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Abstract

The first half of this paper derives the adjoint equa-
tions for inviscid and viscous compressible flow, with
the emphasis being on the correct formulation of the
adjoint boundary conditions and restrictions on the per-
missible choice of operators in the linearised functional.
It is also shown that the boundary conditions for the
adjoint problem can be simplified through the use of a
linearised perturbation to generalised coordinates.

The second half of the paper constructs the Green’s
functions for the quasi-1D and 2D Euler equations.
These are used to show that the adjoint variables have a
logarithmic singularity at the sonic line in the quasi-1D
case, and a weak inverse square-root singularity at the
upstream stagnation streamline in the 2D case, but are
continuous at shocks in both cases.

1 Introduction

The last few years have seen considerable progress in
the use of adjoint equations in CFD for optimal de-
sign [1-9]. In all of the methods, the heart of the
algorithm is an optimisation procedure which uses an
adjoint method to compute the linear sensitivity of an
objective function with respect to a number of design
variables.

The simplest approach, at least conceptually, to con-
structing the discrete adjoint equations begins with the
nonlinear discrete residual equations arising from a fi-
nite volume discretisation of the original fluid dynamic
equations,

Rh(Uh, Ol) =0.
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Here Uy, is the discrete flow solution and « is initially a
single design variable. Differentiating with respect to «
gives

% % + % — 0’

oU, da foJe
which determines the change in U, due to a change in
a. Given some nonlinear objective function, Ip,(Up, «),
which, for example, may be a discrete approximation to
the lift or drag on an airfoil, the derivative with respect
to a is simply

dl, _ Ol dU, =9I,
da — OU, do ' da
03I, (8Ry\ ' OR,  OI
AU, <8Uh> da ' da
_ _7OR,  OI
- h % %7

where V}, is the solution of the adjoint equation

dRy\ " L \"
(3x) v+ (5ah) =°

The key point is that derivatives of I, with respect to
other design variables can be expressed in a similar man-
ner, using the same adjoint flow solution. The only ad-
ditional computation for each additional design variable

OR
is the evaluation of —* and its vector dot product with

e}
Vi. Each of these two steps involves minimal compu-
tational effort, and so the overall computational cost is
almost independent of the number of design variables.

The adjoint solution also plays a critical role in nu-
merical error analysis, analysing the error in the com-
puted airfoil lift and drag due to the truncation error
inherent in the discretisation. The solution error ey, is
defined by

Uy, = U(xh) + ep,
where U(xy) is the analytic flow solution evaluated at
the discrete grid points. Linearising the residual equa-
tions gives

ORy,
Ry (U(zp)) + a—Uh en ~ 0,



where Ry, (U(zy)) is the vector of truncation errors ob-
tained by substituting the analytic solution into the dis-
crete residual operator.

If I(U) is the scalar quantity of interest (e.g. lift or
drag) based on the analytic solution, then the error in
the corresponding discrete approximation, Ip(Up), can
be broken into two components,

In(Up) = I(U) = (In(Un) = In(U(zr)))
+ (In(U(zn)) = I(U)) .

The second term is the truncation error in approximat-
ing the operator I. The first term is due to the error ep
in the discrete solution Uy and can be approximated as
follows,

oIy

Ih(Uh) —Ih(U(l’h)) ~ a—Uh (&%

- b (%) Ru(U (1)
=V Ru(U(zn)),

where the vector V}, is again the adjoint flow solution.
Thus the adjoint flow solution relates the errors in quan-
tities such as lift and drag, to the underlying truncation
errors in the evaluation of finite volume cell residuals.
As well as offering useful bounds on the accuracy of lift
and drag predictions, this could also be used as the ba-
sis for optimal grid adaptation, giving the most accurate
predictions for a given level of computational cost.

This use of the adjoint solution for error analysis has
been developed only recently in the CFD community for
incompressible flow [10, 11] but there is a longer history
of its use for structural analysis [12, 13]. However, in
structural analysis one is primarily concerned with point
quantities such as peak stresses and so adjoint equation
methods are not used widely. In CFD applications, on
the other hand, the most important quantities from an
engineering perspective are usually integrals and so er-
ror analysis and optimal grid adaptation using the ad-
joint solution offer much more potential.

The above introduction to adjoint equation methods
has followed the discrete approach in which one begins
with the nonlinear discrete equations and then consid-
ers linear perturbations. A drawback of this approach
to formulating the adjoint equations is that it does not
offer clear insight into the nature of the discrete ad-
joint solution. The alternative approach is to construct
the adjoint p.d.e. together with appropriate boundary
conditions, and then discretise that to obtain a discrete
adjoint solution. The important advantage of this ana-
lytic approach is that the behavior of the adjoint solu-
tion can be investigated by considering the adjoint p.d.e.

Knowledge of the behaviour of the adjoint solution at
a shock or sonic line in compressible flow calculations,
or within the boundary layer and wake in viscous flow
applications, could be very important in constructing
accurate error estimates and for optimal grid refinement
and adaptation.

The objective of this paper is to follow this analytic
approach to advance the mathematical theory of adjoint
equations for CFD applications. The first half of the
paper is concerned with the construction of the adjoint
formulation. This is achieved within a framework of
duality in which the original (primal) and adjoint (dual)
formulations are equivalent representations of the same
linear problem. The general theory is developed first
for a large class of boundary value p.d.e.’s. The theory
is then applied to the convection/diffusion, Euler and
Navier-Stokes equations in two dimensions.

