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21 Introdu
tionAdjoint equations arise naturally in the formulation of methods for optimal aerodynami
design. A single adjoint solution provides the linear sensitivities of an obje
tive fun
tion,su
h as lift or drag, to perturbations in the multiple design variables whi
h parameterisethe aerodynami
 shape. These sensitivities 
an then be used to drive a gradient-basedoptimisation pro
edure.To outline the approa
h, we start with a system of nonlinear partial di�erentialequations (e.g. the Euler equations or 
ompressible Navier-Stokes equations) des
ribinga steady 
ow within some given 
omputational domain. When 
al
ulating the two-dimensional 
ow around an aerofoil, one te
hnique is to use 
urvilinear 
oordinates(�; �) in whi
h the aerofoil surfa
e 
orresponds to � = 0 (Jameson 1995). Using these
oordinates, the p.d.e. 
an be written asR(U) = 0; (1.1)where the 
oeÆ
ients of terms within the di�erential operator R depend on both U andthe mapping from (�; �) to the Cartesian 
oordinates (x; y), whi
h in turn depends onthe geometry of the aerofoil. Perturbing the geometry 
hanges the mapping, and hen
ethe 
oeÆ
ients. Linearising the operator R(U) then leads to the linear p.d.e.Lu = f; (1.2)where f is due to the 
hange in the mapping, and u is the resultant linear perturbationto the 
ow �eld.In design optimisation, one is interested in the 
onsequential 
hange to some obje
tivefun
tion whi
h is to be minimised. Usually, this obje
tive involves an integral over theboundary of the domain, as in the 
ase of drag minimisation. However, to simplify thisexposition, we will take the obje
tive fun
tion J(U) to be an integral over the wholedomain 
, whose linear perturbation I(u) 
an then be written as an inner produ
t overthe domain, I(u) = (g; u);for some given fun
tion g(�; �).Using a dire
t approa
h to design, I(u) is determined separately for ea
h designvariable by de�ning the appropriate geometri
 perturbation f and solving Equation(1.2) for u. In the adjoint approa
h, one evaluates the perturbed fun
tional withoutexpli
itly 
al
ulating the perturbed 
ow �eld u. This is a
hieved by using by using anaugmented fun
tional I = (g; u)� (v; Lu� f);in whi
h the 
ontinuous Lagrange multipliers v have been introdu
ed to enfor
e the
onstraint that u must satisfy Equation (1.2). The adjoint linear operator L� is de�nedby the identity (v; Lu) = (L�v; u);



3for all u; v satisfying the appropriate homogeneous boundary 
onditions. Using thisidentity, one obtains I = (v; f)� (L�v � g; u) = (v; f);provided v is the solution of the adjoint equationL�v = g: (1.3)The adjoint approa
h provides exa
tly the same �nal answer as the dire
t linearperturbation analysis. The bene�t of the adjoint approa
h is that the 
omputational
ost 
an be signi�
antly lower. If there are N design variables, then a dire
t approa
hrequires N solutions of Equation (1.2), ea
h with a di�erent fun
tion F , to obtain thelinear 
ow perturbations u. On the other hand, with the adjoint approa
h, Equation(1.3) has to be solved only on
e for the fun
tion g 
orresponding to the obje
tive fun
tionof interest. Sin
e solving Equations (1.2) and (1.3) requires roughly equal 
omputationale�ort, the overall savings be
ome substantial as the number of design variables in
reases.In the last ten years, 
onsiderable e�ort has been devoted to the development ofoptimal design methods based on the adjoint approa
h. Some methods use 
urvilinear
oordinates and the di�erential adjoint, as outlined above (see e.g. Jameson 1988, 1995,1999; Reuther et al. 1996, 1999a,b; Jameson, Pier
e & Martinelli 1998). Other methods�rst dis
retise the nonlinear p.d.e. and then use the adjoint (transpose) of the lineardis
rete matrix operator (Elliot & Peraire 1997, Anderson & Bonhaus 1999). For a more
omprehensive introdu
tion to adjoint methods in aerodynami
 design and a dis
ussionof the relative advantages of the two main approa
hes, see Giles & Pier
e (2000). Fora review of the latest developments in design optimisation using adjoint equations, seeNewman et al. (1999).Re
ently, adjoint solutions have been re
ognised as providing a means of 
omputingand minimising errors in 
uid dynami
s simulations, and in parti
ular the errors inintegral outputs su
h as lift and drag. Suppose Uh is an approximate numeri
al solutionof Equation (1.1). De�ning u to be the numeri
al error (the di�eren
e between thenumeri
al and analyti
 solutions) givesR(Uh�u) = 0:Linearisation about the numeri
al solution then yieldsLu = f; f � R(Uh):De�ning the adjoint solution in the same way as before, the leading order error in theintegral obje
tive fun
tion is given by(g; u) = (v; f) = (v; R(Uh)):This result 
an be used in grid adaptation, for example by re�ning any 
ell in whi
han estimate of the lo
al produ
t vTR(Uh) multiplied by the 
ell area ex
eeds somethreshold, to try to a
hieve the maximum redu
tion in the magnitude of the error for a



