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Adjoint Code Developments Usingthe Exa
t Dis
rete Approa
hMi
hael B. Giles�Mihai C. DutayJens-Dominik M�ullerzOxford University Computing LaboratoryOxford, United Kingdom OX1 3QDThis paper presents a number of algorithm developments for adjoint meth-ods using the `dis
rete' approa
h in whi
h the dis
retisation of the nonlinearequations is linearised and the resulting matrix is then transposed. With a newiterative pro
edure for solving the adjoint equaitons, exa
t numeri
al equivalen
eis maintained between the linear and adjoint dis
retisations. The in
orporation ofstrong boundary 
onditions within the dis
rete approa
h is dis
ussed, as well asa new appli
ation of adjoint methods to linear unsteady 
ow in turboma
hinery.Introdu
tionThere is a long history of the use of adjointequations in optimal 
ontrol theory.26 In 
uiddynami
s, the �rst use of adjoint equations fordesign was by Pironneau,33 but within the �eldof aeronauti
al 
omputational 
uid dynami
s, theuse of adjoint equations for design optimisationhas been pioneered by Jameson19, 20, 22 for the po-tential 
ow, Euler and Navier-Stokes equations.The 
omplexity of the appli
ations within thesepapers has also progressed from 2D airfoil optimi-sation, to 3D wing design and �nally to 
ompleteair
raft 
on�gurations.21, 34, 35 A number of otherresear
h groups have also developed adjoint CFD
odes3, 4, 8, 24, 39 using the same `
ontinuous' ap-proa
h in whi
h the �rst step is to linearise theoriginal partial di�erential equations. The ad-joint p.d.e. and appropriate boundary 
onditionsare then formulated, and �nally the equations aredis
retised. While this minimises the memory re-quirements and the CPU 
ost per iteration, itrequires one to develop an appropriate iterativesolution pro
edure, and this may not give as gooda 
onvergen
e rate as the original nonlinear 
ode.In addition, the debugging and validation of theadjoint 
ode is 
ompli
ated by the la
k of a testsuite of ben
hmark test
ases.The alternative `dis
rete' approa
h, whi
h weuse, takes a dis
retisation of the Navier-Stokesequations, linearises the dis
rete equations andthen uses the transpose of the linear operator toform the adjoint problem. This approa
h has been�Professor, email: giles�
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developed by Elliott,10, 11 Anderson,1, 32 Moham-madi29 and Kim.23 The main advantage of thisapproa
h, in our opinion, is that the developmentbe
omes a more straightforward pro
ess. The lin-earisation of the nonlinear dis
rete equations 
aneither be performed manually or by automati
 dif-ferentiation software and the linear 
ode 
an bevalidated by dire
t 
omparison with the nonlinear
ode. Similarly, sin
e the adjoint 
ode is obtainedby transposing the linear operator, it must yieldexa
tly the same values for the obje
tive fun
tion,and so 
an be validated against the linear 
ode.For an ex
ellent review of resear
h on both 
on-tinuous and dis
rete adjoint design methods, seethe paper by Newman et al .31In this paper we 
ontribute to the developmentand understanding of dis
rete adjoint methods in�ve respe
ts:� Dis
ussion of the implementation of the ad-joint 
ode in a way whi
h minimises the mem-ory and CPU requirements, and 
an be auto-mated using automati
 di�erentiation tools;� Development of an adjoint multigrid iterationpro
edure with pre
onditioned timesteppingwhi
h maintains exa
t equivalen
e betweenthe linear and adjoint 
odes at all times dur-ing the evolution of their respe
tive solutions;� A detailed dis
ussion of the imposition ofstrong boundary 
onditions and the in
lusionof vis
ous stresses in obje
tive fun
tions andthe 
onsequen
e for the formulation of the ad-joint 
ode;� Development of a harmoni
 adjoint 
odewhi
h is the 
ounterpart of a linear unsteady
ode for a single frequen
y of unsteadiness,1 of 11Ameri
an Institute of Aeronauti
s and Astronauti
s Paper 2001-2596



and whi
h has appli
ations in turboma
hin-ery blade design for redu
ed vibration due tofor
ed response;� A numeri
al investigation indi
ating the po-tential for problems with strong sho
ks.This resear
h forms part of the development ofthe HYDRA suite of 
odes. The foundation is anonlinear 
ode whi
h approximates the Reynolds-averaged Navier-Stokes equations on unstru
turedhybrid grids, using an edge-based dis
retisation.The solution pro
edure uses Runge-Kutta time-mar
hing a

