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This paper presents a number of algorithm developments for adjoint meth-
ods using the ‘discrete’ approach in which the discretisation of the nonlinear
equations is linearised and the resulting matrix is then transposed. With a new
iterative procedure for solving the adjoint equaitons, exact numerical equivalence
is maintained between the linear and adjoint discretisations. The incorporation of
strong boundary conditions within the discrete approach is discussed, as well as
a new application of adjoint methods to linear unsteady flow in turbomachinery.

Introduction

There is a long history of the use of adjoint
equations in optimal control theory.?® In fluid
dynamics, the first use of adjoint equations for
design was by Pironneau,®® but within the field
of aeronautical computational fluid dynamics, the
use of adjoint equations for design optimisation
has been pioneered by Jameson'®2%22 for the po-
tential flow, Euler and Navier-Stokes equations.
The complexity of the applications within these
papers has also progressed from 2D airfoil optimi-
sation, to 3D wing design and finally to complete
aircraft configurations.?™34:3% A number of other
research groups have also developed adjoint CFD
codes®* 82439 yging the same ‘continuous’ ap-
proach in which the first step is to linearise the
original partial differential equations. The ad-
joint p.d.e. and appropriate boundary conditions
are then formulated, and finally the equations are
discretised. While this minimises the memory re-
quirements and the CPU cost per iteration, it
requires one to develop an appropriate iterative
solution procedure, and this may not give as good
a convergence rate as the original nonlinear code.
In addition, the debugging and validation of the
adjoint code is complicated by the lack of a test
suite of benchmark testcases.

The alternative ‘discrete’ approach, which we
use, takes a discretisation of the Navier-Stokes
equations, linearises the discrete equations and
then uses the transpose of the linear operator to
form the adjoint problem. This approach has been
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developed by Elliott,'® 11 Anderson,'3?> Moham-
madi?’ and Kim.??> The main advantage of this
approach, in our opinion, is that the development
becomes a more straightforward process. The lin-
earisation of the nonlinear discrete equations can
either be performed manually or by automatic dif-
ferentiation software and the linear code can be
validated by direct comparison with the nonlinear
code. Similarly, since the adjoint code is obtained
by transposing the linear operator, it must yield
exactly the same values for the objective function,
and so can be validated against the linear code.

For an excellent review of research on both con-
tinuous and discrete adjoint design methods, see
the paper by Newman et al.?!

In this paper we contribute to the development
and understanding of discrete adjoint methods in
five respects:

e Discussion of the implementation of the ad-
joint code in a way which minimises the mem-
ory and CPU requirements, and can be auto-
mated using automatic differentiation tools;

e Development of an adjoint multigrid iteration
procedure with preconditioned timestepping
which maintains exact equivalence between
the linear and adjoint codes at all times dur-
ing the evolution of their respective solutions;

e A detailed discussion of the imposition of
strong boundary conditions and the inclusion
of viscous stresses in objective functions and
the consequence for the formulation of the ad-
joint code;

e Development of a harmonic adjoint code
which is the counterpart of a linear unsteady
code for a single frequency of unsteadiness,
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and which has applications in turbomachin-
ery blade design for reduced vibration due to
forced response;

e A numerical investigation indicating the po-
tential for problems with strong shocks.

This research forms part of the development of
the HYDRA suite of codes. The foundation is a
nonlinear code which approximates the Reynolds-
averaged Navier-Stokes equations on unstructured
hybrid grids, using an edge-based discretisation.
The solution procedure uses Runge-Kutta time-
marching accelerated by Jacobi preconditioning
and multigrid,?® with dual-timestepping for un-
steady flows.

The second code in the suite is for the linear
analysis of unsteady flows. This is based on a lin-
earisation of the unsteady flow equations around
the steady-state flow conditions calculated by the
nonlinear code. Due to linearity, unsteady peri-
odic flows can be decomposed into a sum of har-
monic terms, each of which can be computed inde-
pendently. Thus, the linear harmonic code consid-
ers just one particular frequency of unsteadiness,
resulting in a formulation in which the objective
is to compute a complex flow solution which rep-
resents the amplitude and phase of the unsteady
flow. This is explained in greater detail later in
this paper.