The second half investigates the behaviour of solu-
tions of the adjoint Euler equations. By expressing the
adjoint solution in terms of the Green’s function for the
original linearised Euler equations, it is shown that the
adjoint solution for the quasi-1D Euler equations has
a log z singularity at a sonic line, but is continuous at
a shock. The adjoint solution for the 2D Euler equa-
tions is broken into four components. When the base
flow field is isentropic, two of the components can be
expressed as solutions of the linearised potential flow
equations. The third component causes no perturba-
tion to the pressure field and so does not affect the lift
and drag on an airfoil. The final component involves
perturbations to the stagnation pressure, resulting in an
inverse square-root singularity at the stagnation stream-
line upstream of an airfoil leading edge. This could have
significant implications for grid generation and adapta-
tion to achieve more accurate predictions of airfoil lift
and drag.

2 Duality and the adjoint formulation

2.1 General theory

If we assume that both the equations and the func-
tional I have been linearised, the discrete approach can
be described as a mapping from the original problem,

Determine I = (g,U)

given that AU = f

into an equivalent dual problem,

I=(V.f)
Alv =g

Determine

given that



The inner product is simply a vector dot product,
(v, U)=VvTU,
and the equivalence of the two problems is easily proved,
(V.f) = (V,AU) = (ATV,U) = (¢,U).

Note that the inhomogeneous term f in the discrete
equations in the primal problem, enters the functional
in the dual problem, and correspondingly the inhomo-
geneous term ¢ in the dual problem comes from the
functional of the primal problem.

Using the analytic approach, the objective is similar,
but with linear differential operators instead of matri-
ces, and two additional inner products, one an integral
over the domain of the problem,

(v,u)p = /l;(v,u) dv,

and the other an integral over the boundary of the do-
main,

(v,u)pp = /E)D(v,u) dA.

With these definitions, the objective in the analytic
approach is to convert the primal problem,

Determine I = (g,u)p + (h,Cu)sp
given that Lu=jf in D
and Bu=e ondD.

into an equivalent dual problem,

Determine I = (v, f)p + (C*v,e)sp
given that L*v =g in D
and B*v=h ondD.

L* is the linear p.d.e. which is adjoint to L. B and
B* are boundary condition operators for the primal and
dual problems, respectively, and C' and C* are also op-
erators which may be differential; these four operators,
and hence also e and h, may have different dimensions
on different parts of the boundary (e.g. inflow and out-
flow parts of the boundary when L correspond to pure
convection).

The equivalence of the two forms of the problem is to
be proved by showing that

(v, f)p +(C*v,e)ap = (v,Lu)p + (C*v, Bu)sp
= (L*v,u)p + (B*v,Cu)sp
= (g,u)p + (h,Cu)ap.

The first and last steps involve simple substitutions for
e, f,g,h, so the critical step is the central one which
requires the identity

(v, Lu)p + (C*v, Bu)sp = (L*v,u)p + (B*v,Cu)sp,
to hold for all u and v.
Integrating by parts gives an identity of the form
(v, Lu)p = (L*v,u)p + (A1v, Asu)sp,

where L* is the adjoint partial differential operator, and
A; and A, are differential operators on the boundary
OD. Therefore, what needs to be proved is that given
L, B and C, there exists a pair of operators B* and C*
such that

(Ayv, Asu)op = (B*v,Cu)ap — (C*v, Bu)op-

We now prove that such operators exist (and are
unique) for a large class of p.d.e.’s subject to two re-
strictions.

Restriction 1: We restrict the theory to p.d.e.’s for
which the boundary operators B, C, A; and As in-
volve only the values of u and v and any of their normal
derivatives, so that

Bu = Bu
Cu = Cu
(Ajv, Asu) = v Au

where B and C are rectangular matrices, A is a square
matrix, and uw and v are vectors composed of u and v,
respectively, together with normal derivatives of the ap-
propriate degree (e.g. the 2D convection/diffusion equa-
tion requires first derivatives, whereas the 2D Euler
equations need none).

Under this restriction, the result to be proved be-
comes

/ vT Au — (B*v)TCu + (C*v)" Bu dA = 0.
oD

The necessary and sufficient condition for this to be true
is that the integrand is zero at all points. This reduces
the task to the linear algebra problem of proving the
existence and uniqueness of matrices B* and C* at each
point of the boundary such that

A= (B)"C - (Cc""B.

It is convenient to define matrices T, T* as

() ()



so that this equation can be re-written as

A= (THTT.

We now make the second restriction, considering first
the most common case in which A is non-singular.

Restriction 2 (non-singular form): If A is non-
singular, then the matrix T as defined above is also
a non-singular square matrix.

If A is non-singular, then under this restriction T is
invertible and so T* is uniquely defined by
T — (T_l)TAT.
From the definition of T, this then uniquely defines B*
and C*.

If A is singular, then the first step, both in the the-
oretical development and in practical applications, is
to re-express the problem using reduced vectors v/, v’
whose dimension equals the rank of A, and for which the
corresponding reduced square matrix A’ is non-singular.
This is accomplished using a singular value decomposi-
tion of A,

A=RTL,

in which the matrices R and L are each orthogonal (i.e
R '=R" L '=L") and T is a diagonal matrix in
which the first m diagonal elements are strictly positive
and the remainder are zero. We now define A’ to be
the m xm principal diagonal sub-matrix of T' so that

A=RA'L,
where R’ is the first m columns of R, and L’ is the first
m rows of L, and we define the reduced vectors to be

w' =L'u, v =(R)"v.

In order to be able to express the boundary opera-
tors Bu, Cu in terms of the reduced vector u’, we need
to make the restriction that each row of B and C can
be expressed as a linear combination of the rows of A,
and hence as a linear combination of the rows of L'.
This restriction, together with the requirement that the
resulting reduced matrices B’ and C' satisfy Restric-
tion 2 given above, can be expressed in the following
generalised version of Restriction 2.

