g12,

B13 =4(ac(XPZPXQZQ + YPTPYQTQ)− bd(XPZPYQTQ + YPTPXQZQ))/g13,

B14 =4(ad(XPTPXQTQ + YPZPYQZQ)− bc(XPTPYQZQ + YPZPXQTQ))/g14,

B23 =4(bc(XPTPXQTQ + YPZPYQZQ)− ad(XPTPYQZQ + YPZPXQTQ))/g23,

B24 =4(bd(XPZPXQZQ + YPTPYQTQ)− ac(XPZPYQTQ + YPTPXQZQ))/g24,

B34 =4(cd(XPYPXQYQ + ZPTPZQTQ)− ab(ZPTPXQYQ +XPYPZQTQ))/g34,

(4.10)

where gij denotes gigj − gkg`, where {i, j, k, `} = {1, 2, 3, 4} and g1, g2, g3, g4 de-
note A,B,C,D, respectively (for example g12 denotes AB − CD). For i > j, we
define Bij = Bji. Then these satisfy the analogous identity on the Fast Kum-
mer as described in Equation (2.9) for the General Kummer. That is to say,
if we let (ξ1, ξ2, ξ3, ξ4) and (ζ1, ζ2, ζ3, ζ4) denote (XP+Q, YP+Q, ZP+Q, TP+Q) and
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(XP−Q, YP−Q, ZP−Q, TP−Q) respectively, then the above matrix
(
Bij
)

is projec-

tively equal to the matrix
(
ξiζj + ζiξj

)
.

From the biquadratic forms, we may inductively define the division polynomials
which give multiplication-by-N , as follows. We initially define

φ
(0)
X = a, φ

(0)
Y = b, φ

(0)
Z = c, φ

(0)
T = d,

φ
(1)
X = X,φ

(1)
Y = Y, φ

(1)
Z = Z, φ

(1)
T = T,

(4.11)

and then inductively define the following, which are polynomials modulo the equa-
tion of the Fast Kummer surface.

φ
(2N)
X = B11

(
(φ

(N)
X , φ

(N)
Y , φ

(N)
Z , φ

(N)
T ), (φ

(N)
X , φ

(N)
Y , φ

(N)
Z , φ

(N)
T )

)
/a,

φ
(2N)
Y = B22

(
(φ

(N)
X , φ

(N)
Y , φ

(N)
Z , φ

(N)
T ), (φ

(N)
X , φ

(N)
Y , φ

(N)
Z , φ

(N)
T )

)
/b,

φ
(2N)
Z = B33

(
(φ

(N)
X , φ

(N)
Y , φ

(N)
Z , φ

(N)
T ), (φ

(N)
X , φ

(N)
Y , φ

(N)
Z , φ

(N)
T )

)
/c,

φ
(2N)
T = B44

(
(φ

(N)
X , φ

(N)
Y , φ

(N)
Z , φ

(N)
T ), (φ

(N)
X , φ

(N)
Y , φ

(N)
Z , φ

(N)
T )

)
/d,

(4.12)

and similarly

φ
(2N+1)
X = B11

(
(φ

(N+1)
X , φ

(N+1)
Y , φ

(N+1)
Z , φ

(N+1)
T ), (φ

(N)
X , φ

(N)
Y , φ

(N)
Z , φ

(N)
T )

)
/X,

φ
(2N+1)
Y = B22

(
(φ

(N+1)
X , φ

(N+1)
Y , φ

(N+1)
Z , φ

(N+1)
T ), (φ

(N)
X , φ

(N)
Y , φ

(N)
Z , φ

(N)
T )

)
/Y,

φ
(2N+1)
Z = B33

(
(φ

(N+1)
X , φ

(N+1)
Y , φ

(N+1)
Z , φ

(N+1)
T ), (φ

(N)
X , φ

(N)
Y , φ

(N)
Z , φ

(N)
T )

)
/Z,

φ
(2N+1)
T = B44

(
(φ

(N+1)
X , φ

(N+1)
Y , φ

(N+1)
Z , φ

(N+1)
T ), (φ

(N)
X , φ

(N)
Y , φ

(N)
Z , φ

(N)
T )

)
/T.

(4.13)

The polynomials φ
(N)
X , φ

(N)
Y , φ

(N)
Z , φ

(N)
T are each of degree N2 in X,Y, Z, T , and

they give the multiplication-by-N map.
For odd N , we note that the 2-torsion subgroup maps to itself under multi-

plication by N , and the effect of addition by these 2-torsion elements, described
in Equation (4.8) is preserved. Furthermore, we can see inductively that these ac-
tions are preserved on the division polynomials not merely projectively, but trans-
parently as affine polynomials. That is to say, for example, replacing X,Y, Z, T

with X,Y,−Z,−T has precisely the effect of replacing φ
(N)
X , φ

(N)
Y , φ

(N)
Z , φ

(N)
T with

φ
(N)
X , φ

(N)
Y ,−φ(N)

Z ,−φ(N)
T , and similarly for all of the involutions in Equation (4.8).

One consequence is that the polynomial φ
(N)
X only includes those monomials which

are left unchanged by taking (X,Y, Z, T ) to any of (X,Y, Z, T ), (X,Y,−Z,−T ),

(X,−Y,Z,−T ), (X,−Y,−Z, T ). The polynomial φ
(N)
Y only includes those mono-

mials which are left unchanged by first and second of these and are negated by the

third and fourth. The polynomial φ
(N)
Z only includes those monomials which are

left unchanged by first and third of these and are negated by the second and fourth.

The polynomial φ
(N)
T only includes those monomials which are left unchanged by

first and fourth of these and are negated by the second and third. This describes a
partition of all monomials of degree N2 into four parts, and each of the degree N
division polynomials only contains those from one part. We note also that the
equation of the Fast Kummer surface itself involves only degree 4 monomials of the
first type (left unchanged by all four of these involutions).
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Addition by other points of order 2 gives further structure. For example, swap-

ping X ↔ Y, Z ↔ T will have the effect φ
(N)
X ↔ φ

(N)
Y , φ

(N)
Z ↔ φ

(N)
T .

We also note that the construction in this section, in which two elements of
order 2 have their associated linear maps simultaneously diagonlised in order to
simplify the Kummer surface (and its associated structures) is available whenever
we start with a curve of genus 2 of the form y2 = H1(x)H2(x)H3(x), provided
that the resultant of H1 and H2H3, and the resultant of H2 and H1H3 are squares
in K (it follows that the resultant of H3 and H1H2 will also be square in K). This
ensures that we can simultaneously diagonalise that maps for addition by the points
of order 2 corresponding to H1, H2, H3 since they will commute as affine matrices
and their eigenvalues will be in K. The result will not necessarily be as elegant as
the Fast Kummer surface model (for example, it will not typically be monic in all
of X4, Y 4, Z4, T 4), but it will be just as sparse, consisting only of terms involving
the monimials X4, Y 4, Z4, T 4, X2Y 2, Z2T 2, X2Z2, Y 2T 2, Z2T 2, Y 2Z2, and the
associated biquadratic forms will also involve the same monomials as for the Fast
Kummer model. Furthermore, the resulting model would be applicable to a wider
set of Kummer surfaces. We demonstrate this in the following example.

Example 4.3. Consider the genus-2 hyperelliptic curve C : y2 = H1(x)H2(x)H3(x)
defined over F101 with

H1(x) = x2 + 15x+ 13,

H2(x) = x2 + 53x+ 83,

H3(x) = x2 + 10x+ 64.

and corresponding General Kummer surface

Kgen : 84k41 + k31k2 + 3k31k3 + 11k31k4 + 7k21k
2
2 + 93k21k2k3 + 33k21k2k4 + 64k21k

2
3

+ 96k21k3k4 + 50k1k
3
2 + 76k1k

2
2k3 + 49k1k2k

2
3 + 9k1k2k3k496k1k

3
3

+ 25k1k
2
3k4 + 97k1k3k

2
4 + 11k42 + 66k32k3 + 96k22k

2
3 + k22k

2
4 + 18k2k

3
3

+ 46k2k
2
3k4 + 49k43 + 97k33k4.

None of H1, H2, H3 have roots in F101, and therefore C cannot be put into Rosen-
hain form. As a result, Kgen cannot be put into Fast Kummer form. How-
ever, the resultants res(H1, H2H3) and res(H2, H1H3) are squares in F101. Indeed,
res(H1, H2H3) = 78 = 522 and res(H2, H1H3) = 79 = 682. On Kgen, addition by
the 2-torsion points corresponding to the factor H1 is given by the matrix

M1 =


6 18 39 1
92 13 15 86
17 52 22 13
46 54 52 60

 ,

with eigenvalues 52 and 49. For the 2-torsion points corresponding to H2 addition
is given by

M2 =


58 100 96 1
60 91 13 48
32 15 52 83
66 22 58 1

 ,
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with eigenvalues 33 and 68. The matrices M1 and M2 commute and so can be
simultaneously diagonalised using the matrix

P =


1 37 4 88
1 13 6 65
1 76 66 99
1 12 30 91

 ,

which we find by following the procedure described in the paragraphs before Equa-
tion (4.4). Setting 

X
Y
Z
T

 = P−1


k1
k2
k3
k4

 ,

the General Kummer surface Kgen is transformed into a Kummer surface K given
by equation:

K : 50X4 + 57Y 4 + 27T 4 + 83Z4 + 70X2Y 2 + 10Z2T 2

+ 54X2Z2 + 91Y 2T 2 + 13X2T 2 + 44Y 2Z2 + 90XY ZT.

We see that K has a sparse defining equation, similar to the Fast Kummer model.

5. Computation of (N,N)-isogenies between Kummer surfaces

In this section, we give algorithms to compute (N,N)-isogenies, for N odd, be-
tween various Kummer surface models. For our methods we assume the biquadratic
forms Bi,j (for 1 ≤ i, j ≤ 4) associated to our domain Kummer surface K are known
and efficiently computable.

Let J be a Jacobian of a hyperelliptic curve of genus 2 curve with corresponding
Kummer surface K. Let R,S ∈ J[N ] be points of order N on J with images
k(R), k(S) on K, respectively. If 〈R,S〉 ⊂ J[N ] is a maximal isotropic subgroup,
〈R,S〉 is the kernel of an (N,N)-isogeny Φ : J→ J′ = J/〈R,S〉 between Jacobians.
This (N,N)-isogeny descends to a morphism of Kummer surfaces

ϕ : K → K′

(k1, k2, k3, k4) 7→ (k′1, k
′
2, k
′
3, k
′
4).

