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Here Uh is the discrete 
ow solution and � is initially asingle design variable. Di�erentiating with respect to �gives @Rh@Uh dUhd� + @Rh@� = 0;which determines the change in Uh due to a change in�. Given some nonlinear objective function, Ih(Uh; �),which, for example, may be a discrete approximation tothe lift or drag on an airfoil, the derivative with respectto � is simplydIhd� = @Ih@Uh dUhd� + @Ih@�= � @Ih@Uh �@Rh@Uh��1 @Rh@� + @Ih@�= V Th @Rh@� + @Ih@� ;where Vh is the solution of the adjoint equation�@Rh@Uh�T Vh +� @Ih@Uh�T = 0:The key point is that derivatives of Ih with respect toother design variables can be expressed in a similar man-ner, using the same adjoint 
ow solution. The only ad-ditional computation for each additional design variableis the evaluation of @Rh@� and its vector dot product withVh. Each of these two steps involves minimal compu-tational e�ort, and so the overall computational cost isalmost independent of the number of design variables.The adjoint solution also plays a critical role in nu-merical error analysis, analysing the error in the com-puted airfoil lift and drag due to the truncation errorinherent in the discretisation. The solution error eh isde�ned by Uh = U(xh) + eh;where U(xh) is the analytic 
ow solution evaluated atthe discrete grid points. Linearising the residual equa-tions gives Rh(U(xh)) + @Rh@Uh eh � 0;1



where Rh(U(xh)) is the vector of truncation errors ob-tained by substituting the analytic solution into the dis-crete residual operator.If I(U) is the scalar quantity of interest (e.g. lift ordrag) based on the analytic solution, then the error inthe corresponding discrete approximation, Ih(Uh), canbe broken into two components,Ih(Uh)� I(U) = (Ih(Uh)� Ih(U(xh)))+ (Ih(U(xh))� I(U)) :The second term is the truncation error in approximat-ing the operator I . The �rst term is due to the error ehin the discrete solution Uh and can be approximated asfollows,Ih(Uh)� Ih(U(xh)) � @Ih@Uh eh= � @Ih@Uh �@Rh@Uh��1Rh(U(xh))= V Th Rh(U(xh));where the vector Vh is again the adjoint 
ow solution.Thus the adjoint 
ow solution relates the errors in quan-tities such as lift and drag, to the underlying truncationerrors in the evaluation of �nite volume cell residuals.As well as o�ering useful bounds on the accuracy of liftand drag predictions, this could also be used as the ba-sis for optimal grid adaptation, giving the most accuratepredictions for a given level of computational cost.This use of the adjoint solution for error analysis hasbeen developed only recently in the CFD community forincompressible 
ow [10, 11] but there is a longer historyof its use for structural analysis [12, 13]. However, instructural analysis one is primarily concerned with pointquantities such as peak stresses and so adjoint equationmethods are not used widely. In CFD applications, onthe other hand, the most important quantities from anengineering perspective are usually integrals and so er-ror analysis and optimal grid adaptation using the ad-joint solution o�er much more potential.The above introduction to adjoint equation methodshas followed the discrete approach in which one beginswith the nonlinear discrete equations and then consid-ers linear perturbations. A drawback of this approachto formulating the adjoint equations is that it does noto�er clear insight into the nature of the discrete ad-joint solution. The alternative approach is to constructthe adjoint p.d.e. together with appropriate boundaryconditions, and then discretise that to obtain a discreteadjoint solution. The important advantage of this ana-lytic approach is that the behavior of the adjoint solu-tion can be investigated by considering the adjoint p.d.e.

Knowledge of the behaviour of the adjoint solution ata shock or sonic line in compressible 
ow calculations,or within the boundary layer and wake in viscous 
owapplications, could be very important in constructingaccurate error estimates and for optimal grid re�nementand adaptation.The objective of this paper is to follow this analyticapproach to advance the mathematical theory of adjointequations for CFD applications. The �rst half of thepaper is concerned with the construction of the adjointformulation. This is achieved within a framework ofduality in which the original (primal) and adjoint (dual)formulations are equivalent representations of the samelinear problem. The general theory is developed �rstfor a large class of boundary value p.d.e.'s. The theoryis then applied to the convection/di�usion, Euler andNavier-Stokes equations in two dimensions.The second half investigates the behaviour of solu-tions of the adjoint Euler equations. By expressing theadjoint solution in terms of the Green's function for theoriginal linearised Euler equations, it is shown that theadjoint solution for the quasi-1D Euler equations hasa log x singularity at a sonic line, but is continuous ata shock. The adjoint solution for the 2D Euler equa-tions is broken into four components. When the base
ow �eld is isentropic, two of the components can beexpressed as solutions of the linearised potential 
owequations. The third component causes no perturba-tion to the pressure �eld and so does not a�ect the liftand drag on an airfoil. The �nal component involvesperturbations to the stagnation pressure, resulting in aninverse square-root singularity at the stagnation stream-line upstream of an airfoil leading edge. This could havesigni�cant implications for grid generation and adapta-tion to achieve more accurate predictions of airfoil liftand drag.2 Duality and the adjoint formulation2.1 General theoryIf we assume that both the equations and the func-tional I have been linearised, the discrete approach canbe described as a mapping from the original problem,Determine I = (g; U)given that AU = finto an equivalent dual problem,Determine I = (V; f)given that ATV = g2