The third code is the steady adjoint code, which
again is based on a linearisation of the flow equa-
tions around the nonlinear steady-state flow con-
ditions. The fourth code, which is an extension
of the third, is the adjoint counterpart of the lin-
ear harmonic code. It is the development of these
codes which is the subject of this paper.

Discrete adjoint formulation

We start by considering the discrete nonlinear
Euler equations with a weak imposition of bound-
ary conditions on solid walls through the speci-
fication of zero mass flux through faces on the
surface. If the far-field boundary conditions are
also imposed through far-field fluxes then the dis-
crete system of equations which is solved is of the
form

R(U,a) =0.

Here U is the vector of flow field variables, a rep-
resents one or more design variables which control
the geometry of the airfoil or wing (and hence the
grid coordinates) and R(U) represents the discrete
flux residuals which are driven to zero by the iter-
ative solution process.

If there is just one design variable, then linearis-
ing the steady-state equations with respect to a
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change in that design variable yields

Lu = f,
where
— U’ T do’ - da’

The corresponding perturbation in a nonlinear
objective function J(U, @) is

~ oJ
_T
J=g u+_6a’
where
oJ
T:_
9 =50

In the adjoint approach, this same quantity can
be obtained by evaluating

where the adjoint solution v satisfies the equation
LTy = g.

The equivalence of this formulation comes from
the following identity.

vl f =0T Lu = (LTv)Tu = gTu.

The benefit of the adjoint approach is that if
there are many design variables then each gives
rise to a different vector f, whereas if there is only
one objective function there is only one vector g.
Thus the adjoint approach requires just one ad-
joint calculation to obtain the sensitivity of one
objective function to any number of design vari-
ables.

Implementation of adjoint
discretisation

In the implementation, the linear operator L is
split into two parts,

Lu=Cu+ Du. (1)

The first part represents the convective fluxes due
to a Galerkin finite element discretisation. The
second part represents the smoothing fluxes (to
which the viscous fluxes are added later for the
Navier-Stokes equations) and the operator D can
be further broken down into the product of two
operators,

Du=VGu,

where G computes the gradient and a pseudo-
Laplacian of u at each node, in addition to w itself.
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The corresponding adjoint operator is
LTv=CTv+ Do,
with
DTy =GTVvTy,

indicating that the adjoint gradient routine is ap-
plied after the adjoint smoothing routine, which
at first seems counter-intuitive.

At an even more detailed level, the action of
each of the operators C, V and G is computed
by a loop over all edges in the unstructured grid.
Therefore, taking C'u as an example, we can ex-
press it as a sum of elemental edge matrices whose
only non-zero entries corresponds to the two nodes
at either end of the edge,

Cu= Z C.u.
e
The adjoint version of this is simply

Ty = ZC’ZU,

corresponding to a similar loop over all edges.

For the convective fluxes, it is easy to compute
the edge product CTv directly without explicitly
forming the matrix C,. The transposed gradient
operator G is also easily formulated. The difficult
one is the product V7v. Elliott'%!! precomputed
and stored the non-zero entries in the elemental
matrices V., and then evaluated the matrix-vector
products V.Tv. However, the storage of these ma-
trices for each edge requires a substantial amount
of memory. Anderson' avoided the memory cost
by recomputing the matrices during each iteration,
but this greatly increases the CPU cost.

To minimise both the memory and CPU require-
ments, it is necessary to calculate the edge product
VIy directly, as with CZv. The difficulty is in
working out how best to do this. One approach
is to use AD (Automatic Differentiation) software
such as Odyssée,'> ADIFOR>7 or TAMC.!? In
forward mode, AD software takes the original non-
linear code and then uses the basic rules of lineari-
sation to construct the code to evaluate V,u. In
reverse mode, it produces the code to calculate
V.Tv; it may seem that this is a much harder task
but in fact it is not. Furthermore, there are the-
oretical results which guarantee that the number
of floating point operations is no more than three
times that of the original nonlinear code.'®

Mohammadi used Odyssée to generate much of
his adjoint code?® but a lot of hand-coding was
still required. In our work we have written the
adjoint code manually, but following many of the

techniques of automatic differentiation. To sim-
plify the expressions for the partial derivatives, we
chose to use the primitive variables (density, veloc-
ity and pressure) as our working variables, rather
than the usual conservative variables. The equa-
tions are still in conservative form so this choice
of working variables has no effect on the final so-
lution.

