## Number Theory 2013

## Problem Sheet 2

1. Verify that 5 is the least positive primitive root of 73 , and 3 is the least positive primitive root of 199 .
2. If $n$ has a primitive root then it has $\phi(\phi(n))$ of them.
3. Compute the order of all elements in $(\mathbb{Z} / 13 \mathbb{Z})^{\times}$and check that your answer agrees with Lemma 4.2 and Question 2 above.
4. Let $p$ be a prime. Show that every element in $\mathbb{Z} / p \mathbb{Z}$ can be written as the sum of two squares.
[Hint: Do the non-zero sums of two squares in $\mathbb{Z} / p \mathbb{Z}$ form a multiplicative group?]
5. Prove that there exists solutions for the equation

$$
x^{2} \equiv 251 \quad(\quad \bmod 779)
$$

[Note that $779=19 \cdot 41$.]
6. Does the equation $x^{2}+10 x+15 \equiv 0(\bmod 45083)$ have any solutions?
7. Prove that there are infinitely many primes of the form $p=8 k-1$.
8. Use the Fermat Method to factorize 119143.
[Hint: $345^{2}<119143<346^{2}$ and $4761=69^{2}$.]
9. Suppose that the cipher-text message produced by RSA encryption, with exponent $e=5$ and modulus $n=2881$, is

$$
05041874034705152088235607360468 .
$$

What is the plain-text message?

