
Lecture 6
Using multiple GPUs and loose ends

Lecture 6 1

Prof Wes Armour

wes.armour@eng.ox.ac.uk

Prof Mike Giles

mike.giles@maths.ox.ac.uk

Oxford e-Research Centre

Department of Engineering Science

Learning outcomes

In this sixth lecture we will look at CUDA streams and how they can be used to increase performance in GPU computing. We
will also look at some other useful odds and ends.

You will learn about:

• Synchronicity between host and device.

• Multiple streams and devices.

• How to use multiple GPUs.

• Some other odds and ends.

Lecture 6 2

Setting the scene

Lecture 6 3

Modern computers are typically comprised of many different
components.

• Central Processing Unit (CPU).

• Random Access Memory (RAM).

• Graphics Processing Unit (GPUs).

• Hard Disk Drive (HDD) / Solid State Drive (SSD).

• Network Interface Controller (NIC)…

Typically, each of these different components will be
performing a different task, maybe for different

processes, at the same time.

Synchronicity

Lecture 1 4

Synchronicity

Lecture 6 5

The von Neumann model of a computer
program is synchronous with each
computational step taking place one after
another (because instruction fetch and
data movement share the same
communication bus).

This is an idealisation, and is almost never
true in practice.

K
ap

o
o

h
t

[C
C

 B
Y-

SA
 3

.0
 (

h
tt

p
s:

//
cr

ea
ti

ve
co

m
m

o
n

s.
o

rg
/l

ic
e

n
se

s/
b

y-
sa

/3
.0

)]

Synchronicity

Lecture 6 6

Compilers will generate code with
overlapped instructions (pipelining – see
lecture one), re-arrange execution order
and avoid redundant computations to
produce more optimal code.

As a programmer we don’t normally
worry about this and think of execution
sequentially when working out whether
a program gives the correct result.

K
ap

o
o

h
t

[C
C

 B
Y-

SA
 3

.0
 (

h
tt

p
s:

//
cr

ea
ti

ve
co

m
m

o
n

s.
o

rg
/l

ic
e

n
se

s/
b

y-
sa

/3
.0

)]

Synchronicity

Lecture 6 7

K
ap

o
o

h
t

[C
C

 B
Y-

SA
 3

.0
 (

h
tt

p
s:

//
cr

ea
ti

ve
co

m
m

o
n

s.
o

rg
/l

ic
e

n
se

s/
b

y-
sa

/3
.0

)]

However, when things become asynchronous, the
programmer has to think very carefully about what is

happening and in what order!

Synchronicity - GPUs

Lecture 6 8

When writing code for GPUs we have to think even more
carefully, because:

Our host code executes on the CPU(s);

Our kernel code executes on the GPU(s)

. . . but when do the different bits take place?

. . . can we get better performance by being clever?

. . . might we get the wrong results?

The most important thing is to try to get a clear idea
of what is going on, and when – then you can work

out the consequences…

Simple host code

Lecture 6 9

The basic / simple / default behaviour in CUDA is that
we have:

1x CPU.

1x GPU.

1x thread on CPU (i.e. scalar code).

1x “stream” on GPU (called the “default stream”).

B
y

R
R

ZE
ic

o
n

s
[C

C
 B

Y-
SA

 3
.0

 (
h

tt
p

s:
//

cr
ea

ti
ve

co
m

m
o

n
s.

o
rg

/l
ic

e
n

se
s/

b
y-

sa
/3

.0
)]

, f
ro

m
 W

ik
im

ed
ia

 C
o

m
m

o
n

s

Host

Device

Recap – GPU Execution

Lecture 6 10

We’ve looked at how code executes on GPUs,
lets have a quick recap:

• For each warp, code execution is effectively
synchronous within the warp.

• Different warps execute in an arbitrary
overlapped fashion – use __syncthreads()
if necessary to ensure correct behaviour.

• Different thread blocks execute in an
arbitrary overlapped fashion.

