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Parabolic heat equation

We start with the simple 1D parabolic PDE which describes the
change in non-dimensional temperature of a 1D rod

v _ v
ot  0x2

to be solved on 0 < x < 1, subject to some initial conditions Vp(x)
at time t=0, and V/(0, t)=V/(1, t)=0 on the two ends.
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Parabolic heat equation

The exact solution can be expressed as a combination of Fourier
modes:
V(x,t) =Y Ansin(mmx)exp (—m’nt)

m>0

in which the amplitudes are given by
1
Ay =2 / Vo(x) sin(m'mx) dx
0

since
if m=m'

1 1
/ sin(mmx) sin(m'mx) dx:{ 27
0

0, otherwise
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Finite Difference Approximation

Suppose we use a computational grid with spacing Ax =1/K and
timestep At:

t" = nAt

Y

x; = 1 Ax
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Finite Difference Approximation

We want to construct an approximation V" ~ V/(x;, t").

1

To do this, we note that

ov
V(X,', t" + At) =~ V(X,, ) + At E

(X,',t")
8V 1
el Vn+1 VAl
- ot A ( ’>
and also
oV 9V
: ™~ + Ax — lA 2
V(x £ Ax, t") = V(x;, t") X = o F%)
32V 1 N n n
- Ox2 A N2 <V1+1 2V + Vi—l)
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Finite Difference Approximation

Putting these together gives the explicit forward-time central-space
approximation of the heat equation:

1 n n 1 n n n
A_t(ViH_Vi):W( i — 2V +Vi—1)

which, setting A = At/(Ax)?, can be re-arranged to give
Vit = VA (Vi -2V + VL)
= (=207 A (Vi + V)

together with zero values for V" on the two ends.
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Finite Difference Approximation
The finite difference solution also has a Fourier mode decomposition
of the form
VI = Z Ap sin(mmx;)
0<m<1/Ax

where the amplitudes A satisfy the equation
Artt = (1 —4xsin’(mAx)) AL

We know the amplitudes should decay exponentially — the condition
for this to happen is

—1 < (1—4Xsin’(3mAx)) < 1

which requires

4A<2 = At<i(Ax)?

1
2
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Finite Difference Approximation
This timestep stability limit also follows directly from
Vin+1 =(1-20)V"+ A <\/I:-1 + Vin—l)

since for A < 1/2 we get

VI < (=20 [V + A Vi) + AV
< (1—=27) max| V7| + A max | V[ + A max|Vj7|
< max | V7|

SO
max [V7] < max V|
1 1
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Hyperbolic equation

Another simple example is the 1D hyperbolic PDE which models

convection:
ov oV B

ot ox
to be solved again on 0<x<1, subject to some initial conditions
Vo(x) at time t=0, and V/(0, t)=0 on the left-hand end.

0

The exact solution
has the form

V(x,t) = Vo(x—t) t characteristics
e ///
X
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Finite Difference Approximation

Using
ov
i il Vn+1 VA
ot © A ( ’)
and 9V )
o~ —(yn (VAL
0x Ax( ' ’_1)
gives the explicit upwind discretisation
i (V_n-i-l _ Vn) + i (Vn _ V.n ) =0
At T Ax N T
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Finite Difference Approximation

Setting A = At/Ax, this can be re-arranged to give
VI = V= A (V- V)
= =3V +AVv
together with Vj = 0.

If A <1 this is stable since we again get

max |V < max | V]
1 1
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Parabolic heat equation

As a 2D model problem, we consider the simple parabolic PDE which
describes the change in non-dimensional temperature of a 2D plate

v _ v v
ot Ox2  0Oy?

to be solved on the unit square 0<x<1, 0<y<1 subject to some
initial conditions Vg(x, y) at time t=0, and V=0 on the boundaries
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Parabolic heat equation

The exact solution can be expressed as a combination of Fourier
modes:

V(x,y, t) = Z A sin(mmx) sin(nry) exp (—(m*+n*)m’t)
m,n>0

in which the amplitudes are given by

1,1
At = 4/ / Vo(x, y) sin(m'mx) sin(n'my) dx dy
o Jo

since

1 1
/ / sin(mmx) sin(nmy) sin(m'mx) sin(n'7y) dxdy
o Jo

1 . Y Y
B 7, fm=m' n=n
0, otherwise
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Laplace equation

Suppose U(x, y) is the solution to the 2D Laplace equation

PU P

Ox? * dy? 0

subject to specified values on the boundary.