By abuse of terminology, we say ϕ is an (N,N)-isogeny between Kummer surfaces
with kernel generated by N -torsion points R,S ∈ K[N ]. We denote the coordinates
of R by (R1, R2, R3, R4), and similarly for S.

For the rest of the article, our aim is to compute this (N,N)-isogeny, where the
Kummer surfaces are in a desired model. This can be separated into three main
algorithms:

• Computing a basis for the space of degree N homogeneous forms that are
invariant under addition by the N -torsion point R. We repeat this for
the other kernel generator S, to obtain two bases BR and BS . These are
constructed using the biquadratic forms associated to the Kummer surface.
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• Computing a basis for the intersection of the two spaces generated by BR
and BS . The intersection will have expected dimension 4, and a basis for

this space will give the coordinates of a map ψ : K → K̃, which has kernel

〈R,S〉, but K̃ is not necessarily in desired form.

• Compute a linear map λ that brings K̃ into desired form K′.

We remark that the first two algorithms are applicable to any model of Kummer
surface with efficiently computable biquadratic forms. In this article, we show how
to find the final scaling for the General and Fast Kummer surfaces.
Notation. We will give precise operation counts for our algorithms, and denote a
multiplication, inversion, squaring, computing square roots, and addition in K by
M, I, S, Sq and a.

Step 1: Find forms invariant under translation by an N-torsion point.
Use the biquadratic forms Bij associated to K to define the forms in k1, k2, k3, k4
of degree N which are invariant under addition by R, and the forms of degree N
which are invariant under addition by S.

For general odd N = 2n+ 1, let P ∈ K be a point and define

R
(`)
ij (P ) = Bij(P, `R), for ` ∈ {1, . . . , n},

S
(`)
ij (P ) = Bij(P, `S), for ` ∈ {1, . . . , n}.

(5.1)

Then, for i1, . . . , iN ∈ {1, . . . , 4}, we take

(5.2) FR,N
(
(i1, . . . , iN ), P

)
=
∑

ki1(P )R
(1)
i2i3

(P )R
(2)
i4i5

(P ) · · ·R(n)
iN−1iN

(P ),

where the sum is taken over all permutations of i1, . . . , iN .

Lemma 5.1. Let (i1, . . . , iN ) ∈ {1, . . . , 4}N . The homogeneous form FR,N
(
(i1, . . . , iN ), P

)
is of degree N and is invariant under translation-by-R.

Proof. Firstly, eachR
(`)
i,j is a homogeneous form of degree 2, and so FR,N

(
(i1, . . . , iN ), P

)
is of degree 2

(
N−1
2

)
+ 1 = N . We now show that these forms are invariant under

translation-by-R. Letting I := (i1, . . . , iN ) ∈ {1, . . . , 4}N , we define the set SI as

SI :=
{
σ
(
(i1, i2, i4, . . . , iN−1, iN , . . . , i5, i3)

)
: σ ∈ 〈id, (2 3), . . . , (N − 1N)〉

}
.

We have

ki1R
(1)
i2i3

R
(2)
i4i5
· · ·R(n)

iN−1iN
=

∑
(j1,...,jN )∈SI

kj1(P )kj2(P +R) · · · kjN (P + (N − 1)R).

Defining

qj1,...,jN (P ) := kj1(P )kj2(P +R) · · · kjN (P + (N − 1)R),

we verify that

qj1,...,jN (P +R) = kjN (P )kj1(P +R) · · · kjN−1
(P + (N − 1)R)

= qjN ,j1,...,jN−1
(P ).
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Therefore, we find that

FR,N
(
I, P +R

)
=
∑
I

∑
(j1,...,jN )∈SI

qj1,...,jN (P +R)

=
∑
I

∑
(j1,...,jN )∈SI

qjN ,j1,...,jN−1
(P )

=
∑
I

∑
(j1,...,jN )∈SĨ

qj1,...,jN (P )

where Ĩ = (iN , i1, . . . , iN−1) for I = (i1, . . . , iN ). Then

FR,N
(
I, P +R

)
=
∑
I

kiNR
(1)
i1i2
· · ·R(n)

iN−2iN−1

=
∑
I

ki1R
(1)
i2i3
· · ·R(n)

iN−1iN

= FR,N
(
I, P

)
,

as required. �

Remark 5.2. For ease of notation, instead of FR,N
(
(i1, . . . , iN ), P

)
we will write

FR,N (i1, . . . , iN ) when the point P ∈ K is implicit.

As an optimisation, we may restrict that i < j within each R
(`)
ij , and count

this form several times in the sum (rather than recomputing it multiple times).
By Lemma 5.1, FR,N (i1, . . . , iN ) will generate a space XR of homogeneous degree N
forms that are invariant under translation by R. We similarly define the space XS

from the homogeneous forms FS,N (i1, . . . , iN ).
In the next proposition, we show that these spaces have dimension 2(N + 1).

Proposition 5.3. Let R ∈ K[N ] be a point of order N on K. Let XR be the
space generated by homogeneous forms of degree N on K that are invariant under
translation by R. Then dim(XR) = 2(N + 1).

Proof. To prove this proposition we use the theory of theta functions. Let J be a
Jacobian of genus 2 curve corresponding to the Kummer surface K. Let L be the
symmetric line bundle giving rise to the principal polarisation on J.

The theta functions {θβ}β∈(Z/2NZ)2 , as defined in, for example, [FKM24, Def-

inition 2.1] (taking k = 2N), form a basis for H0(J,L2N ). Note here β lies in
(Z/2NZ)2 by its identification with a maximal isotropic subgroup of J[2N ].

The action of [−1]∗ on the global sections {θβ}β∈(Z/2NZ)2 is described by the
general transformation formula θβ(−z) = θ−β(z). If θβ is fixed under this action
then β is a 2-torsion point in (Z/2NZ)2, i.e., β ∈ {(0, 0), (N, 0), (0, N), (N,N)}.
Furthermore, a sum of these global sections is invariant under this action if and
only if it is of the form∑

ord(β) 6=2

[
cβ(θβ + θ−β)

]
+ c1θ(0,0) + c2θ(N,0) + c3θ(0,N) + c4θ(N,N),

for some cβ , c1, c2, c3, c4 ∈ Z.
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The space of degree N homogeneous forms on K is generated by the subspace
of H0(J,L2N ) that is invariant under the action of [−1]∗, and, by the discussion
above, a basis for this space is given by{

θ(0,0), θ(N,0), θ(0,N),θ(N,N)

}
∪

{
θ(b1,b2) + θ(−b1,−b2)

∣∣∣∣∣ (b1,b2) 6=
(0, 0), (N,N),

(0, N), (N, 0)

}
The size of this basis is 4 + 1

2 (4N2 − 4) = 2(N2 + 1), and therefore the dimension

of the space of degree N homogeneous forms on K is 2(N2 + 1).
Given this basis, we now find the forms that generate XR, i.e., the space of

degree N homogeneous forms on K that are invariant under translation by an N -
torsion point R.

Using the identity, for a suitable primitive 2N -th root of unity ζ2N , for an N -
torsion point r = (r1, r2) ∈ (Z/2NZ)2 we have

θ(b1,b2)(z + r) = (ζ2N )r1b1+r2b2θ(b1,b2)(z).

We immediately see that

θ(0,N)(z + r) = (ζ2N )N ·r2θ(b1,b2)(z) = θ(b1,b2)(z),

as r2 is an N -torsion point in Z/2NZ. This also holds for θ(N,0), θ(0,0), and θ(N,0).
Note that (r1, r2) ∈ {(2, 0), (0, 2), (2, 2)}. Take, for example r = (2, 0) and

consider basis elements of the form (θ(b1,b2) + θ(−b1,−b2))(z). By indepedence of the
θβ , it is invariant under translation-by-r if and only if

(ζ2N )2b1 = 1 ⇐⇒ 2b1 ≡ 0 mod 2N ⇐⇒ b1 = 0 or N.

Therefore, a basis BR for the space XR is given by{
θ(0,0), θ(N,0), θ(0,N),θ(N,N)

}
∪

{
θ(b1,b2) + θ(−b1,−b2)

∣∣∣∣∣ b1 = 0, N and b2 6= 0, N
up to (b1, b2) 7→ (b1,−b2)

}
For basis elements of the form θ(b1,b2) + θ(−b1,−b2), we have 2 choices for b1 and
(2N − 1)/2 = N − 1 choices for b2. In particular, the basis has size dim(XR) =
4 + 2(N − 1) = 2(N + 1). The same holds when r = (0, 2) or (2, 2). �

Conjecture 5.4. A basis for the space XR, defined as in Proposition 5.3 is given
by the forms described in Equation (5.2) corresponding to indices (i1, . . . , iN ) ∈ IN
where

IN :=
{
{1, 1, . . . , 1, 1}, {1, 1, . . . , 1, 2}, . . . , {1, 2, . . . , 2, 2}, {2, 2, . . . , 2, 2},
{3, 3, . . . , 3, 3}, {3, 3, . . . , 3, 4}, . . . , {3, 4, . . . , 4, 4}, {4, 4, . . . , 4, 4}

}
.

For General and Fast Kummer surfaces we have confirmed this experimentally
for odd N ≤ 19, and we therefore develop our algorithms under this assumption.
We highlight, however, that if this is not the case for larger N or other Kummer
surface models, one can compute the invariant forms corresponding to all possible
indices (i1, . . . , iN ) ∈ {1, 2, 3, 4}N and then use linear algebra to find a basis for
the space XR. The indices corresponding to a basis should be independent of
the N -torsion point R, and this can therefore be computed once and used for all
subsequent computations.
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Remark 5.5. There are other choices of bases, such as the basis given by forms
corresponding to the following indices:{

{1, 1, . . . , 1, 1}, {1, 1, . . . , 1, 4}, . . . , {1, 4, . . . , 4, 4}, {4, 4, . . . , 4, 4},
{2, 2, . . . , 2, 2}, {2, 2, . . . , 2, 3}, . . . , {2, 3, . . . , 3, 3}, {3, 3, . . . , 3, 3}

}
.

However, we found no computational advantage in choosing another basis. If fu-
ture research reveals that another choice results in a better basis, the algorithms
presented in this article can be easily adapted.

