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Note

These lecture notes are based on hand written notes by Dr. Tim Brown-
ing, who gave this course in 2004 and 2005. These notes were originally type-
set by Andrew Caldwell who attended the lectures in 2007 and were subse-
quently amended by Professor Roger Heath-Brown. They have since been fur-
ther checked and amended by me. While I take full responsibility for the present
version (corrections and comments welcome), considerable thanks are clearly
due to Tim Browning, Andrew Caldwell, and Roger Heath-Brown.

These notes are intended to complement rather than replace lectures (for
instance, the diligent student should read at least one or two lectures ahead).
Indeed, there may well be differences between these notes and what I write in
lectures. Finally, I would encourage all students to consult the recommended
texts, as they contain many more details and examples, and had much more
time and effort put in to them, than these notes.

1 The Integers

We begin with a quick run through of material that has previously been covered
in other courses.

Definition. In this course, N := {1, 2, 3, . . .} (i.e. zero is not included).

Remark. (Z,+,×) is a commutative ring with 1.

Definition. Given a, b ∈ Z with b 6= 0, we say that b divides a (and we write
b|a) if and only if there exists c ∈ Z such that a = bc.

Theorem 1.1 (The Division Algorithm). Given a ∈ Z, b ∈ N, there exist
unique integers q and r satisfying a = bq + r and 0 ≤ r < b.

Proof. Mods.

Definition. Let a, b ∈ Z, not both zero. The highest common factor of a and
b, written (a, b), is defined to be the largest n ∈ N such that n|a and n|b. If
(a, b) = 1 then a and b are said to be coprime.

1



Remark. Note that this is not the definition of highest common factor used in
rings in general, but can be shown to be equivalent to the general definition in
the case of the ring Z.

Theorem 1.2 (Euclid’s Algorithm). Let r0 = a, r1 = b be positive integers with
a ≥ b > 0 and apply the division algorithm successively to get rj = rj+1qj+1 +
rj+2 with 0 < rj+2 < rj+1 for 0 ≤ j ≤ n − 2 and rn+1 = 0. Then the last
non-zero remainder rn is equal to (a, b).

Proof. Mods.

Lemma 1.3. Let a, b ∈ Z, not both zero. Then there exist u, v ∈ Z such that
au + bv = (a, b).

Proof. Mods — Work backwards through Euclid’s algorithm.

Example. Work out the highest common factor of 841 and 160 and express it
as a linear combination of 841 and 160:

841 = 160 × 5 + 41

160 = 41 × 3 + 37

41 = 37 × 1 + 4

37 = 4 × 9 + 1

4 = 1 × 4 + 0.

Hence (841, 160) = 1 (i.e. they are coprime) and working backwards gives:

1 = 37 × 1 − 4 × 9

= 37 × 1 − (41 − 37) × 9

= 37 × 10 − 41 × 9

= (160 − 3 × 41) × 10 − 41 × 9

= 160 × 10 − 41 × 39

= 160 × 10 − (841 − 160 × 5) × 39

= −39 × 841 + 205 × 160.

Note that such a solution is not unique. For example, we will also have

1 = (160 − 39) × 841 + (205 − 841) × 160 = 121 × 841 − 636 × 160.

Lemma 1.4. Let h = (a, b). Then m|a and m|b if and only if m|h.

Proof. (⇐) Suppose m|h. By definition of h, h|a. Hence m|a. Similarly, m|b.
(⇒) Assuming m|a and m|b, we see that a = ma′ and b = mb′, say. Now,

by Lemma 1.3, there exist u, v ∈ Z such that au + bv = h and hence h =
m(a′u + b′v). Therefore m|h.

Lemma 1.5. Let a, b ∈ Z, not both zero.
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(i) If (a, b) = d then (a
d , b

d ) = 1.

(ii) If c ∈ Z then (a + cb, b) = (a, b).

Proof. (i) Suppose e ∈ N such that e|ad and e| b
d . Then there exist m,n ∈ Z

with a
d = em, b

d = en. Hence a = edm and b = edn, so that ed divides
a and b. However, d is the largest such integer, whence ed ≤ d. Thus we
can only have e = 1.

(ii) Suppose (a + bc, b) = e. Then e|(a + bc) and e|b. However, e|b ⇒ e|bc and
e|(a + bc), e|bc ⇒ e|a. Thus e|a and e|b and hence (a, b) ≥ e. Conversely,
if (a, b) = f , then f |a and f |b, whence f |bc. It follows that f |(a + bc), and
since f |b we must have f ≤ (a + bc, b) = e. Hence both f ≥ e and e ≥ f ,
so that e = f .

Lemma 1.6. Let a, b, c ∈ Z with a, b both non-zero.

(i) The equation ax + by = c is soluble with x, y ∈ Z, if and only if (a, b)|c.

(ii) If (a, c) = 1, then c|ab if and only if c|b.

Proof. (i) (⇒) By Lemma 1.4, (a, b)|a and (a, b)|b, so that if c = ax+ by then
c is also a multiple of (a, b). (⇐) Suppose (a, b)|c and write c = (a, b)q.
Then there exist x, y ∈ Z such that (a, b) = ax+ by, by Lemma 1.3. Hence
c = q(a, b) = qxa + qyb, which gives a suitable solution.

(ii) c|b ⇒ c|ab is obvious. Suppose that (a, c) = 1 and c|ab. Then by Lemma
1.3, there exist x, y ∈ Z such that 1 = ax+cy, whence b = b×1 = abx+cby.
Now c|ab and c|cb, so c|b.

Definition. Prime and composite numbers in N:

(i) A number p ∈ N with p ≥ 2 is prime if and only if its only divisors are 1
and p.

(ii) A number n ∈ N with n ≥ 2 is composite if and only if it is not prime.

Note that n = 1 is neither prime nor composite.

Remark. Suppose p is prime and p|ab. Let h = (p, a). Then h|p so that h = 1
or h = p. If h = 1 then, by Lemma 1.6, p|b. If h = p then p = h|a (since
h = (a, b)). Hence p|a or p|b. For rings in general, the property that p|ab ⇒ p|a
or p|b is taken as the defining property for primes.

Theorem 1.7 (The Fundamental Theorem of Arithmetic). Each n ∈ N can
be expressed as a product of prime power factors in exactly one way, up to the
ordering of the factors.
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Proof. Given in the Part A Algebra course. However, here is a sketch.
Existence of factorisations can be shown by induction on n. The case n = 1

is the empty product of primes. In general, if 1, . . . , (n − 1) are products of
primes, then either n is prime or n = ab with 1 < a, b < n and a, b are products
of primes.

To show uniqueness, suppose that n = p1 . . . pr = q1 . . . qs where the pi’s are
qj ’s are prime. Then p1|(q1 . . . qs), so Lemma 1.6 (with an induction argument)
shows that p1|qj for some j. Since qj is prime, we must have p1 = qj . Now
cancel a factor and repeat the argument.

Remark. Given a, b ∈ N, we may write

a = pα1
1 pα2

2 . . . pαn
n , b = pβ1

1 pβ2

2 . . . pβn
n ,

where the pi’s are distinct primes and αi, βj ∈ N ∪ {0}. Then

(a, b) = pγ1

1 pγ2

2 . . . pγn
n ,

where γi = min(αi, βi).

Theorem 1.8 (Euclid). There are infinitely many primes.