The inner product is simply a vector dot product,(V; U) � V TU;and the equivalence of the two problems is easily proved,(V; f) = (V;AU) = (ATV; U) = (g; U):Note that the inhomogeneous term f in the discreteequations in the primal problem, enters the functionalin the dual problem, and correspondingly the inhomo-geneous term g in the dual problem comes from thefunctional of the primal problem.Using the analytic approach, the objective is similar,but with linear di�erential operators instead of matri-ces, and two additional inner products, one an integralover the domain of the problem,(v; u)D = ZD(v; u) dV;and the other an integral over the boundary of the do-main, (v; u)@D = Z@D(v; u) dA:With these de�nitions, the objective in the analyticapproach is to convert the primal problem,Determine I = (g; u)D + (h;Cu)@Dgiven that Lu = f in Dand Bu = e on @D:into an equivalent dual problem,Determine I = (v; f)D + (C�v; e)@Dgiven that L�v = g in Dand B�v = h on @D:L� is the linear p.d.e. which is adjoint to L. B andB� are boundary condition operators for the primal anddual problems, respectively, and C and C� are also op-erators which may be di�erential; these four operators,and hence also e and h, may have di�erent dimensionson di�erent parts of the boundary (e.g. in
ow and out-
ow parts of the boundary when L correspond to pureconvection).The equivalence of the two forms of the problem is tobe proved by showing that(v; f)D + (C�v; e)@D = (v; Lu)D + (C�v;Bu)@D= (L�v; u)D + (B�v; Cu)@D= (g; u)D + (h;Cu)@D :

The �rst and last steps involve simple substitutions fore; f; g; h, so the critical step is the central one whichrequires the identity(v; Lu)D + (C�v;Bu)@D = (L�v; u)D + (B�v; Cu)@D;to hold for all u and v.Integrating by parts gives an identity of the form(v; Lu)D = (L�v; u)D + (A1v;A2u)@D;where L� is the adjoint partial di�erential operator, andA1 and A2 are di�erential operators on the boundary@D. Therefore, what needs to be proved is that givenL, B and C, there exists a pair of operators B� and C�such that(A1v;A2u)@D = (B�v; Cu)@D � (C�v;Bu)@D :We now prove that such operators exist (and areunique) for a large class of p.d.e.'s subject to two re-strictions.Restriction 1: We restrict the theory to p.d.e.'s forwhich the boundary operators B, C, A1 and A2 in-volve only the values of u and v and any of their normalderivatives, so that Bu � BuCu � Cu(A1v;A2u) � vTAuwhere B and C are rectangular matrices, A is a squarematrix, and u and v are vectors composed of u and v,respectively, together with normal derivatives of the ap-propriate degree (e.g. the 2D convection/di�usion equa-tion requires �rst derivatives, whereas the 2D Eulerequations need none).Under this restriction, the result to be proved be-comesZ@D vTAu� (B�v)TCu+ (C�v)TBu dA = 0:The necessary and su�cient condition for this to be trueis that the integrand is zero at all points. This reducesthe task to the linear algebra problem of proving theexistence and uniqueness of matricesB� andC� at eachpoint of the boundary such thatA = (B�)TC � (C�)TB:It is convenient to de�ne matrices T ;T � asT =  BC ! ; T � =  �C�B� ! ;3



so that this equation can be re-written asA = (T �)TT :We now make the second restriction, considering �rstthe most common case in which A is non-singular.Restriction 2 (non-singular form): If A is non-singular, then the matrix T as de�ned above is alsoa non-singular square matrix.If A is non-singular, then under this restriction T isinvertible and so T � is uniquely de�ned byT � = (T�1)TAT :From the de�nition of T �, this then uniquely de�nesB�and C�.If A is singular, then the �rst step, both in the the-oretical development and in practical applications, isto re-express the problem using reduced vectors u0;v0whose dimension equals the rank ofA, and for which thecorresponding reduced square matrixA0 is non-singular.This is accomplished using a singular value decomposi-tion of A, A = R�L;in which the matrices R and L are each orthogonal (i.eR�1 =RT , L�1 = LT ) and � is a diagonal matrix inwhich the �rst m diagonal elements are strictly positiveand the remainder are zero. We now de�ne A0 to bethe m�m principal diagonal sub-matrix of � so thatA = R0A0L0;where R0 is the �rst m columns of R, and L0 is the �rstm rows of L, and we de�ne the reduced vectors to beu0 = L0u; v0 = (R0)Tv:In order to be able to express the boundary opera-tors Bu;Cu in terms of the reduced vector u0, we needto make the restriction that each row of B and C canbe expressed as a linear combination of the rows of A,and hence as a linear combination of the rows of L0.This restriction, together with the requirement that theresulting reduced matrices B0 and C0 satisfy Restric-tion 2 given above, can be expressed in the followinggeneralised version of Restriction 2.Restriction 2:Given that A 2 Rn�Rn and  BC ! 2 Rm�Rn;

then m = rank(A) = rank BC ! = rank0BB@ ABC 1CCAThe analysis so far has been concerned with the con-struction of a dual problem in which the linear func-tional is equivalent to that of the primal problem. Thishas been shown to be achievable if the primal p.d.e.,its boundary conditions and its linear functional satisfycertain restrictions. It can also be proved that underthese conditions the dual problem is well-posed if, andonly if, the primal problem is well-posed.2.2 2D scalar convection/di�usion equationThe 2D scalar convection/di�usion equation in con-servative form isLu �r� (uw)�r2u = f;with w being a prescribed convection velocity. Integrat-ing by parts givesZD v �r�(uw)�r2u� dA= ZD u ��w�rv �r2v� dA+ Z@D v�uwn� @u@n�+ u @v@n ds:Here wn � w � n and @=@n � n � r, with n being anoutward pointing normal on the boundary. Thus, theadjoint p.d.e. isL�v � �w � rv �r2v = g;and the extended vectors u;v and boundary matrix Aareu =  u@u@n ! ; v =  v@v@n ! ; A =  wn �11 0 ! :We now consider two di�erent pairs of boundary op-erators B and C, and in each case apply the theory toconstruct the corresponding operators B� and C�.Dirichlet b.c.'sBu � u; Cu � @u@n:In this case,T =  1 00 1 ! =) T � =  wn 1�1 0 ! :4