The memory requirements for the adjoint code
are 20-30% greater than for the nonlinear code,
depending on the grid that is used. The CPU cost
per iteration is only 10-20% greater than for the
nonlinear code, with the increased cost of evaluat-
ing the adjoint residuals partially offset by the fact
that the Jacobian for the preconditioning remains
fixed.

Another important point concerns the evalua-
tion of the term f, which is the source term for the
linear perturbation equations, and also appears in
the linearised objective function in the adjoint ap-
proach. Again, forward mode AD software could
be used, but a very much simpler alternative is to
use the ‘complex variable method’” used by An-
derson and co-workers.? The essence of the idea is
that

T{R(U,a+i)} R
T da’

lim

e—0 €
In this equation, R(U,«) has been taken to be
a complex analytic function, and the notation
Z{...} denotes the imaginary part of a complex
quantity. The equation itself is an immediate
consequence of a Taylor series expansion. The
key is that this can be evaluated numerically us-
ing € = 1072°, Unlike the usual finite difference
approximation of a linear sensitivity, there is no
subtraction of two quantities which are almost
equal; therefore there is no unacceptable loss of
accuracy due to machine rounding error. Apply-
ing this technique to a FORTRAN code requires
little more than replacing all REAL*8 declarations
by COMPLEX*16, and defining appropriate com-
plex analytic versions of the intrinsic functions
min,max,abs.

We have also found this complex variable
method to be extremely helpful during program
development. Because we have also written a lin-
ear perturbation code, we have used it verify that
each of the linear flux subroutines is consistent
with the original nonlinear flux subroutines, by
checking the identity

Lu = lim I {R(U +ieu, a)},
e—0 €

for arbitrary choices of u. The l.h.s. is computed
by the linear flux routines, and the r.h.s. is com-
puted by applying the complex variable method
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to the nonlinear flux routines. Having performed
these checks, we then verified that the adjoint flux
routines were consistent with the linear routines
by checking that the identity u” (LTv) = vT(Lu)
holds for any u,v.

If one were developing an adjoint code without
first writing a linear perturbation code, then these
two steps could be combined into one to compare
the adjoint routines to the nonlinear flux routines
to check for consistency.

Adjoint Solution Procedure

An important issue is how best to solve the ad-
joint equations. The eigenvalues of the adjoint
matrix LT are the same as those of the linear
matrix L, and therefore one is guaranteed to get
the same convergence rate when using Krylov sub-
space iteration methods such as GMRES, as used
by Anderson.'3?> On the other hand, if one uses
standard time-marching methods with multigrid,
as commonly used to solve the nonlinear equa-
tions, it is not necessarily the case that the it-
erative convergence rate for the adjoint solver will
match that of the linear solver.

We have analysed this for our time-marching
method which uses Jacobi preconditioning with
partial updates of the numerical smoothing fluxes
(and the viscous fluxes for the Navier-Stokes equa-
tions) at selected stages in the Runge-Kutta itera-
tion.'® One full step of the M-stage procedure for
the linear equations can be expressed as

u® ="
d™ = B, Dul™Y 4 (1-B,,) d™Y)
mmu:mm+amp(f_0umfn_dm0

u (M)

=u
where 81 = o = 1, P isthe Jacobi preconditioning
matrix and C' and D are again the convective and
diffusive matrices whose sum is the linear matrix
L, as in Equation (1).

The outcome of this analysis'* is that if the
adjoint equations are solved using the following
M -stage iterative procedure,

(M) _ ~(M
Q0D = a5

+Bm+1DHJ(m+1))
d"™ = —ap 5™ + (1—Bppr) d™ Y
M
o =" 4 Z o™
m=1
4 oF 11

then the value of the linearised objective function
from the linear and adjoint codes is not only iden-
tical once they have each converged to the final
steady state, but it is also identical after each
Runge-Kutta timestep. Note that this iteration
uses the transpose of the Jacobi preconditioning
matrix, and works “backwards” from m = M to
m=1. If partial updating of the dissipative fluxes
is not used, then it can be shown that this reduces
to the standard Runge-Kutta method, but with
the transposed preconditioner. However, with the
use of partial updating, which is commonly em-
ployed to lower the CPU cost, it requires quite
a lengthy analysis to determine this form for the
adjoint iteration.