If W(x,y,t) is the solution of the parabolic PDE subject to those
same boundary values, then V = W — U satisfies the parabolic PDE
with zero boundary conditions.

Since V(x,y,t) = 0ast — oo, W(x,y,t) = U(x,y) as t — o0,

which gives us one approach to approximating solutions of the
Laplace equation.
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Finite Difference Approximation

Using a similar explicit forward-time central-space approximation of
the heat equation, with Ax = Ay, gives:

1 1

At (V’Tl N V’Z) - W (\/i’}‘rl,j =2V + Vin_l,j)
1 , . .
- (Ax)? (ViJ+1 -2V + Vi,j—l)

which, setting A = At/(Ax)?, can be re-arranged to give

VIR = Vi A (Vi — 2V + VL)
A (Vi = 2VE + Vi)

= (1- 4)‘)\/;?,' + A (Vi'-1|—1J + Vin—l,j + Vi,,7j-|—1 + Vi’:j—l)
together with zero values for V", on the boundary.
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Finite Difference Approximation

It can be shown that the finite difference solution also has a
Fourier mode decomposition of the form

Vi = Z AL msin(kmx;) sin(my;)

0<k,m<1/Ax
where the amplitudes A} . satisfy the equation
AL = (1— axsin?(2kAx) — 4Asin2(2mAx)) AL,

We know the amplitudes should decay exponentially — the condition
for this to happen is

—1 < (1 —4Xsin®(3kAx) — 4Xsin®(3mAx)) < 1

which requires

BA<2 = At < HAx)?
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Finite Difference Approximation

When trying to solve the Laplace equation it is best to make A
(and hence At) as big as possible, while remaining stable.

Putting A = 1/4 gives the Jacobi iteration

V”+1__(I+1J_’_Vn +VJ+1+ lnj 1)

This is applied to interior points; the values of the boundary points
are fixed so for those we use simply

+1 __
Vit = v
(There are other more efficient iterative methods, such as Conjugate

Gradient and Multigrid, but we won't cover those here.)
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Black-Scholes PDE in finance

The Black-Scholes PDE in mathematical finance for the value of a
European option based on two financial assets each modelled by
Geometric Brownian Motion is

Y% Y% Y%
E = I’V—I’Slasl r528—52
P2V 92V 92V
2 1¢g2
( Sigez TP s, T a2 852)

where r is the risk-free interest rate, o is the volatility, and p is the
correlation between the motion of the two assets

This is solved backwards in time on (0, Spax) X (0, Smax) x (0, T)
with the final value V/(5;, Sy, T) equal to the payoff function, and
subject to some boundary conditions at S; = S,.x, S2 = Smax,

to get the value V/(5;,S,,0) at the initial time t = 0.
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Black-Scholes PDE

If p > 0 then a simple explicit Euler central space discretisation on a

uniform grid is

n+1 n
vi© = (L-rAy)V

rAt n n n n
+ NG (1 (Vi =Viliy) + Soy (Vi — Vi,jfl))
o’St At 0o
+T9(M+IJ_2%J+ Vi)
0253 At
+T’152(\4J+1_2Vid'+ Vii_1)

2 2
o 51,j52’iAt n n n n
- 2AS2 (( i+1J+1_\/i+1J_\/iJ+1+ Vu)

H(VO=V =V i+ V)

1

with time going backwards so that t” = T — nAt.
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Black-Scholes PDE

This gives a 7-point stencil:

-+
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Black-Scholes PDE

No boundary conditions are need when /=0 or j=0, because
V_yj and V; _; are not used.

The boundary conditions on i=/ and j=J are trickier, and a little
unusual.
On i=/ usually omit term (V. —2V/"+V/", ;) on the basis that
0%V
357 ~ 0, for most European options, and replace

1
(Vi jr= V=V + V0 by (VI =V =V V),

and V', ;= V[’ with V[,— V[, . with similar changes when j=J.
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