Hence,B� = � �1 0 � ; C� = � �wn �1 � ;and so B�v � �v; C�v � �wnv � @v@n:Neumann b.c.'sBu � @u@n; Cu � u:In this case,T =  0 11 0 ! =) T � =  �1 0wn 1 ! :Hence,B� = � wn 1 � ; C� = � 1 0 � ;and so B�v � wnv + @v@n; C�v � v:2.3 2D Euler equationsThe nonlinear steady-state Euler equations in conser-vation form are@@xFx(U) + @@yFy(U) = 0;where U is the vector of conservation variables andFx(U) and Fy(U) are the nonlinear 
ux functions,U=0BBBB@ ��ux�uy�E 1CCCCA ; Fx=0BBBB@ �ux�u2x+p�uxuy�uxH 1CCCCA ; Fy=0BBBB@ �uy�uxuy�u2y+p�uyH 1CCCCA :Linearising about a given steady-state solution,U(x; y), leads to the equationLu � @@x (Axu) + @@y (Ayu) = f;where u is the linear perturbation, and the spatiallyvarying matrices Ax; Ay are de�ned byAx � @Fx@U ����U(x;y) ; Ay � @Fy@U ����U(x;y) :

In error analysis, the inhomogeneous term f arisesfrom the truncation error in applying the discrete resid-ual operator to the analytic solution.In a design application, f is zero if u is de�ned to bethe linear change in the 
ow solution at a point with�xed coordinates (x; y). However, this de�nition of uleads to di�culties in approximating the boundary con-ditions on a perturbed surface [9].The alternative way of formulating the equations forthe design application is to de�ne u to be the linearperturbation in the 
ow solution taking into account alinear perturbation in the coordinates. This follows theapproach now used for linearised unsteady 
ow analysis[14, 15, 16] in preference to the previous discretisationsusing �xed grids [17, 18].The starting point for this formulation is the conser-vative form of the Euler equation using general curvi-linear coordinates,@@� �Fx @y@� � Fy @x@��+ @@� �Fy @x@� � Fx @y@�� = 0:We now de�ne the perturbed coordinates asx = � + �X(�; �); y = � + �Y (�; �);where � is a design variable. X(�; �) and Y (�; �) aresmooth functions which match the surface perturba-tions due to the design variable, so that a point (�; �)which is initially on a solid surface remains so as thedesign variable changes. Linearising with respect to �yields@@� (Axu) + @@� (Ayu) = � @@� �Fx @Y@� � Fy @X@� �� @@� �Fy @X@� � Fx @Y@� � ;where u is now the perturbation in the 
ow variablesfor �xed (�; �) rather than �xed (x; y), and the 
uxesFx and Fy are based on the unperturbed 
ow variables.Switching notation from (�; �) back to (x; y) then pro-duces the equation of the form Lu = f as given above.In essence, this treatment is very similar to that used byJameson for single-block Euler and Navier-Stokes com-putations [2, 3]. The di�erence is that in his formulationthe solid surface corresponds to part of the coordinatesurface � = 0, whereas in this formulation the solidsurface is the original surface de�ned in Cartesian coor-dinates. As a consequence, this new formulation can beused with an unstructured grid discretisation for com-plex geometries.5



Returning to the linearised equation, integrating byparts over D gives�v; @@x (Axu)+ @@y (Ayu)�D= ��ATx @v@x � ATy @v@y ; u�D+(v; Anu)@D ;where An = nxAx + nyAy;and n = (nx; ny)T is an outward pointing unit normalon the boundary @D.Thus, the adjoint p.d.e. isL�v � �ATx @v@x �ATy @v@y = g:This can be solved through the evolution to steady-stateof the equation@v@t �ATx @v@x �ATy @v@y = g;showing that its characteristic behaviour is similar tothat of the original unsteady Euler equations, but withthe sign of each characteristic velocity reversed so thatthe characteristic information travels in the opposite di-rection.In applying the general theory to construct the ad-joint boundary conditions, the vectors u and v are justu and v, and the matrix A is simply An. This can bediagonalised to obtainAn = R�R�1;in which � = diag(�i) is the diagonal matrix of eigen-values �i of An. These can be shown to be�1 = un+c; �2 = �3 = un; �4 = un�c;where c is the local speed of sound and un is the normalcomponent of velocity. The columns of the matrix Rare then the corresponding eigenvectors of A.It is convenient to de�ne primal and dual character-istic variables asuc = R�1u; vc = RT v;so that vTAnu = vTc �uc:We now consider di�erent pairs of boundary operatorsB and C, expressed in terms of equivalent matricesBc;Cc applied to the characteristic variables. For eachpair, we use the theory to construct corresponding ma-trices B�c ;C�c , applied to the dual characteristic vari-ables, such that � = (T �c)TT c:

characteristic in
ow/out
ow b.c.'sAt a subsonic out
ow, for which 0 < un < c, thecharacteristic boundary condition is the speci�ca-tion of the value of the sole incoming characteris-tic variable, uc4. Thus the characteristic boundarycondition operator isBu � uc4 =) Bc = � 0 0 0 1 � :Because � is non-singular, we need T c to be squareand non-singular and so a suitable characteristicfunctional isCu � 0BB@ uc1uc2uc3 1CCA =) Cc = 0BB@ 1 0 0 00 1 0 00 0 1 0 1CCA :Together, these giveT c = 0BBBB@ 0 0 0 11 0 0 00 1 0 00 0 1 0 1CCCCA ;and soT �c = ��T�1c �T = 0BBBB@ 0 0 0 �4�1 0 0 00 �2 0 00 0 �3 0 1CCCCA :Hence, the characteristic matrices for the dual for-mulation areB�c = 0BB@ �1 0 0 00 �2 0 00 0 �3 0 1CCA ;and C�c = � 0 0 0 ��4 � :Because of the reversal of direction of character-istics, each outgoing characteristic of the primalproblem corresponds to an incoming characteris-tic of the dual problem. Therefore, the boundarycondition for the dual problem is indeed well-posed.Similarly, at a subsonic in
ow the characteristic op-erators for the primal problem areBu � 0BB@ uc2uc3uc4 1CCA ; Cu � uc1;6



and the dual operators areB�v � �1vc1;and C�v � 0BB@��2vc2��3vc3��4vc41CCA :solid wallAt a solid wall the normal velocity un is zero, sothere is only one incoming characteristic for boththe primal and the dual problems, and the matricesAn and � are of rank 2 instead of 4. The reducedvectors u0;v0, as described in the general theory,are u0 =  uc1uc4 ! ; v0 =  vc1vc4 ! ;and the reduced diagonal matrix �0 is�0 =  c 00 �c ! :An important pair of boundary operators for theprimal problem areBu � eun = uc1 � uc42�c ; Cu � ep = uc1 + uc42 ;specifying the perturbation to the normal compo-nent of velocity as the boundary condition, and us-ing the linearised pressure perturbation in the func-tional. These are the boundary operators used inoptimal design applications.Expressed in terms of the reduced vector of char-acteristic variables, these correspond toB0c = � 12�c � 12�c � ; C0c = � 12 12 � ;and so T 0c = 0BB@ 12�c � 12�c12 12 1CCA ;=) T 0�c = ��0 T 0�1c �T =  �c2 �c2c �c ! ;and hence the dual boundary operators areB�v � c (vc1 � vc4); C�v � ��c2 (vc1 + vc4):

Converting back into the original dual variablesgives B�v � � 0 nx ny 0 � v;C�v � �� � �ux �uy �H � v:Thus, if the primal problem has b.c.eun = e1;and the linear functional includes a surface integralof the quantity h1ep;then the dual problem has b.c.nxv2 + nyv3 = h1;and its linear functional includes a surface integralof the quantitye1 �(v1 + uxv2 + uyv3 +Hv4):2.4 2D thin shear layer Navier-StokesequationsThe nonlinear steady-state Navier-Stokes equationsin conservation form appear as@@x Fx(U) + @@y Fy(U) =@@x F vx (U; @U@x ; @U@y ) + @@y F vy (U; @U@x ; @U@y );where F vx (U; @U@x ; @U@y ) and F vy (U; @U@x ; @U@y ) are the nonlin-ear viscous 
ux functions.The linearised equations areLu � @@x �(Ax�Avx)u�Dxx@u@x �Dxy @u@y�+ @@y �(Ay�Avy)u�Dyx@u@x �Dyy @u@y�= f;where matrices Ax; Ay are as de�ned before, and theothers are de�ned asAvx � @F vx@U ����U(x;y) ; Avy � @F vy@U ����U(x;y) ;Dxx � @F vx@(@U@x ) �����U(x;y) ; Dyx � @F vy@(@U@x ) �����U(x;y) ;Dxy � @F vx@(@U@y ) �����U(x;y) ; Dyy � @F vy@(@U@y ) �����U(x;y) :7



As with the Euler equations, the inhomogeneous termf corresponds to the truncation error in error analysis,and the result of a linear perturbation to the coordinatesin a design application.Integrating by parts over domain D gives�v; @@x �(Ax�Avx)u�Dxx@u@x �Dxy @u@y��D+ �v; @@y �(Ay�Avy)u�Dyx @u@x �Dyy @u@y��D= �� (Ax�Avx)T @v@x � @@x�DTxx @v@x +DTyx@v@y� ; u�D+ �� (Ay�Avy)T @v@y � @@y�DTxy @v@x +DTyy @v@y� ; u�D+ �v; nx�(Ax�Avx)u�Dxx @u@x �Dxy @u@y��@D+ �v; ny �(Ay�Avy)u�Dyx@u@x �Dyy @u@y��@D+ �@v@x; (nxDxx + nyDyx)u�@D+ �@v@y ; (nxDxy + nyDyy)u�@D ;where (nx; ny)T is again an outward pointing unit nor-mal on the boundary @D.The adjoint p.d.e. is thereforeL�v � �(Ax�Avx)T @v@x � (Ay�Avy)T @v@y� @@x �DTxx @v@x +DTyx@v@y�� @@y �DTxy @v@x +DTyy @v@y� = g;which can be solved through the evolution to steady-state of the equation@v@t � (Ax�Avx)T @v@x � (Ay�Avy)T @v@y� @@x �DTxx @v@x +DTyx@v@y�� @@y �DTxx @v@x +DTyx@v@y� = g:We now consider the formulation of adjoint bound-ary conditions at a solid wall, which for convenience is

initially assumed to be locally aligned with the x-axisso that the outward normal from the 
uid is (0 1)T .Because the viscous 
uxes involve derivatives of tem-perature and the two velocity components, it is helpfulto switch to new variables, up � (e� eux euy eT )T , inwhich e� and eT are the linear perturbations in densityand temperature, respectively, and eux and euy are theperturbations to the components of velocity in the twocoordinate directions. The linearised conservation vari-ables u can be related to the new variables up byu = Sup;The corresponding extended vectors up and vp arede�ned byup =0B@ up@up@n 1CA=0B@ S�1u@@n(S�1u)1CA ; vp = 0B@ ST vST @v@n1CA :Making a high Reynolds number thin-shear-layer ap-proximation in which streamwise viscous derivatives areneglected, and ignoring the weak temperature depen-dence of the viscosity and thermal conductivity, theboundary term arising from the integration by partscan eventually be written as vTpApup where Ap is0BBBBBBBBBBBBBBBBBBBBBB@
0 0 � 0 0 0 0 00 0 0 0 0 ��� 0 0RT� 0 0 R 0 0 �2�+�� 00 � �xy�cv (
�1)T� �yy�cv 0 0 0 0 � k�cv0 0 0 0 0 0 0 00 �� 0 0 0 0 0 00 0 2�+�� 0 0 0 0 00 0 0 k�cv 0 0 0 0