Proof. For a contradiction, assume {p1, p2, . . . , pn} is a complete list of primes.
Consider N := 1 + p1p2 . . . pn ∈ N. Then N ≥ 2 and so either N is prime
or it has a prime factor. Thus there exists a prime p dividing N . However,
every prime is supposedly one of p1, . . . , pn, whence p = pi for some i. Then
p = pi|(p1 . . . pn), whence p|(N − 1). However we also have p|N , so p|1. ※

2 Linear Congruences

Definition. Suppose that a, b ∈ Z and n ∈ N. We write a ≡ b mod n (or a ≡ b
(mod n)), and say a is congruent to b mod n, if and only if n|(a − b).

Example. 4 ≡ 30 mod 13 since 13|(4 − 30) = −26

Lemma 2.1. Let n ∈ N. Then:

(i) being congruent mod n is an equivalence relation.

(ii) if a ≡ α mod n and b ≡ β mod n then a+b ≡ α+β mod n, a−b ≡ α−β
mod n and ab ≡ αβ mod n. Moreover, if f(x) ∈ Z[x] then f(a) ≡ f(α)
mod n.

Proof. (i) Exercise.

(ii) We will check that ab ≡ αβ mod n; the rest is an exercise. Since a ≡ α
mod n, we have n|(a−α) and so a = α+ns for some s ∈ Z. Similarly, b =
β+nt for some t ∈ Z. Hence ab = (α+ns)(β+nt) = αβ+n(sβ+tα+nst)
and so n|(ab − αβ). Therefore ab ≡ αβ mod n, as required.
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Example. Let n ∈ N and write n in decimal notation

n =

k
∑

i=0

ai × 10i where 0 ≤ ai ≤ 9 and ai ∈ N for all i.

Define f(x) by

f(x) =

k
∑

i=0

aix
i.

Then, since 10 ≡ −1 mod 11, we see that n = f(10) ≡ f(−1) mod 11, whence
11|n ⇐⇒ 11|f(−1) ⇐⇒ 11|(a0 − a1 + a2 − a3 + . . . + (−1)kak). This gives an
easy way to test integers for divisibility by 11.

Definition. Given n ∈ N, we write [a]n for the equivalence class of a, so that
[a]n = {b ∈ Z : a ≡ b mod n}.

Remark. We have Z =
⋃n−1

a=0 [a]n (disjoint equivalence classes).

Definition. We write Z/nZ = {[a]n : 0 ≤ a ≤ n − 1} (so that # (Z/nZ) = n).
We set [a]n +[b]n := [a+ b]n and [a]n[b]n := [ab]n (we must check that these are
well-defined).

Lemma 2.2. The set Z/nZ, with the above operations, is a commutative ring
with 0 = [0]n and 1 = [1]n.

Proof. Given in Part A Algebra.

Definition. We write

(Z/nZ)
×

= {[a]n ∈ Z/nZ : ∃[b]n ∈ Z/nZ such that [a]n[b]n = [1]n}.

This is the set of units of Z/nZ, and is a group under multiplication.

Lemma 2.3. [a]n ∈ (Z/nZ)
× ⇐⇒ (a, n) = 1.

Proof.

[a]n ∈ (Z/nZ)
× ⇐⇒ ∃[b]n ∈ (Z/nZ) such that [a]n[b]n = [1]n

⇐⇒ ∃b ∈ Z such that [ab]n = [1]n

⇐⇒ ∃b ∈ Z such that ab ≡ 1 mod n

⇐⇒ ∃b ∈ Z such that n|(ab − 1)

⇐⇒ ∃b, t ∈ Z such that ab − 1 = nt

⇐⇒ (a, n) = 1, by Lemma 1.6.

Example.
(

Z

12Z

)×
= {[1]12, [5]12, [7]12, [11]12}.

Lemma 2.4. Let n ∈ N and a, b ∈ Z.
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(i) The congruence ax ≡ b mod n has a solution x ∈ Z if and only if (a, n)|b.

(ii) If (a, n)|b then #{[x]n : ax ≡ b mod n} = (a, n).

Proof. (i) There exists x ∈ Z such that ax ≡ b mod n if and only if there
exist x, y ∈ Z such that ax− b = ny if and only if (a, n)|b, by Lemma 1.6.

(ii) Let (a, n) = h with h|b. By part (i), ax0 − b = ny0 for some x0, y0. Then

ax − b = ny ⇐⇒ ax − ny = b = ax0 − ny0

⇐⇒ a(x − x0) = n(y − y0)

⇐⇒ a

h
(x − x0) =

n

h
(y − y0).

But
(

a
h , n

h

)

= 1 by Lemma 1.5, whence a
h |(y − y0) and n

h |(x− x0). Then if
y − y0 = a

h t say, we have x − x0 = n
h t, so that

{x : ax ≡ b mod n} = {x = x0 +
n

h
t : t ∈ Z}.

Thus we get distinct classes [x]n for 0 ≤ t < h, and hence

#{[x]n : ax ≡ b mod n} = h = (n, a).

Example. Find the solutions of 100x ≡ 26 mod 86. We have 100x ≡ 26
mod 86 ⇐⇒ 86|(100x − 26) ⇐⇒ 100x − 26 = 86y′ ⇐⇒ 50x + 43y = 13. First
solve 50a + 43b = 1 using the Euclidean Algorithm:

50 = 43 × 1 + 7

43 = 7 × 6 + 1

and so

1 = 43 − 7 × 6

= 43 − (50 − 43 × 1) × 6

= 7 × 43 − 6 × 50.

We therefore take a = −6 and b = 7. We then set x = 13a, y = −13b so that
50x + 43y = 13. From this we can see that x = −6 × 13 = −78 ≡ 8 mod 86 is
a solution, and that the general solution is x0 + n

h t = 8 + 86
2 t = 8 + 43t.

Theorem 2.5 (Chinese Remainder Theorem (Sun-Tze, 3rd–4th century A.D.)).
Let n1, n2, . . . , nt ∈ N with (ni, nj) = 1 whenever i 6= j, (i.e. the ni are “coprime
in pairs”) and let a1, a2, . . . , at ∈ Z be given. Then there exists x ∈ Z such that
x ≡ ai mod ni for all i = 1, . . . , t. Moreover, if x′ is any other solution, then
x′ ≡ x mod N , where N := n1n2 . . . nt.
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Proof. Define Ni := N/ni. Then (Ni, ni) = 1, since ni is coprime to all the
factors of Ni. Hence by Lemma 2.4 (or Lemma 2.3), there exists xi ∈ Z such
that Nixi ≡ 1 mod ni. Define x =

∑t
i=1 aiNixi. Thus x ≡ akNkxk mod nk

since nk|Ni for all i 6= k. Therefore x ≡ ak(Nkxk) ≡ ak mod nk for all k.
Also, if x′ ≡ ak mod nk for all k, then x′ ≡ x mod nk for all k. Thus

nk|(x′ − x) for all k, and hence n1n2 . . . nt|(x′ − x), since the ni are pairwise
coprime. This yields x′ ≡ x mod N .

Remark. We have used that (ni, nj) = 1 whenever i 6= j twice in the above proof.
This hypothesis is necessary because, for example, the pair of congruences x ≡ 2
mod 12, x ≡ 4 mod 20 has no solution.

Example. Solve:

x ≡ 2 mod 3,

x ≡ 3 mod 5,

x ≡ 2 mod 7.

Following the proof, we put N := 3 × 5 × 7 = 105, N1 = 35, N2 = 21, N3 = 15
and

35x1 ≡ 1 mod 3 =⇒ take x1 = 2,

21x2 ≡ 1 mod 5 =⇒ take x2 = 1,

15x3 ≡ 1 mod 7 =⇒ take x3 = 1.