elerated by Ja
obi pre
onditioningand multigrid,30 with dual-timestepping for un-steady 
ows.The se
ond 
ode in the suite is for the linearanalysis of unsteady 
ows. This is based on a lin-earisation of the unsteady 
ow equations aroundthe steady-state 
ow 
onditions 
al
ulated by thenonlinear 
ode. Due to linearity, unsteady peri-odi
 
ows 
an be de
omposed into a sum of har-moni
 terms, ea
h of whi
h 
an be 
omputed inde-pendently. Thus, the linear harmoni
 
ode 
onsid-ers just one parti
ular frequen
y of unsteadiness,resulting in a formulation in whi
h the obje
tiveis to 
ompute a 
omplex 
ow solution whi
h rep-resents the amplitude and phase of the unsteady
ow. This is explained in greater detail later inthis paper.The third 
ode is the steady adjoint 
ode, whi
hagain is based on a linearisation of the 
ow equa-tions around the nonlinear steady-state 
ow 
on-ditions. The fourth 
ode, whi
h is an extensionof the third, is the adjoint 
ounterpart of the lin-ear harmoni
 
ode. It is the development of these
odes whi
h is the subje
t of this paper.Dis
rete adjoint formulationWe start by 
onsidering the dis
rete nonlinearEuler equations with a weak imposition of bound-ary 
onditions on solid walls through the spe
i-�
ation of zero mass 
ux through fa
es on thesurfa
e. If the far-�eld boundary 
onditions arealso imposed through far-�eld 
uxes then the dis-
rete system of equations whi
h is solved is of theform R(U; �) = 0:Here U is the ve
tor of 
ow �eld variables, � rep-resents one or more design variables whi
h 
ontrolthe geometry of the airfoil or wing (and hen
e thegrid 
oordinates) and R(U) represents the dis
rete
ux residuals whi
h are driven to zero by the iter-ative solution pro
ess.If there is just one design variable, then linearis-ing the steady-state equations with respe
t to a


hange in that design variable yieldsLu = f;where L � �R�U ; u � dUd� ; f � ��R�� :The 
orresponding perturbation in a nonlinearobje
tive fun
tion J(U; �) iseJ = gTu+ �J�� ;where gT � �J�U :In the adjoint approa
h, this same quantity 
anbe obtained by evaluatingeJ = vT f + �J�� ;where the adjoint solution v satis�es the equationLT v = g:The equivalen
e of this formulation 
omes fromthe following identity.vT f = vTLu = (LT v)Tu = gTu:The bene�t of the adjoint approa
h is that ifthere are many design variables then ea
h givesrise to a di�erent ve
tor f , whereas if there is onlyone obje
tive fun
tion there is only one ve
tor g.Thus the adjoint approa
h requires just one ad-joint 
al
ulation to obtain the sensitivity of oneobje
tive fun
tion to any number of design vari-ables. Implementation of adjointdis
retisationIn the implementation, the linear operator L issplit into two parts,Lu = C u+Du: (1)The �rst part represents the 
onve
tive 
uxes dueto a Galerkin �nite element dis
retisation. These
ond part represents the smoothing 
uxes (towhi
h the vis
ous 
uxes are added later for theNavier-Stokes equations) and the operator D 
anbe further broken down into the produ
t of twooperators, Du = V Gu;where G 
omputes the gradient and a pseudo-Lapla
ian of u at ea
h node, in addition to u itself.2 of 11Ameri
an Institute of Aeronauti
s and Astronauti
s Paper 2001-2596