By Proposition 5.3 and assuming Conjecture 5.4, given above, we obtain a sim-
ple method for generating a basis of the spaces BR and BS , where R,S are N -
torsion points generating the kernel of the (N,N)-isogeny, which we give in Algo-
rithm 1. In Line 7 of Algorithm 1, the sum is taken over all permutations of I,
as described in Equation (5.2). For our optimised implementation attached to this

article given in [CF24a], we note that R
(`)
i,j = R

(`)
j,i and avoid superfluous compu-

tations by computing the summand ki1R
(1)
i2i3

R
(2)
i4i5

. . . R
(n)
iN−1iN

only for (i1, . . . , iN )

such that ij ≤ ij+1 for j > 1 and j ≡ 0 mod 2, and scalar multiply by how many
such summands occur in the sum for FR,N (I).

Algorithm 1 FindBasis: find a basis for XR, R is a point of odd order N on Kfast
a,b,c,d

Input: An N -torsion point R on the Kummer surface K with coordinates
(k1, k2, k3, k4), multiples (2R, 3R, . . . , ((N − 1)/2)R) of the point R, and the
list of indices IN .

Output: A basis BR of size 2(N + 1) generating XR.
1: BR = {}
2: n = (N − 1)/2
3: for ` from 1 to n do
4: Compute R

(`)
ij (k1, k2, k3, k4) = Bij((k1, k2, k3, k4), `R) for all i, j ∈ {1, 2, 3, 4}

5: end for
6: for I in IN do

7: FR,N (I) =
∑
ki1R

(1)
i2i3

R
(2)
i4i5

. . . R
(n)
iN−1iN

8: Add FR,N (I) to BR
9: end for

10: return BR

Proposition 5.6. The cost of finding the basis BR using Algorithm 1 with IN as
in Conjecture 5.4 is bounded by

Costbasis ≤ 9(3(N−1)/2 − 1) Mpoly + 2(3(N−1)/2 −N − 1) apoly +
N − 1

2
· Costbiquad,

where Mpoly and apoly represents a multiplication and an addition in K[k1, k2, k3, k4]
(respectively) and Costbiquad is the cost of computing the evaluated biquadratic form

R
(`)
ij = Bij((k1, k2, k3, k4), `R) for some 1 ≤ ` ≤ (N − 1)/2.

Proof. To compute the FR,N (I) for all

I ∈
{
{1, 1, . . . , 1, 1}, {1, 1, . . . , 1, 2}, . . . , {1, 2, . . . , 2, 2}, {2, 2, . . . , 2, 2}

}
,
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we first compute ki1R
(1)
i2i3

R
(2)
i4i5

. . . R
(n)
iN−1iN

for all (i1, . . . , iN ) with ik ∈ {1, 2} for all

k = 1, . . . , N and ij ≤ ij+1 for j > 1 and j ≡ 0 mod 2.

We start with the forms R
(1)
1,1, R

(1)
1,2, R

(1)
2,2. The first step is to multiply each of

these forms by R
(2)
1,1, R

(2)
1,2, and R

(2)
2,2 to obtain

R
(1)
1,1R

(2)
1,1, R

(1)
1,1R

(2)
1,2, R

(1)
1,1R

(2)
2,2,

R
(1)
1,2R

(2)
1,1, R

(1)
1,2R

(2)
1,2, R

(1)
1,2R

(2)
2,2,

R
(1)
2,2R

(2)
1,1, R

(1)
2,2R

(2)
1,2, R

(1)
2,2R

(2)
2,2.

At step m we multiply the output of the previous step with R
(k+1)
1,1 , R

(k+1)
1,2 , and

R
(k+1)
2,2 . We continue this until m = (N − 1)/2− 1. Each step requires 3m+1 multi-

plications in K[k1, k2, k3, k4], so to run all steps we need at most
∑(N−1)/2
m=1 3m+1 =

9
2 (3(N−1)/2−1) multiplications in K[k1, k2, k3, k4]. Then, we multiply each of these
forms by k1 and then by k2 to obtain all forms needed to compute all the FR,N (I).
Note that representing the homogeneous forms as an array of coefficients, this final
step does not require any multiplications in K. We then construct all the FR,N (I)

from these forms using 3(N−1)/2 − (N + 1) additions in K[k1, k2, k3, k4].
The same argument holds for indices in{

{3, 3, . . . , 3, 3}, {3, 3, . . . , 3, 4}, . . . , {3, 4, . . . , 4, 4}, {4, 4, . . . , 4, 4}
}
,

and we obtain a cost of 9(3(N−1)/2 − 1) multiplications and 2 · 3(N−1)/2 − 2(N + 1)
additions in K[k1, k2, k3, k4] to compute the basis for XR using FindBasis given

biquadratics R
(`)
ij for 1 ≤ ` ≤ (N − 1)/2.

The cost of computing R
(`)
ij for all 1 ≤ ` ≤ (N − 1)/2 is N−1

2 · Costbiquad.
Combining these costs, we get the upper bound given in the statement of the
proposition. �

Remark 5.7. In Proposition 5.6, we do not give a precise cost for Mpoly and
Costbiquad in terms of K-operations. Indeed, Mpoly is hard to estimate as the size of
the input is not fixed along the computation. Furthermore, Costbiquad depends on
the model of the Kummer surface we are working with. In Section 5.2.7, we give a
precise upper bound for the cost of Costbiquad for Fast Kummer surfaces.

Step 2: Compute the intersection. Once we have a bases BR and BS for the
spaces XR and XS , we compute the intersection XR,S of expected dimension 4,
with basis BR,S = {ψ1, ψ2, ψ3, ψ4}. These basis elements will give the coordinates
of the degree-N map ψ. To find the ψi, we consider the equation

(5.3)
∑
f∈BR

cf · f −
∑
g∈BS

cg · g = 0,

where the coefficients cf and cg ∈ K. As this equation must hold for any point
(k1, k2, k3, k4) on K, the coefficients of each monomial in Equation (5.3) must be
identically zero. This gives us a linear system over the ground field K in the
coefficients cf , cg ∈ K. To find ψ, we compute the kernel basis vectors{

(cf,1 : f ∈ BR, cg,1 : g ∈ BS), (cf,2 : f ∈ BR, cg,2 : g ∈ BS),
(cf,3 : f ∈ BR, cg,3 : g ∈ BS), (cf,4 : f ∈ BR, cg,4 : g ∈ BS)

}
,(5.4)
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of the matrix corresponding to this linear system. Then each ψi is given by the sum
ψi =

∑
f∈BR

cf,i · f. We summarise this in Algorithm 2. In Line 13 of Algorithm 2,

on input a matrix M , BasisForKernel(M) will compute a basis for the kernel of that
matrix.

Algorithm 2 FindIntersection: find a basis for the intersection XR,S

Input: A basis BR for the space XR and a basis BS for the space XS

Output: The generator of the intersection XR,S = XR ∩XS

1: Let mons be the monomials in BR and BS
2: BR = {f1, . . . , f2(N+1)}
3: BS = {g1, . . . , g2(N+1)}
4: for j = 1 to 4(N + 1) do
5: for i = 1 to 2(N + 1) do
6: Let ci,j be the coefficient of monsj in fi
7: end for
8: for i = 2(N + 1) + 1 to 4(N + 1) do
9: Let ci,j be the coefficient of monsj in −gi

10: end for
11: end for
12: M = (ci,j)i=1,...,4(N+1),j=1,...,2(N+1)

13: (d1, . . . , d2(N+1)) = BasisForKernel(M)

14: F =
∑2(N+1)
i=1 difi

15: return F

Proposition 5.8. The cost of computing the intersection XR,S = XR∩XS with Al-
gorithm 2 is

Cost∩ ≤
2

3
(N + 1)(2N3 + 44N2 + 122N + 69) M +

2

3
(8N + 5)(4N2 + 11N + 9) a.

Proof. The linear system of equations given by∑
f∈BR

cf · f −
∑
g∈BS

cg · g

is a system of m equations in #BR + #BS = 4(N + 1) unknowns, where m is the
number of monomials in BR and BS . For R,S generating the kernel of an (N,N)-
isogeny, the dimension of the solution space will be 4(N + 1), thus it suffices to
consider 4(N + 1) of the m equations. In this way, we can obtain the coefficients
cf , cg ∈ K using Gaussian elimitation. Since we work projectively, we may adapt
Farebrother [Far88] to remove inversions (at the cost of more multiplications), we
find that we find the coefficients with 64

3 N
3 + 72N2 + 230

3 N + 26 multiplications,

and 64
3 N

3 + 88N2 + 314
3 N + 38 additions in K.

Recalling that #BR = 2(N + 1), constructing the basis of the intersection via

ψi =
∑
f∈BR

cf,if requires at most 8(N + 1) ·m ≤ 8(N + 1)
(
N+3
3

)
multiplications

and 8N + 4 additions in K.
Adding this to the cost of Gaussian elimination, we obtain the costs in the

statement of the proposition. �
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Step 4: Find the linear map to bring the image into desired form. From
Steps 1 to 3, we have calculated the degree-N map

ψ = (ψX , ψY , ψZ , ψT ) : K → K̃,

with kernel 〈R,S〉. However, K̃ may not be in desired Kummer suface model.

Therefore, we must apply a linear map λ : K̃ → K′ to obtain the (N,N)-isogeny

ϕ = λ ◦ ψ : K → K′, (k1, k2, k3, k4) 7→ (k′1, k
′
2, k
′
3, k
′
4)

with kernel 〈R,S〉, where K′ is in the desired form.
Step 5: Find the image Kummer surface. The final step is to find the
parameters defining the image Kummer surface.

The method for finding the scaling and image Kummer surface varies depending
on what model we are working with. In this article we focus on the General and
Fast Kummer surface models.

Over the next two sections, we go into detail on how to find isogenies between
Kummer surfaces in the General and Fast models, providing examples in the case
N = 5.

5.1. Construction of (N,N)-isogenies on the General Kummer model. We
consider the case where K = Kgen is in General Kummer form. We want to find an
(N,N)-isogeny ϕ : Kgen → K̂gen with kernel 〈R,S〉 for R,S ∈ Kgen[N ]. Suppose
we have followed Steps 1-3 to obtain a degree-N map

ψ = (ψ1, ψ2, ψ3, ψ4) : Kgen → K̃,
(k1, k2, k3, k4) 7→ (`1, `2, `3, `4).

We must now find the linear map λ : K̃ → K̂gen to obtain the isogeny as ϕ = λ ◦ψ.