Therefore

x = 2N1x1 + 3N2x2 + 2N3x3 = (2× 35× 2) + (3× 21× 1) + (2× 15× 1) = 233,

and the smallest positive integer solution is 23 ≡ 233 mod 105 .

Corollary 2.6. If m,n ∈ N are coprime then

(i) Z/mnZ ∼= Z/mZ × Z/nZ,

(ii) (Z/mnZ)
× ∼= (Z/mZ)

× × (Z/nZ)
×
.

Proof. This result, sometimes also referred to as the Chinese Remainder Theo-
rem, is from Part A Algebra. However, we give a sketch proof of part (i).

The isomorphism is given explicitly by

φ : Z/mnZ −→ Z/mZ × Z/nZ, a + mnZ 7→ (a + mZ, a + nZ).

It is straightforward to check that this map is a well-defined homomorphism. It
is onto by Theorem 2.5, and hence is injective by a counting argument.
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3 Polynomial Congruences

Theorem 3.1 (Wilson’s Theorem, 1770). An integer p ≥ 2 is prime if and only
if (p − 1)! ≡ −1 mod p.

Example. For p = 5, we have (5− 1)! = 4! = 24 ≡ −1 mod 5; but for p = 6, we
have (6 − 1)! = 5! = 120 ≡ 0 mod 6.

Proof. (⇐) If n is composite then there exists d dividing n with 1 < d < n.
Therefore d|(n − 1)! and d|n. So if (n − 1)! ≡ −1 mod n then n|((n − 1)! + 1)
and so d|((n − 1)! + 1). Hence d|1 = ((n − 1)! + 1) − (n − 1)!. ※

(⇒) One can easily check the cases p = 2, 3. Now assume p is prime with
p > 3. Then by Lemma 2.3,

(Z/pZ)
×

= {[a]p ∈ Z/pZ : (a, p) = 1} = {[1]p, [2]p, . . . , [p − 1]p}.

Now look at those [i]p such that [i]2p = [1]p. For these values we have i2 ≡ 1
mod p ⇒ p|(i2 − 1) ⇒ p|(i − 1)(i + 1), and so [i]p = [1]p or [−1]p. Therefore, if
we exclude these two cases, the remaining set [2]p, [3]p, . . . , [p− 2]p can be split
into inverse pairs. It follows that 2×3×4× . . .× (p−2) ≡ 1 mod p, and hence
that (p − 1)! ≡ −1 mod p.

Theorem 3.2 (Fermat’s Little Theorem, 1640). Let p be a prime and let x ∈ Z
such that p ∤ x. Then xp−1 ≡ 1 mod p.

Proof. Let G be the group (Z/pZ)
×

, so that #G = p − 1. Apply Lagrange’s
Theorem from group theory (see Mods), which implies that if G is a finite group
and g ∈ G then g#G = iG. In our case we take g = x + pZ, which gives

(x + pZ)p−1 = 1 + pZ =⇒ xp−1 + pZ = 1 + pZ =⇒ xp−1 ≡ 1 mod p.

Alternative proof. We shall show that xp ≡ x mod p for all x ∈ N (then it is
true for all x ∈ Z). This suffices because if p ∤ x then

xp ≡ x mod p =⇒ p|(xp−x) =⇒ p|x(xp−1−1) =⇒ p|(xp−1−1),

(we have used that p is prime and p ∤ x in the last step).
We proceed by induction on x. The case x = 1 is trivial. Suppose that

xp ≡ x mod p for some x ∈ N. By the binomial theorem we have

(x + 1)p = xp +

(

p

1

)

xp−1 +

(

p

2

)

xp−1 + . . . +

(

p

p − 1

)

x + 1.

However,
(

p
k

)

= p!
k!(p−k)! is divisible by p if 1 ≤ k ≤ p − 1 since p|p! but p ∤ k!

and p ∤ (p − k)!. Therefore

(x + 1)p ≡ xp + 1 ≡ x + 1 mod p,

where the last equality uses the induction hypothesis.
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Remark. The converse to Fermat’s Little Theorem is not always true. For
example, 2340 ≡ 1 mod 341, but 341 = 11 × 31. Nonetheless, Fermat’s Little
Theorem provides a very useful necessary condition for primality: If n is odd,
but 2n−1 6≡ 1 mod n, then n cannot be prime. In fact, if 2n−1 ≡ 1 mod n then
n is probably (but not necessarily) prime. Note that there are methods that can
compute 2n−1 mod n very rapidly.

Definition. For n ∈ N we define Euler’s totient function, or the φ-function, by

φ(n) := #{a ∈ N : a ≤ n, (a, n) = 1} = #(Z/nZ)
×

.

Theorem 3.3 (Euler’s Theorem, 1760). Let n ∈ N and x ∈ Z with (n, x) = 1.
Then xφ(n) ≡ 1 mod n.

Proof. Use Lagrange’s Theorem from group theory exactly as before.

Remark. Note that φ(p) = p−1 for p prime, so that Euler’s Theorem generalises
Fermat’s Little Theorem.

Lemma 3.4. Let n ∈ N.

(i) If n = pe with p prime, then φ(n) = pe − pe−1.

(ii) If n = pe1
1 . . . per

r with pi distinct primes, then

φ(n) = φ(pe1
1 ) . . . φ(per

r ) = n

r
∏

i=1

(

1 − 1

pi

)

.

Proof. (i) If n = pe then for all m, either (n,m) = 1 or p|m. Thus

φ(n) = #{m ∈ N : m ≤ pe, p ∤ m}
= #{m ∈ N : m ≤ pe} − #{m ∈ N : m ≤ pe, p|m}
= pe − pe−1.

(ii) Corollary 2.6 used repeatedly yields
(

Z

nZ

)×

=

(

Z

pe1
1 Z

)×

×
(

Z

pe2
2 Z

)×

× . . .

(

Z

per
r Z

)×

.

Hence we have

φ(n) = #

(

Z

nZ

)×

= #

(

Z

pe1
1 Z

)×

× #

(

Z

pe2
2 Z

)×

× . . . × #

(

Z

per
r Z

)×

= φ(pe1
1 )φ(pe2

2 ) . . . φ(per
r )

= (pe1
1 − pe1−1

1 ) . . . (per
r − per−1

r )

= pe1
1 . . . per

r

(

1 − 1

p1

)

. . .

(

1 − 1

pr

)

= n
r

∏

i=1

(

1 − 1

pi

)

.
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Lemma 3.5. For any n ∈ N we have
∑

d|n φ(d) = n.

Proof. We classify integers a ≤ n according to their highest common factor with
n. Thus

{a ∈ N : a ≤ n} =
⋃

d|n

{a ∈ N : a ≤ n, (n, a) = d} (disjoint union).

Hence n =
∑

d|n Sd where Sd := #{a ∈ N : a ≤ n, (n, a) = d}.
If d|n then, by Lemma 1.5, we have (n, a) = d ⇐⇒ a = da′ with (n

d , a′) = 1.
Moreover a ≤ n ⇐⇒ a′ ≤ n

d . It follows that

Sd = #{a′ ∈ N, a′ ≤ n
d , (n

d , a′) = 1},

and hence Sd = φ(n
d ). We deduce that n =

∑

d|n φ(n
d ). However when d runs

over the divisors of n, so does e = n/d, so that n =
∑

e|n φ(e).

