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Abstract

This paper demonstrates the use of adjoint error anal-
ysis to improve the order of accuracy of integral func-
tionals obtained from CFD calculations. Using second
order accurate finite element solutions of the Poisson
equation, fourth order accuracy is achieved for two dif-
ferent categories of functional in the presence of both
curved boundaries and singularities. Similarly, nu-
merical results for the Euler equations obtained using
standard second order accurate approximations demon-
strate fourth order accuracy for the integrated pressure
in two quasi-1D test cases, and a significant improve-
ment in accuracy in a two-dimensional case. This ad-
ditional accuracy is achieved at the cost of an adjoint
calculation similar to those performed for design opti-
mization.

1 Introduction

In aeronautical CFD, engineers desire very accurate
prediction of the lift and drag on aircraft, but they are
less concerned with the precise details of the flow field in
general, although there is a clear need to understand the
qualitative nature of the flow (e.g. is there a bad flow
separation?) in order to make design changes which
will improve the lift or drag. Similarly, other areas of
CFD analysis also have a particular interest in a few key
integral quantities, such as total production of nitrous
oxides in combustion modeling, or the net seepage of a
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pollutant into an aquifer when modeling soil contami-
nation.

The objective of this paper is to obtain higher order
accuracy for integral functionals (such as the lift and
drag) derived from CFD calculations. The key is the
solution of the adjoint p.d.e. with inhomogeneous terms
appropriate to the functional of interest. We show that
it is this solution which relates the error in the original
approximation (as measured by the extent to which the
approximate solution fails to satisfy the original p.d.e.)
to the consequential error in the computed value of the
functional. Given an approximation to the adjoint so-
lution, one can then quantify and correct the leading
order error term in the functional estimate. The cor-
rected value of the functional is then superconvergent in
that the remaining error is proportional to the product
of the errors in the primal and adjoint solutions.

The analysis is closely related to superconvergence
results in the finite element literature [2, 3, 4, 13, 14, 15].
The key distinction is that the adjoint error correction
term which we evaluate to obtain superconvergence is
zero in a large class of finite element methods, including
many which are used for incompressible flow, but not
those used most commonly for compressible flow. Thus,
these methods automatically produce superconvergent
results for any integral functional without requiring the
computation of an approximate adjoint solution.

Previous papers by the present authors [9, 16] derived
the underlying theory for a limited class of functionals
and presented numerical results for the one-dimensional
Poisson equation and the quasi-1D Euler equations.
The only 2D results were for the Poisson equation on
a unit square. In this paper we address a number of
issues which are critical to real multi-dimensional ap-
plications. The first is the consideration of functionals
which are integrals over the boundary of the domain
(as in lift and drag integrals) rather than integrals over



the interior of the domain (as in the average tempera-
ture of a fluid). The second is consideration of domains
with curved boundaries and other more general bound-
ary conditions for which there are truncation errors in
the approximation of the boundary conditions. These
two features require extensions to the theory presented
previously. The third issue, which can be important in
multi-dimensional applications, is the presence of singu-
larities in the geometry or solution, such as at the trail-
ing edge of a cusped airfoil. No new theory is required
in this case, but the question is whether the presence of
a singularity may prevent one from achieving supercon-
vergent results.

We begin the paper by presenting the linear the-
ory and simple examples of its application to the two-
dimensional Poisson equation in curved domains. Su-
perconvergent results are achieved even when there is a
singularity in the solution. We then present the non-
linear theory and examples of its use with the quasi-1D
and 2D Euler equations approximated by standard sec-
ond order finite volume methods. Unambiguous fourth
order accuracy is achieved for the quasi-1D results for
both subsonic and shock-free transonic flow. The 2D
results show a very significant improvement in the ac-
curacy of the computed functional, but it is not possible
to infer the precise order of accuracy.

2 Linear analysis

2.1 Theory without boundary terms

Let u be the solution of the linear differential equation
Lu = f,

on the domain (2, subject to homogeneous boundary
conditions for which the problem is well-posed when
f € Ly(92). The adjoint differential operator L* and as-
sociated homogeneous boundary conditions are defined
by the identity

(v, Lu) = (L*v,u),

for all u, v satisfying the respective boundary condi-
tions. Here the notation (.,.) denotes an integral inner
product over the domain 2.