5.1.1. Find the final linear map. Examine the k1k
N−1
4 , k2k

N−1
4 , k3k

N−1
4 , kN4 terms

in each ψi and perform a linear map so that `1 has only a k1k
N−1
4 term (but not

the others), `2 has only a k2k
N−1
4 term (but not the others), `3 has only a k3k

N−1
4

term (but not the others), `4 has only a kN4 term (but not the others).
We now wish to write the quartic which is satisfied by `1, `2, `3, `4. To find the

coefficients of this quartic, we use the formal power series in Equation (2.5), and
then check it is correct. We expect the quartic to have the form

(5.5) (`22 − 4`1`3)`24 + µ1(`1, `2, `3)`4 + µ0(`1, `2, `3),

where µ1 is cubic and µ0 is quartic. By this we mean: initially all coefficients in
µ1(`1, `2, `3) and µ0(`1, `2, `3) should be variables. We then replace k1, k2, k3, k4
with the power series in Equation (2.5). Any true identity should make the power
series in s1, s2 equal to zero. This gives a set linear equations in the coefficients
which allow us to solve quickly for µ1(`1, `2, `3) and µ0(`1, `2, `3).

If the defining equation has terms of the form `1`
2
2`4, `32`4, `22`3`4, we apply a

further linear map (`1, `2, `3, `4) 7→ (`1, `2, `3, `
′
4), where `′4 = `4−u1`1−u2`2−u3`3,

so that the equation satisfied by `1, `2, `3, `
′
4 no longer has these terms.

5.1.2. Find the image General Kummer surface. For Step 5, we now use Equa-
tion (2.4) to read off f ′0, . . . , f

′
6 as the coefficients of−4k31, −2k21k2, −4k21k3, −2k1k2k3,

−4k1k
2
3f4, −2k2k

2
3, −4k33, respectively, and then check that our quartic is indeed

the General Kummer equation for the target curve y2 = f ′6x
2 + . . .+ f ′0.
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Example 5.9. Let C : y2 = x5 + 3x4 + 9x3 + 10x2 + 9x+ 3 over the finite field F11.
If we specialise Equation (2.4), we see that the General Kummer equation is

Kgen : (7k1k3 + k22)k24

+ (10k31 + 4k21k2 + 4k21k3 + 4k1k2k3 + 10k1k
2
3 + 9k2k

2
3)k4

+ 5k41 + k43 + 3k21k2k3 + 8k1k
2
2k3 + 4k1k2k

2
3 + k21k

2
3

+ 2k31k2 + 3k31k3 + 8k21k
2
2 + 10k1k

3
2 + 4k1k

3
3 = 0.

(5.6)

There are two independent points of order 5, and their images on the General
Kummer are R = (0, 1, 4, 5) and S = (0, 1, 0, 0). Note also that 2R = (1, 8, 5, 7) and
2S = (1, 0, 0, 5). After applying Steps 1 to 3, we obtain quintics, which are invariant
under addition by R and by S. After adjusting them linearly to have the correct
terms for k1k

4
4, k2k

4
4, k3k

4
4 and k54, we obtain ψ : (k1, k2, k3, k4) 7→ (`1, `2, `3, `4)

where

(5.7)

`1 = 6k51 + 9k41k2 + 4k41k3 + 3k41k4 + 5k31k
2
2 + 6k31k2k3 + 4k31k2k4

+ 5k31k
2
3 + 7k31k3k4 + 10k31k

2
4 + 6k21k

3
2 + k21k

2
2k3 + 8k21k

2
2k4

+ 7k21k2k
2
3 + 9k21k2k3k4 + 4k21k2k

2
4 + 10k21k

3
3 + 8k21k

2
3k4 + 8k21k3k

2
4

+ 7k21k
3
4 + 7k1k

2
2k

2
3 + 2k1k2k

3
3 + 4k1k2k3k

2
4 + 9k1k2k

3
4 + 2k1k

4
3

+ 10k1k
3
3k4 + 5k1k

2
3k

2
4 + 9k1k3k

3
4 + k1k

4
4 + k32k

2
3 + 3k22k

3
3 + k22k

2
3k4

+ 3k2k
3
3k4 + 8k2k

2
3k

2
4 + 7k43k4 + 7k33k

2
4 + 6k23k

3
4,

`2 = 3k51 + 10k41k2 + 9k41k3 + 7k41k4 + 9k31k
2
2 + 7k31k2k3 + 2k31k2k4 + 10k31k

2
3

+ 8k31k3k4 + k31k
2
4 + 7k21k

2
2k4 + 6k21k2k

2
3 + 2k21k2k3k4 + 2k21k2k

2
4

+ 8k21k
3
3 + 9k21k3k

2
4 + 9k21k

3
4 + 2k1k

3
2k3 + k1k

2
2k

2
3 + 4k1k

2
2k3k4

+ 2k1k2k
3
3 + 2k1k2k

2
3k4 + k1k2k3k

2
4 + 5k1k2k

3
4 + 10k1k

4
3 + 8k1k

3
3k4

+ 9k1k
2
3k

2
4 + 3k1k3k

3
4 + 2k32k3k4 + 10k22k

3
3 + 10k22k

2
3k4 + 2k2k

4
3 + 4k2k

3
3k4

+ 6k2k
2
3k

2
4 + 3k2k3k

3
4 + k2k

4
4 + 3k53 + 9k43k4 + 8k33k

2
4,

`3 = 9k51 + 3k41k2 + 9k41k3 + 7k31k2k3 + 9k31k2k4 + 8k31k
2
3 + 7k31k3k4 + 3k31k

2
4 + k21k

3
2

+ k21k
2
2k3 + 5k21k2k

2
3 + 8k21k2k3k4 + 7k21k2k

2
4 + 5k21k

3
3 + 2k21k

2
3k4 + 7k21k3k

2
4

+ k21k
3
4 + k1k

4
2 + 10k1k

3
2k3 + k1k

3
2k4 + 7k1k

2
2k

2
3 + k1k

2
2k3k4 + 6k1k2k

2
3k4

+ 7k1k2k3k
2
4 + 2k1k2k

3
4 + 6k1k

4
3 + 4k1k

3
3k4 + 9k1k

2
3k

2
4 + 9k1k3k

3
4

+ k22k
2
3k4 + k2k

2
3k

2
4 + 9k2k3k

3
4 + 9k53 + 10k43k4 + 8k33k

2
4 + 6k23k

3
4 + k3k

4
4,

`4 = 10k41k2 + k41k3 + 5k41k4 + k31k
2
2 + 4k31k2k3 + 9k31k2k4 + 3k31k

2
3 + 3k31k3k4 + 9k31k

2
4

+ 10k21k
3
2 + 8k21k

2
2k3 + 9k21k

2
2k4 + 5k21k2k

2
3 + 10k21k2k3k4 + 6k21k2k

2
4 + 10k21k

3
3

+ 6k21k
2
3k4 + 8k21k

3
4 + 4k1k

4
2 + 5k1k

3
2k3 + 5k1k

3
2k4 + 3k1k2k

3
3 + k1k2k

2
3k4

+ 5k1k2k3k
2
4 + 10k1k2k

3
4 + 8k1k

4
3 + 8k1k

3
3k4 + 6k1k

2
3k

2
4 + 4k1k3k

3
4 + 9k1k

4
4

+ k52 + 10k42k3 + k42k4 + 7k32k
2
3 + 10k32k3k4 + 2k22k

3
3 + 8k22k

2
3k4 + 9k2k

4
3

+ 5k2k
2
3k

2
4 + 10k2k3k

3
4 + 9k2k

4
4 + 2k53 + 10k43k4 + 6k33k

2
4 + 2k23k

3
4 + 9k3k

4
4 + k54.

We now find the quartic which is satisfied by `1, `2, `3, `4. We set up the form
in Equation (5.5) where, for the moment, the coefficients of µ1 and µ0 are variables.
We then substitute Equation (2.5) into Equation (5.7), and then substitute these
into Equation (5.5), truncating the power series at the degree 10 terms in s1, s2.
The fact that the power series is identically zero gives us a set of linear equations
which we solve in the coefficients of µ1 and µ0. This gives the following quartic in
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`1, `2, `3, `4.

`24(`22 + 7`1`3)

+ (3`31 + 5`21`2 + 7`1`
2
2 + 9`1`2`3 + 7`1`

2
3 + 7`32 + 7`22`3 + 9`2`

2
3 + 2`33)`4

+ 4`41 + 9`21`
2
2 + 7`21`2`3 + 7`21`

2
3 + 8`1`

2
2`3

+ 4`1`2`
2
3 + 2`1`

3
3 + 8`42 + 3`32`3 + 5`22`

2
3 + 7`2`

3
3 + 7`43.

(5.8)

If we wish, we can verify that `1, `2, `3, `4 indeed satisfy this equation, by substi-
tuting Equation (5.7) into Equation (5.8) and checking that the result is indeed
divisible by Equation (5.6).

This is now very close to the style of a General Kummer equation, but note
that we have terms `1`

2
2`4, `32`4, `22`3`4 which do not appear in Equation (2.4). We

perform the final linear map (`1, `2, `3, `4) 7→ (`1, `2, `3, `
′
4), finding `′4 as follows.

Substitute `4 = `′4 + u1`1 + u2`2 + u3`3 and solve the linear equations in u1, u2, u3
which make these terms disappear. This gives u1 = u2 = u3 = 2, and so we define
`′4 = `4 − 2`1 − 2`2 − 2`3. The following quartic is satisfied by `1, `2, `3, `

′
4.

(7`1`3 + `22)(`′4)2

+ (3`31 + 5`21`2 + 6`21`3 + 4`1`2`3 + 2`1`
2
3 + 9`2`

2
3 + 2`33)`′4

+ 4`42 + 6`32`3 + 4`21`
2
2 + 3`1`

3
2 + 5`31`2

+ 8`22`
2
3 + `31`3 + 3`21`2`3 + 2`1`

2
2`3.

(5.9)

We now read off the coefficients of −4k31, −2k21k2, −4k21k3, −2k1k2k3, −4k1k
2
3f4,

−2k2k
2
3, −4k33, to see that f ′0 = 2, f ′1 = 3, f ′2 = 4, f ′3 = 9, f ′4 = 5, f ′5 = 1 and f ′6 = 5.