The 
orresponding adjoint operator isLT v = CT v +DT v;with DT v = GT V T v;indi
ating that the adjoint gradient routine is ap-plied after the adjoint smoothing routine, whi
hat �rst seems 
ounter-intuitive.At an even more detailed level, the a
tion ofea
h of the operators C, V and G is 
omputedby a loop over all edges in the unstru
tured grid.Therefore, taking Cu as an example, we 
an ex-press it as a sum of elemental edge matri
es whoseonly non-zero entries 
orresponds to the two nodesat either end of the edge,C u =Xe Ceu:The adjoint version of this is simplyCT v =Xe CTe v;
orresponding to a similar loop over all edges.For the 
onve
tive 
uxes, it is easy to 
omputethe edge produ
t CTe v dire
tly without expli
itlyforming the matrix Ce. The transposed gradientoperatorGT is also easily formulated. The diÆ
ultone is the produ
t V T v. Elliott10, 11 pre
omputedand stored the non-zero entries in the elementalmatri
es Ve, and then evaluated the matrix-ve
torprodu
ts V Te v. However, the storage of these ma-tri
es for ea
h edge requires a substantial amountof memory. Anderson1 avoided the memory 
ostby re
omputing the matri
es during ea
h iteration,but this greatly in
reases the CPU 
ost.To minimise both the memory and CPU require-ments, it is ne
essary to 
al
ulate the edge produ
tV Te v dire
tly, as with CTe v. The diÆ
ulty is inworking out how best to do this. One approa
his to use AD (Automati
 Di�erentiation) softwaresu
h as Odyss�ee,12 ADIFOR5, 7 or TAMC.13 Inforward mode, AD software takes the original non-linear 
ode and then uses the basi
 rules of lineari-sation to 
onstru
t the 
ode to evaluate Veu. Inreverse mode, it produ
es the 
ode to 
al
ulateV Te v; it may seem that this is a mu
h harder taskbut in fa
t it is not. Furthermore, there are the-oreti
al results whi
h guarantee that the numberof 
oating point operations is no more than threetimes that of the original nonlinear 
ode.16Mohammadi used Odyss�ee to generate mu
h ofhis adjoint 
ode29 but a lot of hand-
oding wasstill required. In our work we have written theadjoint 
ode manually, but following many of the

te
hniques of automati
 di�erentiation. To sim-plify the expressions for the partial derivatives, we
hose to use the primitive variables (density, velo
-ity and pressure) as our working variables, ratherthan the usual 
onservative variables. The equa-tions are still in 
onservative form so this 
hoi
eof working variables has no e�e
t on the �nal so-lution.The memory requirements for the adjoint 
odeare 20-30% greater than for the nonlinear 
ode,depending on the grid that is used. The CPU 
ostper iteration is only 10-20% greater than for thenonlinear 
ode, with the in
reased 
ost of evaluat-ing the adjoint residuals partially o�set by the fa
tthat the Ja
obian for the pre
onditioning remains�xed.Another important point 
on
erns the evalua-tion of the term f , whi
h is the sour
e term for thelinear perturbation equations, and also appears inthe linearised obje
tive fun
tion in the adjoint ap-proa
h. Again, forward mode AD software 
ouldbe used, but a very mu
h simpler alternative is touse the `
omplex variable method'37 used by An-derson and 
o-workers.2 The essen
e of the idea isthat lim�!0 I fR(U; �+i�)g� = �R�� :In this equation, R(U; �) has been taken to bea 
omplex analyti
 fun
tion, and the notationIf: : : g denotes the imaginary part of a 
omplexquantity. The equation itself is an immediate
onsequen
e of a Taylor series expansion. Thekey is that this 
an be evaluated numeri
ally us-ing � = 10�20. Unlike the usual �nite di�eren
eapproximation of a linear sensitivity, there is nosubtra
tion of two quantities whi
h are almostequal; therefore there is no una

eptable loss ofa

ura
y due to ma
hine rounding error. Apply-ing this te
hnique to a FORTRAN 
ode requireslittle more than repla
ing all REAL*8 de
larationsby COMPLEX*16, and de�ning appropriate 
om-plex analyti
 versions of the intrinsi
 fun
tionsmin,max,abs.We have also found this 
omplex variablemethod to be extremely helpful during programdevelopment. Be
ause we have also written a lin-ear perturbation 
ode, we have used it verify thatea
h of the linear 
ux subroutines is 
onsistentwith the original nonlinear 
ux subroutines, by
he
king the identityLu = lim�!0 I fR(U+i�u; �)g� ;for arbitrary 
hoi
es of u. The l.h.s. is 
omputedby the linear 
ux routines, and the r.h.s. is 
om-puted by applying the 
omplex variable method3 of 11Ameri
an Institute of Aeronauti
s and Astronauti
s Paper 2001-2596