Suppose now that we are concerned with the value
of the functional J = (g,u), for a given function g €
L»(Q). An equivalent dual formulation of the problem
is to evaluate the functional J=(v, f), where v satisfies
the adjoint equation

L*v =g,

subject to the homogeneous adjoint boundary condi-
tions. The equivalence of the two forms of the problem
follows immediately from the definition of the adjoint
operator.

(v, ) = (v, Lu) = (L*v,u) = (g, u).

Suppose that u; and vy, are approximations to v and
v, respectively, and satisfy the homogeneous boundary
conditions. The subscript h is intended to denote that
the approximate solutions are derived from a numeri-
cal computation using a grid with average spacing h.
When using finite difference or finite volume methods,
up, and v, might be created by interpolation through
computed values at grid nodes. With finite element
solutions, one might simply use the finite element so-
lutions themselves, or one could again use interpolation
through nodal values and thereby obtain approximate
solutions which are smoother than the finite element
solutions.

Let the functions f, and g, be defined by

Lup = fn, L*vp = gn.

It is assumed that u; and vy, are sufficiently smooth that
frn and gy lie in Ly(Q). If up and v, were equal to u
and v, then fj and g, would be equal to f and g. Thus,
the residual errors fn— f and g, — g are a computable
indication of the extent to which u; and vj, are not the
true solutions.

Now, using the definitions and identities given above,
we obtain the following expression for the functional:

(g,u) = (9,un) — (gn,un—u) + (gn—g, un—u)
= (g9,un) — (L*vp,up—u) + (gn—9g,un—u)
= (g,un) — (vn, L(un—1)) + (gn — g, un—u)

(9,un) — (n, fo—F) + (gn — g, un—u).

The first term in the final expression is the value of
the functional obtained from the approximate solution
up. The second term is an inner product of the residual
error fp — f and the approximate adjoint solution wvy,.
The adjoint solution gives the weighting of the contri-
bution of the local residual error to the overall error in
the computed functional. Therefore, by evaluating and
subtracting this adjoint error term we obtain a more
accurate value for the functional.

The third term is the remaining error after making
the adjoint correction. If g, —g is of the same order of
magnitude as v,—v then, using Ly norms, the remaining
error has a bound which is proportional to the product
[lup—ul| ||vn—v||, and thus the corrected functional value



is superconvergent. If the solution errors ujp —u and
v —v are both O(h?) then the error in the functional is
O(h?P). Furthermore, the remaining error term can be
expressed as (gn—g, L™ (fn—f)) and so has the com-
putable a posteriori error bound || LY || fa—f1l llgn—9l|-

2.2 First example

In a previous paper [9], we demonstrated the effec-
tiveness of the error correction technique for the two-
dimensional Poisson equation

o*U
0X?

v

oo = FXY)

on a unit square domain subject to homogeneous Dirich-
let boundary conditions. Using a second order accurate
finite element method with bilinear test and trial func-
tions, fourth order accuracy was achieved for the func-
tional (G, U) for the particular case in which

F=X1-X)Y(1-Y), G=sin(rX) sin(nY).

To show that superconvergence can also be achieved
on domains with curved boundaries, we use conformal
mapping to transform this same problem into a math-
ematically equivalent form. Defining the complex vari-
ables Z and z as

Z=X+1iY, z=x+1y,
the mapping
z=(Z+3+i)?

maps the unit square onto the ‘warped square’ shown
in Figure 1. u(z,y) = U(X,Y) is then the solution of
the transformed p.d.e.

8%u  Ou
922 + e fz,y),
with )
dzZ

Similarly, the transformed functional is (g,u) where

dz |2

gla,y) = GOLY) |

The exact value of the functional can be determined
analytically. Numerical results have been obtained us-
ing a Galerkin finite element method with piecewise
bilinear elements on the curved mesh in the z-plane.
Standard finite element error analysis reveals that both

the solution error for the primal problem and the er-
ror in the computed functional using the finite element
solution are O(h?). However, by bi-cubic spline inter-
polation of the nodal values and the grid coordinates
at the nodal points, one can reconstruct in parametric
form an improved approximate solution up(z,y) with
an error which is O(h?) in the H? Sobolev norm and
hence has a residual error which is also O(h?). Using
a similarly reconstructed approximate adjoint solution
vp(z,y), one can then compute the adjoint error correc-
tion term resulting in a corrected functional whose ac-
curacy is O(h*). All inner product integrals are approx-
imated by 3x3 Gaussian quadrature on each quadrilat-
eral cell to ensure that the numerical quadrature errors
are of a higher order.

