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Quasi-Monte Carlo for finance applications
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Abstract

Monte Carlo methods are used extensively in computational fi-
nance to estimate the price of financial derivative options. We review
the use of quasi-Monte Carlo methods to obtain the same accuracy
at a much lower computational cost, and focus on three key ingredi-
ents: the generation of Sobol’ and lattice points, reduction of effective
dimension using the principal component analysis approach at full
potential, and randomization by shifting or digital shifting to give an
unbiased estimator with a confidence interval. Our aim is to provide
a starting point for finance practitioners new to quasi-Monte Carlo
methods.
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1 Introduction

Many problems from mathematical finance are expressed as the expected
value of some payoff function depending on quantities, such as stock prices,
which satisfy stochastic differential equations driven by underlying Brown-
ian motion. The expectation is a very high dimensional integral, with the
dimension being the product of the number of Brownian motions and the
number of time steps in the discretization. For example, the valuation of a
parcel of mortgage backed securities for a 30 year loan with monthly repay-
ment opportunities yields a 360-dimensional integral; while daily monitoring
of 80 stocks on trading days for a period of five years leads to an integral
with more than one million variables.

At present practitioners mostly tackle high dimensional problems with
complex payoffs by a Monte Carlo (mc) approach: a series of Brownian
paths are generated randomly to simulate the evolution of stock prices over
time, and the expected value is then estimated by averaging over all sample
paths. The law of large numbers guarantees the convergence of the estimate
as the number of paths N is increased, but this convergence is slow, with the
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root mean square (r.m.s.) error being O(N−1/2).

We review the alternative quasi-Monte Carlo (qmc) approach, in which
the randomly generated paths are replaced by carefully constructed paths
in order to improve the rate of convergence. The idea of considering qmc
methods in computational finance is far from new [6, 8, e.g.], but in this
article we discuss the key ingredients which are essential for achieving the
full potential of these methods.

2 Elements of quasi-Monte Carlo

mc and qmc methods both approximate an integral over the unit cube∫
[0,1]d

f(x)dx by
1

N

N−1∑
i=0

f(x(i)) .

Their difference is in the choice of the points x(0), x(1), . . . , x(N−1). The mc
points are independent and identically distributed uniform random vectors
from the unit cube, whereas the qmc points are chosen deterministically to
be ‘more uniform than random’. While the r.m.s. mc error is O(N−1/2),
qmc errors can have a faster rate of convergence, often close to O(N−1) and
sometimes better.

qmc error bounds typically take the form of a discrepancy, which mea-
sures the quality of the points, times a measure of the variation of f. Such
bounds separate the dependence on the point sets from the dependence on
the integrand. In general we have no control over the integrand, and so we
choose the qmc points to make the discrepancy as small as possible. qmc
point sets with discrepancy O(N−1(logN)d) or better are collectively known
as low-discrepancy point sets. Recent research has focussed on two different
strategies for achieving high uniformity of the points in the unit cube.
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Figure 1: (a) Sobol’ points; (b) Lattice points.

Digital nets such as Sobol’ points The concept behind digital nets
is to have the right number of points in various sub-divisions of the unit
cube [12, e.g.]. Figure 1(a) shows the first 64 points of a two-dimensional
Sobol’ sequence, which is an example of a digital (0, 6, 2)-net in base 2. If
we divide the unit square into 64 rectangles of the same shape and size, by
successively bisecting m times in one direction and 6−m times in the other,
then each rectangle will include exactly one point, for any value of m.

The construction of Sobol’ points requires distinct primitive polynomi-
als and so-called direction numbers1 [9, e.g.]. Once the direction num-
bers vj,1, vj,2, . . . for dimension j are obtained, the Sobol’ points in dimension j

in the Gray code order are obtained by taking x
(0)
j = 0 ,

x
(i+1)
j = x

(i)
j ⊕ vj,ci

, i = 0, 1, . . . ,

where ci is the index of the first 0 bit from the right in the binary represen-
tation of i = (· · · i3i2i1)2, and ⊕ denotes the bit-wise exclusive-or operation.