to the nonlinear 
ux routines. Having performedthese 
he
ks, we then veri�ed that the adjoint 
uxroutines were 
onsistent with the linear routinesby 
he
king that the identity uT (LT v) = vT (Lu)holds for any u; v.If one were developing an adjoint 
ode without�rst writing a linear perturbation 
ode, then thesetwo steps 
ould be 
ombined into one to 
omparethe adjoint routines to the nonlinear 
ux routinesto 
he
k for 
onsisten
y.Adjoint Solution Pro
edureAn important issue is how best to solve the ad-joint equations. The eigenvalues of the adjointmatrix LT are the same as those of the linearmatrix L, and therefore one is guaranteed to getthe same 
onvergen
e rate when using Krylov sub-spa
e iteration methods su
h as GMRES, as usedby Anderson.1, 32 On the other hand, if one usesstandard time-mar
hing methods with multigrid,as 
ommonly used to solve the nonlinear equa-tions, it is not ne
essarily the 
ase that the it-erative 
onvergen
e rate for the adjoint solver willmat
h that of the linear solver.We have analysed this for our time-mar
hingmethod whi
h uses Ja
obi pre
onditioning withpartial updates of the numeri
al smoothing 
uxes(and the vis
ous 
uxes for the Navier-Stokes equa-tions) at sele
ted stages in the Runge-Kutta itera-tion.19 One full step of the M -stage pro
edure forthe linear equations 
an be expressed asu(0) = und(m) = �mDu(m�1) + (1��m) d(m�1)u(m) = u(0) + �mP �f � C u(m�1) � d(m)�un+1 = u(M)where �1=�5=1, P is the Ja
obi pre
onditioningmatrix and C and D are again the 
onve
tive anddi�usive matri
es whose sum is the linear matrixL, as in Equation (1).The out
ome of this analysis14 is that if theadjoint equations are solved using the followingM -stage iterative pro
edure,~v(M) = PH �g � LH vn�~d(M) = ��M ~v(M)~v(m) = PH ���m+1CH ~v(m+1)+�m+1DH ~d(m+1)�~d(m) = ��m~v(m) + (1��m+1) ~d(m+1)vn+1 = vn + MXm=1�m~v(m)

then the value of the linearised obje
tive fun
tionfrom the linear and adjoint 
odes is not only iden-ti
al on
e they have ea
h 
onverged to the �nalsteady state, but it is also identi
al after ea
hRunge-Kutta timestep. Note that this iterationuses the transpose of the Ja
obi pre
onditioningmatrix, and works \ba
kwards" from m =M tom=1. If partial updating of the dissipative 
uxesis not used, then it 
an be shown that this redu
esto the standard Runge-Kutta method, but withthe transposed pre
onditioner. However, with theuse of partial updating, whi
h is 
ommonly em-ployed to lower the CPU 
ost, it requires quitea lengthy analysis to determine this form for theadjoint iteration.Furthermore, the analysis also extends to theuse of multigrid, and shows that the key here isthat the restri
tion operator for the adjoint 
odemust be the transpose of the prolongation operatorfor the linear 
ode, and vi
e versa, and the numberof pre-smoothing iterations for the adjoint 
odemust equal the number of post-smoothing itera-tions for the linear 
ode, and vi
e versa. Providedthese two 
onditions are satis�ed, the linear andadjoint 
odes produ
e identi
al values for the fun
-tional after the same number of multigrid 
y
les.This result is important for two reasons. The�rst is that it guarantees that the adjoint 
ode
onverges, and that it does so with the same rateof 
onvergen
e as the linear 
ode, whi
h is itselfequal to the asymptoti
 rate of 
onvergen
e of thenonlinear 
ode. Thus the adjoint 
ode bene�tsfrom the wealth of experien
e and �ne tuning ofiterative pro
edures for nonlinear 
odes. The se
-ond reason is that it provides another validation
he
k on the 
orre
t implementation of the adjoint
ode. If the linear and adjoint 
odes do not pro-du
e identi
al values for the fun
tional after onetimestep, it indi
ates a programming error.Strong boundary 
onditionsAlthough it is possible to solve the Euler equa-tions with solid wall boundary 
onditions imposedweakly through zero mass 
ux through the wallfa
es, it is more 
ommon when there are grid nodeson the wall to use strong boundary 
onditionsand for
e the normal 
omponent of the velo
ityat surfa
e nodes to be zero. In doing so, the nor-mal 
omponent of the momentum equation 
uxresidual is dis
arded. Similarly, in dis
retising theNavier-Stokes equations, the entire velo
ity at thesurfa
e nodes is set to zero, and all 
omponents ofthe momentum residual are dis
arded. Thus theequations whi
h are solved in these two 
ases area
tually of the form(I�B)R(U) = 0;B U = 0:4 of 11Ameri
an Institute of Aeronauti
s and Astronauti
s Paper 2001-2596