1CCCCCCCCCCCCCCCCCCCCCCAHere �xy and �yy are the x and y components of theshear stress acting on the solid wall, �; � and k are theusual coe�cients of viscosity and thermal conductivity,R is the gas constant, and cv is the speci�c heat atconstant volume.The matrix Ap is of rank 6 since each of its rows can8



be expressed as a combination of the rows( 0 1 0 0 0 0 0 0 )( 0 0 1 0 0 0 0 0 )( 0 0 0 1 0 0 0 0 )( 0 0 0 0 0 �� 0 0 )( RT 0 0 �R 0 0 �(2�+�) 0 )( 0 0 0 0 0 0 0 �k )which correspond to perturbations in the two velocitycomponents, the temperature, the two components ofsurface force, and the surface heat 
ux, respectively.The Navier-Stokes equations require a total of threeboundary conditions at a solid wall. Two of these comefrom the no-slip condition requiring both components ofthe velocity to be zero. The third involves the tempera-ture, specifying either its value or its normal derivative.Speci�ed temperatureIf the temperature is speci�ed, the boundary oper-ator matrix Bp has the formBp = 0BB@ 0 1 0 0 0 0 0 00 0 1 0 0 0 0 00 0 0 1 0 0 0 0 1CCA :A valid choice for the boundary operator C is toselect the two components of surface force and theheat 
ux, givingCp = 0BB@ 0 0 0 0 0 �� 0 0RT 0 0 �R 0 0 �(2�+�) 00 0 0 0 0 0 0 �k 1CCA :The rows of Bp and Cp are then linearly indepen-dent, and together form a complete basis for therows of Ap, which can be factored to obtain thefollowing boundary operator matrices for the ad-joint formulation,B�p = 0BBBBBB@ 0 1� 0 0 0 0 0 00 0 1� 0 0 0 0 00 0 0 1�cv 0 0 0 0
1CCCCCCA ;and

C�p =0BBBBBB@ 0 0 0 �xy�cv 0 ��� 0 0�� 0 0 �(
�1)T+ �yy�cv 0 0 �2�+�� 00 0 0 0 0 0 0 � k�cv
1CCCCCCAConverting back into the original variables, the ad-joint boundary operators areB�v � 0BB@ 0 1 0 00 0 1 00 0 0 1 1CCA v;and C�v � 0BB@ 0 0 0 �xy�� 0 0 ��H+�yy0 0 0 0 1CCA v�0BB@ 0 � 0 00 0 2�+� 00 0 0 k 1CCA @v@y :In the more general case in which the x-axis is notaligned with the surface, the linear functional canbe taken to be a surface integral ofhTCu � h1e�xn + h2e�yn + h3eqn;where e�xn and e�yn are the linear perturbations tothe two components of the force exerted by the
uid on the surface (including both the pressureand shear stress terms), and eqn is the perturbationheat 
ux into the surface. The boundary conditionsfor the adjoint equations are thenv2 = h1;v3 = h2;v4 = h3:The boundary data for the primal problem is typi-cally eux = 0;euy = 0;eT = e3;so that the surface contribution to the linear func-tional in the dual formulation iseTC�v � �k e3 @v4@n :9



This simple form for the adjoint boundary condi-tions and linear functional can be easily veri�ed byusing integration by parts to con�rm the identity(v; f)D + (C�v; e)@D = (g; u)D + (h;Cu)@D:The advantage of deriving it by the more formalprocedure above is that it proves the limited op-tions for the operator Cu in the primal functional.For example, one of the rows of Cu can be @T@n , butit could not be @p@n .Speci�ed heat 
uxReverting to the simplifying assumption that theboundary is aligned with the x-axis, the boundaryoperator matrix Bp in the case of speci�ed heat
ux is Bp = 0BB@ 0 1 0 0 0 0 0 00 0 1 0 0 0 0 00 0 0 0 0 0 0 �k 1CCA ;and a valid choice for the boundary operator Cp isto select the the two components of surface forceand the temperature, givingCp = 0BB@ 0 0 0 0 0 �� 0 0RT 0 0 �R 0 0 �(2�+�) 00 0 0 1 0 0 0 0 1CCA :The only di�erence from the previous case is theinterchange of the last lines in Bp and Cp. Fol-lowing the same procedure, the adjoint boundaryoperators are found to beB�v � 0BB@ 0 1 0 00 0 1 00 0 0 0 1CCA v +0BB@ 0 0 0 00 0 0 00 0 0 k 1CCA @v@y ;and C�v � 0BB@ 0 0 0 �xy�� 0 0 ��H+�yy0 0 0 �1 1CCA v�0BB@ 0 � 0 00 0 2�+� 00 0 0 0 1CCA @v@y :Switching back to general coordinates, with a linearfunctional which is a surface integral ofhTCu � h1e�xn + h2e�yn + h3 eT ;