Figure 2 shows the error in the computed value for
the functional, before and after the adjoint correction,
together with the bound for the remaining error. The
ordinate is the logarithm of the number of cells in each
dimension. Lines of slope —2 and —4 passing through
the final data points are superimposed to show that
the base error in the functional is clearly second order
whereas the error in the corrected value of the functional
is fourth order.

Note also that an error level of 1078 is achieved with
a grid of 16 x 16 when using the adjoint error correc-
tion, whereas it requires a grid of 256 x 256 without the
error correction. Thus, the computational savings are
enormous and more than justify the cost of the adjoint
calculation.

2.3 Theory with boundary terms

We now extend the theory to include inhomogeneous
boundary conditions for the primal and dual problems,
and boundary integrals in their output functionals.

Let u be the solution of the linear differential equation
Lu=f,

in the domain {2, subject to the linear boundary condi-
tions
Bu =e,

on the boundary 0€). In general, the dimension of the
operator B will be different on different sections of the
boundary (e.g. inflow and outflow sections for the con-
vection p.d.e.).

The output functional of interest is taken to be

J = (gau) + (h7 Cu)BQa
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Figure 1: The reconstructed primal and dual solutions for a 2D Poisson problem on a warped square.
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Figure 2: Error convergence of a bulk functional for a 2D Poisson problem on a warped square.
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where (.,.)sq represents an integral inner product over
the boundary 9. The boundary operator C may be al-
gebraic (e.g. Cu = u) or differential (e.g. Cu = %), but
must have the same dimension as the adjoint boundary
condition operator B* to be defined shortly. Note that
the components of h may be set to zero if the functional
does not have a boundary integral contribution.

The corresponding linear adjoint problem is
L*v =g,
in Q, subject to the boundary conditions
B*v = h,

on the boundary 9. The fundamental identity defining
L*, B* and the boundary operator C* is

(L*v,u) + (B*v,Cu)sq = (v, Lu) + (C*v, Bu)aq,

for all u,v. This identity is obtained by integration
by parts, and in a previous paper we describe the con-
struction of the appropriate adjoint operators for the
linearized Euler and Navier-Stokes equations [7].

Using the adjoint identity, one immediately obtains
the equivalent dual form of the output functional,

J = (v, f) + (C7v,e)a0.

Given approximate solutions wup,v, we define
€ns fr> g, i by
Lup = fn, L*vp = gn,
Buh = €p, B*’Uh = hh,

and hence obtain
(ga u) + (h7 CU)BQ

= (g,un) + (h,Cun)asn
—(gn, un —u) — (hn, Cup — u))oq
+(gh —g,up — u) + (hh — h, C(uh — u))ag

= (g,un) + (h, Cup)aq
—(L*vp,up — u) — (B*vp, C(up — u))aq

+(9n — g,un — u) + (hyy, — h, C(up — u))an

= (g,un) + (h, Cupn)aq
—(vn, L(up — u)) — (C*vp, B(up, — u))aq
+(gh —g,up — u) + (hh — h, C(uh — u))ag

= (gauh) + (hacuh)aﬂ
—(vh, fo — f) = (C*vn,en — €)oq
+(gn — g,un —u) + (hp — h,C(up — u))oq.

In the final result, the first line is the functional based
on the approximate solution uy. The second line is the
adjoint correction term which now includes a term re-
lated to the extent to which the primal solution does
not correctly satisfy the boundary conditions. The third
line is the remaining error for which an a posteriori error
bound can again be found.

2.4 Second example

In addition to curved boundaries, it is also interesting
to investigate the influence of geometric singularities in
the domain, such as the cusp at the trailing edge of an
airfoil.

Using the same conformal mapping approach as
above, we define the domain in the Z-plane to be the re-
gion between two circles centered at (X,Y) = (—0.1,0)
with radii of Ry = 1.1 and Ry = 3.0. Application of the
Joukowski mapping

1
zZ = Z + 2,
then produces a computational domain between a
cusped airfoil (09,1) and a smooth outer boundary
(09Q.2).