Here I is the identity matrix and B is a proje
tionmatrix whi
h in the 
ase of the Euler equationsextra
ts the normal 
omponent of the boundaryvelo
ity, and in the 
ase of the Navier-Stokes equa-tions extra
ts the entire boundary velo
ity. Thepresen
e of the term (I � B) re
e
ts the dis
ard-ing of the appropriate 
ux residual 
omponents,to be repla
ed by the strong boundary 
onditionsBU = 0.When 
onsidering linear perturbations to theseequations, we obtain(I�B) (Lu� f) = 0;B u = b;where b is a boundary velo
ity whi
h is zero forthe Navier-Stokes equations but non-zero for theEuler equations due to a rotation in the surfa
enormal.These two equations 
an be 
ombined to form((I�B)L+B)u = (I�B)f + b; (2)and the appropriate adjoint equation is then foundby transposing the linear operator, noting that Bis symmetri
, to obtain�LT (I�B) +B� v = g: (3)At this point it is 
onvenient to de
ompose bothv and g into orthogonal 
omponents asv = (I�B)v +Bv = vk + v?;g = (I�B)g +Bg = gk + g?:Pre-multiplying Equation (3) by (I�B) shows thatvk satis�es the adjoint equations(I�B)LT vk = gk;B vk = 0:These are the equations whi
h are solved iter-atively by the adjoint 
ode. Then, on
e vkhas been 
omputed, v? is 
al
ulated in a post-pro
essing step using an equation obtained by pre-multiplying Equation (3) by B:v? = g? �BLT vk: (4)Having 
omputed vk and v?, the linearised fun
-tional is given byeJ = vT �(I�B)f + b�+ �J��= vTk f + vT?b+ �J�� :This shows that v? gives the sensitivity of thefun
tional to the boundary 
ondition b whi
harises from the rotation of the boundary normal inthe 
ase of invis
id 
ows. Note that v? does not
orrespond to the normal momentum 
omponentof the analyti
 adjoint solution at the boundary.