We then confirm that Equation (5.9) is indeed the General Kummer equation for
the curve y2 = 5x6 + x5 + 5x4 + 9x3 + 4x2 + 3x+ 2, and the (5, 5)-isogeny is given
by (k1, k2, k3, k4) 7→ (`1, `2, `3, `

′
4). We have determined the (5, 5)-isogeny and the

equation of the target General Kummer, as required.

5.2. Construction of (N,N)-isogenies on the Fast Kummer model. Suppose
we are given Fast Kummer Kfast

a,b,c,d, as in Equation (4.1). To follow notation in

previous literature (e.g., [Gau07]), we will let (X,Y, Z, T ) be the coordinates of
Kfast
a,b,c,d rather than k1, . . . , k4 as before. We wish to compute the (N,N)-isogeny

ϕ : Kfast
a,b,c,d → Kfast

a′,b′,c′,d′ , (X,Y, Z, T ) 7→ (X ′, Y ′, Z ′, T ′), with kernel generated by

N -torsion points R,S ∈ Kfast.
We first note that there will be many choices of such an isogeny, since there is

a rich set of linear maps between Fast Kummer surfaces, and any (N,N)-isogeny
can be composed with any of these to get a variant (N,N)-isogeny.

Addition by any of the 16 points of order 2 give the linear maps σi defined
by Equation (4.8) from Kfast

a,b,c,d to itself. Furthermore, there is the Hadamard map

H : Kfast
a,b,c,d → Kfast

a′,b′,c′d′

(X,Y, Z, T ) 7→ (X + Y + Z + T,X + Y − Z − T,
X − Y + Z − T,X − Y − Z + T ),

(5.10)

where (a′, b′, c′, d′) = H(a, b, c, d). All of the above are defined over the ground
field K and, given any (N,N)-isogeny between Fast Kummers, any of the above
(on the target Kummer) can be composed with it to give a variant (N,N)-isogeny.
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In the special case when there exists i ∈ K, where i2 = −1, (for example, when
K = Fp for p ≡ 1 mod 4), there is also the map (X,Y, Z, T ) 7→ (X,Y, iZ, iT ) from
Kfast
a,b,c,d to Kfast

a,b,ic,id.

Since our (N,N)-isogeny has odd degree, it must be an isomorphism on the
entire 2-torsion subgroup of Kfast

a,b,c,d. After composing with a combination of the
linear maps above, we can force the diagonalised elements of order 2 to map to the
diagonalised elements of order 2 on the target Fast Kummer and match them up
so that they have the same effect. In other words, we can choose our (N,N)-
isogeny so that (X,Y, Z, T ) 7→ (X,Y,−Z,−T ), (X,Y, Z, T ) 7→ (X,−Y, Z,−T )
and (X,Y, Z, T ) 7→ (X,−Y,−Z, T ) have the same effect on the target coordinates
X ′, Y ′, Z ′, T ′. So, we should be able to choose our isogeny so that the mono-
mials can be partitioned in the same way as described in the previous section

for φ
(N)
X , φ

(N)
Y , φ

(N)
Z , φ

(N)
T . Similarly (X,Y, Z, T ) 7→ (Y,X, T, Z), (X,Y, Z, T ) 7→

(Z, T,X, Y ) and (X,Y, Z, T ) 7→ (T,Z, Y,X) should have the same effect on the
target coordinates X ′, Y ′, Z ′, T ′ (if only projectively, then applying any of these in-
volutions twice forces the scalar to be ±1). We will use this symmetry throughout
this section to find the scaling, as well as accelerate Algorithm 2 when using Fast
Kummer surfaces.

Remark 5.10. The biquadratic forms corresponding to the Fast Kummer surface
Kfast are the simplest, when compared to those for Ksqr and Kgen. Therefore, when
constructing our (N,N)-isogenies from these biqudratics, we expect the isogenies
between Fast Kummer surfaces to yield the most efficient and compact maps.

We now describe a method for computing these isogenies which finds the most
natural version, namely the version in which addition by the points of order 2 on
the initial Fast Kummer surface have the same effect on the coordinates of the
target Fast Kummer surface.

Our input is: the parameters a, b, c, d of the initial Fast Kummer, together with
two independent points R,S of order N , where N is odd. We will output the
formulæ defining the (N,N)-isogeny ϕ : Kfast

a,b,c,d → Kfast
a′,b′,c′,d′ that takes (X,Y, Z, T )

to (X ′, Y ′, Z ′, T ′) with kernel 〈R,S〉.

5.2.1. Modification to FindIntersection. We first discuss how we can accelerate Find-
Intersection (see Algorithm 2) using the action of the 2-torsion points on Kfast.
Suppose we have followed Step 1 in Section 5 to find the space XR of degree N
homogeneous forms which are invariant under addition by R and the space XS

of those invariant under addition by S. Note that we are now using the simpler
biquadratic forms in Corollary 4.2. Let BR and BS be a basis for these spaces,
respectively.
Rather than proceeding straight to Step 2, we partition the basis BR into four parts

B
(1)
R , B

(2)
R , B

(3)
R and B

(4)
R , as follows:

B
(1)
R :=

{
fR ∈ BR | σ1(fR) = fR, σ2(fR) = fR, σ3(fR) = fR

}
B

(2)
R :=

{
fR ∈ BR | σ1(fR) = fR, σ2(fR) = −fR, σ3(fR) = −fR

}
B

(3)
R :=

{
fR ∈ BR | σ1(fR) = −fR, σ2(fR) = fR, σ3(fR) = −fR

}
B

(4)
R :=

{
fR ∈ BR | σ1(fR) = −fR, σ2(fR) = −fR, σ3(fR) = fR

}
,
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where σi is the linear map corresponding to the action of two-torsion point Ei, as
defined by Equation (4.8). Refering to the explicit basis given in Conjecture 5.4,
the parts B(1), B(2), B(3), B(4) of the basis B are given by the forms corresponding

to the indices in I(1)N , I(2)N , I(3)N , I(4)N , respectively, where

I(1)N :=
{
{i1, . . . , iN} ∈ IN | ij ∈ {1, 2} and there are an even number of 2’s

}
,

I(2)N :=
{
{i1, . . . , iN} ∈ IN | ij ∈ {1, 2} and there are an odd number of 2’s

}
,

I(3)N :=
{
{i1, . . . , iN} ∈ IN | ij ∈ {3, 4} and there are an even number of 4’s

}
,

I(4)N :=
{
{i1, . . . , iN} ∈ IN | ij ∈ {3, 4} and there are an odd number of 4’s

}
.

Using this characterisation, we can compute the partition as we run FindBasis

(see Algorithm 1) and immediately output B
(1)
R , B

(2)
R , B

(3)
R , and B

(4)
R for R. We

proceed similarly with S to obtain B
(1)
S , B

(2)
S , B

(3)
S and B

(4)
S .

For each part i = 1, . . . , 4, intersect the spaces X
(i)
R and X

(i)
S (generated by B

(i)
R

and B
(i)
S , respectively), to obtain X

(i)
R,S . We expect each X

(i)
R,S to be of dimension 1,

and thus generated by a homogenous form, which will give the i-th coordinate of
degree-N map ψ = (ψX , ψY , ψZ , ψT ). We can find this intersection using FindIn-

tersectionPart, which on input B
(i)
R , B

(i)
S , will output the generator of X

(i)
R,S . It runs

identically to FindIntersection except the dimensions of the linear system decrease by
a factor of 4. As a result, FindIntersectionPart terminates in 1

24 (N+1)(N+12)(N−1)

M and 1
24 (N + 1)(N + 6)(N − 1) a. Running this for each part we terminate in at

most 1
6 (N + 1)(N + 12)(N − 1) M and 1

6 (N + 1)(N + 6)(N − 1) a which improves
on the cost quoted in Proposition 5.8, and is concretely much faster.

5.2.2. General method for computing the final linear map. At this stage, we have
calculated the degree-N map

ψ = (ψX , ψY , ψZ , ψT ) : Kfast
a,b,c,d → K̃,

however K̃ may not be in desired Fast Kummer form. Therefore, we must apply a
scaling map

λ : (X,Y, Z, T ) 7→ (λXX,λY Y, λZZ, λTT ),

to obtain the (N,N)-isogeny

ϕ = λ ◦ ψ : Kfast
a,b,c,d → Kfast

a′,b′,c′,d′ , (X,Y, Z, T ) 7→ (X ′, Y ′, Z ′, T ′)

with kernel 〈R,S〉.
To find the scaling values, we exploit the fact that the actions

σ4 : (X,Y, Z, T ) 7→ (Y,X, T, Z),

σ7 : (X,Y, Z, T ) 7→ (Z, T,X, Y ),

σ12 : (X,Y, Z, T ) 7→ (T,Z, Y,X),

of two-torsion points E4 = (b, a, d, c), E8 = (c, d, a, b), and E12 = (d, c, b, a) on
Kfast
a,b,c,d, have the same effect on the target coordinates. From this we obtain the

following linear equations, which we can solve to obtain (λX , λY , λZ , λT ):

ϕ
(
σKi (X,Y, Z, T )

)
= σK

′

i

(
ϕ(X,Y, Z, T )

)
, for i = 4, 8, 12,(5.11)



ISOGENIES ON KUMMER SURFACES 25

where σK denotes the action of two-torsion points on Kfast
a,b,c,d, and σK

′
on Kfast

a′,b′,c′,d′ .
Importantly, however, this equality only holds modulo the equation defining the
domain Kummer surface.

For N = 3, the scaling map is given by Corte-Real Santos, Costello and Smith
in [CCS24, §4]. In this case, finding the scaling map is straightforward as the
isogeny formulæ is unaffected by working modulo the equation defining Kfast

a,b,c,d of
degree 4. However, for odd N ≥ 5, this no longer holds, and we must take care
when finding this scaling.

In this setting, we discuss three distinct methods to compute the scaling map:

(1) a method for N = 5 which requires 62 K-multiplications.
(2) a method for N ≥ 7, which requires running Gaussian elimination on a

system of ` equations in `+1 unknowns, where ` ≤ (N−1)(N−2)(N−3)/24.
(3) a method for N ≥ 7, which requires the computation of 2 square roots in

K, 1 inverse in K and a few K-multiplications.