So nothing new here.

Over the next few slides we will discuss
streams – asynchronous execution and the

implications for CPU and GPU execution.

Software Hardware

FP32Thread Core

Device

SM

Grid

Thread
Block

Warp

Blocking and non-blocking calls

Lecture 1 11

Host code – blocking calls

Lecture 6 12

Most CUDA calls are synchronous (often called “blocking”).

An example of a blocking call is cudaMemcpy().

1. Host call starts the copy (HostToDevice / DeviceToHost).

2. Host waits until it the copy has finished.

3. Host continues with the next instruction in the host
code once the copy has completed.

cudaMalloc(&d_data, size);

float *h_data = (double*)malloc(size);

…

cudaMemcpy(d_data, h_data, size, H2D) ;

kernel_1 <<< grid, block >>> (…) ;

cudaMemcpy (…, D2H);

…

Host code – blocking calls

Lecture 6 13

Why do this???

This mode of operation ensures correct execution.

For example it ensures that data is present if the
next instruction needs to read from the data that
has been copied…

cudaMalloc(&d_data, size);

float *h_data = (double*)malloc(size);

…

cudaMemcpy(d_data, h_data, size, H2D) ;

kernel_1 <<< grid, block >>> (…) ;

cudaMemcpy (…, D2H);

…

Host code – blocking calls

Lecture 6 14

So the control flow for our code looks something like…

H2D

Kernel_1

D2H

Host Thread

Default
Stream

Ti
m

e

Host Thread

cudaMalloc(&d_data, size);

float *h_data = (double*)malloc(size);

…

cudaMemcpy(d_data, h_data, size, H2D) ;

kernel_1 <<< grid, block >>> (…) ;

cudaMemcpy (…, D2H);

…

Host code – non-blocking calls

Lecture 6 15

In CUDA, kernel launches are asynchronous
(often called “non-blocking”).

An example of kernel execution from host
perspective:

1. Host call starts the kernel execution.

2. Host does not wait for kernel execution to
finish.

3. Host moves onto the next instruction.

H2D

Kernel_1

D2H

Host Thread

Default
Stream

Ti
m

e

Host Thread

CPU

function_A

Host code – non-blocking calls

Lecture 6 16

The “crazy code” for our last control flow
diagram might look like…

H2D

Kernel_1

D2H

Host Thread

Default
Stream

Ti
m

e

Host Thread

CPU

function_A

cudaMalloc(&d_data, size);

float *h_data = (double*)malloc(size);

…

cudaMemcpy(d_data, h_data, size, H2D) ;

kernel_1 <<< grid, block >>> (…) ;

CPU_function_A(…);

cudaMemcpy (…, D2H);

…

Host code – non-blocking calls

Lecture 6 17

Another example of a non-blocking call is
cudaMemcpyAsync().

This function starts the copy but doesn’t wait for
completion.

Synchronisation is performed through a “stream”.

You must use page-locked memory (also known as
pinned memory) – see Documentation.

In both of our examples, the host eventually waits
when at (for example) a
cudaDeviceSynchronize() call.

The benefit of using streams is that you can improve
performance (in some cases, not all) by overlapping

communication and compute, or CPU and GPU execution.

Asynchronous host code

Lecture 6 18

When using asynchronous calls, things to watch out for,
and things that can go wrong are:

• Kernel timing – need to make sure it’s finished.

• Could be a problem if the host uses data which
is read/written directly by kernel, or transferred
by cudaMemcpyAsync().

• cudaDeviceSynchronize() can be used
to ensure correctness (similar to
syncthreads() for kernel code).

CUDA Streams

Lecture 1 19

CUDA Streams

Lecture 6 20

Quoting from section 6.2.8.5 in the CUDA
Programming Guide:

Applications manage concurrency through streams.

A stream is a sequence of commands (possibly
issued by different host threads) that execute in
order.