Furthermore, the analysis also extends to the
use of multigrid, and shows that the key here is
that the restriction operator for the adjoint code
must be the transpose of the prolongation operator
for the linear code, and vice versa, and the number
of pre-smoothing iterations for the adjoint code
must equal the number of post-smoothing itera-
tions for the linear code, and vice versa. Provided
these two conditions are satisfied, the linear and
adjoint codes produce identical values for the func-
tional after the same number of multigrid cycles.

This result is important for two reasons. The
first is that it guarantees that the adjoint code
converges, and that it does so with the same rate
of convergence as the linear code, which is itself
equal to the asymptotic rate of convergence of the
nonlinear code. Thus the adjoint code benefits
from the wealth of experience and fine tuning of
iterative procedures for nonlinear codes. The sec-
ond reason is that it provides another validation
check on the correct implementation of the adjoint
code. If the linear and adjoint codes do not pro-
duce identical values for the functional after one
timestep, it indicates a programming error.

Strong boundary conditions

Although it is possible to solve the Euler equa-
tions with solid wall boundary conditions imposed
weakly through zero mass flux through the wall
faces, it is more common when there are grid nodes
on the wall to use strong boundary conditions
and force the normal component of the velocity
at surface nodes to be zero. In doing so, the nor-
mal component of the momentum equation flux
residual is discarded. Similarly, in discretising the
Navier-Stokes equations, the entire velocity at the
surface nodes is set to zero, and all components of
the momentum residual are discarded. Thus the
equations which are solved in these two cases are
actually of the form
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Here I is the identity matrix and B is a projection
matrix which in the case of the Euler equations
extracts the normal component of the boundary
velocity, and in the case of the Navier-Stokes equa-
tions extracts the entire boundary velocity. The
presence of the term (I — B) reflects the discard-
ing of the appropriate flux residual components,
to be replaced by the strong boundary conditions
BU =0.

When considering linear perturbations to these
equations, we obtain

(I-B) (Lu— f) =0,
Bu =b,

where b is a boundary velocity which is zero for
the Navier-Stokes equations but non-zero for the
Euler equations due to a rotation in the surface
normal.

These two equations can be combined to form

(I-B)L+B)u=(I-B)f +b, (2)

and the appropriate adjoint equation is then found
by transposing the linear operator, noting that B
is symmetric, to obtain

(L"(I-B)+B)v=g. (3)

At this point it is convenient to decompose both
v and g into orthogonal components as

v=(I-B)v+ Bv=v| +uvy,
g=I-B)g+Bg=g|+gL.

Pre-multiplying Equation (3) by (I—B) shows that
v)| satisfies the adjoint equations

(I—B)LT’U” = gH,
B’U” = 0

These are the equations which are solved iter-
atively by the adjoint code. Then, once v
has been computed, v, is calculated in a post-
processing step using an equation obtained by pre-
multiplying Equation (3) by B:

vy =g — BLT’UH. (4)

Having computed v and v, the linearised func-
tional is given by
oJ

J=v" (I-B)f +b) + 5=

= v{ f+olo+ %.
This shows that v, gives the sensitivity of the
functional to the boundary condition b which
arises from the rotation of the boundary normal in
the case of inviscid flows. Note that v, does not
correspond to the normal momentum component
of the analytic adjoint solution at the boundary.

Residual contributions to the
functional

If the functional of interest is a force, such as lift
or drag, we have to include the surface momen-
tum residuals, which are discarded in imposing
the strong boundary conditions, in order to have
a complete force balance. Indeed, for viscous cal-
culations, it is the tangential component of these
residuals which corresponds to the viscous shear
stress. i.e. one defines the surface shear stress
to have the value which is necessary to make the
tangential momentum residual equal to zero. The
nonlinear functional is thus of the form

J=J,(U)+h"BR(U), (5)

where J,, corresponds to the force due to the pres-
sure distribution on the body and h is a vector
which takes the component of the discarded mo-
mentum residuals in the selected force direction,
e.g. the direction normal to the freestream in the
case of lift.

The corresponding linearised functional is

~ oJ
T T
where
aJ,
T — P
gp - aU) (7)

so for the adjoint right hand side we need to use
9 =gy +L"Bh. (8)

Fortunately, the second term in this equation can
be computed in a pre-processing step using the
adjoint flux routines.