the boundary conditions for the adjoint equationsare v2 = h1;v3 = h2;k @v4@n = h3:The boundary data for the primal problem iseux = 0;euy = 0;eqn = e3;and the surface contribution to the linear functionalin the dual formulation iseTC�v � �e3 v4:3 Green's functions and adjointsolutionsIn this section the aim is to �nd the Green's functionG(x; �) such that the solution of the inhomogeneouslinearised Euler equations,Lu = fsubject to homogeneous b.c.'s can be expressed asu(x) = ZD G(x; �) f(�) d�:G(x; �) is a matrix function whose dimension d isequal to 3 for the quasi-1D Euler equations, and 4 forthe 2D Euler equations. Given d vector functions fn(�),let the associated functions un(x; �) be the solution toLun(x; �) = fn(�) �(x��);where �(x � �) is the Dirac delta function, and theboundary conditions are again homogeneous.If the vector functions fn are linearly independent ateach point �, then by linear superposition the Green'sfunction can be expressed as the following combinationof two matrices whose columns are the vectors un andfn,G(x; �) = � u1 u2 ::: ud �� f1 f2 ::: fd ��1 :In addition, if In(�) is the value of the linear func-tional corresponding to un(x; �) then, by de�nition,In(�) = ( v(x); fn(�) �(x��) )D = vT (�)fn(�) (1)10



and hencevT (�) = � I1 I2 ::: Id �� f1 f2 ::: fd ��1 :In the analyses below for the quasi-1D and 2D Eu-ler equations, the approach in each case is to constructfunctions fn(�) which produce solutions un(x; �) of asimple form. The objective is to gain insight into thenature of the Green's function and the adjoint solution,in particular looking for singularities and discontinuitiesin the adjoint variables. Furthermore, given a computedadjoint solution v and a set of perturbation vectorsfn(�), it is then possible to evaluate the correspond-ing linear functionals In(�) using Equation (1). Thisprovides a means of verifying a number of the adjointsolution properties derived in the following section.3.1 Quasi-1D Euler equationsThe nonlinear quasi-1D Euler equations in conserva-tion form are ddx (hF )� dhdxP = 0;where h is the streamtube height andF = 0BB@ �q�q2 + p�qH 1CCA ; P = 0BB@ 0p0 1CCA ;with q being the velocity and the other variables are asde�ned previously.The linearised equations are thenLu � ddx (hAu)� dhdxBu = f;where A = @F@U ; B = @P@U :3.1.1 Singularity at a sonic throatThe �rst case to be considered is a converging-diverging duct with sonic conditions at the throat atx = 0, subsonic 
ow upstream of it, and supersonic
ow downstream. The in
ow boundary conditions atx = �1 are speci�ed stagnation enthalpy H and stag-nation pressure po, and there are no out
ow boundaryconditions at x=1.The nonlinear equations ensure that mass 
ux, stag-nation enthalpy and stagnation pressure all remain con-stant along the duct. Likewise, if f(x) = fn(�)�(x��)

then the linear perturbation in mass 
ux, stagnation en-thalpy and stagnation pressure will be constant for x<�and x>�. This observation, together with the fact thatthe Mach number remains equal to unity at the throat,leads to the following solutions un and functions fn.change in mass 
ow at �xed H; poThe mass 
ow is equal to mh where m = �q. Thesolution to be constructed corresponds to a unitchange in mass 
ow at the point x = �, keepingH; po unchanged. BecauseH; po are unchanged andthe throat remains sonic, the mass 
ow through thethroat must remain �xed. Hence, if � < 0, the mass
ow upstream of x = � is reduced by a unit amount,whereas if � > 0, it is the mass 
ow downstream ofx = � which is increased by a unit amount.De�ning m = �q, and using the Heaviside functionH(x), this leads to the following function u1u1(x; �) =8>>>><>>>>: � 1h(x)H(��x) @U@m (x)����H;po ; � < 01h(x)H(x��) @U@m (x)����H;po ; � > 0which is a solution to the linearised 
ow equationswhen f(x) = f1(�)�(x��) andf1(�) = @F@m (�)����H;po �xed :Here, as in several of the cases that follow, theform of the perturbation source vector fn requiredto produce a prescribed solution perturbation un,is determined by analogy to a Rankine-Hugoniotjump condition expressed in terms of the nonlinearsolution and 
ux vectors U and F .If the linear functional isI = Z 1�1 ep dxwhere ep is the linearised perturbation to the pres-sure, thenu1(x; �) = 8>>>><>>>>: � Z ��1 1h(x) @p@m(x)����H;po dx; � < 0Z 1� 1h(x) @p@m(x)����H;po dx; � > 0Since @p@m � 1x ; as x! 0;11



it follows thatI1(�) � log(�); as � ! 0:and thus there is a logarithmic singularity in theadjoint variables at the sonic throat.change in H at �xed po;MIn this case, the stagnation enthalpy downstreamof x = � is perturbed by a unit amount, in thelinearised sense. Keeping the Mach number un-changed ensures the perturbation in mass 
ux isconstant.The solution u2(x; �) is given byu2(x; �) = H(x��) @U@H (x)����po;M �xedcorresponding tof2(�) = h(�) @F@H (x)����po;M �xed :Since po and M are �xed, there is no perturbationto the pressure and hence I2(�) = 0.change in po at �xed H;MThe �nal case perturbs the stagnation pressure bya unit amount downstream of x = �, keeping thestagnation enthalpy and Mach number �xed. Thisagain implies a uniform perturbation to the down-stream mass 
ux and so the linearised equationsare satis�ed byu3(x; �) = H(x��) @U@po (x)����H;M �xedwith f3(�) = h(�) @F@po (x)����H;M �xed :The corresponding linearised functional isI3(�) = Z 1� @p@po (x)����H;M dx = Z 1� ppo dx;which does not exhibit a singularity at the throat.3.1.2 Continuity at a shockSuppose now that we have a diverging duct with ashock at x=0. The nonlinear Rankine-Hugoniot equa-tions prescribe a zero jump in the 
ux F ,[F ]0+0� = 0:

If the shock is displaced to x=xs then this becomes[F ]x+sx�s = 0:Linearising about the base solution at x = 0 gives thefollowing linearised Rankine-Hugoniot equations,�Au+ xs dFdx �0+0� = 0:If the linear equations have source term f(�) �(x��) ata point � just upstream of the shock, the jump conditionat � is [Au]�+�� = f(�):In the limit as � ! 0, this can be combined with theRankine-Hugoniot jump to give�Au+ xs dFdx �0+0� = f(�):Repeating this argument for �>0; � ! 0 results in thesame expression. Therefore, since the jump equationsare the same in the two limits, so too are the Green'sfunctions. i.e. G(x; �) is continuous in � at the shock,even though it is discontinuous in x. A consequence isthat the adjoint solution v(�) is continuous at the shock.Further analysis reveals the gradient of v(�) is discon-tinuous at the shock.3.2 2D Euler equationsHere we consider 
ow around an isolated airfoil withsubsonic freestream conditions. The behaviour of theGreen's function and the adjoint variables is determinedthrough the analysis of the response to four linearly in-dependent source terms.mass source at �xed po; HAs with the quasi-1D Euler equations, the �rstsource to be considered is a unit mass source inject-ing 
uid with the local values of stagnation pressureand enthalpy. By considering a small control vol-ume surrounding the point � at which the mass isbeing injected, it can be determined that the rele-vant source term is f1(�) �(x� �) wheref1(�) = 0BBBB@ 1uxuyH 1CCCCA :12
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Figure 1: Global domain of in
uence due to mass injec-tion in the supersonic region.If the entire 
ow �eld is subsonic, the responseu1(x; �) to this source can be obtained from thelinearised potential 
ow equations. In the limit as� approaches the surface of the airfoil, the local be-haviour can be analysed by using a Prandtl-Glauerttransformation to relate the 
ow �eld to that of anincompressible 
ow �eld with a point mass source.This analysis reveals that there is no singularityas � approaches the surface. Similarly there is nosingularity as � crosses the stagnation streamlineeither upstream or downstream of the airfoil.If the 
ow �eld is transonic, it raises the questionof whether there is a singularity at either the sonicline or a shock. At a shock, the quasi-1D analysiscan be extended to prove that the Green's func-tion and the adjoint variables are continuous as �crosses the shock, although there is a discontinuityin the gradient of of the adjoint variables. Hence,in particular, u1(x; �) is continuous with respect to� across the shock.The behaviour at the sonic line is very hard toanalyse, but it appears that in general there isno singularity, in contrast to the logarithmic sin-gularity for the quasi-1D equations. The reasonfor this is that in 2D 
ows the sonic line is almostnever perpendicular to the local streamlines. Asillustrated in Figure 1, this is important becausewhen mass is injected into the 
ow on the super-sonic side of the sonic line, the in
uence of thisextends along the Mach lines coming out of �. Ifthe sonic line is not perpendicular to the stream-lines, the Mach lines reach the sonic line and the in-
uence then extends throughout the elliptic regionand hence to the whole supersonic region. Thislateral pressure relief mechanism prevents the sin-gular response exhibited in the quasi-1D case, andensures that u1(x; �) is continuous with respect to� as � crosses the sonic line. Consequently, theresponse of a linearised functional, such as the per-

turbation to the lift or drag, will also be continuous.normal forceThe second source term corresponds to an appliedforce in the direction normal to the local 
ow,f2(�) = 0BBBB@ 0��uy�ux0 1CCCCA :If the 
ow is subsonic, this can again be repre-sented by the linearised potential 
ow equations,and in this case the point force will correspond toa vortex of unit strength. In the limit as the vor-tex approaches the surface of the airfoil, a Prandtl-Glauert transformation to an incompressible 
ow�eld can again be used, and this time it revealsthat u2(x; �) ! 0 except in the immediate vicin-ity of x = �, and that the force exerted on thesurface is �q(�), where q2 = u2x+u2y. Hence, if thelinear functional is (ep; h)@D, then the linear func-tional due to u2(x; �) isI2(�) = �qhjx=� :Since I2(�) = vT (�) f2(�) it follows therefore thatnxv2 + nyv3 = h;which is the adjoint b.c. derived earlier.As with the point mass source, the response to thispoint force is continuous as � crosses the stagnationstreamline, the sonic line, and any shocks.change in H at �xed po; pThe third source term is essentially the same as thesecond of those for the quasi-1D equations. Con-sider an in�nitesimal streamtube with mass 
ux� passing through �. The 
uid in the stream-tube downstream of � is subjected to a unit lin-earised perturbation to the stagnation enthalpyH , keeping �xed the stagnation pressure po, thestatic pressure p and the 
ow angle �. This per-turbed streamtube satis�es the linearised Eulerequations, with the constant pressure being impor-tant to maintain pressure equilibrium with neigh-bouring streamtubes.Using curvilinear streamline coordinates in whichs is the distance along the streamline downstreamof � and n is the coordinate perpendicular to thestreamline, and dividing by � to re-normalise, thelinear solution u3(x; �) isu3(x; �) = H(s)�(n) 1�q @U@H (x)����po;p;� �xed :13