Restriction 2:

B
Given that A € R" x R" and <7> € R™xR",

B
then m = rank(A) = rank (7> =rank | B
C

The analysis so far has been concerned with the con-
struction of a dual problem in which the linear func-
tional is equivalent to that of the primal problem. This
has been shown to be achievable if the primal p.d.e.,
its boundary conditions and its linear functional satisfy
certain restrictions. It can also be proved that under
these conditions the dual problem is well-posed if, and
only if, the primal problem is well-posed.

2.2 2D scalar convection/diffusion equation

The 2D scalar convection/diffusion equation in con-
servative form is

Lu=V- (uw) — Vu = f,
with w being a prescribed convection velocity. Integrat-
ing by parts gives

/ v (V-(uw) — V?u) dA
D

= /u(—w-VU—V%) dA
D

+/ v | uw —% +u@ds
8D " Bn 6n '

Here w, = w-n and 9/0n = n -V, with n being an
outward pointing normal on the boundary. Thus, the
adjoint p.d.e. is

L*v=—-w-Vv—-Vv=yg,
and the extended vectors u,v and boundary matrix A

are
u v w, —1
on on 0

We now consider two different, pairs of boundary op-
erators B and C, and in each case apply the theory to
construct the corresponding operators B* and C*.

Dirichlet b.c.’s
Oou

Cu= %

Bu = u,

In this case,

10 % wy 1
() ()



Hence,

B*=(—10), C*=(—wn —1),

and so

B*v = —v, C*'v = —wyv — @

on
Neumann b.c.’s
Bu = %, Cu = u.
In this case,
T =

(1)

C*:(10),

and so

v
B*v = w,v 4+ — C*v =w.

on’
2.3 2D Euler equations

The nonlinear steady-state Euler equations in conser-
vation form are
0 0
—F.U)++—F,U)=0
where U is the vector of conservation variables and
F,(U) and F,(U) are the nonlinear flux functions,

p Pug Py
2
pu puz+p puzU
U = ! ’ Fx = ’ Fy = ; !
puy PUzUy puy+p
pE pus H puyH

Linearising about a given steady-state solution,
U(z,y), leads to the equation
0 0
Lu=—(A;u)+ —(A,u) =
where u is the linear perturbation, and the spatially
varying matrices A, A, are defined by

_OF,

A, = ,
ou U(z,y)

_ Oy

z,y)

In error analysis, the inhomogeneous term f arises
from the truncation error in applying the discrete resid-
ual operator to the analytic solution.

In a design application, f is zero if u is defined to be
the linear change in the flow solution at a point with
fixed coordinates (z,y). However, this definition of u
leads to difficulties in approximating the boundary con-
ditions on a perturbed surface [9].

The alternative way of formulating the equations for
the design application is to define u to be the linear
perturbation in the flow solution taking into account a
linear perturbation in the coordinates. This follows the
approach now used for linearised unsteady flow analysis
[14, 15, 16] in preference to the previous discretisations
using fixed grids [17, 18].

The starting point for this formulation is the conser-
vative form of the Euler equation using general curvi-
linear coordinates,

0 oy or 0 or oy\ _
ot (P~ T5r) + oy (e ~ o) =

We now define the perturbed coordinates as

r=¢+aX(&n), y=n+aY({n),

where « is a design variable. X (&,71) and Y (&,7) are
smooth functions which match the surface perturba-
tions due to the design variable, so that a point (&,n)
which is initially on a solid surface remains so as the
design variable changes. Linearising with respect to «
yields

0 0 0 oY 0X
gg e 5, (Avu) = —5 (Fa_n - Fya_n>
0 0X oY

where u is now the perturbation in the flow variables
for fixed (&,n) rather than fixed (z,y), and the fluxes
F, and F}, are based on the unperturbed flow variables.

Switching notation from (£, n) back to (z,y) then pro-
duces the equation of the form Lu = f as given above.
In essence, this treatment is very similar to that used by
Jameson for single-block Euler and Navier-Stokes com-
putations [2, 3]. The difference is that in his formulation
the solid surface corresponds to part of the coordinate
surface n = 0, whereas in this formulation the solid
surface is the original surface defined in Cartesian coor-
dinates. As a consequence, this new formulation can be
used with an unstructured grid discretisation for com-
plex geometries.



Returning to the linearised equation, integrating by
parts over D gives

0 0 ov ov
— (A, —(A =(—AT = — AT~
+ (v, Apu)sp

where
Ap =ngA; +nyA,,

and n = (ng,n,)7T is an outward pointing unit normal
on the boundary 9D.

Thus, the adjoint p.d.e. is

ov ov

L'v=—-AT — AT — =
* ox Y oy g

This can be solved through the evolution to steady-state

of the equation

Ov_ yrdv v

ot T Ox Yoy 9
showing that its characteristic behaviour is similar to
that of the original unsteady Euler equations, but with
the sign of each characteristic velocity reversed so that
the characteristic information travels in the opposite di-
rection.

In applying the general theory to construct the ad-
joint boundary conditions, the vectors u and v are just
u and v, and the matrix A is simply A,,. This can be
diagonalised to obtain

A, = RAR™,

in which A = diag(});) is the diagonal matrix of eigen-
values A\; of A,. These can be shown to be

A1 = unp+c, >‘2 = >\3 = Unp, A4 = Up—C,

where ¢ is the local speed of sound and u,, is the normal
component of velocity. The columns of the matrix R
are then the corresponding eigenvectors of A.

It is convenient to define primal and dual character-
istic variables as

ue =R 'u, wv.=RTv,

so that
vT Ayu = UCTAUC.