Harmonic Adjoint

In analysing unsteady flow in turbomachinery,
it is now common to use linearised Euler and
Navier-Stokes methods which treat the unsteadi-
ness as a linear perturbation to a nonlinear mean
fow.17-18,27,28,38

For forced response problem, in which the un-
steadiness is due to periodic unsteady inflow or
outflow boundary conditions, the original nonlin-
ear unsteady discrete equations may be written as

dUu
M 7 + R(U) =0,

where M is a block-diagonal mass matrix. Ex-
pressing U(t) as the sum of steady part plus a
small amplitude perturbation

Ut)=U+at), lul <[l

and linearising the equations gives

du =
M— + Lu=
o TLu=1,

5 0F 11
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where

OR
L=—,
ou
and f is zero except at the inflow and outflow
boundary nodes where it gives the residual per-
turbations due to the incoming disturbances.

By the principle of linear superposition, the pe-
riodic input f(t) can be decomposed into the sum
of a number of harmonic terms each of which can
be written as the real part of a complex quantity
of the form

=R {eiwtf} :
Making a similar decomposition for the response
u(t) yields the complex harmonic equations

(iwM + L)a = f.

In the case of unsteadiness due to the periodic
vibration of the blades, the grid nodes all oscillate
with the blades. Therefore, the nonlinear equa-
tions are best written as

M(x) v + R(U,z,z) =0,
dt

to emphasise that the mass matrix and residuals
depend on the grid coordinates, and the cell resid-
ual has additional flux terms due to the motion
of the grid. Performing the same steps of lin-
earisation and harmonic substitution then yields
the same equations as before, with M and L be-
ing based on the undisturbed grid coordinates and
flow, but with f defined as

Oz o

due to the linearised motion of the grid.

One important engineering concern is the level
of vibration caused by the incoming wakes. To
determine this, one needs to compute a surface
integral known as the “worksum”. Following the
theory of Lagrangian mechanics, this is the vir-
tual work associated with the displacement of a
particular natural mode of vibration of the blade.
Numerically, it requires the computation of an in-
ner product of the form

94,

where the superscript H denotes the complex con-
jugate transpose, and the vector ¢ is non-zero
everywhere except at the grid nodes on the surface
of the blade where it corresponds to the vibration
mode being considered.

The adjoint version of this is to evaluate the
inner product

~H 7
v f,

6 oF 11

0.2

0.15¢

o

0.05¢

cl

00 T2 04 06 08 1 12
angle of attack

Fig. 1 (] vs. angle of attack for a NACA 0012

profile at M = 0.68.

« der, [0
nonlinear | 0.0-0.1 | 0.17778
0.0-0.2 | 0.176174
0.0-0.5 | 0.1760996
0.0-1.0 | 0.1764888
linear 0.0 0.1756657
adjoint 0.0 0.1756657

Table 1 Sensitivity of the lift to angle of attack
for a NACA 0012 profile at M = 0.68 around 0°
angle of attack.

where the adjoint variables ¥ satisfy the adjoint
equation

(iwM + L)" 5 = 3.

The implementation of this harmonic adjoint
analysis is extremely similar to the usual steady
adjoint analysis. The main differences are the cou-
pled computation of the real and imaginary com-
ponents of the complex variables U, and the use of
phase-lagged periodic boundary conditions.”

Validation cases
Inviscid flow over NACA 0012 airfoil

The first two test cases consider steady inviscid
flow over a NACA 0012 airfoil. The circles in Fig-
ure 1 show the lift coefficient obtained from the
nonlinear code plotted against angle of attack at
a freestream Mach number of 0.68. The angle of
attack variation is achieved by rotating the airfoil,
and with it the grid points on and near the air-
foil surface. Doing this in a linearised sense gives
the geometric perturbations required by the linear
code, and the terms which are required to evaluate
the functional for the adjoint code. The lines in
Figure 1 are the lift slope obtained from the linear
and adjoint codes, with the base flow in each case
being the nonlinear flow conditions at the angle of
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Fig. 2 Mach contours for NACA 0012 at M =
0.85.

0.341

1.05 11 115 12

angle of attack

0.95 1

Fig. 3 () vs. angle of attack for NACA 0012
at M = 0.85.

attack at the mid-point of the line. The agreement
between the nonlinear and linear/adjoint results
clearly looks good. To quantify this, Table 1 shows
the nonlinear, linear and adjoint sensitivities at 0°
angle of attack. The different nonlinear sensitivi-
ties are obtained by finite difference approximation
over different intervals. There is perfect agreement
between the linear and adjoint sensitivities, and
the agreement with the nonlinear sensitivities is
within the range one would expect give the errors
inherent in finite difference approximation of the
nonlinear sensitivities.

