
Lecture 1: Introduction to finite difference

methods

Mike Giles

University of Oxford

Mike Giles Intro to finite difference methods 1 / 21



Parabolic heat equation

We start with the simple 1D parabolic PDE which describes the
change in non-dimensional temperature of a 1D rod

∂V

∂t
=

∂2V

∂x2

to be solved on 0 < x < 1, subject to some initial conditions V0(x)
at time t=0, and V (0, t)=V (1, t)=0 on the two ends.
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Parabolic heat equation

The exact solution can be expressed as a combination of Fourier
modes:

V (x , t) =
∑
m>0

Am sin(mπx) exp
(
−m2π2t

)
in which the amplitudes are given by

Am′ = 2

∫ 1

0

V0(x) sin(m
′πx) dx

since ∫ 1

0

sin(mπx) sin(m′πx) dx =

{
1
2
, if m=m′

0, otherwise
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Finite Difference Approximation

Suppose we use a computational grid with spacing ∆x = 1/K and
timestep ∆t:

-

6

i

n

xi = i ∆x

tn = n∆t
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Finite Difference Approximation
We want to construct an approximation V n

i ≈ V (xi , t
n).

To do this, we note that

V (xi , t
n +∆t) ≈ V (xi , t

n) + ∆t
∂V

∂t

∣∣∣∣
(xi ,tn)

=⇒ ∂V

∂t
≈ 1

∆t

(
V n+1
i − V n

i

)
and also

V (xi ±∆x , tn) ≈ V (xi , t
n)±∆x

∂V

∂x

∣∣∣∣
(xi ,tn)

+ 1
2
∆x2

∂2V

∂x2

∣∣∣∣
(xi ,tn)

=⇒ ∂2V

∂x2
≈ 1

∆x2
(
V n
i+1 − 2V n

i + V n
i−1

)
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Finite Difference Approximation

Putting these together gives the explicit forward-time central-space
approximation of the heat equation:

1

∆t

(
V n+1
i − V n

i

)
=

1

(∆x)2
(
V n
i+1 − 2V n

i + V n
i−1

)
which, setting λ = ∆t/(∆x)2, can be re-arranged to give

V n+1
i = V n

i + λ
(
V n
i+1 − 2V n

i + V n
i−1

)
= (1− 2λ)V n

i + λ
(
V n
i+1 + V n

i−1

)
together with zero values for V n

i on the two ends.
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Finite Difference Approximation
The finite difference solution also has a Fourier mode decomposition
of the form

V n
i =

∑
0<m<1/∆x

An
m sin(mπxi)

where the amplitudes An
m satisfy the equation

An+1
m =

(
1− 4λ sin2(1

2
m∆x)

)
An
m

We know the amplitudes should decay exponentially – the condition
for this to happen is

−1 <
(
1− 4λ sin2(1

2
m∆x)

)
< 1

which requires
4λ ≤ 2 =⇒ ∆t ≤ 1

2
(∆x)2
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Finite Difference Approximation

This timestep stability limit also follows directly from

V n+1
i = (1− 2λ)V n

i + λ
(
V n
i+1 + V n

i−1

)
since for λ ≤ 1/2 we get

|V n+1
i | ≤ (1− 2λ) |V n

i |+ λ |V n
i+1|+ λ |V n

i−1|

≤ (1− 2λ) max
i ′

|V n
i ′ |+ λ max

i ′
|V n

i ′ |+ λ max
i ′

|V n
i ′ |

≤ max
i ′

|V n
i ′ |

so
max

i
|V n+1

i | ≤ max
i

|V n
i |
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Hyperbolic equation

Another simple example is the 1D hyperbolic PDE which models
convection:

∂V

∂t
+

∂V

∂x
= 0

to be solved again on 0<x<1, subject to some initial conditions
V0(x) at time t=0, and V (0, t)=0 on the left-hand end.

The exact solution
has the form
V (x , t) = V0(x−t)
with V0(−t) = 0.
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Finite Difference Approximation

Using
∂V

∂t
≈ 1

∆t

(
V n+1
i − V n

i

)
and

∂V

∂x
≈ 1

∆x

(
V n
i − V n

i−1

)
gives the explicit upwind discretisation

1

∆t

(
V n+1
i − V n

i

)
+

1

∆x

(
V n
i − V n

i−1

)
= 0
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Finite Difference Approximation

Setting λ = ∆t/∆x , this can be re-arranged to give

V n+1
i = Vi − λ

(
V n
i − V n

i−1

)
= (1− λ)V n

i + λV n
i−1

together with V n
0 = 0.

If λ ≤ 1 this is stable since we again get

max
i

|V n+1
i | ≤ max

i
|V n

i |
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Parabolic heat equation

As a 2D model problem, we consider the simple parabolic PDE which
describes the change in non-dimensional temperature of a 2D plate

∂V

∂t
=

∂2V

∂x2
+

∂2V

∂y 2

to be solved on the unit square 0<x<1, 0<y<1 subject to some
initial conditions V0(x , y) at time t=0, and V=0 on the boundaries
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Parabolic heat equation
The exact solution can be expressed as a combination of Fourier
modes:

V (x , y , t) =
∑
m,n>0

Am,n sin(mπx) sin(nπy) exp
(
−(m2+n2)π2t

)
in which the amplitudes are given by

Am′,n′ = 4

∫ 1

0

∫ 1

0

V0(x , y) sin(m
′πx) sin(n′πy) dx dy

since ∫ 1

0

∫ 1

0

sin(mπx) sin(nπy) sin(m′πx) sin(n′πy) dx dy

=

{
1
4
, if m=m′, n=n′

0, otherwise
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Laplace equation

Suppose U(x , y) is the solution to the 2D Laplace equation

∂2U

∂x2
+

∂2U

∂y 2
= 0

subject to specified values on the boundary.