We now consider different pairs of boundary operators
B and C, expressed in terms of equivalent matrices
B., C. applied to the characteristic variables. For each
pair, we use the theory to construct corresponding ma-
trices B, C', applied to the dual characteristic vari-
ables, such that

A=(THTT..

c

characteristic inflow/outflow b.c.’s
At a subsonic outflow, for which 0 < u, < ¢, the
characteristic boundary condition is the specifica-
tion of the value of the sole incoming characteris-
tic variable, u.4. Thus the characteristic boundary
condition operator is

Bu=u, — Bc=(0 00 1).

Because A is non-singular, we need T'.. to be square
and non-singular and so a suitable characteristic
functional is

Uct 1000
O’U,E Ue2 — Cc— 0100
Ue3 0010
Together, these give
0001
1000
T.=
0100
0010
and so
0 0 0 M\
A0 0 O
T:=(AT, ) ="
0 X2 0 O
0 0 X3 O

Hence, the characteristic matrices for the dual for-
mulation are

M 0 00
B:=|0 X 00|,
0 0 X\ 0

and
Cj;=(0 00 —A4).

Because of the reversal of direction of character-
istics, each outgoing characteristic of the primal
problem corresponds to an incoming characteris-
tic of the dual problem. Therefore, the boundary
condition for the dual problem is indeed well-posed.

Similarly, at a subsonic inflow the characteristic op-
erators for the primal problem are

Uc2

Cu = uet,



and the dual operators are

B*v = )\11)61,
and
—A2Ve2
P —
C™v = | =A30e3
—A4Vcq

solid wall
At a solid wall the normal velocity u, is zero, so
there is only one incoming characteristic for both
the primal and the dual problems, and the matrices
A, and A are of rank 2 instead of 4. The reduced
vectors u',v’, as described in the general theory,

are
12 U’Cl ! Ucl
u = y v = y
Ueq Veq

and the reduced diagonal matrix A’ is

Ao € 0
0 —c
An important pair of boundary operators for the
primal problem are

Uecl — Ucs Uel + Ueq

2 )

Bu ﬂn = y Cu 5:

2pc
specifying the perturbation to the normal compo-
nent of velocity as the boundary condition, and us-
ing the linearised pressure perturbation in the func-
tional. These are the boundary operators used in
optimal design applications.

Expressed in terms of the reduced vector of char-
acteristic variables, these correspond to

1 1 11
B/ - = I -2
c <2pc 2pc>’ Ce (2 2)’

and so
1 1
2pc  2pc
T. = ,
1 1
2 2
2 2
* ~\T pct pc
= Te=Wr :(c —C>,

and hence the dual boundary operators are

B*v = ¢ (Vo1 — Vea), C*v = —pc? (Vo1 + Ves).

Converting back into the original dual variables
gives

B*v = (0 Ny Ny 0)1},

C*'v = —(p Py Py pH)U-

Thus, if the primal problem has b.c.
aJ'n, = ela

and the linear functional includes a surface integral
of the quantity

hlﬁa
then the dual problem has b.c.

NgV2 + Nyv3 = hy,

and its linear functional includes a surface integral
of the quantity

e1 p(v1 + ugvs + uyvs + Hua).

2.4 2D thin shear layer Navier-Stokes
equations

The nonlinear steady-state Navier-Stokes equations
in conservation form appear as

0 0
— F, — F, =
o Fo(U) + 5 Fy(U)
EFU(U ou 8U) + 2 (U ou 8U)
ox » Bz’ Oy 6 » Bz Oy
where F}!(U, 55, &) and Fy/ (U, 37, §7) are the nonlin-
ear viscous flux functions.
The linearised equations are
0 ou ou
Lu = — [ (4,—AY oo — Day—=—
= o <( =) ox Y 8y>
0 ou ou
Ay, —AY e — Dyy—
+ oy <( yu— Dy oz Yy 8y>
=/

where matrices A,, A, are as defined before, and the
others are defined as

[ — aF-;) [ — aFU
AV = i , Av= BUQ" ,
U(z,y) Ul(z,y)
OFY _ oFy
DmmE a(w) ) Dym: a(ig}) )
Bz U (2,y) Oz 7 U (2,y)
OFY OFY
o= 5@, T oD
Oy /U (e,y) Oy /U (2,y)



As with the Euler equations, the inhomogeneous term
f corresponds to the truncation error in error analysis,
and the result of a linear perturbation to the coordinates
in a design application.

Integrating by parts over domain D gives

(“’52 Py ))B
gy (=000 =D ”a>>D
x)T% B 88 <Dg~xgv DT 81}) ,u)
)
253))

%))