Using cylindrical coordinates R, € defined by

X +01=Rcosf, Y =Rsinb,

the function

R?— R?

UXY) =~

sin 6,
is a solution of the Laplace equation subject to the
boundary conditions U =0 on the inner circle, and

M sin @

on the outer cylinder.

In the z-plane, the function u(z,y) = U(X,Y) is the
solution of the Laplace equation

Pu  0%u
=+ =0,

ox2 = 0y?

subject to u = 0 on the airfoil, and the appropriate
Dirichlet boundary conditions on the far-field bound-
ary. As illustrated in Figure 3, this solution corresponds
to the stream function for incompressible inviscid flow
around the airfoil, with zero circulation.
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Figure 3: The reconstructed primal and dual solutions for a 2D Laplace problem around a Joukowski airfoil.
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The boundary functional in the Z-plane is defined to

be
27
/ H(0) 8_U db,
0 an R=R,
where
sin @
H=—
R’

and its value can be obtained analytically. ~When
mapped into the z-plane, the corresponding expression

fOr 'he funC(l.()Ilal I.S
<117 9“) ’
n 001

and hence the dual problem is the Laplace equation sub-
ject to the inhomogeneous Dirichlet condition v=H on
the airfoil surface and v = 0 on the far-field boundary.

Figure 4 shows the numerical results obtained using
the same Galerkin finite element method, bi-cubic spline
interpolation and 2 x 2 Gaussian quadrature, owing to
memory constraints resulting from a larger computa-
tional mesh. The solution is splined periodically around
the airfoil, including on the surface where there is a cusp
in the geometry. The errors produced by this treatment
of the geometric singularity at the trailing edge converge
faster then the second order accuracy of the baseline fi-
nite element method.

Again the superimposed lines of slope —2 and —4
show that the base solution is second order accurate
whereas the corrected value for the functional is fourth
order accurate.

3 Nonlinear theory

The nonlinear theory in the absence of boundary in-
tegrals in the functional and errors in approximating
the boundary conditions has been presented previously
[9, 16], and so we now proceed directly to the theory
including boundary effects which is presented here for
the first time.

Let u be the solution of the nonlinear differential
equation

in the domain (), subject to the nonlinear boundary
conditions

on the boundary 09).

The linear differential operators L, and B, are de-
fined to be the Fréchet derivatives of N and D, respec-
tively,

By ii = lim 20t €0 = D(w)
e—0 €

It is assumed that the nonlinear functional of interest,
J(u), has a Fréchet derivative of the following form,

lim J(u+ et) — J(u)

e—0 €

= (9(u), @) + (h, Cult) o0-

Here the dimension of the operator C,, (which may be
differential) is required to equal the dimension of the
adjoint boundary operator B, to be defined shortly.

The corresponding linear adjoint problem is
L = g(u)
in , subject to the boundary conditions
Biv=nh

on the boundary 0f2. The identity defining L}, B and
the boundary operator C}; is

(Lrv,a) + (Biv, Cyutt)sq = (v, Lya) + (Chv, Byt)sq,
for all @, v.

We now consider approximate solutions wup, v, and
define gp, hp, by

* *
L, vn=gn, By, vh="hn

Note the use of the Fréchet derivatives based on wuy
which is known, instead of those based on w which is
not known.

The analysis also requires averaged Fréchet deriva-
tives defined by

1
L(U,Uh) = /0 L|u+9(uh7u) da’
. 1
Bluw,) = /0 Bl o(upu) 46,
- 1
Clunn) = /0 Cluso(unn 40,
1
Glusup) = / g+ 0(ur —u)) db,
0
so that
L a
Nun)=N(w) = [ 55N+ 6 -w) df
0

= L(u7uh) (uh_u)a



and similarly

D(up)—
J(un)

D(’LL) = E(u7uh) (uh - u)a
_J(u) = (g(uauh)auh_u)
+(h, ﬁ(u,uh) (up—u))oq-

We now obtain the following:

J(uh) — J(u)

= (g(uauh)auh_u) + (haa(u,uh)(uh_u))aﬂ

= (gn,un—u) + (hn, Cu, (un—u))sn
—(9n—9(u, Uh),uh u)
—(h, (Cuy, = Cluyup)) (un—1u)) a0
—(hn=h, Cy, (un—u))sn