Different streams, on the other hand, may execute
their commands out of order with respect to one
another or concurrently.

http://on-demand.gputechconf.com/gtc/2014/presentations/S4158-cuda-streams-best-practices-common-pitfalls.pdf

H2D

Kernel_1

D2H

Host Thread

cudaDeviceSynchronize()

H2D

Kernel_2

D2H

Stream 1 Stream 2

Ti
m

e

Host Thread

Multiple CUDA Streams

Lecture 6 21

When using streams in CUDA, you must supply a
“stream” variable as an argument to:

• kernel launch
• cudaMemcpyAsync()

Which is created using cudaStreamCreate();

As shown over the last couple of slides:

• Operations within the same stream are ordered -
(i.e. FIFO – first in, first out) – they cant overlap.

• Operations in different streams are unordered wrt
each other and can overlap.

Use multiple streams to increase performance by
overlapping memory communication with compute.

cudaStream_t stream1;

cudaStreamCreate(&stream1);

my_kernel_one<<<blocks,threads,0,stream1>>>(…);

cudaStreamDestroy(stream1);

An example of launching a kernel in a
stream that isn’t the “default stream”.

Page-locked / Pinned memory

Lecture 6 22

Section 6.2.6 of the cuda programming guide:

• Host memory is usually paged, so run-time system keeps
track of where each page is located.

• For higher performance, pages can be fixed (fixed address
space, always in RAM), but means less memory available for
everything else.

• CUDA uses this for better host <–> GPU bandwidth, and also
to hold “device” arrays in host memory.

• Can provide up to 100% improvement in bandwidth

• You must use page-locked memory with
cudaMemcpyAsync();

• Page-locked memory is allocated using cudaHostAlloc(), or
registered by cudaHostRegister(); https://devblogs.nvidia.com/how-optimize-data-transfers-cuda-cc/

Pinned memory is used as a staging area for transfers
from the device to the host. We can avoid the cost of

the transfer between pageable and pinned host arrays
by directly allocating our host arrays in pinned

memory.

The default stream

Lecture 6 23

The way the default stream behaves in relation to others depends on a compiler flag:

no flag, or --default-stream legacy

This forces old (bad) behaviour in which a cudaMemcpy or kernel launch on the default stream
blocks/synchronizes with other streams.

Or --default-stream per-thread

This forces new (good) behaviour in which the default stream doesn’t affect the others.

For more info see the nvcc documentation:

https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html#options-for-steering-cuda-compilation

Practical 11

Lecture 6 24

An example is given in practical 11 for those interested, try with the two different flags:

The default stream

Lecture 6 25

The second (most useful?) effect of the flag
comes when using multiple threads (e.g. OpenMP
or POSIX multithreading).

In this case the effect of the flag is to create
separate independent (i.e. non-interacting)
default streams for each thread.

Using multiple default streams, one per thread, is
a useful alternative to using “proper” streams.

However “proper” streams within cuda are very
versatile and fully featured, so might be worth the
time and complexity investment.

Stream commands

Lecture 6 26

As previously shown, each stream executes a sequence of cuda calls. However to get the most out of
your heterogeneous computer you might also want to do something on the host.

There are at least two ways of coordinating this:

Use a separate thread for each stream
• It can wait for the completion of all pending tasks, then do what’s needed on the host.

Use just one thread for everything
• For each stream, add a callback function to be executed (by a new thread) when the pending

tasks are completed.
• It can do what’s needed on the host, and then launch new kernels (with a possible new

callback) if wanted.