O&—MM— Lo

+

I
/\/lx/\
~~~
e

8

|
e
<

T 81}
vy Ox

DT ov
Dy, dy

v, Ng <(AZ—A;)U— ra g

Dyx
D

_|_

(
+ (v, ny <(Ay—A;)u
(

) (na:Dmc + nyDyx)u>
8D

+ v (n
oy’

where (n,,n,)? is again an outward pointing unit nor-
mal on the boundary 9D.

2Day +nyDyy)“> )
oD

The adjoint p.d.e. is therefore

ov v
*p— _An\T XY _ AT XY
0 v v
—_—~ (pT 2= 4 pT =~
8x< T O y’”@y)
0 T Ov T ov)
"oy (Dwax D3y ) -9

which can be solved through the evolution to steady-
state of the equation

ov ov
— —(4,—-A) T
iy — (A ( ) oy

ADT a_ v

0 T@v T@v
Oz <max 8y>

0

o (Phe5:

81} ov
DI, —+D],— | = g.

We now consider the formulation of adjoint bound-
ary conditions at a solid wall, which for convenience is

initially assumed to be locally aligned with the z-axis
so that the outward normal from the fluid is (0 1)7.
Because the viscous fluxes involve derivatives of tem-
perature and the two velocity components, it is helpful
to switch to new variables, u, = (p U, u, T)T,in
which p and T are the linear perturbations in density
and temperature, respectively, and u, and u, are the
perturbations to the components of velocity in the two
coordinate directions. The linearised conservation vari-
ables u can be related to the new variables u, by

u = Sup,

The corresponding extended vectors u, and v, are
defined by

up S~y STy
IR S B QAP R (P il
on on on

Making a high Reynolds number thin-shear-layer ap-
proximation in which streamwise viscous derivatives are
neglected, and ignoring the weak temperature depen-
dence of the viscosity and thermal conductivity, the
boundary term arising from the integration by parts
can eventually be written as v Apu, where A, is

0 0 P O 0 0 0 0
0 0 0 0 0 —% 0 0
T 20+
RT 0 R 0 o-2tt2
p o
T T
0 2 (o= o o 0 0 - —
pPCy PCy PCy
0 0 0 O 0 0 0 0
0 % 0 O 0 0 0 0
2+
0 0 ZptA O 0 0 0 0
P k
0 0 0 o0 0 o0 o0
PCy

Here 7., and 7, are the  and y components of the
shear stress acting on the solid wall, u, A and k are the
usual coefficients of viscosity and thermal conductivity,
R is the gas constant, and ¢, is the specific heat at
constant volume.

The matrix A, is of rank 6 since each of its rows can



be expressed as a combination of the rows

(0 10000 0 0 )
(001000 0 0 )
(000100 0 0 )
(0 00O0O0-u O 0 )

(RTOO0pRO 0 —(2u+A) 0 )
(000 O0O0 DO 0  —k)

which correspond to perturbations in the two velocity
components, the temperature, the two components of
surface force, and the surface heat flux, respectively.

The Navier-Stokes equations require a total of three
boundary conditions at a solid wall. Two of these come
from the no-slip condition requiring both components of
the velocity to be zero. The third involves the tempera-
ture, specifying either its value or its normal derivative.

Specified temperature
If the temperature is specified, the boundary oper-
ator matrix B, has the form

01000000
B,=]100100000
00010000

A valid choice for the boundary operator C is to
select the two components of surface force and the
heat flux, giving

0000 0—p O 0
C,=| RT 00 pR 0 0 —(2u+)) 0
00000 O 0 -k

The rows of B, and C}, are then linearly indepen-
dent, and together form a complete basis for the
rows of Ap, which can be factored to obtain the
following boundary operator matrices for the ad-
joint formulation,

010 0 000O0
p
1
B,=|00- 0 0000 [,
p
1
00O 0000
pCy

and

C,
0 00 Toy o-L o o
PCy p

2+
p 00 —(v—DT+2 o o —HF g

pey p
000 0 00 o -F
PCy

Converting back into the original variables, the ad-
joint boundary operators are

0100
B'v=(0010 (o,
0001

and

0 0
—p 00 —pH+T1yy |V
0 00 0

e
g
<

C*v

Op 0 0
oo 2utro |
1 o

00 0 &

In the more general case in which the z-axis is not
aligned with the surface, the linear functional can
be taken to be a surface integral of

hTC’u = hiogn + hzgyn + h3@n,

where 7,, and o, are the linear perturbations to
the two components of the force exerted by the
fluid on the surface (including both the pressure
and shear stress terms), and ¢, is the perturbation
heat flux into the surface. The boundary conditions
for the adjoint equations are then

V2 = hla
vz = ha,
Vg = h3.

The boundary data for the primal problem is typi-
cally

Uy = 0,
uy, = 0,
T = €3,

so that the surface contribution to the linear func-
tional in the dual formulation is
6’04

eT'C*v = —kes —.

on



This simple form for the adjoint boundary condi-
tions and linear functional can be easily verified by
using integration by parts to confirm the identity

(v, f)p + (C*v,e)ap = (g,u)p + (h,Cu)ap.

The advantage of deriving it by the more formal
procedure above is that it proves the limited op-
tions for the operator Cu in the primal functional.
For example, one of the rows of C'u can be g—z:, but

it could not be %.

Specified heat flux
Reverting to the simplifying assumption that the
boundary is aligned with the z-axis, the boundary
operator matrix B, in the case of specified heat
flux is

0100000 O
0010000 O |,
0000000 —k

B, =

and a valid choice for the boundary operator C,, is
to select the the two components of surface force
and the temperature, giving

0 00 00— 0 0
RT 00 pRO 0 —(2u+\)0
000100 0 O

Cp=

The only difference from the previous case is the
interchange of the last lines in B, and C). Fol-
lowing the same procedure, the adjoint boundary
operators are found to be

0100 0000
* v
B'v=]10010|v+]1 0000 | =,
dy
0000 000k
and
0 00 Tay
C'v = | —p 00 —pH+7y, |v
0 00 -1
0 0 O
— 052 A0 @
[ay By’
00 0 0

Switching back to general coordinates, with a linear
functional which is a surface integral of

W'Cu = hyGan + hodyn + hsT,

the boundary conditions for the adjoint equations

are
V2 = hla
vz = h27
8’1)4
k— = hs.
on s

The boundary data for the primal problem is

Uy = 0,
uy = 0,
qn = €3,

and the surface contribution to the linear functional
in the dual formulation is

eTC*v = —ejuy.

3 Green’s functions and adjoint
solutions

In this section the aim is to find the Green’s function
G(x,€) such that the solution of the inhomogeneous
linearised Euler equations,

Lu=f

subject to homogeneous b.c.’s can be expressed as

u() = /D G(@.8) F(¢) d.

