Number Theory 2013

Problem Sheet 1

- 1. Prove Lemma 1.3.: The greatest common factor of two integers can be written as an integral combination of the two integers.
- 2. Adapt Euclid's proof for the fact that there are infinitely many primes to show that there are infinitely many primes of the form 4k-1.

[Hint: Show that for a prime p > 2 either $p \equiv 1 \pmod{4}$ or $p \equiv -1 \pmod{4}$; and if $a \equiv 1$ and $b \equiv 1$ then $ab \equiv 1 \pmod{4}$.]

3. Adapt Euclid's proof for the fact that there are infinitely many primes to show that there are infinitely many primes of the form 6k-1.

[Hint: Show the corresponding statements as in the hint for Problem 2.]

- 4. Let a be a positive integer and suppose that in its decimal expansion it has 6 digits: $a = a_0 + 10a_1 + \cdots + 100000a_5$. Show that a is divisible by 7 if and only if $a_0 + 3a_1 + 2a_2 a_3 3a_4 2a_5$ is divisible by 7. Can this be generalized?
- 5. Solve the simultaneous linear congruences

$$x \equiv 3 \pmod{4}$$
, $2x \equiv 5 \pmod{9}$, $7x \equiv 1 \pmod{11}$.

- 6. List the elements of $(\mathbb{Z}/30\mathbb{Z})^x$ and compute the multiplicative inverse for each of them.
- 7. Show that Euler's totient function is multiplicative: If (m,n) = 1 then $\phi(mn) = \phi(m)\phi(n)$.
- 8. Let m and n be coprime integers. For any integer a, how are the integer solutions of the equation $x^2 = a \pmod{mn}$ related to the integer solutions of the simultaneous equations

$$x^2 = a \pmod{m}$$
 and $x^2 = a \pmod{n}$?

9. Let p be an odd prime and let $a \in \mathbb{Z}$. Use primitive roots to find conditions on p and a which ensure that there exists solutions in \mathbb{Z} for

$$x^3 \equiv a \pmod{p}$$
.

Illustrate your answer with the examples p = 17 and p = 19.