Residual 
ontributions to thefun
tionalIf the fun
tional of interest is a for
e, su
h as liftor drag, we have to in
lude the surfa
e momen-tum residuals, whi
h are dis
arded in imposingthe strong boundary 
onditions, in order to havea 
omplete for
e balan
e. Indeed, for vis
ous 
al-
ulations, it is the tangential 
omponent of theseresiduals whi
h 
orresponds to the vis
ous shearstress. i.e. one de�nes the surfa
e shear stressto have the value whi
h is ne
essary to make thetangential momentum residual equal to zero. Thenonlinear fun
tional is thus of the formJ = Jp(U) + hTBR(U); (5)where Jp 
orresponds to the for
e due to the pres-sure distribution on the body and h is a ve
torwhi
h takes the 
omponent of the dis
arded mo-mentum residuals in the sele
ted for
e dire
tion,e.g. the dire
tion normal to the freestream in the
ase of lift.The 
orresponding linearised fun
tional iseJ = gTp u+ hTBLu+ �J�� ; (6)where gTp � �Jp�U ; (7)so for the adjoint right hand side we need to useg = gp + LTBh: (8)Fortunately, the se
ond term in this equation 
anbe 
omputed in a pre-pro
essing step using theadjoint 
ux routines.Harmoni
 AdjointIn analysing unsteady 
ow in turboma
hinery,it is now 
ommon to use linearised Euler andNavier-Stokes methods whi
h treat the unsteadi-ness as a linear perturbation to a nonlinear mean
ow.17, 18, 27, 28, 38For for
ed response problem, in whi
h the un-steadiness is due to periodi
 unsteady in
ow orout
ow boundary 
onditions, the original nonlin-ear unsteady dis
rete equations may be written asMdUdt +R(U) = 0;where M is a blo
k-diagonal mass matrix. Ex-pressing U(t) as the sum of steady part plus asmall amplitude perturbationU(t) = U + eu(t); keuk � kUkand linearising the equations givesMdeudt + Leu = ef;5 of 11Ameri
an Institute of Aeronauti
s and Astronauti
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where L � �R�U ;and ef is zero ex
ept at the in
ow and out
owboundary nodes where it gives the residual per-turbations due to the in
oming disturban
es.By the prin
iple of linear superposition, the pe-riodi
 input ef(t) 
an be de
omposed into the sumof a number of harmoni
 terms ea
h of whi
h 
anbe written as the real part of a 
omplex quantityof the form ef(t) = Rnei!t bfo :Making a similar de
omposition for the responseeu(t) yields the 
omplex harmoni
 equations(i!M + L) bu = bf:In the 
ase of unsteadiness due to the periodi
vibration of the blades, the grid nodes all os
illatewith the blades. Therefore, the nonlinear equa-tions are best written asM(x) dUdt +R(U; x; _x) = 0;to emphasise that the mass matrix and residualsdepend on the grid 
oordinates, and the 
ell resid-ual has additional 
ux terms due to the motionof the grid. Performing the same steps of lin-earisation and harmoni
 substitution then yieldsthe same equations as before, with M and L be-ing based on the undisturbed grid 
oordinates and
ow, but with bf de�ned asbf = ��R�x bx� i! �R� _x bxdue to the linearised motion of the grid.One important engineering 
on
ern is the levelof vibration 
aused by the in
oming wakes. Todetermine this, one needs to 
ompute a surfa
eintegral known as the \worksum". Following thetheory of Lagrangian me
hani
s, this is the vir-tual work asso
iated with the displa
ement of aparti
ular natural mode of vibration of the blade.Numeri
ally, it requires the 
omputation of an in-ner produ
t of the formbgHbu;where the supers
ript H denotes the 
omplex 
on-jugate transpose, and the ve
tor g is non-zeroeverywhere ex
ept at the grid nodes on the surfa
eof the blade where it 
orresponds to the vibrationmode being 
onsidered.The adjoint version of this is to evaluate theinner produ
t bvH bf;
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Fig. 1 Cl vs. angle of atta
k for a NACA 0012pro�le at M = 0:68. � �
L=��nonlinear 0.0{0.1 0.177780.0{0.2 0.1761740.0{0.5 0.17609960.0{1.0 0.1764888linear 0.0 0.1756657adjoint 0.0 0.1756657Table 1 Sensitivity of the lift to angle of atta
kfor a NACA 0012 pro�le at M = 0:68 around 0Æangle of atta
k.where the adjoint variables bv satisfy the adjointequation (i!M + L)Hbv = bg:The implementation of this harmoni
 adjointanalysis is extremely similar to the usual steadyadjoint analysis. The main di�eren
es are the 
ou-pled 
omputation of the real and imaginary 
om-ponents of the 
omplex variables bv, and the use ofphase-lagged periodi
 boundary 
onditions.9Validation 
asesInvis
id 
ow over NACA 0012 airfoilThe �rst two test 
ases 
onsider steady invis
id
ow over a NACA 0012 airfoil. The 
ir
les in Fig-ure 1 show the lift 
oeÆ
ient obtained from thenonlinear 