G(x,€) is a matrix function whose dimension d is
equal to 3 for the quasi-1D Euler equations, and 4 for
the 2D Euler equations. Given d vector functions f, (),
let the associated functions u,(x, &) be the solution to

Lun(x,8) = fn(§) 6(x—&),

where d(xz — €) is the Dirac delta function, and the
boundary conditions are again homogeneous.

If the vector functions f, are linearly independent at
each point &€, then by linear superposition the Green’s
function can be expressed as the following combination
of two matrices whose columns are the vectors u,, and

fn?
G(z,€) = (ul‘m‘...‘ud) (fl‘fg‘...‘fd)il.

In addition, if I,,(€) is the value of the linear func-
tional corresponding to u,(x, &) then, by definition,

I.(&) = (v(z), fu(&)d(z—€))p =vT (£)fal€) (1)



and hence
v"(€) = (11‘12‘---‘Id) (fl‘f2‘---‘fd)7

In the analyses below for the quasi-1D and 2D Eu-
ler equations, the approach in each case is to construct
functions f,(€) which produce solutions u,(x,&) of a
simple form. The objective is to gain insight into the
nature of the Green’s function and the adjoint solution,
in particular looking for singularities and discontinuities
in the adjoint variables. Furthermore, given a computed
adjoint solution v and a set of perturbation vectors
fn(€), it is then possible to evaluate the correspond-
ing linear functionals I,,(€) using Equation (1). This
provides a means of verifying a number of the adjoint
solution properties derived in the following section.

3.1 Quasi-1D Euler equations

The nonlinear quasi-1D Euler equations in conserva-
tion form are
dh

d
_2p_
dx dx 0,

where h is the streamtube height and

——(hF)

P
F=|pi+p |, P=]p|,
pqH 0

with g being the velocity and the other variables are as
defined previously.

The linearised equations are then

d dh
where
A_OF o _or
U’ - oU’
3.1.1 Singularity at a sonic throat

The first case to be considered is a converging-
diverging duct with sonic conditions at the throat at
x = 0, subsonic flow upstream of it, and supersonic
flow downstream. The inflow boundary conditions at
x = —1 are specified stagnation enthalpy H and stag-
nation pressure p,, and there are no outflow boundary
conditions at z=1.

The nonlinear equations ensure that mass flux, stag-
nation enthalpy and stagnation pressure all remain con-
stant along the duct. Likewise, if f(z)= f,(£)d(x—&)
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then the linear perturbation in mass flux, stagnation en-
thalpy and stagnation pressure will be constant for z <¢
and x>¢. This observation, together with the fact that
the Mach number remains equal to unity at the throat,
leads to the following solutions u,, and functions f,.

change in mass flow at fixed H,p,

The mass flow is equal to mh where m = pq. The
solution to be constructed corresponds to a unit
change in mass flow at the point z = &, keeping
H, p, unchanged. Because H, p, are unchanged and
the throat remains sonic, the mass flow through the
throat must remain fixed. Hence, if £ < 0, the mass
flow upstream of z = ¢ is reduced by a unit amount,
whereas if £ > 0, it is the mass flow downstream of
x = £ which is increased by a unit amount.

Defining m = pq, and using the Heaviside function
‘H(z), this leads to the following function uq

ou

1
( 5) h(CU) (f_ ) %(I) Hmoa f <0
1 oU
R0 uin| L €>0

which is a solution to the linearised flow equations

when f(z) = fi(§)d(z—¢) and
oF
e = om ‘H,po ﬁxed.

Here, as in several of the cases that follow, the
form of the perturbation source vector f, required
to produce a prescribed solution perturbation u,,,
is determined by analogy to a Rankine-Hugoniot
jump condition expressed in terms of the nonlinear
solution and flux vectors U and F.

If the linear functional is

1:/1

where p is the linearised perturbation to the pres-

pdx
1

sure, then
£ 1 dp ‘
— — —(x de, £€<0
/_1 h(x) Bm( )H,po
U/l(wv )= 1 a
1 D ‘
— —(x de, £€>0
/g h(zx) 3m( )H7po
Since 5
@ l, as *—0
om



it follows that

I(§) ~1og(¢), as

and thus there is a logarithmic singularity in the
adjoint variables at the sonic throat.

&—0.

change in H at fixed p,, M
In this case, the stagnation enthalpy downstream
of x = £ is perturbed by a unit amount, in the
linearised sense. Keeping the Mach number un-
changed ensures the perturbation in mass flux is
constant.

The solution us(z, £) is given by

oU
up(z,8) = H(z—§) o (=
? OH po,M fixed
corresponding to
OF
f2(8) = h(§) 75 (= :
? OH po,M fixed

Since p, and M are fixed, there is no perturbation
to the pressure and hence I7(§) = 0.

change in p, at fixed H, M
The final case perturbs the stagnation pressure by
a unit amount downstream of z = ¢, keeping the
stagnation enthalpy and Mach number fixed. This
again implies a uniform perturbation to the down-
stream mass flux and so the linearised equations
are satisfied by

ou
9 = H -
us(z,§) (z—¢) Op, ¢ ‘H,M fixed
with OF
= h ’
12(6) @mﬂmhw

The corresponding linearised functional is

1
dx:/ £dx,
H,M ¢ Do

which does not exhibit a singularity at the throat.

1 ap
13 apo

I(¢) = (z)

3.1.2 Continuity at a shock

Suppose now that we have a diverging duct with a
shock at  =0. The nonlinear Rankine-Hugoniot equa-
tions prescribe a zero jump in the flux F,

(FI0° = o.

If the shock is displaced to z =z, then this becomes

[F1;

T

Linearising about the base solution at z =0 gives the
following linearised Rankine-Hugoniot equations,

ar1”
[Au + x5 —]
dx

0—

=0.

If the linear equations have source term f (&) §(z—€) at
a point £ just upstream of the shock, the jump condition
at £ is

[Aul” = £(6).

In the limit as & — 0, this can be combined with the
Rankine-Hugoniot jump to give

a1

Au+ zs— = :

v ] =@
Repeating this argument for £ >0, & — 0 results in the
same expression. Therefore, since the jump equations
are the same in the two limits, so too are the Green’s
functions. i.e. G(z,&) is continuous in ¢ at the shock,
even though it is discontinuous in . A consequence is
that the adjoint solution v(€) is continuous at the shock.

Further analysis reveals the gradient of v(€) is discon-