= (L, vh,up—u) + (B}, vp, Cy, (up—u)) s
—(9n=7(u, un), un—u)
—(h, (Cuy, = C ) (un—1)) o
—(hr.—h, Cu, (un—u)) oo

= (vn, Lu, (up—u)) + (Cy, vh, By, (un—u))sn
—(gn—9(u,up), up—u)
—(hy (Cup, = Cluyun)) (un —1u)) o0
—(hn=h, Cy, (un—u))sn

= (Un, Liwyup) (un =) + (C3, v, Buuy) (un —u)) o0
—(gh—ﬁ(u Uh) up—u)
b, (Cup, = Cuyun)) (un —u))og
—(hp—h, Cuh(uh u)) o0
w = Liwun)) (un—u))

+ Cuhvhy( Up P(u7uh))(uh_u))89

= (vn, N(un)) + (Cy, vh, D(un))oq
—(gn—9(u,up), up—u)
—Cluyun)) (un—u))sq

In the final result, the first line is the adjoint correc-
tion term taking into account residual errors in approx-
imating both the p.d.e. and the boundary conditions.
The other lines are the remaining errors, which include
the consequences of nonlinearity in L, B, C' and g as well
as residual errors in approximating the adjoint problem.

If the solution errors for the nonlinear primal problem
and the linear adjoint problem are of the same order,

and they are both sufficiently smooth that the corre-
sponding residual errors are also of the same order, then
the order of accuracy of the functional approximation
after making the adjoint correction is twice the order of
the primal and adjoint solutions. However, rigorous a
priori and a posteriori analysis of the remaining errors
is much harder than in the linear case [16] and practical
a posteriori error bounds have yet to be obtained for
the quasi-1D and 2D Euler equations.

4 Quasi-1D Euler equations

The steady quasi-1D Euler equations for the flow of
an ideal compressible fluid in a variable area duct are

d dA
—(AF) - —P =
da:( ) dx 0,

where A(z) is the cross-sectional area of the duct and
U, F and P are defined as

p pq
U=|pq |, F=|pi?+p |, P=]|p
pE paH 0

Here p is the density, ¢ is the velocity, p is the pressure,
E is the total energy and H is the stagnation enthalpy.
The system is closed by the equation of state for an
ideal gas. The functional of interest is the ‘lift’

J:/pda:.

The equations are approximated using a standard
second order finite volume method with characteristic
smoothing on a uniform computational grid. The lin-
ear adjoint problem is approximated by the so-called
‘continuous’ method, which involves linearizing the non-
linear flow equations, constructing the analytic adjoint
equations, and then forming a discrete approximation
to these on the same uniform grid as the flow solution
[1, 11]. The alternative ‘discrete’ approach, in which one
takes the discretized nonlinear flow equations, linearizes
them and then uses the transpose of the linear matrix
as the discrete adjoint operator [5], is employed for the
two-dimensional calculation presented later in the pa-
per. Previous research has shown that both approaches
produce consistent approximations to the analytic ad-
joint solution, which has been determined in closed form
for the quasi-1D Euler equations [8].

The approximate solution up(z) is constructed from
the discrete flow solution by cubic spline interpolation
of the nodal values of the three components of the state
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Figure 5: Mach number distributions for quasi-1D Euler equation test cases.

vector U. Similarly, the approximate adjoint solution
vp(z) is obtained by cubic spline interpolation of the
nodal values of the three components of the discrete ad-
joint solution. The integrals which form the base value
for the functional and the adjoint correction are approx-
imated by 3-point Gaussian quadrature.

4.1 Subsonic flow

The first case is smooth subsonic flow in a converging-
diverging duct corresponding to the Mach number dis-
tribution depicted in Figure 5. Figure 6 shows the error
convergence for the computed functional. The superim-
posed lines of slope —2 and —4 show that the base error
is second order whereas the error in the corrected func-
tional is fourth order. This is in agreement with an a
priori error analysis [16] which proves that uj,—u, vy—v
and their first derivatives are all O(h?) for the partic-
ular finite volume scheme which is used, and hence the
error in the corrected functional is O(h*).