If W (x , y , t) is the solution of the parabolic PDE subject to those
same boundary values, then V ≡ W − U satisfies the parabolic PDE
with zero boundary conditions.

Since V (x , y , t) → 0 as t → ∞, W (x , y , t) → U(x , y) as t → ∞,
which gives us one approach to approximating solutions of the
Laplace equation.
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Finite Difference Approximation
Using a similar explicit forward-time central-space approximation of
the heat equation, with ∆x = ∆y , gives:

1

∆t

(
V n+1
i ,j − V n

i ,j

)
=

1

(∆x)2
(
V n
i+1,j − 2V n

i ,j + V n
i−1,j

)
+

1

(∆x)2
(
V n
i ,j+1 − 2V n

i ,j + V n
i ,j−1

)
which, setting λ = ∆t/(∆x)2, can be re-arranged to give

V n+1
i ,j = Vi ,j + λ

(
V n
i+1,j − 2V n

i ,j + V n
i−1,j

)
+ λ

(
V n
i ,j+1 − 2V n

i ,j + V n
i ,j−1

)
= (1− 4λ)V n

i ,j + λ
(
V n
i+1,j + V n

i−1,j + V n
i ,j+1 + V n

i ,j−1

)
together with zero values for V n

i ,j on the boundary.
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Finite Difference Approximation
It can be shown that the finite difference solution also has a
Fourier mode decomposition of the form

V n
i ,j =

∑
0<k,m<1/∆x

An
k,m sin(kπxi) sin(mπyj)

where the amplitudes An
k,m satisfy the equation

An+1
k,m =

(
1− 4λ sin2(1

2
k∆x)− 4λ sin2(1

2
m∆x)

)
An
k,m

We know the amplitudes should decay exponentially – the condition
for this to happen is

−1 <
(
1− 4λ sin2(1

2
k∆x)− 4λ sin2(1

2
m∆x)

)
< 1

which requires
8λ ≤ 2 =⇒ ∆t ≤ 1

4
(∆x)2
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Finite Difference Approximation

When trying to solve the Laplace equation it is best to make λ
(and hence ∆t) as big as possible, while remaining stable.

Putting λ = 1/4 gives the Jacobi iteration

V n+1
i ,j = 1

4

(
V n
i+1,j + V n

i−1,j + V n
i ,j+1 + V n

i ,j−1

)
This is applied to interior points; the values of the boundary points
are fixed so for those we use simply

V n+1
i ,j = V n

i ,j

(There are other more efficient iterative methods, such as Conjugate
Gradient and Multigrid, but we won’t cover those here.)
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Black-Scholes PDE in finance
The Black-Scholes PDE in mathematical finance for the value of a
European option based on two financial assets each modelled by
Geometric Brownian Motion is

∂V

∂t
= r V − r S1

∂V

∂S1
− r S2

∂V

∂S2

−σ2

(
1
2
S2
1

∂2V

∂S2
1

+ ρS1S2
∂2V

∂S1∂S2
+ 1

2
S2
2

∂2V

∂S2
2

)
where r is the risk-free interest rate, σ is the volatility, and ρ is the
correlation between the motion of the two assets

This is solved backwards in time on (0, Smax)× (0, Smax)× (0,T )
with the final value V (S1, S2,T ) equal to the payoff function, and
subject to some boundary conditions at S1 = Smax , S2 = Smax ,
to get the value V (S1, S2, 0) at the initial time t = 0.
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Black-Scholes PDE
If ρ > 0 then a simple explicit Euler central space discretisation on a
uniform grid is

V n+1
i ,j = (1− r∆t)V n

i ,j

+
r∆t

2∆S

(
S1,i (V

n
i+1,j−V n

i−1,j) + S2,j (V
n
i ,j+1−V n

i ,j−1)
)

+
σ2S2

1,i∆t

2∆S2
(V n

i+1,j−2V n
i ,j+V n

i−1,j)

+
σ2S2

2,j∆t

2∆S2
(V n

i ,j+1−2V n
i ,j+V n

i ,j−1)

+
ρσ2S1,jS

2
2,i∆t

2∆S2

(
(V n

i+1,j+1−V n
i+1,j−V n

i ,j+1+V n
i ,j)

+ (V n
i ,j−V n

i−1,j−V n
i ,j−1+V n

i−1,j−1)
)

with time going backwards so that tn ≡ T − n∆t.
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Black-Scholes PDE

This gives a 7-point stencil:

{ {

{ { {

{ {
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Black-Scholes PDE

No boundary conditions are need when i=0 or j=0, because
V−1,j and Vi ,−1 are not used.

The boundary conditions on i=I and j=J are trickier, and a little
unusual.

On i=I usually omit term (V n
I+1,j−2V n

I ,j+V n
I−1,j) on the basis that

∂2V

∂S2
1

≈ 0, for most European options, and replace

(V n
I+1,j+1−V n

I+1,j−V n
I ,j+1+V n

I ,j) by (V n
I ,j−V n

I−1,j−V n
I ,j−1+V n

I−1,j−1),

and V n
I+1,j−V n

I ,j with V n
I ,j−V n

I−1,j with similar changes when j=J .
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