Example. For n = 12 we have

φ(1) + φ(2) + φ(3) + φ(4) + φ(6) + φ(12) = 1 + 1 + 2 + 2 + 2 + 4 = 12.

Theorem 3.6 (Lagrange’s polynomial congruence theorem, 1768). Let f(x) =
a0 + a1x . . . + adx

d ∈ Z[x] and let p be a prime with p ∤ ad. Then f(x) ≡ 0
mod p has at most d solutions mod p.

Remark. More generally, any polynomial equation of degree d over a field has
at most d solutions (note that Z/pZ = Fp is a field).

Proof. The proof is by induction on d. If x0 is a root of f(x) ≡ 0 mod p, we
may write f(x) = (x − x0)q(x) + c by the Division Algorithm applied to the
ring of polynomials. It follows that f(x0) = (x0 − x0)q(x0) + c ≡ 0 mod p,
whence c ≡ 0 mod p. From this we see that f(x) ≡ (x − x0)q(x) mod p.
Now the congruence q(x) ≡ 0 mod p has at most d − 1 roots, by the inductive
hypothesis. Call these roots x1, x2, . . . , xr with r ≤ d − 1. Now, whenever
f(x⋆) ≡ 0 mod p we have (x⋆ − x0)q(x

⋆) ≡ 0 mod p. Therefore p|(x⋆ − x0) or
p|q(x⋆), and so x⋆ ≡ x0 mod p or x⋆ ≡ x1, x2, . . . , or xr mod p. Hence there
are at most d roots of the equation f(x) ≡ 0 mod p.

Example. Note that x2 − 1 ≡ 0 mod 8 has 4 roots, namely 1, 3, 5, 7 mod 8.
This is not a counterexample to Theorem 3.6, however, because 8 is not prime
(and Z/8Z is not a field).
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4 Primitive Roots

We investigate the structure of the group (Z/nZ)×.

Definition. Let (a, n) = 1 with a, n ∈ N. Then the least d ∈ N such that
ad ≡ 1 mod n is called the order of a mod n, and written ordn(a). This is the
order of [a]n in (Z/nZ)×.

Remark. Lagrange’s Theorem in group theory tells us that the order of an
element divides the order of the group; so ordn(d) divides φ(n) = #(Z/nZ)×.

Definition. When n ∈ N, we say that a ∈ Z is a primitive root of n if and
only if (a, n) = 1 and ordn(a) = φ(n). This is equivalent to requiring a to be a
generator for (Z/nZ)

×
, which must therefore be cyclic.

Example. Let n = 5 and abbreviate [x]n = [x]5 to [x]. Then we have

[2]0 = [1], [2]1 = [2], [2]2 = [4], [2]3 = [8] = [3], [2]4 = [16] = [1].

Therefore ord5(2) = 4 = φ(5) and so 2 is a primitive root of 5.

Remark. For some values of n there are no primitive roots. For example, ev-
ery non-trivial element of (Z/8Z)× = {[1]8, [3]8, [5]8, [7]8} has order 2, and so
(Z/8Z)× is not cyclic.

Lemma 4.1. Let n ∈ N.

(i) ordn(a) = t ⇒ ordn(au) = t
(t,u) .

(ii) If r is a primitive root of n then ru is too, if and only if (u, φ(n)) = 1 .

Proof. (i) Let v = (t, u), and t = vt′, u = vu′ so that (t′, u′) = 1. We need to
show that ordn(au) = t′. Note that

(au)t′ = aut′ = avu′t′ = atu′

= (at)u′ ≡ 1u′ ≡ 1 mod n.

We now need to show that t′ is minimal. Suppose that (au)s ≡ 1 mod n.
Then, since t is the order of a, we must have that t|us. This implies
that t′|u′s, and hence t′|s, because t′ and u′ are coprime. Thus t′ ≤ s as
required.

(ii) This follows from part (i), since φ(n)
(φ(n),u) = φ(n) ⇐⇒ (u, φ(n)) = 1 .

Lemma 4.2. Let p be prime and let d divide p − 1. Then there are exactly
φ(d) elements a mod p such that ordp(a) = d. In particular, there are φ(p− 1)

primitive roots modulo p. Hence (Z/pZ)
×

is always cyclic.

Proof. Let d|(p − 1) and write ψ(d) = #{a mod p : (a, p) = 1, ordp(a) = d}.
We aim to show that ψ(d) = φ(d). By Lemma 3.5,

∑

d|(p−1) φ(d) = p − 1; and

moreover, since ordp(a)|(p − 1), we must have
∑

d|(p−1) ψ(d) = p − 1 (because

there are p − 1 possible a mod p with (a, p) = 1). If we can show that ψ(d) ≤
φ(d) for all d|(p−1) then ψ(d) = φ(d) for all such d. (Otherwise, if ψ(d0) < φ(d)
for some d0, then

∑

d|(p−1) ψ(d) <
∑

d|(p−1) φ(d). ※). We examine two cases:
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(i) ψ(d) = 0. Then ψ(d) ≤ φ(d).

(ii) ψ(d) ≥ 1. Then there exists a such that (a, p) = 1 and ordp(a) = d. By
Lemma 4.1, ordp(a

i)|d for all i. Moreover, a0, a1, . . . , ad−1 are all incongru-
ent mod p since ordp(a) = d. Since ordp(a

i)|d, we have (ai)d ≡ 1 mod p,
so that the congruence xd−1 ≡ 0 mod p has at least d distinct roots mod
p. By Theorem 3.6 (Lagrange’s polynomial congruence theorem), there
are at most d roots. Thus every root must be of the form ai mod p.

Now suppose that ordp(b) = d. Then bd ≡ 1 mod p so that b is a root
of the polynomial xd − 1 ≡ 0 mod p. Thus b ≡ ai mod p for some i,
which we may assume is in the range 0 ≤ i < d. Now we know that
ordp(b) = ordp(a

i) = d
(d,i) by Lemma 4.1. Hence ordp(b) = d ⇒ (d, i) = 1,

so that
ψ(d) = #{ai : 0 ≤ i < d, (i, d) = 1} = φ(d).

Therefore ψ(d) ≤ φ(d) as required.

Theorem 4.3. (Z/nZ)
×

is cyclic ⇔ n has a primitive root ⇔ n = 1, 2, 4, pe, 2pe

where e ∈ N and p is an odd prime.

Proof. Not examinable (but statement is examinable). See Baker, A concise
introduction to the theory of numbers, §3.6, for example.

Lemma 4.4. Let n ∈ N and suppose that n has a primitive root. Let a ∈ Z
with (a, n) = 1 and let k ∈ N. Then

∃x ∈ Z such that xk ≡ a mod n ⇐⇒ aφ(n)/(φ(n),k) ≡ 1 mod n.

Proof. Let g be a primitive root of n. Then gi ≡ gj mod n ⇐⇒ φ(n)|(i − j).
For any x ∈ Z with (x, n) = 1, we define the discrete logarithm of x to base g
modulo n by

gl(x) ≡ x mod n and l(x) ∈ {0, 1, . . . , φ(n) − 1}.
Note that, since (Z/pZ)

×
is cyclic, there must be exactly one such value l(x)

for each x. Note too that l(xy) ≡ l(x) + l(y) mod φ(n).
Now,

∃x such that xk ≡ a mod n ⇐⇒ ∃x such that (gl(x))k ≡ gl(a) mod n

⇐⇒ ∃x such that φ(n)|(kl(x) − l(a))

⇐⇒ ∃x such that kl(x) ≡ l(a) mod φ(n)

⇐⇒ ∃z such that kz ≡ l(a) mod φ(n)

⇐⇒ (k, φ(n))|l(a) by Lemma 2.4

⇐⇒ φ(n)| φ(n)l(a)

(φ(n), k)

⇐⇒ gl(a)φ(n)/(φ(n),k) ≡ 1 mod n

⇐⇒ aφ(n)/(φ(n),k) ≡ 1 mod n.