Stream commands

Lecture 6 27

Some useful stream commands are:

cudaStreamCreate(&stream)

Creates a stream and returns an opaque “handle” – the
“stream variable”.

cudaStreamSynchronize(stream)

Waits until all preceding commands have completed.

cudaStreamQuery(stream)

Checks whether all preceding commands have completed.

cudaStreamAddCallback()

Adds a callback function to be executed on the host once
all preceding commands have completed.

https://developer.download.nvidia.com/CUDA/training/StreamsAndConcurrencyWebinar.pdf

http://on-demand.gputechconf.com/gtc/2014/presentations/S4158-cuda-streams-best-practices-common-pitfalls.pdf

Stream commands

Lecture 6 28

Functions useful for synchronisation and timing between streams:

cudaEventCreate(event)

Creates an “event”.

cudaEventRecord(event,stream)

Puts an event into a stream (by default, stream 0).

cudaEventSynchronize(event)

CPU waits until event occurs.

cudaStreamWaitEvent(stream,event)

Stream waits until event occurs (doesn’t block the host).

cudaEventQuery(event)

Check whether event has occurred.

cudaEventElapsedTime(time,event1,event2)

Times between event1 and event2.

Multi-GPU computing

Lecture 1 29

Multiple devices

Lecture 6 30

What happens if there are multiple GPUs?

CUDA devices within the system are numbered, not always in order of
decreasing performance!

• By default a CUDA application uses the lowest number device which is “visible”
and available (this might not be what you want).

• Visibility controlled by environment variable CUDA_VISIBLE_DEVICES.

• The current device can be chosen/set by using cudaSetDevice()

• cudaGetDeviceProperties() does what it says, and is very useful.

• Each stream is associated with a particular device, which is the “current” device
for a kernel launch or a memory copy.

• see simpleMultiGPU example in SDK or section 6.2.9 for more information.

h
tt

p
s:

//
w

w
w

.f
lic

kr
.c

o
m

/p
h

o
to

s/
eb

as
ti

an
/8

8
0

4
0

0
0

0
7

7

Multiple devices

Lecture 6 31

If a user is running on multiple GPUs, data can go directly
between GPUs (peer – peer), it doesn’t have to go via CPU.

This is the premise of the NVlink interconnect, which is much
faster than PCIe (900GB/s P2P on Hopper).

cudaMemcpy() can do direct copy from one GPU’s memory to
another.

A kernel on one GPU can also read directly from an array in
another GPU’s memory, or write to it.
This even includes the ability to do atomic operations with
remote GPU memory.

For more information see Section 6.13, “Peer Device Memory
Access” in CUDA Runtime API documentation:
https://docs.nvidia.com/cuda/cuda-runtime-api/
https://fuse.wikichip.org/news/1224/a-look-at-nvidias-nvlink-interconnect-and-the-nvswitch/

Multi-GPU computing

Lecture 6 32

Multi-GPU computing exists at all scales, from cheaper workstations
using PCIe, to more expensive Quadro / Titan products using fewer
NVLink, to high-end NVIDIA DGX servers.

Single workstation / server:
• a big enclosure for good cooling!
• up to 4 high-end cards in 16x PCIe v4 slots – up to 16GB/s interconnect.
• 2x high-end CPUs.
• 2-3kW power consumption – not one for the office!

NVIDIA DGX H100 Deep Learning server:
• 8 NVIDIA GH100 GPUs, each with 80GB HBM2.
• 2× 56-core Intel Xeons (Platinum 8480C 2.0 GHz).
• 2 TB RAM memory, 8x 3.84TB NVMe.
• 900GB/s NVlink interconnect between the GPUs.
• ~£379,000

Multi-GPU Computing

Lecture 6 33

How do you use these machines?

This depends on hardware choice:

• For single machines, use shared-memory multithreaded
host application.

• For DGX products you must use the NVIDIA Collective
Communications Library (NCCL).

• For clusters / supercomputers, use distributed-memory
MPI message-passing.

https://devblogs.nvidia.com/fast-multi-gpu-collectives-nccl/

MPI approach

Lecture 6 34

In the MPI approach:

• One GPU per MPI process (nice and simple).

• Distributed-memory message passing between MPI processes (tedious
but not difficult).

• Scales well to very large applications.

• Main difficulty is that the user has to partition their problem (break it up
into separate large pieces for each process) and then explicitly manage
the communication.