ode plotted against angle of atta
k ata freestream Ma
h number of 0:68. The angle ofatta
k variation is a
hieved by rotating the airfoil,and with it the grid points on and near the air-foil surfa
e. Doing this in a linearised sense givesthe geometri
 perturbations required by the linear
ode, and the terms whi
h are required to evaluatethe fun
tional for the adjoint 
ode. The lines inFigure 1 are the lift slope obtained from the linearand adjoint 
odes, with the base 
ow in ea
h 
asebeing the nonlinear 
ow 
onditions at the angle of6 of 11Ameri
an Institute of Aeronauti
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Fig. 2 Ma
h 
ontours for NACA 0012 at M =0:85.
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Fig. 3 Cl vs. angle of atta
k for NACA 0012at M = 0:85.atta
k at the mid-point of the line. The agreementbetween the nonlinear and linear/adjoint results
learly looks good. To quantify this, Table 1 showsthe nonlinear, linear and adjoint sensitivities at 0Æangle of atta
k. The di�erent nonlinear sensitivi-ties are obtained by �nite di�eren
e approximationover di�erent intervals. There is perfe
t agreementbetween the linear and adjoint sensitivities, andthe agreement with the nonlinear sensitivities iswithin the range one would expe
t give the errorsinherent in �nite di�eren
e approximation of thenonlinear sensitivities.An interesting situation arises at higher Ma
hnumbers at whi
h there are strong sho
ks. Fig-ure 2 shows the Ma
h 
ontours for the NACA0012 at an angle of atta
k of 1Æ and an in
reasedMa
h number of 0:85. There are now two sho
ks,with the maximum lo
al Ma
h number rea
hingapproximately 1:45 on the supersoni
 side of thesu
tion surfa
e sho
k. The 
ir
les in Figure 3 showthe nonlinear lift 
oeÆ
ients over a limited rangeof angles of atta
k. The line in this �gure is a linearregression least-square �t of the nonlinear data.
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The results indi
ate a pe
uliar la
k of smooth-ness in the nonlinear data, and this is shown more
learly in Figure 4 whi
h plots the di�eren
e be-tween the nonlinear data and the linear regression.The key point is that there is no physi
al jus-ti�
ation for the loss of smoothness. It appearsto be a purely numeri
al artifa
t whi
h is prob-ably related to the displa
ement of the sho
k asthe angle of atta
k 
hanges. Therefore, the slopeof the linear regression line is probably the bestrepresentation of the true lift slope. However,the linear/adjoint 
odes give lift slopes whi
h 
or-respond to the lo
al derivative of the nonlineardata. Figure 5 plots the di�eren
e between thelinear/adjoint slopes and that 
oming from thelinear regression, and it shows a large dis
rep-an
y around 1:17Æ where the lo
al derivative ofthe nonlinear data di�ers signi�
antly from thelinear regression value. Figure 6 plots the num-ber of multigrid 
y
les required to 
onverge thenonlinear 
ode to a very tight toleran
e. Interest-ingly, the number of 
y
les in
reases substantiallyaround 1:17Æ. This suggests the linearisation ma-trix may be almost singular, whi
h ties in withthe fa
t that small 
hanges in the angle of atta
kprodu
e larger 
hanges in the lift than one wouldotherwise expe
t.This observation of limitations with the appli
a-tion of linear methods to 
ows with strong sho
ksmay be primarily of a
ademi
 interest, and notof engineering 
on
ern. Most aeronauti
al appli-
ations do not have su
h strong normal sho
ks,and with weaker sho
ks with a peak normal Ma
hnumber of less than 1.3 we have not observed asimilar phenomenon. However, it may be ne
es-sary to look more 
losely at the issue of linearisedsho
k displa
ement, and to use more numeri
alsmoothing at sho
ks to obtain the 
orre
t linearsensitivity.25Turbulent 
ow over RAE 2822 airfoilFigure 7 presents the Ma
h 
ontours for theReynolds-averaged 
ow over the RAE 2822 airfoilat angle of atta
k � = 2:4Æ, freestream Ma
h num-ber M = 0:725 and Reynolds number Re = 6:5�106. The turbulen
e is modeled using a Spalart-Allmaras single equation model. The 
ir
les inFigure 8 show the sensitivity of the variation in thelift 
oeÆ
ient with 
hanges in the angle of atta
k.The lines 
orrespond to the lift slopes 
omputedby the linear and adjoint 
odes, whi
h are again inperfe
t agreement with ea
h other. There is no ev-iden
e of any la
k of smoothness in the nonlinearlift predi
tions, and the linear/adjoint 
odes givelift slopes whi
h are in very good agreement withthe nonlinear results. This is quanti�ed in Table2 using �nite di�eren
es to estimate the nonlinearlift slope at � = 2:4Æ.