4given 
omputational e�ort (Johnson et al. 1995; Paras
hivoiu, Peraire & Patera 1997;Be
ker & Ranna
her 1998; S�uli 1998) Alternatively, this error term 
an be 
arefullyevaluated and used to 
orre
t the value of the obje
tive fun
tion given by the 
al
ulated
ow �eld. For the 2D Poisson equation and the quasi-1D Euler equations, this has beenshown to lead to 
orre
ted values of twi
e the order of a

ura
y of the 
ow �eld solution(Giles & Pier
e 1998, 1999; Pier
e & Giles 1998, 2000).While signi�
ant e�ort has been dedi
ated to developing methods for 
al
ulatingadjoint solutions to 
ompressible 
ow equations, there has been little dis
ussion of theproperties of the adjoint solutions themselves (see Giles & Pier
e 1997, 1998). Thepresent work investigates the analyti
 properties of adjoint solutions for the quasi-1DEuler equations. The standard formulation of the adjoint equations using Lagrangemultipliers (Jameson 1995) is extended to in
lude the analysis of a sho
k. Expli
itenfor
ement of the steady Rankine{Hugoniot 
onditions through an additional Lagrangemultiplier leads to the result that at the sho
k, the adjoint variables are 
ontinuous andthere is an internal adjoint boundary 
ondition. This is 
onsistent with a 
hara
teristi
viewpoint whi
h indi
ates that one internal adjoint b.
. is needed due to the disparityin the number of adjoint 
hara
teristi
s entering and leaving the sho
k. However, the
on
lusions di�er from those of previous investigators (see Iollo, Salas & Ta'asan 1993;Iollo & Salas 1996; Cli�, Heinkens
hloss & Shenoy 1996, 1998).The analyti
 adjoint solutions are then derived in 
losed form for all Ma
h regimes.This is a

omplished by 
onstru
ting the Green's fun
tions for the linearised Euler equa-tions, in
luding the linearised Rankine{Hugoniot 
onditions, using an extension of theapproa
h developed by Giles and Pier
e (1997) for sho
k-free quasi-1D 
ows. These so-lutions 
on�rm the expe
ted behavior at the sho
k and reveal a logarithmi
 singularityin the adjoint variables at the soni
 point. These insights are helpful in understandingthe requirements for developing e�e
tive numeri
al methods (Giles & Pier
e 1998). Inthis regard, it is hoped that the analyti
 solutions will also serve as a useful set of test
ases for resear
hers developing adjoint numeri
al methods.2 Adjoint problem formulationThe quasi-1D Euler equations for steady 
ow in a du
t of 
ross-se
tion h(x), on theinterval �1 � x � 1, may be written asR(U; h) � ddx(hF )� dhdx P = 0 ;where U = 0� ��q�E1A ; F = 0� �q�q2 + p�qH 1A ; P = 0� 0p0 1A :Here, � is the density, q is the velo
ity, p is the pressure, E is the total energy and H isthe stagnation enthalpy. The system is 
losed by the equation of state for an ideal gasH = E + p� = 

 � 1 p� + 12q2:



5If the solution 
ontains a sho
k at xs, the Rankine-Hugoniot jump 
ondition[F ℄x+sx�s = 0
onne
ts the smooth solutions on either side.For design appli
ations, linearisation of R with respe
t to perturbations in the 
owsolution, u, and the geometry, eh, produ
esLu� f � � ddx(hAu)� dhdx Bu�� dehdxP � ddx(ehF )! = 0; (2.1)where A = (�F=�U) and B = (�P=�U).We 
hoose the obje
tive fun
tion to be the integral of pressure along the du
t,J = Z 1�1 p dx = Z xs�1 p dx + Z 1xs p dx ;sin
e this mimi
s the lift integral whi
h is of importan
e in aeronauti
al appli
ations.Other obje
tive fun
tions 
ould also be 
onsidered with only minor 
hanges to the anal-ysis to be presented. The perturbation to this `lift' integral due to 
hanges in the 
owis I = Z xs�1 gTu dx + Z 1xs gTu dx � [p℄x+sx�s Æ ; (2.2)where g = (�p=�U)T , and the third term in
ludes the e�e
t of a linearised displa
ementÆ in the sho
k lo
ation.Using 
ontinuous Lagrange multipliers v to enfor
e the di�erential 
ow 
onstraints oneither side of the sho
k, and a Lagrange multiplier vs to enfor
e the Rankine{Hugoniot
onditions at the sho
k, the augmented nonlinear obje
tive fun
tion isJ = Z xs�1 p dx + Z 1xs p dx� Z x�s�1 vTR dx� Z 1x+s vTR dx� hsvTs [F ℄x+sx�s ;where hs � h(xs). Linearising this with respe
t to perturbations in the geometry eh, thesho
k lo
ation Æ and the 
ow solution u givesI = Z xs�1 gTu dx + Z 1xs gTu dx � [p℄x+sx�s Æ� Z x�s�1 vT(Lu� f) dx � Z 1x+s vT(Lu� f) dx� hsvTs [Au℄x+sx�s � hsvTs �dFdx �x+sx�s Æ :