12



Remark. Lemma 4.4 does not hold without the hypothesis that n has a primitive
root. For example, if n = 8, k = 2, a = 3 then there exists no x ∈ Z such that
x2 ≡ 3 mod 8, yet aφ(8)/(φ(8),2) ≡ 34/(4,2) ≡ 32 ≡ 1 mod 8.

5 Quadratic Residues

Definition. Let p be an odd prime, and suppose we have a ∈ Z such that
p ∤ a. Then a is a Quadratic Residue of p if there exists x ∈ Z such that x2 ≡ a
mod p, and a is Quadratic Non-Residue if not. We sometimes abbreviate these
terms to “QR” and “QNR”.

Definition. For any a ∈ Z, we define the Legendre Symbol to be

(

a

p

)

=







+1, p ∤ a and a is a QR of p,
−1, p ∤ a and a is a QNR of p,

0, p|a.

Theorem 5.1 (Euler’s Criterion). If p is an odd prime and a ∈ Z then

(

a

p

)

≡ a
p−1
2 mod p.

Proof. This is obvious if p|a. So suppose that p ∤ a. Then

ap−1 ≡ 1 mod p

by Fermat’s Little Theorem (Theorem 3.2). Hence

(

a
p−1
2

)2

≡ 1 mod p =⇒ p|
(

a
p−1
2

)2

− 1

=⇒ p|
(

a
p−1
2 + 1

) (

a
p−1
2 − 1

)

=⇒ p|
(

a
p−1
2 + 1

)

or p|
(

a
p−1
2 − 1

)

=⇒ a
p−1
2 ≡ +1 or − 1 mod p

However, Lemma 4.4 yields

(

a

p

)

= +1 ⇐⇒ ∃x ∈ Z such that x2 ≡ a mod p

⇐⇒ a
φ(p)

(φ(p),2) ≡ 1 mod p

⇐⇒ a
p−1
2 ≡ 1 mod p.

Therefore if
(

a
p

)

= −1, then the only possibility is that a
p−1
2 ≡ −1 mod p.
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Lemma 5.2. If p is an odd prime then
(−1

p

)

= (−1)
p−1
2 =

{

+1, p ≡ 1 mod 4,
−1, p ≡ 3 mod 4.

In other words, x2 ≡ −1 mod p is soluble if and only if p ≡ 1 mod 4.

Proof. By Euler’s Criterion (Theorem 5.1) we have
(

−1
p

)

≡ (−1)
p−1
2 mod p,

and both sides are +1 or −1. If they were different, we would have +1 ≡ −1
mod p and so p|2, which gives a contradiction as p is odd.

Lemma 5.3. Let p be an odd prime and a, b ∈ Z.

(i)
(

1
p

)

= 1;

(ii) if a ≡ b mod p then
(

a
p

)

=
(

b
p

)

(periodicity);

(iii)
(

ab
p

)

=
(

a
p

) (

b
p

)

(multiplicativity) .

Proof. Claims (i) and (ii) are trivial. For claim (iii), Euler’s Criterion (Theorem
5.1) gives

(

ab

p

)

≡ (ab)(p−1)/2 = a(p−1)/2b(p−1)/2 ≡
(

a

p

) (

b

p

)

mod p.

But
(

ab
p

)

≡
(

a
p

)(

b
p

)

mod p implies
(

ab
p

)

=
(

a
p

) (

b
p

)

, as in proof above.

Example. Can we solve x2 ≡ 13 mod 17?
(

13

17

)

=

(−4

17

)

by periodicity (Lemma 5.3(ii))

=

(−1

17

)(

2

17

)(

2

17

)

by multiplicativity (Lemma 5.3(iii))

=

(−1

17

)

as (±1)2 = 1

= (−1)(17−1)/2 by Lemma 5.2

= (−1)8 = 1

Hence the congruence is soluble! Note that this proof that a solution exists
cannot be adapted to provide a concrete solution. It is purely an existence
argument.

Lemma 5.4. If p is an odd prime then there are p−1
2 incongruent QR’s and

p−1
2 incongruent QNR’s. Equivalently, we have

p−1
∑

a=1

(

a

p

)

= 0.
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Proof. Let g be a primitive root of p (such a g exists by Lemma 4.2). We

have
(

g
p

)

≡ g(p−1)/2 ≡ ±1 mod p by Euler’s Criterion (Theorem 5.1). In fact,

g(p−1)/2 ≡ −1 mod p since ordp(g) = p− 1. We use the discrete logarithm l(a)
to base g as defined in the proof of Lemma 4.4. Then

(

a

p

)

=

(

gl(a)

p

)

=

(

g

p

)l(a)

≡
(

g(p−1)/2
)l(a)

≡ (−1)l(a) mod p.

Hence
(

a
p

)

= (−1)l(a) and so
(

a
p

)

= +1 if and only if l(a) is even. However,

l(a) runs over 0, 1, 2, . . . , p − 2 of which p−1
2 are even and p−1

2 are odd.

Remark. Note that if p is an odd prime and g is a primitive root mod p, then

{quadratic residues mod p} = {g0, g2, g4, . . . , gp−3}
= {[12]p, [2

2]p, [3
2]p, . . . , [

(

p−1
2

)2
]p}.

Definition. Let a ∈ Z and n ∈ N. We write λ(a, n) for the unique integer such
that a ≡ λ(a, n) mod n and 0 ≤ λ(a, n) < n. (This is not a standard notation,
and is intended merely for temporary use in our discussion of quadratic residues.)

Theorem 5.5 (Gauss’s Lemma). Let p be an odd prime and let a ∈ Z with
a ∤ p. Then

(

a

p

)

= (−1)Λ where Λ := #{j ∈ N : 1 ≤ j ≤ p−1
2 , λ(aj, p) > p

2}.

Example. Let p = 13 and a = 5.
If j = 1 then λ(aj, p) = λ(5, 13) = 5 < 13/2.
If j = 2 then λ(aj, p) = λ(10, 13) = 10 > 13/2.
If j = 3 then λ(aj, p) = λ(15, 13) = 2 < 13/2.
If j = 4 then λ(aj, p) = λ(20, 13) = 7 > 13/2.
If j = 5 then λ(aj, p) = λ(25, 13) = 12 > 13/2.
If j = 6 then λ(aj, p) = λ(30, 13) = 4 < 13/2.
Hence Λ = #{2, 4, 5} = 3 and so

(

5
13

)

= (−1)3 = −1.

Proof. Let Sa := {aj : 1 ≤ j ≤ p−1
2 } and define

{r1, . . . , rm} = {λ(aj, p) : aj ∈ Sa, 0 < λ(aj, p) < p
2},

{s1, . . . , sn} = {λ(aj, p) : aj ∈ Sa, p
2 < λ(aj, p) < p},

so that n = Λ. Note that λ(aj, p) 6= p
2 since p

2 6∈ Z and that λ(aj, p) 6= 0, since
p ∤ a and p ∤ j. Also note that if j1 6= j2 then λ(aj1, p) 6= λ(aj2, p) since

λ(aj1, p) = λ(aj2, p) =⇒ aj1 ≡ aj2 mod p

=⇒ a(j1 − j2) ≡ 0 mod p

=⇒ j1 − j2 ≡ 0 mod p (since p ∤ a).