1http://www.maths.unsw.edu.au/~fkuo/sobol/

http://www.maths.unsw.edu.au/~fkuo/sobol/
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Lattice rules One way to visualize a lattice point set is to think of a
sheared product grid where the axes have been stretched and rotated under
certain constraints. A lattice rule (of rank 1) is uniquely specified by its
generating vector z = (z1, z2, . . . , zd)

T, which is an integer vector having no
factor in common with N. The ith lattice point is simply

x(i) = frac

(
i

N
z

)
, i = 0, 1, . . . ,N− 1 ,

where frac(·) means to replace each component of a vector by its fractional
part, for example, frac(3.7, 1.2)T = (0.7, 0.2)T. Figure 1(b) shows the two-
dimensional lattice rule with N = 64 and z = (1, 19)T. The above formula
gives a lattice point set of a fixed size N. To obtain an infinite sequence of
lattice points, we take

x(i) = frac (ψ(i) z) , i = 0, 1, . . . ,

where ψ(i) is obtained by mirroring the bits of i at the binary point, for
example, if i = 6 = 1102 then ψ(i) = 0.0112 = 0.375 .

Good lattice rule generating vectors can be constructed component by
component2 [4, 5, 11, e.g.]. These constructions require some input param-
eters known as weights [15, e.g.], which are chosen to model the dimension
structure of the integrands. With the wisdom of hindsight, it now seems that
the lattice rules used for many past experiments were poorly chosen.

3 Basic finance problem formulation

We now demonstrate how to formulate a standard finance problem as an
integral over the unit cube, to which we apply qmc methods.

2http://www.maths.unsw.edu.au/~fkuo/lattice/

http://www.maths.unsw.edu.au/~fkuo/lattice/
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Single asset path dependent We assume the Black–Scholes model that
the price of a stock follows a geometric Brownian motion with d equally
spaced time steps in the time interval [0, T ]. Thus the stock price at time
tj = jT/d is

Sj = S0 exp
[
(r− 1

2
σ2) tj + σwj

]
,

where S0 is the stock price at time 0, r is the risk-free interest rate, σ is the
volatility, and the vector w = (w1, w2, . . . , wd)

T corresponds to a Brownian
path. Since w is normally distributed with mean zero and covariance matrix
Σ = [min(ti, tj)]

d
i,j=1 which is symmetric and positive definite (spd), the

expected value of some payoff function g(w) is the d-dimensional integral

E(Payoff) =

∫
Rd

g(w)
exp(−1

2
wTΣ−1w)√

(2π)d det(Σ)
dw

=

∫
Rd

g(Az)
exp(−1

2
zTz)√

(2π)d
dz

=

∫
[0,1]d

g[AΦ−1(x)]dx ,

where the matrix A comes from the factorization Σ = AAT, and Φ−1(·) de-
notes the inverse normal cumulative distribution function which is to be
applied component-wise to a vector or matrix. In effect, we use the substi-
tution w = Az to get independent standard normal variables z, and the
change of variable z = Φ−1(x) then maps the resulting integral into the unit
cube [0, 1]d. qmc methods approximate this integral by

1

N

N−1∑
i=0

g
[
AΦ−1(x(i))

]
,

with x(i) = (x
(i)
1 , x

(i)
2 , . . . , x

(i)
d ) for i = 0, 1, . . . ,N − 1 . The factorization of

Σ = AAT is not unique. In the next section we discuss ways of carrying out
the factorization.
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Multi asset path dependent Assume now that there are s stocks with
constant volatilities σi and correlation ρi,j, i, j = 1, 2, . . . , s . The covariance
between these s stocks is given by the spd matrix Λ = [σiρi,jσj]

s
i,j=1. Let-

ting w be a ds-dimensional vector containing the Brownian motions of all
stocks, the expected value of some payoff function g(w) is the ds-dimensional
integral

E(Payoff) =

∫
Rds

g(w)
exp[−1

2
wT(Σ⊗Λ)−1w]√

(2π)ds det(Σ⊗Λ)
dw

=

∫
Rds

g[(A⊗B)z]
exp(−1

2
zTz)√

(2π)ds
dz

=

∫
[0,1]ds

g[(A⊗B)Φ−1(x)]dx ,

where Σ = AAT and Λ = BBT, and A ⊗B denotes the Kronecker product
of the d× d matrix A and the s× s matrix B,

A⊗B =

a11B · · · a1dB
...