+

n

sξFigure 2: Orientation of Heaviside step and Dirac deltafunctions used to describe the perturbation to a stream-tube.The term 1�q re
ects the fact that the width of thestreamtube is inversely proportional to the mass
ow per unit area. The orientation of the Heavisidestep function and Dirac delta function with respectto the streamtube is illustrated in Fig. 2, where thein
uence of the perturbation source is depicted asa discontinuity at �.The source term that creates this solution isf3(�) �(x� �), wheref3(�) = 1�q @@H (nxFx + nyFy)����po;p;� �xed ;and (nx; ny)T is the unit vector in the 
ow directionat �. After some algebra, this reduces tof3(�) = 0BBBB@ � 12H0012 1CCCCA :If the linearised functional is of the form (ep; h)@D,then since the static pressure is una�ected by thissource term I3(�) is identically zero.change in po at �xed H; pThe fourth source term is similar to the previous,but involves a perturbation to the stagnation pres-sure instead of the stagnation enthalpy. Thereforethe source term is f4(�) �(x� �) wheref4(�) = 1�q @@po (nxFx + nyFy)����H;p;� �xed :This may be evaluated to givef4(�) = 0BBBB@ 1p0 (
�1
 + 1
M2 )uxp0 (
�1
 + 2
M2 )uyp0 (
�1
 + 2
M2 )Hp0 (
�1
 + 1
M2 ) 1CCCCA :

The perturbation this produces in the streamtubedownstream of � isH(s)�(n) 1�q @U@po (x)����H;p;� �xed :However, this is not the full form of the solution u4because it produces a non-uniform perturbation tothe mass 
ux through the streamtube. Note thatthis is in contrast to the third source term for thequasi-1D analysis for which the perturbation was atconstant Mach number, not constant pressure, andso there was a uniform perturbation to the mass
ux. However, in the 2D case, the pressure mustremain �xed to maintain pressure equilibrium withneighbouring streamtubes.The linearised mass 
ux perturbation is given byem = 1�q @(�q)@po (x)����H;p �xed :Thus, at a point x0(s) on the streamline a distances downstream of �, there is a mass transpiration ofstrength �dem=ds. The response to this is given bythe function u1(x;x0(s)) and hence the full solutionu4(x; �) isu4(x; �) = H(s)�(n) 1�q @U@po (x)����H;p;�� Z 10 demds u1(x;x0(s)) ds:The corresponding linearised functional is thenI4(�) = � Z 10 demds I1(x0(s)) ds:This solution has an interesting behaviour near thestagnation streamline upstream of the airfoil. As� crosses the stagnation streamline, the integralswitches abruptly from being along a streamlinepassing over the suction surface of the airfoil, toone passing over the pressure surface. Thus, atthe very least, one would expect a discontinuity inboth u4(x; �) and I4(�) as � crosses the stagnationstreamline.In fact, there appears to be a singularity at thestagnation streamline, with I4(�) being propor-tional to n�1=2 where n is the distance from thestagnation streamline. To show this it is necessary�rst to integrate by parts to obtainI4(�) = � [em(s)I1(x0(s))]10 + Z 10 em dI1ds ds:14



In incompressible 
ow,po = p+ 12�q2and hence em = 1�q @(�q)@po (x)����H;p = 1�q2 :Also, the asymptotic form of the streamfunction forthe incompressible 
ow at the leading edge stagna-tion point is  = cxy;from which it follows that the 
ow speed is givenby q = jcj r; r2 = x2 + y2;and that the minimum distance from a particularstreamline to the stagnation point isrmin = ����2 c ���� 12 :Thus, em = O(r�2) and dI1ds = O(1), and so, inte-grating along a streamline,I4(�) � r�1min � j j� 12 � jnj� 12 :If there is a stagnation point at the trailing edgeof the airfoil, a similar analysis will apply in thelimit as � approaches the airfoil surface, producinga singularity whose exponent will depend on thetrailing edge wedge angle.Having determined the form of the four source pertur-bations, it is now possible to verify some of the derivedadjoint solution properties by examining an adjoint so-lution generated using Jameson's 2D Euler design codeSYN82 [2]. The linear functional for this calculationswas of the form (h; ep)@D, and the individual contribu-tions of the four source perturbations to this functionalare depicted in the contour plots of Fig. 3.Figure 3a) shows that I1(�) is continuous with a steepgradient near the leading edge just downstream of thesonic line. A discontinuity in the gradient of I1 is notice-able at the shock, but is more clearly seen in the surfaceline plot in Fig. 4. Figure 3b) con�rms that I2(�) is alsocontinuous, with a discontinuous gradient at the shock.Figure 3c), which is generated using the same contourincrement as the other three �gures, con�rms that I3 iszero to within the limits of numerical truncation error.Figure 3d) reveals a rapid variation in I4(�) as �crosses the incoming stagnation streamline. Figure 5
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ow. The bound-ary condition analysis has shown that at solid walls thelinear functional must be a function of the linearised15



                                                                                

                                                                                

3a: I1 due to point mass source.                                                                                 

                                                                                

3b: I2 due to point force.

                                                                                

                                                                                

3c: I3 due to stagnation enthalpy perturbation.                                                                                 

                                                                                

3d: I4 due to stagnation pressure perturbation.Figure 3: Contribution of source terms to the linear functional. Contour increment is 0.04 in all cases.
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pressure perturbation in the case of inviscid 
ow, and afunction of the normal and tangential forces and somecombination of the temperature and heat 
ux in the caseof viscous 
ows. No other choices lead to a well-posedproblem.The construction of Green's functions for the Eulerequations has revealed the behaviour of the adjoint vari-ables. For a quasi-1D duct there is a logarithmic sin-gularity at a sonic throat, whereas at a shock the ad-joint variables are continuous but the gradient is not.In 2D, the Green's function and adjoint variables arebroken into four components. Two of these correspondto potential 
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