=⇒ j1 ≡ j2 mod p

=⇒ j1 = j2 (since 0 < j1, j2 < p).
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Hence m + n = #Sa = p−1
2 . We claim that

{r1, . . . , rm, (p − s1), . . . , (p − sn)} = {1, 2, . . . , p−1
2 }.

Clearly ri, (p−sj) ∈ {1, 2, . . . , p−1
2 } and there are p−1

2 elements ri, (p−sj), so it
suffices to show that they are all different. We have already shown that ri 6= rj

and si 6= sj for i 6= j. To show that ri 6= p − sj we argue by contradiction. If
ri + sj = p, let ri = λ(aj1, p) and sj = λ(aj2, p). Then

ri + sj = p = λ(aj1, p) + λ(aj2, p) ≡ aj1 + aj2 ≡ a(j1 + j2) mod p.

Hence a(j1 + j2) ≡ 0 mod p. However p ∤ a and 2 ≤ j1 + j2 ≤ p − 1 so that
p ∤ (j1 + j2) ※. Therefore ri 6= p − si, which proves the claim.

Finally,

r1r2 · · · rm(p − s1) · · · (p − sn) = 1 × 2 × · · · × p−1
2 =

(

p−1
2

)

!

≡ r1r2 · · · rms1s2 · · · sn(−1)n mod p.

On the other hand, by the definition of ri, sj ,

r1r2 · · · rms1s2 · · · sn =

p−1
2

∏

j=1

λ(aj, p) ≡
p−1
2

∏

j=1

(aj) = a
p−1
2

(

p−1
2

)

! mod p,

and hence
(

p−1
2

)

! ≡ (−1)na
p−1
2

(

p−1
2

)

! mod p.

Now, since p ∤
(

p−1
2

)

!, we see that 1 ≡ (−1)na
p−1
2 mod p. Thus a

p−1
2 ≡ (−1)n

mod p and so
(

a
p

)

≡ (−1)n mod p by Euler’s Criterion (Theorem 5.1). It

therefore follows that
(

a
p

)

= (−1)n = (−1)Λ as required.

Corollary 5.6. If p is an odd prime then

(

2

p

)

=

{

+1, p ≡ ±1 mod 8,
−1, p ≡ ±3 mod 8.

Moreover,
(

2

p

)

= (−1)(p
2−1)/8.

Proof. We shall apply Gauss’s Lemma (Theorem 5.5) for a = 2, so that

(

2

p

)

= (−1)Λ where Λ = #{1 ≤ j ≤
(

p−1
2

)

: λ(2j, p) > p
2}.

Note that 2j < p
2 if j < p

4 and p
2 < 2j < p if p

4 < j < p
2 . It follows that

Λ = #{j ∈ N : p
4 < j < p

2}. We will now use the following standard notation:
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Definition. For any x ∈ R we set ⌊x⌋ := max{n ∈ Z : n ≤ x}. For example,
⌊3⌋ = 3, ⌊π⌋ = 3 and ⌊−π⌋ = −4.

With this notation we have

#
{

j : p
4 < j < p

2

}

= #
{

j ≤ p−1
2

}

− #
{

j < p
4

}

= p−1
2 −

⌊

p
4

⌋

.

Now we look at cases:

(i) p = 8k + 1 =⇒ p−1
2 = 4k,

⌊

p
4

⌋

= 2k =⇒ Λ = 2k,

(ii) p = 8k + 3 =⇒ p−1
2 = 4k + 1,

⌊

p
4

⌋

= 2k =⇒ Λ = 2k + 1,

(iii) p = 8k + 5 =⇒ p−1
2 = 4k + 2,

⌊

p
4

⌋

= 2k + 1 =⇒ Λ = 2k + 1,

(iv) p = 8k + 7 =⇒ p−1
2 = 4k + 3,

⌊

p
4

⌋

= 2k + 1 =⇒ Λ = 2k + 2.

Hence (−1)Λ = +1 ⇐⇒ p = 8k + 1 or 8k + 7. This proves the first assertion in
the corollary.

To handle the second assertion we note that if p = k + 8n then

p2 − 1

8
=

k2 + 16kn + 64n2 − 1

8
=

k2 − 1

8
+ 2(kn + 4n2) ≡ k2 − 1

8
mod 2.

By checking the cases k = ±1,±3 we deduce that

p2 − 1

8
≡

{

0 mod 2, p ≡ ±1 mod 8,
1 mod 2, p ≡ ±3 mod 8,

and the result follows.

Exercise. Use Theorem 5.5 to find
(

−1
p

)

and hence recover Lemma 5.2.

Lemma 5.7. Let p be an odd prime and let a ∈ Z with a odd and p ∤ a. Then
(

a

p

)

= (−1)
P(p−1)/2

k=1 ⌊ak/p⌋.

Proof. Refer to the proof of Gauss’s Lemma (Theorem 5.5) and recall that
λ(aj, p) ≡ aj mod p, with 0 ≤ λ(aj, p) < p. Here λ(aj, p) = aj − pk where

0 ≤ aj − pk < p. It follows that k ≤ aj
p < k + 1, and hence that k =

⌊

aj
p

⌋

.

We therefore deduce that λ(aj, p) = aj − p
⌊

aj
p

⌋

. Using this expression we now

have
m

∑

i=1

ri +
n

∑

i=1

si =

(p−1)/2
∑

j=1

λ(aj, p) =

(p−1)/2
∑

j=1

(

aj − p

⌊

aj

p

⌋)

.

Hence, since a and p are odd, we have

(p−1)/2
∑

j=1

j −
(p−1)/2

∑

j=1

⌊

aj

p

⌋

≡
m

∑

i=1

ri +

n
∑

i=1

si mod 2, (∗).
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Recall from the proof of Gauss’s Lemma (Theorem 5.5) that

{r1, . . . , rm, (p − s1), . . . , (p − sn)} = {1, 2, . . . , p−1
2 }.

Thus
m

∑

i=1

ri + np +

n
∑

i=1

si ≡
(p−1)/2

∑

j=1

j mod 2,

and hence
m

∑

i=1

ri +
n

∑

i=1

si ≡ n +

(p−1)/2
∑

j=1

j mod 2.

Comparing this with (∗), we see that

n ≡
(p−1)/2

∑

j=1

⌊

aj

p

⌋

mod 2,

and the result follows from Gauss’s Lemma (Theorem 5.5).

Theorem 5.8 (The Law of Quadratic Reciprocity (Gauss, 1796)). If p and q
are distinct odd primes, then

(

p

q

)

=

(

q

p

)

(−1)(
p−1
2 )( q−1

2 ) =







+
(

q
p

)

, if p ≡ 1 mod 4 or q ≡ 1 mod 4,

−
(

q
p

)

, if p ≡ q ≡ 3 mod 4.

Remark. Gauss was particularly proud of this result, which he first proved at
the age of 17. Indeed, he subsequently gave no fewer than seven further proofs.
The theorem is remarkable, in that it connects the solubility of a congruence
modulo p to the solubility of a second congruence to the seemingly unrelated
modulus q.

One might ask whether there is an analogous theory for cubic residues, for
example. One can indeed construct such a theory, but it naturally takes place
in the ring Z[ω] (where ω is a primitive cube root of unity) rather than in Z.