5.2.3. Final scaling for N = 5. We start by describing the first method for N = 5,
summarised by Algorithm 3. We consider the first coordinate in Equation (5.11)
taking i = 4, to obtain the equality

λXψX(X,Y, Z, T ) = λY ψY (Y,X, T, Z) + cXKfast(X,Y, Z, T ),

for some constant c ∈ K, where by abuse of notation Kfast(X,Y, Z, T ) represents
the equation of the Kummer surface. We say that coefficients are transparently
equal if the corresponding monomials are unaffected by the Kummer equations. In
this way, we see that the coefficients of the Y ZT 3 term are transparently equal.
More precisely, the coefficient of Y ZT 3 in λXψX(X,Y, Z, T ) should be equal to
the coefficient of Y ZT 3 in λY ψY (Y,X, T, Z), namely the coefficient of XZ3T in
λY ψY (X,Y, Z, T ). As we are working projectively, we can set λX = 1, and thus
deduce the value of λY . We proceed similarly using Equation (5.11) with i = 8 and
12, to obtain the scaling values λZ and λT , respectively.

Algorithm 3 Scaling5: find the scaling map when N = 5

Input: A quintic map ψ : Kfast → K̃
Output: The isogeny ϕ : Kfast

a,b,c,d → Kfast
a′,b′,c′,d′ with kernel generated by R,S

1: ψ = (ψX , ψY , ψZ , ψT )
2: Let cY be the coefficient of Y ZT 3 in ψX
3: Let dY be the coefficient of XZ3T in ψY
4: Let cZ be the coefficient of Y ZT 3 in ψX
5: Let dZ be the coefficient of XY 3T in ψZ
6: Let cT be the coefficient of XY T 3 in ψZ
7: Let dT be the coefficient of XY Z3 in ψT
8: α = dZ · dT
9: β = dY · cZ

10: (λX , λY , λZ , λT ) = (dY α, cY α, dTβ, cTβ)
11: ϕ = (λXψX , λY ψY , λZψZ , λTψT )
12: return ϕ

Proposition 5.11. Algorithm 3 terminates with 62 M.
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Proof. Lines 8 to 10 in Algorithm 3 cost 6 M. Then, constructing the output isogeny
ϕ in Line 11 requires 56 M. �

Example 5.12. We now illustrate the method for N = 5 with the following exam-
ple. Our input is the Fast Kummer surface defined by parameters (a, b, c, d) =
(883, 375, 1692, 1586) over the finite field F1697, together with the points R =
(1593, 713, 1161, 1) and S = (615, 1249, 125, 1) of order 5. We wish to compute
the (5, 5)-isogeny ϕ with kernel 〈R,S〉. After applying Steps 1 to 3, we obtain the
quintic map ψ = (ψX , ψY , ψZ , ψT ), where:

φX = 1668X5 + 708X3Y 2 + 1282X3Z2 + 1487X3T 2

+ 823X2Y ZT + 646XY 4 + 760XY 2Z2 + 502XY 2T 2 + 632XZ4

+ 1352XZ2T 2 + 247XT 4 + 651Y 3ZT + 1154Y Z3T + 331Y ZT 3,

φY = 1026X4Y + 512X3ZT + 556X2Y 3 + 278X2Y Z2

+ 7X2Y T 2 + 509XY 2ZT + 289XZ3T + 136XZT 3 + 370Y 5

+ 975Y 3Z2 + 1564Y 3T 2 + 329Y Z4 + 1026Y Z2T 2 + 942Y T 4,

φZ = 259X4Z + 19X3Y T + 1373X2Y 2Z + 396X2Z3

+ 686X2ZT 2 + 1101XY 3T + 1610XY Z2T + 371XY T 3 + 660Y 4Z

+ 1520Y 2Z3 + 1539Y 2ZT 2 + 229Z5 + 933Z3T 2 + 121ZT 4,

φT = 397X4T + 371X3Y Z + 610X2Y 2T + 1326X2Z2T

+ 1464X2T 3 + 1073XY 3Z + 945XY Z3 + 686XY ZT 2 + 80Y 4T

+ 1613Y 2Z2T + 816Y 2T 3 + 593Z4T + 770Z2T 3 + 708T 5.

(5.12)

At the stage, we only require a further scaling of each of these to obtainX ′, Y ′, Z ′, T ′

such that the (5, 5)-isogeny is defined by

ϕ : Kfast
a,b,c,d → Kfast

a′,b′,c′,d′ , (X,Y, Z, T ) 7→ (X ′, Y ′, Z ′, T ′).

Let us now apply Step 4. We first let λX , λY , λZ , λT denote the scaling factors, so
that our desired X ′, Y ′, Z ′, T ′ will be

(5.13) X ′ = λXψX , Y
′ = λY ψY , Z

′ = λZψZ , T
′ = λTψZ .

We now use that we are making the choice of map such that (X,Y, Z, T ) 7→
(Y,X, T, Z) has the same effect on (X ′, Y ′, Z ′, T ′). Applying (X,Y, Z, T ) 7→ (Y,X, T, Z)
to λY ψY and equating one of its coefficients to the corresponding coefficient in
λXψX , we obtain linear equation in λX , λY . However, some care is required, since
all equalities are modulo the initial Fast Kummer equation. For quintics within the
first partition, this can only mean: modulo a constant time XKfast

a,b,c,d(X,Y, Z, T ),

where here Kfast
a,b,c,d(X,Y, Z, T ) is the equation of the Kummer equation. So, for

example, the Y ZT 3 term is unaffected by this. Hence the coefficients of the Y ZT 3

terms should be transparently equal. The coefficient of Y ZT 3 in λXψX is 331λX .
The coefficient of Y ZT 3 in the image of λY ψY under (X,Y, Z, T ) 7→ (Y,X, T, Z)
(which is the same as the coefficient of XZ3T in λY ψY ) is 289λY . This gives the
equation 289λY = 331λX and so λY = 283λX in our field F1697. We can now
check that indeed if we take the entirety of 283 times the image of 283ψY under
(X,Y, Z, T ) 7→ (Y,X, T, Z) and then subtract ψX , the result is divisible by Kfast

a,b,c,d,
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where a = 883, b = 375, c = 1692, d = 1586 are our inputted initial parameter
values.

Similarly, the coefficient of XY T 3 in λZψZ is 371λZ . The coefficient of XY T 3

in the image of λTψT under (X,Y, Z, T ) 7→ (Y,X, T, Z) (which is the same as
the coefficient of XY Z3 in λTψT ) is 945λT . Within the third partition set, these
cannot be affected by multiples of Kfast

a,b,c,d, and so 371λZ = 945λT , giving that
λT = 1270λZ in our field F1697.

We can also equate the coefficient of Y ZT 3 in λXψX with the same coefficient
in the image of λZψZ under (X,Y, Z, T ) 7→ (Z, T,X, Y ) to see that λZ = 418λX .
We have now solved for the projective array of scaling factors:

(5.14) (λX , λY , λZ , λT ) = (1, 283, 418, 1396),

and we have found the final versions of our maps:

(5.15) X ′ = ψX , Y
′ = 283ψY , Z

′ = 418ψZ , T
′ = 1396ψT .

Thus, we have found the (5, 5)-isogeny

ϕ : (X,Y, Z, T ) 7→ (X ′, Y ′, Z ′, T ′),

completing Step 4. For the final step, we compute ϕ(a, b, c, d) by substituting
(X,Y, Z, T ) = (883, 375, 1692, 1586) into (X ′, Y ′, Z ′, T ′) to give that (a′, b′, c′, d′) =
(381, 960, 69, 1199).

5.2.4. Final scaling for N ≥ 7 with Gaussian elimination. The next method to
find the scaling for N ≥ 7 follows the same procedure, however now there are no
monomials whose coefficients will be transparently equal. Rather, they will be equal
modulo the equation defining the domain Kummer surface. Instead, we must now
perform Gaussian elimination to solve a system of equations for the scaling values
λX , λY , λZ and λT . More precisely, we again consider Equation (5.11) and look at
the first coordinate to obtain

λXψX(X,Y, Z, T )− λY ψY (Y,X, T, Z) +GYKfast(X,Y, Z, T ) = 0,(5.16)

λXψX(X,Y, Z, T )− λZψZ(Z, T,X, Y ) +GZKfast(X,Y, Z, T ) = 0,(5.17)

λXψX(X,Y, Z, T )− λTψT (T,Z, Y,X) +GTKfast(X,Y, Z, T ) = 0,(5.18)

where GY , GZ , GT are (N − 4)-degree forms such that G•Kfast contains monomials
in the first partition (i.e., are unaffected by the action of σ1, σ2 and σ3). As this
equality holds for any point (X,Y, Z, T ) on Kfast

a,b,c,d, we must have that the coeffi-
cients of each monomial are identically zero. This gives us a system of equations
that we solve to obtain the scaling factors λX , λY , λZ , and λT . We remark again
that we can set λX = 1.

We summarise this method in Algorithm 4. In Line 2, on input an integer n ≥ 3,
MonomialsInFirstPartition(n), outputs the monomials of the n-degree homogenous
forms in the ‘first partition’ (i.e., those unchanged by the action of σ1, σ2 and σ3).
Note that these monomials can be precomputed for each N ; indeed, they do not
depend on the kernel generators R and S. In Line 15, on input a matrix M , the
algorithm EchelonForm, outputs the matrix M in echelon form.

Proposition 5.13. Algorithm 4 terminates in CostGE, where

CostGE ≤
1

6
`(`+ 1)(2`+ 13) M +

1

6
`(`+ 1)(2`+ 7) a,

where ` ≤ (N − 1)(N − 2)(N − 3)/24.
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Algorithm 4 ScalingGE: find the scaling map when N ≥ 7 using Gaussian elimi-
nation

Input: A map of degree N , ψ : Kfast
a,b,c,d → K̃, for N ≥ 7.

Output: The isogeny ϕ : Kfast
a,b,c,d → Kfast

a′,b′,c′,d′ with kernel generated by R,S.