6After integration by parts and rearrangement, this yieldsI = Z xs�1 vTf dx + Z 1xs vTf dx� Z x�s�1 (L�v � g)Tu dx � Z 1x+s (L�v � g)Tu dx� Æ hsvTs �dFdx �x+sx�s + [p℄x+sx�s !� hs(vs�v(x+s ))T Aujx+s + hs(vs�v(x�s ))T Aujx�s� �hvTAu�1�1 ;where the adjoint operator L� is de�ned byL�v � �hAT dvdx � dhdx BTv :The idea of the adjoint approa
h is to de�ne the adjoint problem so as to eliminatethe expli
it dependen
e of I on u and Æ, giving the adjoint form of the obje
tive fun
tionI = Z xs�1 vTf dx + Z 1xs vTf dx = Z 1�1 vTfdx : (2.3)To eliminate the dependen
e on u, v must satisfy the adjoint o.d.e.L�v � g = 0 ; (2.4)and at the sho
k v and vs must satisfyv(x�s ) = vs = v(x+s ) ;proving that the adjoint variables are 
ontinuous a
ross the sho
k. Removing the de-penden
e of I on Æ then requires thathsvT (xs) �dFdx �x+sx�s = � [p℄x+sx�s ;whi
h is an internal boundary 
ondition at the sho
k. Noting that�dFdx �x+sx�s = �1h dhdxP�x+sx�s ;this redu
es to the simple b.
. v2(xs) = ��dhdx(xs)��1 : (2.5)



7Finally, the inlet and exit boundary 
onditions for the adjoint problem are de�ned so asto remove the expli
it dependen
e of �hvTAu�1�1 (2.6)on u. At a boundary where the 
ow equations have n in
oming 
hara
teristi
s, andhen
e n imposed boundary 
onditions, the adjoint equations will thus have (3�n) b.
.'s
orresponding to an equal number of in
oming adjoint 
hara
teristi
s (Giles & Pier
e1997).The need for an adjoint boundary 
ondition at the sho
k 
an be understood by
onsidering the 
hara
teristi
s of the hyperboli
 system. For the adjoint problem, in-formation travels along 
hara
teristi
s in the opposite dire
tion as for the 
ow problem.Thus, at the sho
k, there are three outgoing 
hara
teristi
s on the upstream side andone outgoing 
hara
teristi
 on the downstream side. Continuity of the adjoint variablesa
ross the sho
k provides three 
onditions and the additional sho
k boundary 
onditionprovides a fourth, ensuring that all outgoing 
hara
teristi
s are fully determined.In Iollo et al. (1993) it is suggested that one 
ould impose v = 0 at the sho
k, butthis over-
onstrains the adjoint problem, in addition to 
ontradi
ting (2.5). Cli� etal. (1996,1998) 
on
lude that there is a \sho
k" in the adjoint variables at the sho
klo
ation, having proved that the adjoint variables undergo a 
hange of sign a
ross thesho
k. However, as this 
hange of sign is entirely due to the non-standard 
oordinatesystem they employ in formulating the augmented Lagrangian, the 
on
lusion that theadjoint variables are dis
ontinuous at the sho
k is misleading.A �nal observation is that the adjoint equation (2.4) and the adjoint sho
k b.
. (2.5)together 
ause the gradient of the adjoint variables to vanish at the sho
k. This maybe seen by writing (2.4) using Ja
obians based on the non-
onservative 
ow variablesUp = (�; q; p)T , so that the adjoint equation be
omes,h0�q q2 12q3� 2�q 