tinuous at the shock.

3.2 2D Euler equations

Here we consider flow around an isolated airfoil with
subsonic freestream conditions. The behaviour of the
Green’s function and the adjoint variables is determined
through the analysis of the response to four linearly in-
dependent source terms.

mass source at fixed p,, H

As with the quasi-1D Euler equations, the first
source to be considered is a unit mass source inject-
ing fluid with the local values of stagnation pressure
and enthalpy. By considering a small control vol-
ume surrounding the point & at which the mass is
being injected, it can be determined that the rele-
vant source term is f;(€) d(x — &) where

1

f1(§) = o

Uy
H

12



M<1

Figure 1: Global domain of influence due to mass injec-
tion in the supersonic region.

If the entire flow field is subsonic, the response
u1(x,€) to this source can be obtained from the
linearised potential flow equations. In the limit as
& approaches the surface of the airfoil, the local be-
haviour can be analysed by using a Prandtl-Glauert
transformation to relate the flow field to that of an
incompressible flow field with a point mass source.
This analysis reveals that there is no singularity
as € approaches the surface. Similarly there is no
singularity as € crosses the stagnation streamline
either upstream or downstream of the airfoil.

If the flow field is transonic, it raises the question
of whether there is a singularity at either the sonic
line or a shock. At a shock, the quasi-1D analysis
can be extended to prove that the Green’s func-
tion and the adjoint variables are continuous as &
crosses the shock, although there is a discontinuity
in the gradient of of the adjoint variables. Hence,
in particular, uq (x, £) is continuous with respect to
& across the shock.

The behaviour at the sonic line is very hard to
analyse, but it appears that in general there is
no singularity, in contrast to the logarithmic sin-
gularity for the quasi-1D equations. The reason
for this is that in 2D flows the sonic line is almost
never perpendicular to the local streamlines. As
illustrated in Figure 1, this is important because
when mass is injected into the flow on the super-
sonic side of the sonic line, the influence of this
extends along the Mach lines coming out of £. If
the sonic line is not perpendicular to the stream-
lines, the Mach lines reach the sonic line and the in-
fluence then extends throughout the elliptic region
and hence to the whole supersonic region. This
lateral pressure relief mechanism prevents the sin-
gular response exhibited in the quasi-1D case, and
ensures that vy (x, £) is continuous with respect to
& as £ crosses the sonic line. Consequently, the
response of a linearised functional, such as the per-
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turbation to the lift or drag, will also be continuous.

normal force

The second source term corresponds to an applied
force in the direction normal to the local flow,

If the flow is subsonic, this can again be repre-
sented by the linearised potential flow equations,
and in this case the point force will correspond to
a vortex of unit strength. In the limit as the vor-
tex approaches the surface of the airfoil, a Prandtl-
Glauert transformation to an incompressible flow
field can again be used, and this time it reveals
that u2(x,€) — 0 except in the immediate vicin-
ity of * = &, and that the force exerted on the
surface is pg(€), where ¢* = u? +u;. Hence, if the
linear functional is (p, h)sp, then the linear func-
tional due to us(x, £) is

1,(&) = pghlgy_g -
Since I5(&) = vT (&) f2(€) it follows therefore that
NV + Nyv3 = h,

which is the adjoint b.c. derived earlier.

As with the point mass source, the response to this
point force is continuous as &€ crosses the stagnation
streamline, the sonic line, and any shocks.

change in H at fixed p,,p

The third source term is essentially the same as the
second of those for the quasi-1D equations. Con-
sider an infinitesimal streamtube with mass flux
e passing through & The fluid in the stream-
tube downstream of £ is subjected to a unit lin-
earised perturbation to the stagnation enthalpy
H, keeping fixed the stagnation pressure p,, the
static pressure p and the flow angle a. This per-
turbed streamtube satisfies the linearised Euler
equations, with the constant pressure being impor-
tant to maintain pressure equilibrium with neigh-
bouring streamtubes.

Using curvilinear streamline coordinates in which
s is the distance along the streamline downstream
of £ and n is the coordinate perpendicular to the
streamline, and dividing by € to re-normalise, the
linear solution us(x, &) is

1 oU

uz(z,§) = 7{(5)5(71)E 9H

(x .
po,psa fixed



The perturbation this produces in the streamtube
downstream of £ is

16U
pq 3po

H(s)d(n)—

H,p,« fixed

However, this is not the full form of the solution w4
because it produces a non-uniform perturbation to
the mass flux through the streamtube. Note that
this is in contrast to the third source term for the

Figure 2: Orientation of Heaviside step and Dirac delta
functions used to describe the perturbation to a stream-
tube.

The term % reflects the fact that the width of the
streamtube is inversely proportional to the mass
flow per unit area. The orientation of the Heaviside
step function and Dirac delta function with respect
to the streamtube is illustrated in Fig. 2, where the
influence of the perturbation source is depicted as
a discontinuity at &.

The source term that creates this solution is

f3(€) 6(x — €), where
1 0
f:€) = pq OH o " Fe k) Doy ﬁxed,

and (nz,n,)7 is the unit vector in the flow direction
at &. After some algebra, this reduces to

L
H

f3(&) =

= O O W

If the linearised functional is of the form (7, h)sp,
then since the static pressure is unaffected by this
source term I3(£) is identically zero.

change in p, at fixed H,p

The fourth source term is similar to the previous,
but involves a perturbation to the stagnation pres-