1: ψ = (ψX , ψY , ψZ , ψT )
2: mons = MonomialsInFirstPartition(N − 4)
3: for k = 2 to 4 do
4: G = g1m1 + · · ·+ g`m` for monomials mj ∈ mons

5: Let K(X,Y, Z, T ) be the equation defining Kfast
a,b,c,d

6: F = λkψk(Y,X, T, Z)− λ1ψX(X,Y, Z, T ) +GK
7: for j = 1 to ` do
8: Let cj ∈ K[λk, g1, . . . , g`, λ1] be the coefficient of mj in F
9: end for

10: v = (λk, g1, . . . , g`, λ1)
11: for i = 1 to `+ 1 do
12: Let ci,j be the coefficient of vi ∈ v in cj
13: end for
14: M = (ci,j)i=1,...,`+1,j=1,...,`

15: M = EchelonForm(M)
16: m = NumberOfColumns(M)
17: λk = M1,m

18: end for
19: ϕ = (ψX , λ2ψY , λ3ψZ , λ4ψT )
20: return ϕ

Proof. To obtain the scaling factors λX , λY , λZ , and λT , we solve a system of `+ 1
equations in `+ 1 unknowns, where

` ≤ 1

4

(
N − 1

3

)
=

(N − 1)(N − 2)(N − 3)

24

is the number of monomials of degree N − 4 in the homogeneous forms that
are left unchanged by the action of σ1, σ2 and σ3. Therefore, as in the proof
of Proposition 5.8, the cost of solving this system using Gaussian elimination is
1
6`(`+ 1)(2`+ 13) multiplications and 1

6`(`+ 1)(2`+ 7) additions in K.
In Line 19, we calculate (ψX , λY ψY , λZψZ , λTψT ) with at most 3` K-multiplications,

where ` is the maximum of the number of monomials in ψY , ψZ and ψT . Namely,
` ≤ (N + 1)(N + 2)(N + 3)/24.

�

5.2.5. Final scaling for N ≥ 7 with square roots. We are now ready to describe
the final method for N ≥ 7. Here, we consider Equation (5.13) when evaluated at
(a, b, c, d). Namely,

(a′, b′, c′, d′) =
(
λXψX(a, b, c, d), λY ψY (a, b, c, d),

λZψZ(a, b, c, d), λTψT (a, b, c, d)
)
.

(5.19)
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Applying the action σ1, we also have that

(b′, a′, d′, c′) =
(
λXψX(b, a, d, c), λY ψY (b, a, d, c),

λZψZ(b, a, d, c), λTψT (b, a, d, c)
)
.

(5.20)

Looking at the first and second coordinates in the equations above, we have

λXψX(a, b, c, d)

λY ψY (a, b, c, d)
=
a′

b′
and

λXψX(b, a, d, c)

λY ψY (b, a, d, c)
=
b′

a′
.

So, we see that

(5.21)

(
λY
λX

)2

=
ψX(a, b, c, d)ψX(b, a, d, c)

ψY (a, b, c, d)ψY (b, a, d, c)
,

and

(5.22)

(
b′

a′

)2

=
ψX(b, a, d, c)ψY (a, b, c, d)

ψX(a, b, c, d)ψY (b, a, d, c)
.

Looking at the third and fourth coordinates of equations Equation (5.19) and Equa-
tion (5.20), we obtain (λT /λZ)2 and (d′/c′)2. Similarly, we can apply the action σ3
to obtain (λZ/λY )2, λXλZ/(λY λT ), (c′/b′)2, and a′c′/(b′d′).

From (λY /λX)2, (λT /λZ)2, and λXλZ/(λY λT ), we can obtain the scalings λX ,
λY , λZ , and λT as described in Algorithm 5.

Algorithm 5 Scalingsqrt: find the scaling map when N ≥ 7 using square roots in
K

Input: A map of degree N , ψ : Kfast
a,b,c,d → K̃, for N ≥ 7.

Output: The isogeny ϕ : Kfast
a,b,c,d → Kfast

a′,b′,c′,d′ with kernel generated by R,S.

1: ψ = (ψX , ψY , ψZ , ψT )

2: a = ψX(a, b, c, d)ψX(b, a, d, c)
(
ψY (a, b, c, d)ψY (b, a, d, c)

)−1
3: b = ψZ(a, b, c, d)ψZ(b, a, d, c)

(
ψT (a, b, c, d)ψT (b, a, d, c)

)−1
4: sa = Sqrt(a)
5: sb = Sqrt(b)

6: γ = ψX(a, b, c, d)ψZ(d, c, b, a)
(
ψY (a, b, c, d)ψT (d, c, b, a)

)−1
7: for α ∈ {sa,−sa} do
8: for β ∈ {sb,−sb} do
9: λY = α

10: λZ = αβ
11: λT = βγ
12: ϕ = (ψX , λY ψY , λZψZ , λTψT )
13: if σi

(
ϕ(X,Y, Z, T )

)
= ϕ

(
σi(X,Y, Z, T )

)
for i = 1, 2, 3 then

14: return ϕ
15: end if
16: end for
17: end for
18: return ⊥
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Proposition 5.14. Algorithm 5 terminates in Costsqrt, where

Costsqrt ≤ 2 Sq + 1 I + (10 + 12`) M,

where ` ≤ (N + 1)(N + 2)(N + 3)/24.

Proof. Algorithm 5 requires the computation of 2 square roots in K, as well as 8 K-
mutliplications and inverses of ψY (a, b, c, d)ψY (b, a, d, c), ψT (a, b, c, d)ψT (b, a, d, c)
and ψY (a, b, c, d)ψT (d, c, b, a) in K. Using batched inversion [Mon87, §10.3.1], we
can compute these 3 inverses with 2 multiplications and 1 inverse in K.

In Line 12, we use 3` M to calculate (ψX , λY ψY , λZψZ , λTψT ), where ` ≤ (N +
1)(N + 2)(N + 3)/24, as described in the proof of Proposition 5.13. We run this at
most 4 times, thus requiring at most 12` K-multiplications. �

Remark 5.15. The most costly operation in Algorithm 5 is the computation of
square roots using Sqrt. When char(K) = p, and K = Fpm is a finite field (for some
m ∈ N), we compute square roots using the Tonelli–Shanks algorithm [Ton91,
Sha73] using Scott’s optimisation in [Sco20]. This costs 2 exponentiations and a
few multiplications and additions in K.

When K = Q, we can use, for example, the ‘Karatsuba Square Root’ algo-
rithm, as depicted by Brent and Zimmermann [BZ10, Algorithm 1.12], for com-
puting square roots in Z (as used in the GNU Multiple Precision Arithmetic Li-
brary [GMP]) on the numerator and denominator of our rational number. This
costs O( 3

2M(N/2)), where M(n) is the time to multiply two numbers of n limbs
using Karatsuba multiplication and O(6M(N/2)) when using FFT multiplication.

Using the previous method depicted in Algorithm 5, it is not necessary to com-
pute square roots in K if the only thing required is to compute the constants
E′, F ′, G′, H ′ ∈ K appearing in the equation defining the image Kummer sur-
face. Indeed, from (b′/a′)2, (d′/c′)2, (c′/b′)2, and a′c′/(b′d′) we can compute
(a2, b2, c2, d2) (projectively). This leads us to the definition of Algorithm 6, which
on input ψ will output the constants (E′, F ′, G′, H ′). In this way, we only require
the square roots in order to compute the isogeny ϕ, and therefore to push points
through the isogeny.

Algorithm 6 terminates in at most 34M, 4S, 1I, and 20a. Note, here we are
computing the 7 inverses in Lines 2 to 4, Line 7, and Lines 11 to 13 using batched
inversions [Mon87, §10.3.1].

5.2.6. Compute the image constants (a′, b′, c′, d′). We now have the (N,N)-isogeny
ϕ = λ ◦ ψ where

λ : (X,Y, Z, T ) 7→ (λXX,λY Y, λZZ, λTT ),

is the scaling map obtained from the previous step. We compute (a′, b′, c′, d′)
by evaluating the (N,N)-isogeny ϕ at (X,Y, Z, T ) = (a, b, c, d). This costs at

most 4
((
N+3
3

)
+ N + 1

)
= O(N3) multiplications in K. Indeed, it costs 4(N +

1) K-multiplications to compute all powers of a, b, c, d up to aN , bN , cN , dN , and

then at most 3
(
N+3
3

)
K-multiplications to evaluate all the monomials in ϕ from

these. Finally, it costs at most
(
N+3
3

)
K-multiplications to multiply these evaluated

monomials with their coefficients.
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Algorithm 6 GetImage: find the constants in the equation defining the image of
an (N,N)-isogeny when N ≥ 7

Input: A map of degree N , ψ : Kfast
a,b,c,d → K̃, for N ≥ 7.

Output: The constants (E′, F ′, G′, H ′) in the equation defining Kfast
a′,b′,c′,d′

1: ψ = (ψ1, ψ2, ψ3, ψ4)

2: α21 = ψ1(b, a, d, c)ψ2(a, b, c, d)
(
ψ1(a, b, c, d)ψ2(b, a, d, c)

)−1
3: α43 = ψ3(b, a, d, c)ψ4(a, b, c, d)

(
ψ3(a, b, c, d)ψ4(b, a, d, c)

)−1
4: α32 = ψ2(d, c, b, a)ψ3(a, b, c, d)

(
ψ2(a, b, c, d)ψ3(d, c, b, a)

)−1
5: α31 = α32 · α21

6: α41 = α43 · α31

7: β = ψ1(a, b, c, d)ψ2(d, c, b, a)
(
ψ2(a, b, c, d)ψ1(d, c, b, a)

)−1
8: (a2, b2, c2, d2) = (1, α21, α31, α41)
9: A,B,C,D = H(a2, b2, c2, d2)

10: (a4, b4, c4, d4) = S(a2, b2, c2, d2)
11: γ1 = (a2d2 − b2c2)−1

12: γ2 = (a2c2 − b2d2)−1

13: γ3 = (a2b2 − c2d2)−1

14: E = βγ1γ2γ3b2d2ABCD
15: F = γ1 · (a22 − b22 − c22 + d22)
16: G = γ2 · (a22 − b22 + c22 − d22)
17: H = γ3 · (a22 + b22 − c22 − d22)
18: return (E,F,G,H)

5.2.7. Complexity of finding an (N,N)-isogeny between Fast Kummer surfaces.
Putting together all steps of the algorithm we obtain GetIsogeny, given by Al-
gorithm 7, which on input N -torsion points R,S on Fast Kummer surface Kfast

a,b,c,d

generating a maximal isotropic subgroup of N -torsion group of Kfast, will output
the (N,N)-isogeny ϕ with kernel 〈R,S〉. Here, we assume Conjecture 5.4, as oth-
erwise the bases formed in Lines 4 and 5 may be wrong. The costs CostGE, Costsqrt
in Line 13 are as defined in Proposition 5.13 and Proposition 5.14, respectively.