An interesting situation arises at higher Mach
numbers at which there are strong shocks. Fig-
ure 2 shows the Mach contours for the NACA
0012 at an angle of attack of 1° and an increased
Mach number of 0.85. There are now two shocks,
with the maximum local Mach number reaching
approximately 1.45 on the supersonic side of the
suction surface shock. The circles in Figure 3 show
the nonlinear lift coefficients over a limited range
of angles of attack. The line in this figure is a linear
regression least-square fit of the nonlinear data.

x10"°

1.05 11
angle of attack

0.95 1 1.15 1.2

Fig. 4 C; — Ci(regression) for NACA 0012 at
M = 0.85.
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NACA 0012 at M = 0.85.
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Fig. 6 Number of multigrid cycles for nonlin-

ear calculations for NACA 0012 at M = 0.85.
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The results indicate a peculiar lack of smooth-
ness in the nonlinear data, and this is shown more
clearly in Figure 4 which plots the difference be-
tween the nonlinear data and the linear regression.

The key point is that there is no physical jus-
tification for the loss of smoothness. It appears
to be a purely numerical artifact which is prob-
ably related to the displacement of the shock as
the angle of attack changes. Therefore, the slope
of the linear regression line is probably the best
representation of the true lift slope. However,
the linear /adjoint codes give lift slopes which cor-
respond to the local derivative of the nonlinear
data. Figure 5 plots the difference between the
linear/adjoint slopes and that coming from the
linear regression, and it shows a large discrep-
ancy around 1.17° where the local derivative of
the nonlinear data differs significantly from the
linear regression value. Figure 6 plots the num-
ber of multigrid cycles required to converge the
nonlinear code to a very tight tolerance. Interest-
ingly, the number of cycles increases substantially
around 1.17°. This suggests the linearisation ma-
trix may be almost singular, which ties in with
the fact that small changes in the angle of attack
produce larger changes in the lift than one would
otherwise expect.

This observation of limitations with the applica-
tion of linear methods to flows with strong shocks
may be primarily of academic interest, and not
of engineering concern. Most aeronautical appli-
cations do not have such strong normal shocks,
and with weaker shocks with a peak normal Mach
number of less than 1.3 we have not observed a
similar phenomenon. However, it may be neces-
sary to look more closely at the issue of linearised
shock displacement, and to use more numerical
smoothing at shocks to obtain the correct linear
sensitivity.?®

Turbulent flow over RAE 2822 airfoil

Figure 7 presents the Mach contours for the
Reynolds-averaged flow over the RAE 2822 airfoil
at angle of attack o = 2.4°, freestream Mach num-
ber M = 0.725 and Reynolds number Re = 6.5 x
10%. The turbulence is modeled using a Spalart-
Allmaras single equation model. The circles in
Figure 8 show the sensitivity of the variation in the
lift coefficient with changes in the angle of attack.
The lines correspond to the lift slopes computed
by the linear and adjoint codes, which are again in
perfect agreement with each other. There is no ev-
idence of any lack of smoothness in the nonlinear
lift predictions, and the linear/adjoint codes give
lift slopes which are in very good agreement with
the nonlinear results. This is quantified in Table
2 using finite differences to estimate the nonlinear
lift slope at @ = 2.4°.

8 oF 11

Fig. 7 Mach contours for a RAE 2822 profile
at M =0.725, Re = 6.5x10°.

0.8r /
0.71 /

0.5¢
0.4r

0.3¢"
0 1 2 3
angle of attack

Fig. 8 Lift vs. angle of attack for a RAE 2822
profile at M = 0.725, Re = 6.5 x 10°.

«a der, [ O
nonlinear | 1.40-2.40 | 0.1815048
1.90-2.40 | 0.1772154
2.15-2.40 | 0.1742684
2.40-2.65 | 0.1713676
2.40-2.90 | 0.1644908
2.40-3.40 | 0.1398736
linear 2.40 0.1680554
adjoint 2.40 0.1680554

Table 2 Sensitivity of the lift for a RAE 2822
profile at M = 0.725, Re = 6.5x10° around 2.4°
angle of attack.
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Fig. 9 Convergence histories for the nonlinear,
linear and adjoint codes for a RAE 2822 profile
at M =0.725, Re = 6.5x10°.