. . .
...

ad1B · · · addB

 .
qmc methods approximate this integral by

1

N

N−1∑
i=0

g
[
(A⊗B)Φ−1(x(i))

]
,

with x(i) = (x
(i)
1 , x

(i)
2 , . . . , x

(i)
ds) being a ds-dimensional point.
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4 Dimension reduction through principal

component analysis

Contemporary wisdom has it that qmc works well for many problems in
finance because such problems have low effective dimension [3, e.g.], meaning
either that the integrand can be well approximated by a sum of terms each
depending only on a small number of variables, or that the integrand mainly
depends on a few leading variables. This property rests critically on how the
variables are chosen, and in particular, on how we factorize the covariance
matrices, since the quality of all qmc methods is better for earlier variables.

Single asset path dependent The most straightforward factorization of
the spd covariance matrix is to take A to be the Cholesky factor of Σ; this
corresponds to the standard approach which generates the Brownian path
incrementally. The Brownian Bridge approach [3, e.g.] constructs the end
point of the Brownian path first and then successively refines the midpoint
of each interval; this leads to a different matrix A which usually reduces the
effective dimension. In the Principal Component Analysis (pca) approach [1,
e.g.], we take

A =
[√
λ1η1 · · ·

√
λdηd

]
,

that is, the jth column of A is
√
λjηj, where (λj,ηj)

d
j=1 denotes the eigenpairs

of Σ, with ordered eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λd and unit-length column
eigenvectors η1, . . . ,ηd.

For many finance problems the pca approach often leads to the opti-
mal factorization. However, there is a common misconception that the pca
approach is much more costly than the standard and Brownian Bridge ap-
proaches because

1. a general matrix-vector product AΦ−1(x) requires O(d2) operations
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whereas the other two approaches can be computed directly inO(d) op-
erations without the need to perform matrix-vector multiplication,

2. in general the computation of the eigenpairs requires O(d3) operations.

Fortunately the eigenpairs for this covariance matrix Σ = [min(ti, tj)]
d
i,j=1

with equally spaced time steps are known explicitly [8, e.g.]. In particular, the
eigenvectors are sine functions and thus the matrix-vector product AΦ−1(x)

can be evaluated using Discrete Sine Transform (dst) in O(d logd) opera-
tions [14], which is beneficial when d is large.

Multi asset path dependent We factorize the time covariance matrix
Σ = AAT following the pca approach as described above, and do an analo-
gous factorization for the asset covariance matrix Λ = BBT, that is,

B =
[√
µ1ξ1 · · ·

√
µsξs

]
,

where (µj,ξj)
s
j=1 denotes the eigenpairs of Λ with ordered eigenvalues and

unit-length column eigenvectors.

We see that the naive multiplication of (A⊗B)Φ−1(x) requiresO(d2s2) op-
erations which would be prohibitive for large d and s. Re-arranging the
elements of x as a d × s matrix X (using row major), we correspondingly
interpret

(A⊗B)Φ−1(x) as AΦ−1(X) BT .

Multiplication with A can be done in O(ds logd) operations using dst as
discussed above. Multiplication with B requires the usual O(ds2) operations,
but this is usually acceptable since s is typically much smaller than d.

