
OpenMP Programming on Intel CPUs
Mike Giles

Practical 2: a Monte Carlo solver

This practical is based on the Monte Carlo solver discussed in Lecture 3.

The main objectives in this practical are to learn about:

• the use of #pragma omp threadprivate to define private storage for a
separate random number generator for each thread

• the use of #pragma omp parallel to create a parallel section executed by
multiple threads

• the use of omp_get_thread_num() to obtain a thread ID so that different
threads perform different calculations

• the use of the MKL library to generate a block of Normally-distributed
random numbers

• how to maximise performance by generating large blocks of random
numbers which are still small enough to fit within the L1 or L2 cache

The practicals can again be carried out on the system called mimic, or on any
other Maths Institute server or desktop.

What you are to do is as follows:

1. Create and go into a course subdirectory within your account, and then
copy all of the course files into it by using the command

cp -r ∼gilesm/html work/OpenMP/prac2 .

2. You may need to use the command

source /opt/intel/oneapi/setvars.sh

to set lots of environment variables associated with using the Intel
compiler.

3. Compile the code using the command

make

which follows the instructions in the Makefile. Note the additional flag to
link to the MKL library.

1



4. Set thread pinning by using the command

export OMP PROC BIND=true

set the number of OpenMP threads by using the command

export OMP NUM THREADS=4

and run the code and see the performance you obtain.

5. Try varying the number of threads and see whether the execution speed is
proportional to the number of threads

6. Try varying the size of the NRV which controls how many random numbers
are generated in each block. Try sizes as small as 1k, and as large as 10M.

7. Following the example of Practical 1, modify the code to compute and
print the amount of memory traffic being generated, remembering that the
random numbers have to be written by the random number generator, and
then read by the path generator.

Hence, compute and print out the corresponding Bytes/s and compare it
to the peak which the hardware is capable of.

8. Modify the code to treat sum1, sum2 as two elements in an array, using
the array reduction syntax described in lecture 2.

9. Modify the code again to use #pragma omp parallel instead of
#pragma omp parallel for, manually determining how many samples
need to be calculated for each thread, based on thread index and total
number of threads.

2