Fig. 10 Mach contours for flow over an M6
wing at M = 0.84

Figure 9 shows the convergence histories for the
non-linear, linear and adjoint codes for the RAE
2822 testcase at @ = 2.4°. As expected, they all
exhibit the same asymptotic convergence rate.

Inviscid flow over M6 wing

The final test case for the steady adjoint code is
the inviscid flow over the M6 wing at a freestream
Mach number of 0.84. Figure 10 presents the
Mach contours on the wing and the symmetry
plane for the baseline geometry at a 2° angle of at-
tack. Although not plotted here, pressure profiles
at different spanwise locations agree well with the
results from other inviscid calculations. Figure 11
presents the contours of the fifth adjoint variable,
which corresponds to the adjoint energy equation.
There are several interesting features in this fig-
ure. One is the continuity in the adjoint variables
across the shock; this is in accordance with the 3D
extension of the theory of Giles & Pierce.'®> An-
other feature is the large magnitude of the adjoint
variables near the sonic line. This corresponds to

Fig. 11 Contours of fifth adjoint variable for
M6 wing at M = 0.84
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Fig. 12
M =0.84

C; plot for flow over an M6 wing at

the fact that flow which is nearly sonic is very
sensitive to perturbations. The quasi-1D Euler
equations exhibit a logarithmic singularity in the
adjoint variables at a sonic line,'® but in multiple
dimensions it appears this is spread so that it is
no longer a singularity but it does exhibit large
values and rapid variations.

For these calculation we used as the design vari-
able a parameter which adjusted the thickness of
the wing, so that a unit change in the design pa-
rameter corresponds to a 1% increase in thickness
at midspan. Figures 12 and 13 show the varia-
tion in lift and drag coefficients as this parameter
is changed. As one would expect, there is very
little variation in the lift coefficient. As a conse-
quence, the induced drag will also remain almost
constant so the observed drag increase with in-
creasing thickness is due to a strengthening of the
shocks leading to increased wave drag. For the
lift variation, the nonlinear values agree well with
the slope given by the linear/adjoint codes, repre-
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Fig. 14 Real and imaginary components of

the flat plate pressure jump due to wake inter-
action.

sented by the straight line. For the drag variation,
the agreement is not as good, but this is a much
more sensitive quantity.

Turbomachinery wake interaction

The linear harmonic code has been validated
against a number of test cases. Figure 14 shows
results for unsteady wake interaction with a 2D
cascade of flat plate airfoils. What is plotted are
the real and imaginary components of the complex
pressure jump across one blade. The comparison
is with results from the code LINSUB*® which im-
plements the analytic theory of Smith.3®

Figure 15 shows how the bending mode work-
sum for this interaction varies as the wake pitch is
changed, which varies both the inter-blade phase
angle and the frequency of the unsteadiness. The
results show that the linear harmonic and adjoint
harmonic codes produce identical values for the
worksum, and these are in good agreement with
the analytic values produced by LINSUB.
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Fig. 15 Bending mode worksum compo-

nents due to wake interaction, versus interblade
phase angle associated with wake pitch.

For further validation cases, and an example of
the usefulness of the adjoint method for design of

blades with reduced forced response, see Duta et
al .6°

Conclusions

In this paper we have presented a number of
algorithm developments concerned with the for-
mulation and solution of adjoint Euler and Navier-
Stokes equations using the discrete approach.
These include the treatment of strong boundary
conditions and the associated adjoint boundary
conditions for lift and drag functionals, and the so-
lution of the adjoint equations using a particular
form of Runge-Kutta time-marching which gives
exact equivalence with a linear perturbation code,
not only in the final results but also during the
iterative evolution. This guarantees the same rate
of iterative convergence, and is also very useful for
debugging and validating the adjoint code.

The harmonic adjoint algorithm for the compu-
tation of aeroelastic worksums is believed to be
the first time adjoint methods have been applied
to such a problem. Although the initial valida-
tion and application has been for forced response
problems due to wake interaction, the longer term
application is to the prediction of flutter and the
design of blades with improved flutter boundaries.
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