4.2 Isentropic transonic flow

Figure 7 shows the error convergence for a transonic
flow in a converging-diverging duct corresponding to the
Mach number distribution of Figure 5. The flow is sub-
sonic at the inflow boundary and upstream of the throat
(located at = =0), and supersonic downstream of the

throat and at the outflow boundary. Again the results
show that the base error is second order while the re-
maining error after the adjoint correction is fourth or-
der, even though there is logarithmic singularity in the
adjoint solution at the throat [8].

5 2D Euler equations

The nonlinear steady-state Euler equations in conser-
vation form are

where U is the vector of conserved variables and Fy (U)
and F,(U) are the nonlinear flux functions

P P4z Py
2
+
U= Pz  F= pPq; Tp Fy _ pq2mQy
Py Pqxqy Py +p
pE pg. H payH

The preceding test cases dealt with many of the the-
oretical and practical issues that are likely to arise in
CFD calculations, including curved boundaries, geomet-
ric singularities and nonlinear systems. To take the next
step, the present example demonstrates error correc-
tion for subsonic inviscid compressible flow through a
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Figure 8: Lift convergence for subsonic flow in a 2D nozzle.

smooth converging-diverging duct that has a 10% con-
striction at the throat relative to the inlet and outlet
areas. To assist in the validation of the code, the func-
tional is chosen to mimic the ‘lift’ of the quasi-1D cases,

J = % /(ptop + pbottom) dz.

The flow solution is computed with a standard second
order finite volume discretization on a structured mesh
composed of quadrilateral cells. The adjoint solution
is obtained using the previously described ‘discrete’ ap-
proach. As before, bi-cubic splining of the nodal values
and mesh coordinates is used to reconstruct the flow
and adjoint solutions. Analytic boundary conditions
are enforced during the reconstruction at solid as well
as inflow and outflow boundaries so that the boundary
terms in the error correction formulation vanish. These
boundary errors are propagated to the interior of the
domain through the reconstruction, so that they are ac-
counted for in the bulk correction term computed with
3 x 3 Gaussian quadrature on each mesh cell.

Figure 8 demonstrates that the error correction ap-
proach provides a substantial improvement in the accu-
racy of the functional estimate relative to the baseline
lift value. However, since the analytic solution to this
problem is not available, it is not possible to determine
the order of accuracy as for the previous test cases.

11

6 Conclusions

In this paper we have presented a method of doubling
the order of accuracy of integral quantities derived from
CFD calculations. Doing so requires a solution of the
adjoint flow equations, which are the same equations
used in the optimal aerodynamic design approach of
Jameson [10, 11]. Because of the importance of design,
many adjoint solvers are currently being developed for
the Euler and Reynolds-averaged Navier-Stokes equa-
tions [1, 5, 12], facilitating rapid exploitation of the er-
ror correction ideas described in this paper.

The theory has been fully developed for both linear
and nonlinear p.d.e.’s, and this paper presents for the
first time the extensions required to treat boundary in-
tegral functionals and truncation errors in the numerical
approximation of boundary conditions.

The numerical results for the 2D Poisson and Laplace
equations confirm the ability of the error correction to
give superconvergence for domains with curved bound-
aries and even singularities in the geometry and solu-
tion, provided there is adequate grid resolution. The re-
sults for the quasi-1D Euler equations also show an un-
ambiguous doubling of the order of accuracy for the in-
tegrated pressure, confirming that the theory correctly
treats nonlinear problems. Thus, these model problems
test all of the components of the theory needed for real
engineering applications.



The numerical results for the 2D Euler equations are
very preliminary in nature. They show a quite signifi-
cant improvement in the accuracy of the functional but
it is not possible to infer the precise order of accuracy of
the corrected functional. Also, the test case is very sim-
ple, involving a converging-diverging duct with a very
mild area contraction. Future work will address much
more challenging problems, such as the flow over airfoils
and wings.

There are two other issues to be addressed in future
research. The current work involves cubic spline inter-
polation of CFD data on structured grids. On unstruc-
tured grids, the construction of a smooth interpolation
is a much more difficult task. The use of unstructured
grids also introduces the whole topic of optimal grid
adaptation [4, 14]. The magnitude of the adjoint error
correction term (v, fr—f) can be reduced by adapting
the grid in the regions in which the product v} (f, — f)
is largest. Alternatively, if grid adaptation is to be used
in conjunction with adjoint error correction then the
remaining error is perhaps best minimized by adapting
the grid where the residual errors f, — f and g, —g are
largest.
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