• Note: should investigate GPU Direct for maximum performance in
message passing.

Multi-user support

Lecture 6 35

What if different processes try to use the same device?

The behaviour of the device depends on the system compute mode setting (section 3.4):

In “default” mode, each process uses the fastest device:
• This is good when one very fast card, and one very slow card.
• But not very useful when you have two identical fast GPUs (one sits idle).

In “exclusive” mode, each process is assigned to first unused device;
However code will return an error if none are available.

cudaGetDeviceProperties() reports the mode setting

The mode can be changed by a user account with sys-admin privileges using the nvidia-smi
command line utility.

Some tips and tricks

Lecture 1 36

Loose ends – Loop unrolling

Lecture 6 37

Section 10.37 (of the programming guide):
loop unrolling, If you have a loop:

for (int k=0; k<4; k++) a[i] += b[i];

Then nvcc will automatically unroll this to give:

a[0] += b[0];

a[1] += b[1];

a[2] += b[2];

a[3] += b[3];

This is a standard compiler trick to avoid the cost of incrementing and looping.

The pragma

#pragma unroll 5

will also force unrolling for loops that do not have explicit limits.

Loose ends – const __restrict__

Lecture 6 38

Section 10.2.6 (of the programming guide):

__restrict__ keyword

The qualifier asserts that there is no overlap (in memory
space) between a,b,c, for example we do not have:

a[i]=q[i]

b[i]=q[i+1]

(you have no pointer aliasing) so the compiler can
perform more optimisations.

The following blog post demonstrates how this can
achieve a good speed increase:

void foo(const float* __restrict__ a,

const float* __restrict__ b,

float* __restrict__ c) {

for (i=1; i<N; i++) {

a[i] = b[i] + c[i];

}

...

}

https://devblogs.nvidia.com/cuda-pro-tip-optimize-pointer-aliasing/#disqus_thread

Loose ends - volatile

Lecture 6 39

Section 17.5.3.3 (of the programming guide):
volatile keyword

Tells the compiler the variable may change at any time, so not to re-use a
value which may have been loaded earlier and apparently not changed
since.

This can sometimes be important when using shared memory because the
compiler can optimize locations in shared memory by locating them in
registers (but register scope is specific to a single thread), for any thread.

Loose ends - Compilation

Lecture 6 40

Compiling:

The Makefile for first few practicals uses nvcc to compile
both the host and the device code.

Internally nvcc uses gcc for the host code (at least by default).
The device code compiler is based on the open source LLVM
compiler.

It often makes sense to use different compilers, for example
icc which is for host code which does not have kernel
launches.

To do this you must use the -fPIC flag to produce position-
independent-code (this just generates machine code that will
execute properly, independent of where it’s held in memory).

https://developer.nvidia.com/cuda-llvm-compiler

Loose ends - Compilation

Lecture 6 41

Loose ends - Compilation

Lecture 6 42

Loose ends - Compilation

Lecture 6 43

Other useful compiler options:

-arch=sm_80

This specifies GPU architecture (in this case sm_80 is for
Ampere A100).

-maxrregcount=n

This asks the compiler to generate code using at most n
registers; the compiler may ignore this if it’s not possible, but it
may also increase register usage up to this limit.

This is less important now since threads can have up to 255
registers, but can be useful in some instances to reduce register
pressure and enable more thread blocks to run.

or

Loose ends – Compilation

Lecture 6 44

Launch bounds (10.36):

-maxrregcount is given as an argument to the compiler (nvcc) and modifies the default for all
kernels.

A per kernel approach can be taken by using the __launch_bounds__ qualifier:

__global__ void

__launch_bounds__(maxThreadsPerBlock,minBlocksPerMultiprocessor)

MyKernel(...) {

…

}

Summary

Lecture 6 45

This lecture has discussed a number of
more advanced topics. As a beginner,
you can ignore almost all of them As you
get more experienced, you will probably
want to start using some of them to get
the very best performance.