To achieve the full benefit from the pca ordering, we need to arrange the
variables in the d× s matrix X with respect to the ordering of the products

{λiµj}i=1,...,d, j=1,...,s ,



5 Error estimation via randomization C317

which are the eigenvalues of the full ds × ds matrix Σ ⊗ Λ. We sort the
products λiµj and apply a priori the corresponding ‘permutation’ to the
components of the generating vector for lattice rules, or to the primitive
polynomials and direction numbers for Sobol’ points. Apart from the setup
cost, this permutation does not introduce additional cost to each evaluation
of the payoff function, and we have the optimal ordering of the ds variables.
The idea of applying a permutation a priori for obtaining the optimal pca
ordering is new in this article.

5 Error estimation via randomization

The r.m.s. mc error is easily obtained by estimating the variance of the
function (see Table 1). On the other hand, qmc methods, although having
a faster rate of convergence, lack a practical error estimate. ‘Randomized’
qmc methods [6, e.g.] combine the best of both worlds.

Shifting ‘Shifting’ is the simplest form of randomization, and it preserves
the lattice structure. The idea is to move all the points in the same direction
by the same amount, and if any point falls outside the unit cube then it is
‘wrapped’ back into the cube from the opposite side.

More precisely, given a real vector ∆ in the unit cube, known as the shift,
the ∆-shift of the qmc points x(0), . . . , x(n−1) consists of

frac(x(i) +∆), i = 0, 1, . . . , n− 1 .

We generate a number of independent random shifts ∆0,∆1, . . . ,∆q−1 and
form the approximations Q0, Q1, . . . , Qq−1, where Qk is the approximation
of the integral using a ∆k-shift of the original qmc rule. Then we take the
average Q̄ = (Q0 + Q1 + · · · + Qq−1)/q as our final approximation to the
integral. An unbiased estimate for the standard error of Q̄ is given in Table 1.
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Table 1: mc versus qmc with N = qn function evaluations.

mc Randomized qmc

M̄ =
1

N

N−1∑
i=0

f(x(i)) Q̄ =
1

q

q−1∑
k=0

Qk

Qk =
1

n

n−1∑
i=0

f[frac(x(i) +∆k)]

r.m.s. error
Theory

=

√
variance of f√

N
r.m.s. error

Theory

≤ cδ ‖f‖√
qn1−δ

r.m.s. error
Practice
≈ r.m.s. error

Practice
≈√√√√ 1

N(N− 1)

N−1∑
i=0

(
f(x(i)) − M̄

)2 √√√√ 1

q(q− 1)

q−1∑
k=0

(
Qk − Q̄

)2

The theoretical qmc error bound assumes that f belongs to some weighted
Sobolev space with mixed first derivatives [15, e.g.]. Typically we take n in
the thousands or more while keeping q small around 10 or 20.

Scrambling such as digital shift ‘Scrambling’ is another popular but
more complicated randomization method; it preserves the digital net struc-
ture. There is a simple form of scrambling called digital shift, which is similar
to shifting: we just need to replace frac(x(i) +∆) by

x(i) ⊕∆ , i = 0, 1, . . . , n− 1 ,

where ⊕ denotes the exclusive-or operator as before.
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10n .
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6 Discussion

To provide a glimpse of how these techniques improve upon the efficiency
of mc, we present in Figure 2 the convergence of mc versus qmc for an
arithmetic Asian option with s = 5 stocks, d = 256 time discretizations and
N = 327, 680 function evaluations. The qmc method is a rank 1 lattice
rule with n = 32, 768 points and q = 10 random shifts. The figure shows
the value of option and the estimated standard error as n increases from 16

to 32, 768.

The take home message is that a lot more can be gained from qmc meth-
ods if the points are not naively substituted, but rather insightfully deployed.
Although the pca approach appears to be the optimal strategy in many cases,
we stress that it is not the optimal approach for all finance problems [16]. We
add that variance reduction techniques for mc are also beneficial for qmc.

qmc for finance applications is an active area of research; the latest ad-
vances include multilevel qmc [7], adaptive qmc [13], qmc for jump diffusion
models [2], and fast pca with unequal time steps [10].
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