�1p+ 32�q20 1 

�1q 1A dvdx = �0� 001 + dhdxv2 1A ;and the adjoint sho
k b.
. produ
es (dv=dx) = 0 at the sho
k. This feature is importantin understanding the su

ess of 
ertain numeri
al dis
retisations in produ
ing the 
or-re
t adjoint behavior at the sho
k, without expli
it enfor
ement of the internal adjointboundary 
ondition (Giles & Pier
e 1998).3 Green's fun
tion approa
hTo verify the properties of the adjoint solutions and to provide a referen
e for 
omparisonwith numeri
al results, the analyti
 adjoint solutions are now derived for both isentropi
and sho
ked transoni
 
ows.The derivation uses a Green's fun
tion approa
h (Giles & Pier
e 1997) in whi
h we
onsider the linearised problem with point sour
e termsLuj(x; �) = fj(�)Æ(x� �); (3.1)



8where Æ(x) is the Dira
 delta fun
tion. Using the adjoint form of the obje
tive fun
tion(2.3), the 
orresponding linearised obje
tive isIj(�) = Z 1�1 vT (x)fj(�)Æ(x� �) dx = vT (�)fj(�):Given three linearly independent ve
tors fj(�), the three simultaneous equations 
anthen be solved for the adjoint variablesvT (�) = �I1(�)jI2(�)jI3(�)��f1(�)jf2(�)jf3(�)��1 : (3.2)The approa
h is then to 
hoose fj(�), solve the linearised 
ow equations to obtain the
ow perturbation uj(x; �) and the sho
k displa
ement Æ, evaluate Ij(�) using (2.2) and�nally obtain v(�) from (3.2).The key to 
arrying out the pro
edure des
ribed above is to 
hoose a set of sour
eve
tors fj(�) whi
h lead to relatively simple solutions to the linearised 
ow equations.We begin by 
onsidering isentropi
 
ow through a 
onverging-diverging du
t with inlet,throat and outlet lo
ated at x = �1; 0;+1, respe
tively. The nonlinear equations ensurethat mass 
ux mh � �qh, stagnation enthalpy H and stagnation pressure p0 all remain
onstant along the du
t. Therefore, solutions to the linear homogeneous equations mustintrodu
e uniform perturbations to these three quantities. The general solution to thelinear homogeneous equations may then be written in the formu(x) = ah(x) �U�m(x)����H;p0 + b �U�H (x)����p0;M + 
 �U�p0 (x)����H;M ;where the three ve
tors are linearly independent and a, b and 
 represent the uniformperturbations to mh, H and p0. To simplify the analysis, perturbations to stagnationenthalpy and pressure are introdu
ed at �xed Ma
h number rather than at �xed mass
ux, so that non-zero values for b and 
 both imply an additional uniform perturbationto mh. By 
ontrast, a non-zero value for a does not perturb either H or p0.If we now 
onsider the inhomogeneous equations with sour
e terms fj(�)Æ(x��), the
orresponding solutionsuj(x; �) = a(x; �) 1h(x) �U�m(x)����H;p0 + b(x; �) �U�H (x)����p0;M + 
(x; �) �U�p0 (x)����H;Mmust satisfy the homogeneous equations on either side of �, and therefore a; b; 
 willhave uniform values a1; b1; 
1 for x < � and a2; b2; 
2 for x > �. The jump 
onditions forthe 
onstants are obtained by integrating the dominant terms in (3.1) from x = �� tox = �+, givingh(�) (a2 � a1) 1h(�) �F�m(�)����H;p0 + (b2 � b1) �F�H (�)����p0;M + (
2 � 
1) �F�p0 (�)����H;M! = fj(�):



9Hen
e, by 
hoosing the three linearly independent sour
e ve
torsf1(�) = �F�m(�)����H;p0 = 0� 1qH1A ;f2(�) = h(�) �F�H (�)����p0;M = h(�)2H 0���q0�qH1A ;f3(�) = h(�) �F�p0 (�)����H;M = h(�)p0 0� �q�q2 + p�qH 1A ;the perturbations will have the simple propertiesf1(�) ) a2 � a1 = 1; b2 = b1; 
2 = 
1;f2(�) ) b2 � b1 = 1; 
2 = 
1; a2 = a1;f3(�) ) 
2 � 
1 = 1; a2 = a1; b2 = b1: (3.3)For ea
h sour
e ve
tor fj(�), the three remaining unknowns in the 
orresponding solutionuj(x; �) are determined by the three homogeneous boundary 
onditions appropriate tothe Ma
h regime under 
onsideration. These homogeneous boundary 
onditions areequivalent to demanding that there is no perturbation to the boundary 
onditions forthe original nonlinear problem.4 Supersoni
 FlowFor supersoni
 
ow, M , H and p0 are �xed at the supersoni
 inlet and there are noboundary 
onditions at the supersoni
 exit. Hen
e, for all three sour
e ve
tors werequire a1 = b1 = 
1 = 0to prevent perturbations to the inlet boundary 
onditions. Making referen
e to the jumprelations (3.3), we then obtainf1(�) ) a = H(x� �); b = 0; 
 = 0;f2(�) ) b = H(x� �); 
 = 0; a = 0;f3(�) ) 
 = H(x� �); a = 0; b = 0;
orresponding to the solutionsu1(x; �) = H(x� �) 1h(x) �U�m (x)����H;p0 ;