sure instead of the stagnation enthalpy. Therefore
the source term is f4(€) d(x — &) where

1 9

fa(€) = — (. Fy + nyFy) .
P4 8])0 Y H,p,« fixed
This may be evaluated to give
-1
,}_O(VT + ,Y]%,[z)
ug (y=1 2
fe = | mta )
N G )
TN yM?
Bt 4 o)
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quasi-1D analysis for which the perturbation was at
constant Mach number, not constant pressure, and
so there was a uniform perturbation to the mass
flux. However, in the 2D case, the pressure must
remain fixed to maintain pressure equilibrium with
neighbouring streamtubes.

The linearised mass flux perturbation is given by

~_ 1900

m = .
Pa Opo "l fixed

Thus, at a point &'(s) on the streamline a distance

s downstream of £, there is a mass transpiration of

strength —dm /ds. The response to this is given by

the function uq (x, ' (s)) and hence the full solution

’U,4(513, 5) is

1 oU

U,4($,£) pq ap

= H(s)d(n)—

< dm
-, d—ul(m x'(s)) ds.

‘H,p,a

The corresponding linearised functional is then

* dm
—Ii(x

I (&) = - s

'(s)) ds.

This solution has an interesting behaviour near the
stagnation streamline upstream of the airfoil. As
& crosses the stagnation streamline, the integral
switches abruptly from being along a streamline
passing over the suction surface of the airfoil, to
one passing over the pressure surface. Thus, at
the very least, one would expect a discontinuity in
both uys(x, &) and I, (£) as & crosses the stagnation
streamline.

In fact, there appears to be a singularity at the
stagnation streamline, with I,(£) being propor-
tional to n~1/2 where n is the distance from the
stagnation streamline. To show this it is necessary
first to integrate by parts to obtain

_[ﬁ’L(S)Il(m'(s))]go+/oo %ds

0

I,(¢) =



In incompressible flow,

Po =D+ 300
and hence
. 10 1
&~ 1 9pg) @) =-L
pa Opo = g, P4

Also, the asymptotic form of the streamfunction for
the incompressible flow at the leading edge stagna-
tion point is

¢ = C:L'y’

from which it follows that the flow speed is given
by

7'2

q=|d|r, =w2+y2a
and that the minimum distance from a particular
streamline to the stagnation point is

1
21| 2

Cc

Tmin =

Thus, m = O(r~2) and 4 = O(1), and so, inte-
grating along a streamline,

_ _1 1

I4(&) ~ iy ~ 10177 ~ || 7.

If there is a stagnation point at the trailing edge
of the airfoil, a similar analysis will apply in the
limit as & approaches the airfoil surface, producing
a singularity whose exponent will depend on the
trailing edge wedge angle.

Having determined the form of the four source pertur-
bations, it is now possible to verify some of the derived
adjoint solution properties by examining an adjoint so-
lution generated using Jameson’s 2D Euler design code
SYN82 [2]. The linear functional for this calculations
was of the form (h,p)sp, and the individual contribu-
tions of the four source perturbations to this functional
are depicted in the contour plots of Fig. 3.

Figure 3a) shows that I (§) is continuous with a steep
gradient near the leading edge just downstream of the
sonic line. A discontinuity in the gradient of I; is notice-
able at the shock, but is more clearly seen in the surface
line plot in Fig. 4. Figure 3b) confirms that I5(&) is also
continuous, with a discontinuous gradient at the shock.

Figure 3c), which is generated using the same contour
increment as the other three figures, confirms that I3 is
zero to within the limits of numerical truncation error.

Figure 3d) reveals a rapid variation in I,(£) as &
crosses the incoming stagnation streamline. Figure 5
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[ sonic line

0.4 0.6 0.8
Figure 4: Surface plot of I resulting from a point mass

source.

0.3

Figure 5: Plot of I along a line crossing the stagnation
streamline upstream of the airfoil as indicated in Fig. 3d.

shows the variation along the line upstream of the air-
foil indicated in Figure 3d). This confirms a combina-
tion of a step change in I plus some form of apparent
singularity. However, a detailed grid convergence study
would need to be performed to verify the predicted in-
verse square-root nature of this singularity.

4 Conclusions

In this paper we have considered a number of math-
ematical aspects of the formulation and solution of the
adjoint equations for compressible flow. The bound-
ary condition analysis has shown that at solid walls the
linear functional must be a function of the linearised



3a: I; due to point mass source. 3b: I, due to point force.

3c: I3 due to stagnation enthalpy perturbation. 3d: I due to stagnation pressure perturbation.

Figure 3: Contribution of source terms to the linear functional. Contour increment is 0.04 in all cases.
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pressure perturbation in the case of inviscid flow, and a
function of the normal and tangential forces and some
combination of the temperature and heat flux in the case
of viscous flows. No other choices lead to a well-posed
problem.

The construction of Green’s functions for the Euler
equations has revealed the behaviour of the adjoint vari-
ables. For a quasi-1D duct there is a logarithmic sin-
gularity at a sonic throat, whereas at a shock the ad-
joint variables are continuous but the gradient is not.
In 2D, the Green’s function and adjoint variables are
broken into four components. Two of these correspond
to potential flow perturbations for which the adjoint
solutions are smooth; this is confirmed by numerical re-
sults which also reveal strong gradients near the sonic
line. The third component involves perturbations to the
stagnation enthalpy and produces no perturbation to
the pressure and hence the associated linear functional
is zero; this is confirmed by the numerical results. The
fourth component involves perturbations to the stag-
nation pressure. The analysis reveals the existence of
an inverse square-root singularity crossing the incoming
stagnation streamline, but further numerical investiga-
tion is needed to confirm this.
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