Fig. 7 Ma
h 
ontours for a RAE 2822 pro�leat M = 0:725, Re = 6:5�106.
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k for a RAE 2822pro�le at M = 0:725, Re = 6:5�106.� �
L=��nonlinear 1.40{2.40 0.18150481.90{2.40 0.17721542.15{2.40 0.17426842.40{2.65 0.17136762.40{2.90 0.16449082.40{3.40 0.1398736linear 2.40 0.1680554adjoint 2.40 0.1680554Table 2 Sensitivity of the lift for a RAE 2822pro�le at M = 0:725, Re = 6:5�106 around 2:4Æangle of atta
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e histories for the nonlinear,linear and adjoint 
odes for a RAE 2822 pro�leat M = 0:725, Re = 6:5�106.

Fig. 10 Ma
h 
ontours for 
ow over an M6wing at M = 0:84Figure 9 shows the 
onvergen
e histories for thenon-linear, linear and adjoint 
odes for the RAE2822 test
ase at � = 2:4Æ. As expe
ted, they allexhibit the same asymptoti
 
onvergen
e rate.Invis
id 
ow over M6 wingThe �nal test 
ase for the steady adjoint 
ode isthe invis
id 
ow over the M6 wing at a freestreamMa
h number of 0:84. Figure 10 presents theMa
h 
ontours on the wing and the symmetryplane for the baseline geometry at a 2Æ angle of at-ta
k. Although not plotted here, pressure pro�lesat di�erent spanwise lo
ations agree well with theresults from other invis
id 
al
ulations. Figure 11presents the 
ontours of the �fth adjoint variable,whi
h 
orresponds to the adjoint energy equation.There are several interesting features in this �g-ure. One is the 
ontinuity in the adjoint variablesa
ross the sho
k; this is in a

ordan
e with the 3Dextension of the theory of Giles & Pier
e.15 An-other feature is the large magnitude of the adjointvariables near the soni
 line. This 
orresponds to

Fig. 11 Contours of �fth adjoint variable forM6 wing at M = 0:84
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∆ thicknessFig. 12 Cl plot for 
ow over an M6 wing atM = 0:84the fa
t that 
ow whi
h is nearly soni
 is verysensitive to perturbations. The quasi-1D Eulerequations exhibit a logarithmi
 singularity in theadjoint variables at a soni
 line,15 but in multipledimensions it appears this is spread so that it isno longer a singularity but it does exhibit largevalues and rapid variations.For these 
al
ulation we used as the design vari-able a parameter whi
h adjusted the thi
kness ofthe wing, so that a unit 
hange in the design pa-rameter 
orresponds to a 1% in
rease in thi
knessat midspan. Figures 12 and 13 show the varia-tion in lift and drag 
oeÆ
ients as this parameteris 
hanged. As one would expe
t, there is verylittle variation in the lift 
oeÆ
ient. As a 
onse-quen
e, the indu
ed drag will also remain almost
onstant so the observed drag in
rease with in-
reasing thi
kness is due to a strengthening of thesho
ks leading to in
reased wave drag. For thelift variation, the nonlinear values agree well withthe slope given by the linear/adjoint 
odes, repre-9 of 11Ameri
an Institute of Aeronauti
s and Astronauti
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LINSUB     Fig. 14 Real and imaginary 
omponents ofthe 
at plate pressure jump due to wake inter-a
tion.sented by the straight line. For the drag variation,the agreement is not as good, but this is a mu
hmore sensitive quantity.Turboma
hinery wake intera
tionThe linear harmoni
 
ode has been validatedagainst a number of test 
ases. Figure 14 showsresults for unsteady wake intera
tion with a 2D
as
ade of 
at plate airfoils. What is plotted arethe real and imaginary 
omponents of the 
omplexpressure jump a
ross one blade. The 
omparisonis with results from the 
ode LINSUB40 whi
h im-plements the analyti
 theory of Smith.36Figure 15 shows how the bending mode work-sum for this intera
tion varies as the wake pit
h is
hanged, whi
h varies both the inter-blade phaseangle and the frequen
y of the unsteadiness. Theresults show that the linear harmoni
 and adjointharmoni
 
odes produ
e identi
al values for theworksum, and these are in good agreement withthe analyti
 values produ
ed by LINSUB.
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Fig. 15 Bending mode worksum 
ompo-nents due to wake intera
tion, versus interbladephase angle asso
iated with wake pit
h.For further validation 
ases, and an example ofthe usefulness of the adjoint method for design ofblades with redu
ed for
ed response, see Duta etal .6, 9 Con
lusionsIn this paper we have presented a number ofalgorithm developments 
on
erned with the for-mulation and solution of adjoint Euler and Navier-Stokes equations using the dis
rete approa
h.These in
lude the treatment of strong boundary
onditions and the asso
iated adjoint boundary
onditions for lift and drag fun
tionals, and the so-lution of the adjoint equations using a parti
ularform of Runge-Kutta time-mar
hing whi
h givesexa
t equivalen
e with a linear perturbation 
ode,not only in the �nal results but also during theiterative evolution. This guarantees the same rateof iterative 
onvergen
e, and is also very useful fordebugging and validating the adjoint 
ode.The harmoni
 adjoint algorithm for the 
ompu-tation of aeroelasti
 worksums is believed to bethe �rst time adjoint methods have been appliedto su
h a problem. Although the initial valida-tion and appli
ation has been for for
ed responseproblems due to wake intera
tion, the longer termappli
ation is to the predi
tion of 
utter and thedesign of blades with improved 
utter boundaries.A
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