10 u2(x; �) = H(x� �) �U�H (x)����p0;M ;u3(x; �) = H(x� �) �U�p0 (x)����H;M :The obje
tive fun
tions are thenI1(�) = Z 1� 1h(x) �p�m(x)����H;p0 dx;I2(�) = Z 1� �p�H (x)����p0;M dx;I3(�) = Z 1� �p�p0 (x)����H;M dx;with �p�m (x)����H;p0 = �q1�M2 ; �p�H (x)����p0;M = 0; �p�p0 (x)����H;M = pp0 :The obje
tive fun
tion I2(�) is zero be
ause the pressure is 
onstant at �xed M and p0.5 Subsoni
 FlowFor subsoni
 
ow, there are two boundary 
onditions on H and p0 at the subsoni
 inletand one boundary 
ondition on stati
 pressure p at the subsoni
 exit.5.1 Change in mh at �xed H; p0For f1, the inlet boundary 
onditions require b = 
 = 0 and the exit 
ondition requiresa2 = 0, 
orresponding to the solution and obje
tive fun
tionu1(x; �) = �H(� � x) 1h(x) �U�m(x)����H;p0 ; I1(�) = Z ��1 1h(x) �p�m(x)����H;p0 dx:5.2 Change in H at �xed p0;MIn this 
ase, the inlet 
onditions give b1 = 
 = 0 and the exit 
ondition gives a = 0,yielding a solution and obje
tive fun
tion that are identi
al to the supersoni
 
aseu2(x; �) = H(x� �) �U�H (x)����p0;M ; I2(�) = 0:



115.3 Change in p0 at �xed H;MThe inlet 
onditions now give b = 
1 = 0. Also, to ensure zero perturbation to the exitpressure, we require ah(x) �p�m(x)����H;p0 + 
2 �p�p0 (x)����H;M!�����x=1 = 0;where 
2 = 1. The solution then be
omesu3(x; �) = H(x� �) �U�p0 (x)����H;M + ah(x) �U�m(x)����H;p0 ;with 
orresponding obje
tive fun
tionI3(�) = Z 1� �p�p0 (x)����H;M dx + Z 1�1 ah(x) �p�m (x)����H;p0 dx:6 Isentropi
 transoni
 
owFor isentropi
 transoni
 
ow, H and p0 are �xed at the subsoni
 inlet and there are noboundary 
onditions at the supersoni
 exit. The third requirement is that the Ma
hnumber remains unity at the throat.6.1 Change in mh at �xed H; p0For f1, the inlet boundary 
onditions ensure that b = 
 = 0 and the throat 
onditionrequires that a equals zero at the throat. Therefore, a2 = 0 for � < 0 and a1 = 0 for� > 0, leading to the solutionu1(x; �) = 8>>><>>>: �H(� � x) 1h(x) �U�m (x)����H;p0 ; � < 0 ;H(x� �) 1h(x) �U�m (x)����H;p0 ; � > 0 :Hen
e, if � < 0, the mass 
ux upstream of x = � is redu
ed by a unit amount, whereasif � > 0, the mass 
ux downstream of x = � is in
reased by a unit amount.The obje
tive fun
tion isI1(�) = 8>>><>>>: � Z ��1 1h(x) �p�m(x)����H;p0 dx ; � < 0 ;Z 1� 1h(x) �p�m(x)����H;p0 dx ; � > 0 : (6.1)



12Sin
e �p�m(x)����H;p0 = �q1�M2 ;and M varies approximately linearly through a 
hoked throat, then�p�m(x)����H;p0 � 1x; as x! 0:It follows that I1(�) � log (�); as � ! 0;so there is a logarithmi
 singularity in the adjoint variables at a soni
 throat.6.2 Change in H at �xed p0;MIn this 
ase, the inlet 
onditions on H and p0 require b1 = 
 = 0 and the throat 
onditiongives a = 0. The solution is thenu2(x; �) = H(x� �) �U�H (x)����p0;M ;and the 
orresponding obje
tive fun
tion, I2(�), is zero be
ause �p�H (x)��p0;M = 0.6.3 Change in p0 at �xed H;MNow, the inlet 
onditions on H and p0 yield b = 
1 = 0, and the Ma
h number is �xedat the throat, so again a = 0. The solution and linear fun
tional thus be
omeu3(x; �) = H(x� �) �U�p0 (x)����H;M ; I3(�) = Z 1� �p�p0 (x)����H;M dx:7 Sho
ked 
owFor sho
ked 
ow, there are two boundary 
onditions on H and p0 at the subsoni
 inlet,the throat is again soni
, there is a sho
k downstream of the throat and there is oneboundary 
ondition on p at the subsoni
 exit. The nonlinear equations on
e again ensureuniform mass 
ux and stagnation enthalpy throughout the du
t, but the stagnationpressure now has di�erent values on either side of the sho
k. Consequently, solutionsto the linearized equations must now admit di�erent but uniform stagnation pressureperturbations on either side of the sho
k. To a