Asymptotically, Algorithm 7 is dominated by the call FindBasis in Lines 4 and 5.
The cost of obtaining multiples of R, namely 2R, . . . , ((N −1)/2)R, in Line 1 of Al-

gorithm 7 is at most
∑(N−1)/2
n=2 9

⌈
log2(n)

⌉
S and

∑(N−1)/2
n=2 16

⌈
log2(n)

⌉
M [Gau07,

Theorem 3.6]. Furthermore, reducing the basis elements in BR and BS modulo the
Kummer equation in Line 6 costs at most a handful of additions.

Our optimised implementation shows that in the case of Fast Kummer surfaces
Costbiquad ≤ 12S+ 43M+ 25a. Therefore, we have that the bottleneck step (asymp-
totically) costs

Costbasis ≤ (3(N+3)/2+4 ·3(N−1)/2−27)Mpoly+6(N−1)S+
43

2
(N−1)M+

25

2
(N−1)a

for such Kummer surface models.
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Algorithm 7 GetIsogeny: find the isogeny ϕ with kernel generated by N -torsion
points R,S on Kfast assuming Conjecture 5.4

Input: N -torsion points R,S on Fast Kummer surface Kfast
a,b,c,d

Output: The isogeny ϕ : Kfast
a,b,c,d → Kfast

a′,b′,c′,d′ with kernel generated by R,S.

1: R = (2R, 3R, . . . , ((N − 1)/2)R)
2: S = (2S, 3S, . . . , ((N − 1)/2)S)
3: IN = {(1, . . . , 1), (1, . . . , 2), . . . , (2, . . . , 2), (3, . . . , 3), (3, . . . , 4), . . . , (4, . . . , 4)}
4: B

(1)
R , B

(2)
R , B

(3)
R , B

(4)
R = FindBasis(R,R, IN )

5: B
(1)
S , B

(2)
S , B

(3)
S , B

(4)
S = FindBasis(S,S, IN )

6: Reduce forms in BR and BS modulo the Kummer equation defining Kfast

7: for i = 1 to 4 do
8: ψi = FindIntersection(B

(i)
R , B

(i)
S )

9: end for
10: ψ = (ψ1, ψ2, ψ3, ψ4)
11: if N = 5 then
12: return Scaling5(ψ)
13: else if CostGE ≤ Costsqrt then
14: return ScalingGE(ψ)
15: else
16: return Scalingsqrt(ψ)
17: end if
18: return ⊥

6. Implementation and Performance

In this section, we investigate the performance of our algorithms when applied
to Fast Kummer surfaces, as implemented in [CF24a].

We will fix K = Fpm to be a finite field, for some m ∈ N. To set up our
experiments, we consider p be a prime such that 24N |p + 1. By restricting to
superspecial Fast Kummer surfaces, which are therefore defined over Fp2 , we can
fix m = 2 and our choice of prime ensures that we have full K-rational 2-torsion
and K-rational N -torsion that will generate the (N,N)-isogeny. The experiments
were run in MAGMA V.2.25-6 on Intel(R) CoreTM i7-1065G7 CPU @ 1.30GHz × 8
with 15.4 GiB memory.

Remark 6.1. Restricting our experiments to superspecial Kummer surfaces is
inspired by the setup of various cryptographic primitives constructed in isogeny-
based cryptography (see, for example, [FT19, CDS20, CCS24]), and allows us to
easily obtain Fp2-rational (N,N)-isogenies. We replicate this setup to demonstrate
the efficiency of our algorithms, but emphasise that the methods presented in this
paper hold for more general fields K. We remark, however, that the performance
of our methods for large N may be hindered by coefficient blow-up for these more
general fields.

6.1. Evaluating the scaling algorithms. We first analyse Method (2) and (3)
of finding the final scaling map described in Sections 5.2.4 and 5.2.5, repsectively.
In particular, we investigate how CostGE and Costsqrt vary with N and p. This is
necessary to precisely determine the condition in Line 13 of Algorithm 7.



ISOGENIES ON KUMMER SURFACES 33

100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

log p

T
im

e
(s

)

Figure 1. The time taken (in seconds) for GetIsogeny with
method 2 of scaling ScalingGE (in blue) and with method 3 of
scalingScalingsqrt (in red) for a range of odd primes p and fixed
prime N = 7. For each prime p, we average the time taken over 50
runs.

Using a cost metric of 1I = log2(p)M and 1a = 0M for K = Fp2 , Proposition 5.13
tells us that

CostGE ≤
N9

41472
+O(N8) M

Additionally, Proposition 5.14 and Remark 5.15 show that Costsqrt is approximately
equal to 4 exponentiations and 1 inversion in Fp2 , for which the cost is around
(5 log2(p) + (N + 1)(N + 2)(N + 3)/2 + 10) M. From this, we expect that CostGE ≤
Costsqrt for N and p such that

N9 − 20736N3 − 124416N2 − 228096N − 539136 ≤ 207360 log2(p).

For example, when N = 7, we have that CostGE ≤ Costsqrt for log2(p) ≥ 121.
To confirm the observations from our theoretical costs, we run two sets of exper-

iments: (1) fix N = 7, and vary p, where log2(p) ranges from 12 to 850; (2) fix p
where log2(p) = 100, and vary N from 7 to 19. The results are shown in Figure 1
and Figure 2, respectively.

In Figure 1, we confirm that for N = 7, CostGE = Costsqrt for log2(p) ≈ 140,
which is close to our theoretical estimate. We remark that for larger N , this
crossover point will be larger.

In Figure 2 we see that the cost of Scalingsqrt increases at a slower rate with
N than the cost of ScalingGE, as predicted by our theoretical costs. We also ran
experiments for log2(p) ≈ 500 and observed the same trend.

6.2. Evaluation performance of algorithms. In Table 1, we give timings for
different sections of Algorithm 7 to compute an (N,N)-isogeny given N -torsion
points R,S generating kernel on domain Kummer surface Kfast defined over K for
N ≥ 7.
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Figure 2. The time taken (in seconds) of method 2 of scaling
ScalingGE (in blue) and method 3 of scaling Scalingsqrt (in red) for
a range of odd primes N and fixed prime log2(p) ≈ 100. For each
N , we average the time taken over 50 runs.

As expected, the sub-algorithm FindBasis (see Algorithm 1) is the bottleneck step
of GetIsogeny (see Algorithm 7). In comparison, the other sub-algorithms exhibit
practical runtimes. Obtaining a method for finding the basis of spaces XR and XS

that scales polynomially with N would have a large impact on the practicality of
these methods for large N .

In Table 2, we give timings for GetImage (Algorithm 6), which computes the con-
stants E′, F ′, G′, H ′ in the defining equation of the image Kummer surfaceKfast

a′,b′,c′,d′

of the (N,N)-isogeny ϕ with kernel generated by N -torsion points R,S, given the

degree-N map ψ : Kfast
a,b,c,d → K̃ (i.e., the (N,N)-isogeny before the final scaling).
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Time taken (s)

N dlog2(p)e FindBasis FindIntersection
Scaling

(GE/sqrt for N ≥ 7)
GetIsogeny

5 104 0.005 0.001 0.000 0.010

7 106 0.021 0.002 0.007/0.012 0.045/0.050

11 95 0.721 0.012 0.206/0.025 1.040/0.859

13 99 4.157 0.025 0.816/0.044 5.238/4.466

17 94 85.267 0.048 7.605/0.059 93.838/86.292

19 105 416.329 0.081 21.109/0.095 439.464/418.450

Table 1. Comparison of time taken for different sub-algorithms
of GetIsogeny for various odd N ≥ 5 using both scaling methods
for K = Fp2 with log2(p) ≈ 100. We take the average over 50 runs.

N dlog2(p)e Time taken for GetImage (s)

7 106 0.004

11 95 0.014

13 99 0.018

17 94 0.030

19 105 0.042

Table 2. The time taken for GetImage for various odd N ≥ 7. We
fix the base field K = Fp2 with 90 ≤ log2(p) ≤ 120, and average
the time taken over 50 runs.

6.3. Performance comparison with previous works. We now compare the
performance of our methods to the software package AVIsogenies v0.7 [BCR10]
for odd prime N . For this comparison, we run the function IsogenieG2Theta.m,
which computes an isogeny from an abelian variety (where some precompuation is
done). It takes as input a kernel in theta coordiantes (i.e., the points R,S,R + S
in theta coordinates) and outputs the theta null point of the isogeneous Kummer
surface. For the fast Kummer surface Kfast

a,b,c,d, the theta null point is (a, b, c, d), and

thus this function is comparable to running our algorithm GetIsogeny (chosing the
best scaling method for each N and p as per Section 6.1) to obtain the (N,N)-
isogeny ϕ and then computing ϕ((a, b, c, d)) = (a′, b′, c′, d′).

To compare our software with AVIsogenies we therefore run the two algorithms
described above for N = 5, 7, 11, 13, 17 for a fixed prime p with 90 ≤ log2(p) ≤ 120,
taking the average time taken over 10 runs. The results are given in Table 3. We
observe that our methods are comparable and outperform IsogenieG2Theta.m for
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small N = 5, 7, 11. Furthermore, there is the benefit of our method that we recover
the explicit isogeny formulæ, as well as the image constants (a′, b′, c′, d′). For larger
N , our algorithm is slower, mainly due to the fact that the subroutine FindBasis
scales exponentially with N , but we note again that our method also recovers the
explicit isogeny formulæ, as well as the image constants (a′, b′, c′, d′).

We would like to emphasise that we do not intend timings to be a complete
description of the performance of these algorithms; a fair comparison can only be
made with precise operation counts. We merely present this broad comparison to
showcase the interest in exploring these methods, and highlight important future
work in improving the scalability of algorithm FindBasis (see Algorithm 1).

Time taken (s)

N
⌈

log2(p)
⌉

This work AVIsogenies

5 121 0.011 0.022

7 120 0.060 0.242

11 95 0.921 1.402

13 98 4.769 0.126

17 94 95.060 0.226

19 108 423.276 12.752

Table 3. The time taken for IsogenieG2Theta.m in AVIsogenies

and GetIsogeny with evaluation to compute the image theta con-
stants (a′, b′, c′, d′) of an (N,N)-isogeny for various odd N ≥ 7. We
fix the base field K = Fp2 with 90 ≤ log2(p) ≤ 125, and average
the time taken over 50 runs.

Remark 6.2. Unlike the algorithms presented in this paper, the complexity of
the algorithms that we use from AVIsogenies depends on N mod 4 (see, for exam-
ple, [LR15, pg. 199]). This is shown by our experiments in Table 3, which exhbits
how N = 11 and N = 19 perform comparitively worse than N = 13 and 17.
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