Example. What is
(

29
53

)

? In other words, can we solve x2 ≡ 29 mod 53? Use
LQR (the Law of Quadratic Reciprocity):

(

29

53

)

=

(

53

29

)

(by LQR since 29 ≡ 1 mod 4)

=

(

24

29

)

(by periodicity since 53 ≡ 24 mod 29)

=

(

2 × 2 × 2 × 3

29

)

=

(

2

29

)3 (

3

29

)

(by multiplicativity).
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We now use LQR and Corollary 5.6 repeatedly:
(

2

29

)

= −1 (by Corollary 5.6 since 29 ≡ 3 mod 8)

(

3

29

)

=

(

29

3

)

(by LQR since 29 ≡ −3 mod 4)

=

(

2

3

)

(by periodicity since 29 ≡ 2 mod 3)

= −1 (by Corollary 5.6 since 3 ≡ 3 mod 8).

Thus
(

29
53

)

= (−1)4 = +1, and hence x2 ≡ 29 mod 53 is soluble.

Proof of Theorem 5.8. To prove the Law of Quadratic Reciprocity it suffices,
by Lemma 5.7, to show that

(p−1)/2
∑

k=1

⌊

qk

p

⌋

+

(q−1)/2
∑

k=1

⌊

pk

q

⌋

=
p − 1

2
× q − 1

2
.

We will count the points in

R :=
{

(x, y) ∈ N × N : 0 < x < p
2 , 0 < y < q

2

}

in two different ways:

(i) #R = #{x : 0 < x < p
2} × #{y : 0 < y < q

2} = p−1
2 × q−1

2 (since p and q
are odd).

(ii) If a point (x, y) were on the line from (0, 0) to (p
2 , q

2 ) we would have y =
qx
p and hence py = qx. However, then we would have p|qx, which is

impossible, since p ∤ q and p ∤ x (recall that 0 < x < p/2). Thus there are
no points (x, y) of R on the line from (0, 0) to (p

2 , q
2 ).

How many points (x, y) of R are there below (or on) the diagonal? For
each value of x with 1 ≤ x ≤ p−1

2 , the pairs (x, y) below the diagonal must
satisfy 1 ≤ y ≤ q

px. However, there are ⌊ qx
p ⌋ such values of y. It follows

that the total number of points below (or on) the line y = qx/p is

(p−1)/2
∑

k=1

⌊

qk

p

⌋

.

Similarly, there are
(q−1)/2

∑

k=1

⌊

pk

q

⌋

points above (or on) the line. It follows that

#R =

(p−1)/2
∑

k=1

⌊

qk

p

⌋

+

(q−1)/2
∑

k=1

⌊

pk

q

⌋

.
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Comparing the two expressions for #R gives the result.

Theorem 5.9. There are infinitely many primes p such that p ≡ −1 mod 8.

Proof. Suppose for a contradiction that there are only finitely many such primes,
p1, . . . , pn. Define N := 8(p1 . . . pn)2 − 1. Since N is odd and greater than 1 it
must have at least one odd prime factor p, say. Then (4p1 . . . pn)2 ≡ 2 mod p

and so
(

2
p

)

= +1. Thus p ≡ ±1 mod 8, by Corollary 5.6. However, if p ≡ −1

mod 8 then p = pi for some i. This is impossible, since N ≡ −1 mod pi, while
p|N . Thus if p|N then p ≡ 1 mod 8. However, any product of primes of the
form 1 mod 8 must itself be 1 mod 8. This implies that N ≡ 1 mod 8, which
is impossible, since N = 8(p1 . . . pn)2 − 1. ※

6 Factorisation

The factorisation of positive integers into their prime divisors is an ancient
problem, and remains a difficult one even today. The modern use of coding
systems based on the fact that factorisation is difficult make the issue one of
considerable current interest. At the moment such systems use number of at
least 200 decimal digits, and it is therefore numbers of this size that one would
like to factor. Note that the problem of factorisation is much harder than
primality testing.

Method 6.1 (Trial Division). Let n ∈ N, n ≥ 2, then either n is prime or
there exists a prime p dividing n such that p ≤ √

n. For a proof, assume n is
composite, with n = ab and a, b ≥ 2. Without loss of generality, assume a ≤ b.
Then a2 ≤ ab = n so that a ≤ √

n. Thus if p is any prime factor of a we have
p ≤ √

n.
To use this method, test whether 2|n, 3|n, 5|n, . . . for each prime up to

√
n.

This is the best method for small n and is also a good method for a “random”
n. However it may take up to

√
n tests to prove or disprove primality of n.

Method 6.2 (Fermat’s Method). Let n ∈ N and let m be the least integer such
that m ≥ √

n. Examine m2 − n, (m + 1)2 − n, . . . looking for square values. If
(m + j)2 − n = y2 say, then

n = (m + j)2 − y2 = (m + j + y)(m + j − y),

which gives a factorisation of n.
Note that if n = ab with a, b odd and a ≤ b then

n =

(

a + b

2

)2

−
(

a − b

2

)2

with
a ± b

2
∈ Z.

So this process does eventually find a factor because m + j = a+b
2 , y = a−b

2 will
work. Unfortunately, if n is prime, we have to check until m + j = n+1

2 .

20



Example. Take n = 6077. Then 77 <
√

6077 < 78 so we start to look at m = 78,
finding:

782 − 6077 = 7,

792 − 6077 = 164,

802 − 6077 = 323,

812 − 6077 = 484 = 222.

Therefore 6077 = 812 − 222 = 103 × 59.

Remark. Fermat’s method works best for n = ab where a and b are close to
each other.

Method 6.3 (Pollard’s p− 1 method). This method is far more sophisticated.
Let n ∈ N and suppose that p|n where (p − 1)|k! for some “small” k ∈ N. By
Fermat’s Little Theorem we have 2p−1 ≡ 1 mod p; and so if (p − 1)|k! then
2k! ≡ 1 mod p. Thus p|(2k! − 1), and if p|n we get that p|(2k! − 1, n).

We can now describe Pollard’s algorithm. We compute ak ≡ 2k! mod n for
k = 1, 2, . . ., with 0 ≤ ak < n. (We shall see below how to do this efficiently.)
Then (2k! − 1, n) = (ak − 1, n) which we can compute easily using Euclid’s
Algorithm. If the answer is between 1 and n then it gives a factor of n. If
n has a prime factor p with (p − 1)|k!, we will have p|(ak − 1, n), so that the
highest common factor will not merely be 1. (There is a danger though that
the highest common factor will turn out to be n, in which case the method fails
to find a factor of n. It transpires that the method breaks down in this way
rather infrequently. However, in contrast to the first two approaches, Pollard’s
method does not always work.)

One can expect that this method is most successful when p − 1 has only
small prime factors. For example, p = 2269 would be discovered using k = 9
since

p − 1 = 2268 = 22347|9!

How can we find ak easily (and quickly)? We have a1 = 2 and ak ≡ ak
k−1

mod n, since ak
k−1 ≡ (2(k−1)!)k ≡ 2(k−1)!k ≡ 2k! mod n. This process requires

k−1 multiplications to find ak, given ak−1. Hence, by induction, we can compute
ak with 1 + 2 + . . . + (k − 1) = k(k − 1)/2 multiplications. This is far better
than the naive process for computing 2k! mod n which would require k! − 1
multiplications!