ount for the sho
k, the form of thesolution must be generalised touj(x; xs; �) = a(x; xs; �) 1h(x) �U�m (x)����H;p0 + b(x; xs; �) �U�H (x)����p0;M + 
(x; xs; �) �U�p0 (x)����H;Mwhere the perturbations a, b, and 
 may now be dis
ontinuous at the sho
k lo
ation xsas well as at �.



137.1 Sho
k movementThe displa
ement in the sho
k 
an be 
al
ulated from the normal sho
k relationp02 = p01f(M1); f(M1) = �p2p1� 1 + 
�12 M221 + 
�12 M21 !
=
�1 ;with sho
k jump 
onditionsp2p1 = 1 + 2

 + 1(M21 � 1); M22 = 1 + [(
 � 1)=2℄M21
M21 � (
 � 1)=2 ;where the subs
ripts 1 and 2 represent quantities upstream and downstream of the sho
k,respe
tively. The perturbations to the stagnation pressure then satisfy
2 = 
1f(M1) + p01f 0(M1)  dMdx Æ + a1h(x) �M�m (x)����H;p0!�����x=x�s ; (7.1)where Æ is the resulting displa
ement of the sho
k and�M�m (x)����H;p0 = Mm �1 + [(
 � 1)=2℄M21�M2 � :If h(x) is a pie
ewise di�erentiable fun
tion, then dM=dx may be evaluated analyti
allyusing the area Ma
h number relation� hh��2 = 1M2 � 2
 + 1 �1 + 
 � 12 M2��(
+1)=(
�1) :The throat is soni
 so the soni
 area h� is identi
ally equal to the throat area ht.7.2 Change in mh at �xed H; p0Sin
e the throat is 
hoked and H and p0 are �xed at the inlet, the form of the solutionand obje
tive fun
tion will be the same as for the isentropi
 transoni
 
ase when � < 0.The two new s
enarios to 
onsider are when � is between the throat and the sho
k, andbetween the sho
k and the exit. In either 
ase, the mass 
ux perturbation will 
ausethe sho
k to move and the solution will need to ensure that the perturbations to mass
ux and stagnation enthalpy remain 
onstant a
ross the sho
k, in addition to satisfyingthe exit boundary 
ondition on pressure.7.2.1 Perturbation between the throat and the sho
k (0 < � < xs)The 
hoked 
ondition at the throat requires that all perturbations are zero for x < �.For 
onsisten
y with the sho
k jump subs
ripts, perturbations between � and the sho
k



14are denoted by a1; b1; 
1 and perturbations between the sho
k and the exit are denotedby a2; b2; 
2. At �, there is a unit mass 
ux perturbation at 
onstant H and p0, soa1 = 1; b1 = 0; 
1 = 0:Furthermore, H remains 
onstant for any sho
k lo
ation so b2 = 0. The perturbation tomass 
ux a
ross the sho
k must be 
onstant, soa1 = a2 + 
2  h(x) �m�p0 (x)����H;M!�����x=x+s :Also, to avoid perturbing the exit pressure, we require a2h(x) �p�m(x)����H;p0 + 
2 �p�p0 (x)����H;M!�����x=1 = 0:These two equations determine the two unknowns a2 and 
2 and equation (7.1) thendetermines the sho
k movement Æ. The perturbed solution is thenu1(x; xs; �) = 1h(x) [H(x� �) + (a2 � 1)H(x� xs)℄ �U�m (x)����H;p0+ 
2H(x�xs) �U�p0 (x)����H;M ;and the 
orresponding obje
tive fun
tion isI1(�) = Z xs� 1h(x) �p�m(x)����H;p0dx+Z 1xs a2h(x) �p�m(x)����H;p0+ 
2 �p�p0 (x)����H;M! dx� (p2�p1) Æ:7.2.2 Perturbation between the sho
k and the exit (xs < � < 1)All perturbations are now zero for x < xs, soa1 = b1 = 
1 = 0;sin
e perturbations introdu
ed in the subsoni
 region following the sho
k 
annot a�e
tthe supersoni
 zone. Perturbations between the sho
k and � are now denoted by a2; b2; 
2and perturbations between � and the exit are denoted by a3; b3; 
3.For 
ompatibility with the upstream 
ow, there must be no perturbation to H a
rossthe sho
k, so b2 = b3 = 0. The perturbation to the stagnation pressure must be uniformthroughout the subsoni
 region, so 
2 = 
3 � 
. At �, the sour
e term produ
es a unitperturbation in mass 
ux so a3 � a2 = 1:To mat
h the 
ow upstream of the sho
k, there must be no mass 
ux perturbation onthe downstream side of the sho
ka2 + 
  h(x) �m�p0 (x)����H;M!�����x=x+s = 0:



15Also, to ensure zero perturbation of the exit stati
 pressure we require, a3h(x) �p�m(x)����H;p0 + 
 �p�p0 (x)����H;M!�����x=1 = 0;giving three equations for the three unknowns. The perturbed solution then has theformu1(x; xs; �) = 1h(x) [a2H(x� xs) +H(x� �)℄ �U�m(x)����H;p0+ 
H(x� xs) �U�p0 (x)����H;M ;with obje
tive fun
tionI1(�) = Z �xs a2h(x) �p�m(x)����H;p0dx+Z 1� a3h(x) �p�m(x)����H;p0dx+Z 1xs 
 �p�p0 (x)����H;Mdx� (p2�p1) Æ:7.3 Change in H at �xed p0;MAhead of the sho
k, the perturbation to stagnation pressure 
 must be zero due tothe inlet boundary 
ondition, and the mass 
ux perturbation a must be zero due to the
hoked throat. The inlet 
ondition onH ensures the perturbation to stagnation enthalpyis zero for x < �, and the unit jump in b at � will produ
e a uniform perturbation in Ha
ross the sho
k, without a�e
ting the exit 
ondition on pressure.There still exists the possibility that a and 
 are non-zero 
onstants following thesho
k, balan
ing to produ
e zero mass 
ux perturbation at the sho
k a + 
 h(x) �m�p0 (x)����H;M!�����x=x+s = 0;and zero pressure perturbation at the exit ah(x) �p�m(x)����H;p0 + 
 �p�p0 (x)����H;M!�����x=1 = 0:However, the determinant of this system is nonzero, so there is only the trivial solutiona = 
 = 0. Hen
e, the solution and obje
tive fun
tion in the sho
ked 
ase have the formu2(x; xs; �) = H(x� �) �U�H (x)����p0;M ; I2(�) = 0;and there is no displa
ement of the sho
k.7.4 Change in p0 at �xed H;MFor sho
ked 
ow with a unit jump in stagnation pressure, the presen
e of the sho
ka�e
ts the perturbed solution for all lo
ations of �. This is in 
ontrast to the sho
ked
ase with a jump in mass 
ux, where the solution remained un
hanged from the isentropi
transoni
 
ase for � < 0. The two s
enarios to 
onsider in the present 
ase are when �is between the inlet and the sho
k, and between the sho
k and the exit.



167.4.1 Perturbation between the inlet and the sho
k (�1 < � < xs)As in the sho
k-free 
ase, there is no perturbation for x < �. Denoting the perturbationsbetween � and the sho
k by a1; b1; 
1 and those after the sho
k by a2; b2; 
2, we have byde�nition a1 = 0; b1 = 0; 
1 = 1:The perturbation to H must be 
onstant a
ross the sho
k so b2 = 0. Constant mass 
uxperturbation at the sho
k requires
1  h(x) �m�p0 (x)����H;M!�����x=x�s = a2 + 
2  h(x) �m�p0 (x)����H;M!�����x=x+s ;and zero perturbation to the exit pressure is ensured by setting a2h(x) �p�m(x)����H;p0 + 
2 �p�p0 (x)����H;M!�����x=1 = 0 ;providing two equations for the two unknowns. The solution then has the formu3(x; xs; �) = [H(x� �) + (
2 � 1)H(x� xs)℄ �U�p0 (x)����H;M + a2h(x)H(x� xs) �U�m(x)����H;p0 ;with 
orresponding obje
tive fun
tionI3(x; xs; �) = Z xs� �p�p0 (x)����H;Mdx+Z 1xs a2h(x) �p�m (x)����H;p0+ 
2 �p�p0 (x)����H;M! dx� (p2�p1) Æ :7.4.2 Perturbation between the sho
k and the exit (xs < � < 1)There are now no perturbations upstream of the sho
k, soa1 = b1 = 
1 = 0:Perturbations in the region between the sho
k and � are denoted by a2; b2; 
2 and thosebetween � and the exit are denoted by a3; b3; 
3.Compatibility at the sho
k and the fa
t that mh and p0 are perturbed at 
onstantH, together imply that there are no perturbations to stagnation enthalpy following thesho
k, so b2 = b3 = 0. Perturbations to the mass 
ux must be 
onstant throughout thesubsoni
 region (a2 = a3 � a) sin
e the jump 
ondition at � 
orresponds solely to a unitperturbation in stagnation pressure 
3 � 
2 = 1:Zero mass 
ux perturbation at the sho
k then givesa+ 
2  �m�p0 (x)����H;M!�����x=x+s = 0 ;