Example. Let n = 5419 and find a factor by Pollard’s p − 1 method:

k ak mod 5917 (ak, 5917)
1 2 1
2 22 = 4 1 = (3,5917)
3 43 = 64 1 = (63,5917)
4 644 ≡ 2521 1 = (2520,5917)
5 25215 ≡ 1648 61 = (1647,5917)

Hence n = 5917 = 61 × 97. Note that 61 − 1 = 22 × 3 × 5 has only small prime
factors.
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7 Cryptography

Definition. In cryptography, the study of codes and ciphers, the Plaintext is
the message to be encrypted, easily readable and completely insecure (e.g. a
credit-card number, name and address), the Ciphertext is the message written
in code (i.e. some horrible unreadable mess of numbers, symbols and letters).
In order to move from the Plaintext to the Ciphertext, we must encrypt the
Plaintext and to return to the Plaintext (in order to read the message once it
has been received) we must decrypt it.

Many coding systems begin by translating a message written with ordinary
letters into one involving numbers, using a standard system which is assumed
to be well known to the sender, to the recipient, and to the enemy! One might
use the standard ASCII codes, for example. We shall use the convention that
we translate A to 00, B to 01, C to 02,. . . , and Z to 25. We will ignore all
punctuation for simplicity. Thus CODE would be written in the numerical
form 03140405, for example.

Method 7.1. A very basic cipher, dating from the times of the Romans, and
used by Julius Caesar, is called the Caesar Cipher. To use this cipher, first
pick a numerical “key” 1 ≤ k ≤ 25 and translate each letter of the Plaintext to
an integer from 00 to 25 as above. For each such integer Pi find Ci ≡ Pi + k
mod 26 in the same range 0 ≤ Ci ≤ 25, and convert the Ci back into letters.
One then sends the new string as the Ciphertext. In order to decrypt this code,
one must repeat the algorithm but for each Ci in the Ciphertext, one computes
Pi ≡ Ci − k mod 26.

Example. Encrypt the string “TOP SECRET” using Caesar Shift with k = 11:

T O P S E C R E T
P 19 14 15 18 04 02 17 04 19
C 04 25 00 03 15 13 02 15 04

E Z A C P N B P E

Clearly, sending the message “EZA CPNBPE” wouldn’t mean much to an on-
looker, but to someone who knows how to reverse the algorithm, it tells him
“TOP SECRET”.

Remark. There are (at least) two problems with this system of encryption.
Firstly, the sender and receiver both have to know the key number k. How can
they agree on a value securely, other than by meeting in person? Secondly, if
the enemy knows which type of system is being used, they can easily decrypt
the message even without knowing k. After all, there are only 25 possible values
to try! For 2000 years those who constructed codes focused on this second issue,
without making any progress on the first difficulty.

Method 7.2. A substitution cipher is a more general version of the Caesar
Cipher. This involves some permutation of the alphabet to encrypt messages,
e.g. A 7→ E, B 7→ W, C 7→ U, . . . There are 26! possible substitution ciphers.
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However, this can be attacked using frequency analysis and suffers from the
“secure key exchange” problem described above.

Method 7.3. The RSA Public Key Cryptosystem, invented by Rivest, Shamir
and Adleman in 1977 allows messages to be sent securely without the need to
exchange a “key” secretly. The letters RSA stand for the surnames of the three
creators.

To model this system, let us call the sender of the message Alice and the
intended recipient Bob. A malicious eavesdropper will appear later by the name
of Eve. Bob chooses two large primes p and q and an integer e such that
(e, (p − 1)(q − 1)) = 1. Typically p, q have hundreds of digits each. Bob
announces e and n = pq (but not the factors p and q) to the public. These
are the “Public Key”. When Alice wishes to send Bob a message securely, she
converts her message to a numerical string P using the system above and looks
up Bob’s Public Key information. She then computes C ≡ P e mod n and
sends C to Bob. Now, Bob knows p and q so he can decrypt the message:

(i) Bob computes d such that de ≡ 1 mod (p − 1)(q − 1). He can do this
using Euclid’s Algorithm.

(ii) We have Cd ≡ (P e)d = P ed = P 1+k(p−1)(q−1) = P 1+kφ(n) for some k ∈ N,
since φ(n) = φ(pq) = (p − 1)(q − 1). By Theorem 3.3 (Euler’s Theorem)
we have Pφ(n) ≡ 1 mod n so that Cd ≡ P mod n.

(iii) Thus Bob can recover Alice’s message by computing Cd ≡ P mod n.

Note several important points:

(i) The primes p and q can be obtained by choosing random numbers in a
suitable range and using efficient primality tests.

(ii) Actually, we need (P, n) = 1. It is possible for this to fail if p|P or q|P but
since p, q are hundreds of digits long each, this is very unlikely indeed.

(iii) Alice’s message P may be larger than n. In this case she will have to break
P into pieces each of which is smaller than n and send them separately.

(iv) We need an efficient way of exponentiating mod n. One way to do this is
as follows. Suppose we want to compute mr mod n for some m, r ∈ Z.
Let rk . . . r0 be the binary expansion of r, so each ri is either 0 or 1. We
can inductively compute m2i

= (m2i−1

)2 mod n for i = 1, . . . , k. Then

mr ≡
∏

i:ri=1

m2i

mod n.

(v) Even with the above method, computing P e mod n and Cd mod n are
relatively slow jobs. For large P or C, even modern computers take a while
to complete the algorithm. Thus a balance needs to be struck in choosing
the size of n. If n is too small the code may be insecure (see below), but
if n is too large the encryption/decryption processes may be impractically
slow.
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Example. Bob has published e = 13 and n = 2537 and Alice wishes to send him
the very secret message “I love you”. This produces P = 0811142104241420,
but since she can only send messages of size below n so she has to break up her
message into blocks 0811, 1421, 0424, 1420. She calculates C ≡ P 13 mod 2537
for each of them:

(0811)13 ≡ 1542 mod 2537,

(1421)13 ≡ 0323 mod 2537,

(0424)13 ≡ 0467 mod 2537,

(1420)13 ≡ 2323 mod 2537.

So the Ciphertext is “1542032304672323” which she sends to Bob. Bob knows
that 2537 = 43 × 59 so he finds a d such that 13d ≡ 1 mod (42 × 58). One
such d is 937. Bob now calculates P ≡ C937 mod 2537 for each block of four
numbers:

(1542)937 ≡ 0811 mod 2537,

(0323)937 ≡ 1421 mod 2537,

(0467)937 ≡ 0424 mod 2537,

(2323)937 ≡ 1420 mod 2537.

Hence Bob can read the message Alice sent him.

Can Eve, the eavesdropper, work out the secret message? One assumes she
can intercept the encrypted version C—hacking into the email system is child’s
play these days. Moreover she will know n and e, which Bob has made public.
Thus the problem is to find d. The only way we know to do this is by computing
φ(n), for which she will need to find p and q. So the only known way to decrypt
RSA messages requires one to factorise a number n of hundreds of digits. A
large part of modern internet security is therefore based on the difficulty of the
factorisation problem. There is however another important question— Is there
another (quicker) way to find d?

We conclude by showing that finding φ(n) is tantamount to calculating p
and q.

Lemma 7.4. If we know n and φ(n) then we can easily calculate p and q.

Proof. We have φ(n) = (p−1)(q−1) = n−p−q+1 so that p+q = n−φ(n)+1.
Since also pq = n, the numbers p and q are roots of

x2 − x(n − φ(n) + 1) + n = 0.

Thus

p, q =
1

2

(

(n − φ(n) + 1) ±
√

(n − φ(n) + 1)2 − 4n
)

.
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