17and zero perturbation to the exit pressure requires ah(x) �p�m(x)����H;p0 + 
3 �p�p0 (x)����H;M!�����x=1 = 0 ;providing three equations for three unknowns. The solution has the formu3(x; xs; �) = [
2H(x� xs) +H(x� �)℄ �U�p0 (x)����H;M + ah(x)H(x� xs) �U�m(x)����H;p0 ;with 
orresponding obje
tive fun
tionI3(�) = Z 1xs ah(x) �p�m(x)����H;p0 dx+Z �xs 
2 �p�p0 (x)����H;M dx+Z 1� 
3 �p�p0 (x)����H;M dx�(p2�p1)Æ:8 Sample solutionsThe analyti
 obje
tive fun
tions I(�) and adjoint solutions v(�) 
orresponding to su-personi
, subsoni
, isentropi
 and sho
ked transoni
 
ows are shown in �gures 1 to 4.The boundary 
onditions for these test 
ases are de�ned in the �gure 
aptions and thegeometri
 de�nition of the du
t is given byh(x) = 8>><>>: 2; �1 � x � �12 ;1 + sin2(�x); �12 < x < 12 ;2; 12 � x � 1:The analyti
 results have been veri�ed using numeri
al solutions obtained by dis-
retising the adjoint equation (2.4) dire
tly (Giles & Pier
e 1998). For the supersoni

ase of �gure 1, the adjoint variables are all zero at the exit, as required to eliminate thedependen
e on u of the boundary term (2.6) in the adjoint derivation. For the isentropi
transoni
 
ase of �gure 3, the logarithmi
 singularity in I1 at the soni
 throat is re
e
tedin the singularities of all three adjoint variables. For the sho
ked 
ase of �gure 4, the ob-je
tive fun
tions are dis
ontinuous at the sho
k, but the adjoint variables are 
ontinuouswith zero gradient, as proved earlier.
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229 Con
lusionsIn this paper we have undertaken a detailed investigation of adjoint solutions for thequasi-1D Euler equations, fo
using in parti
ular on the solution behaviour at a sho
k ora soni
 point where there is a 
hange in sign of one of the hyperboli
 
hara
teristi
s.Formulating the adjoint equations using Lagrange multipliers to enfor
e the Rankine-Hugoniot sho
k jump 
onditions proves that, 
ontrary to previous literature, the adjointvariables are 
ontinuous at the sho
k. This result is supported by the derivation of a
losed form solution to the adjoint equations using a Green's fun
tion approa
h. Inaddition to proving the existen
e of a log(x) singularity at the soni
 point, this 
losedform solution should be very helpful as a test 
ase for others developing numeri
almethods for the adjoint equations.Future resear
h will attempt to extend this analysis to two dimensions. Preliminaryanalysis, supported by the results of numeri
al 
omputations (Giles & Pier
e 1997),shows that the adjoint variables are again 
ontinuous at a sho
k, and that an adjointboundary 
ondition is required along the length of the sho
k. However, sin
e adjoint
omputations 
urrently employed for transoni
 aerofoil optimisation do not enfor
e thisinternal boundary 
ondition, it remains an open question as to whether there is a 
on-sisten
y error in the limit of in
reasing grid resolution. In two dimensions, numeri
aleviden
e suggests that there is no longer a singularity at a soni
 line if (as is usually the
ase) it is not orthogonal to the 
ow. This 
an be explained qualitatively by 
onsideringthe region of in
uen
e of points in the neighbourhood of the soni
 line (Giles & Pier
e1997). An important new feature that must be 
onsidered for two-dimensional 
ows isthe behavior of the adjoint solution at stagnation points. Here, the analysis indi
atesan inverse square-root singularity along the in
oming stagnation streamline, but furthernumeri
al experiments are required to 
on�rm this behavior.An improved understanding of the behaviour of adjoint solutions is ne
essary bothto rigorously establish the theoreti
al basis for engineering optimal design methods andto illuminate the role of the adjoint solution in numeri
al error analysis. In this lattersetting, the adjoint solution reveals the sensitivity of a fun
tional, su
h as lift, to thetrun
ation errors asso
iated with the numeri
al dis
retisation. Where there are singu-larities in the adjoint variables it is desirable to greatly in
rease the grid resolution soas to redu
e the 
ontribution of the lo
al trun
ation error to the error in the fun
tional.Thus, adjoint analysis o�ers a rigorous basis for optimal grid adaptation (Venditti &Darmofal 1999). Furthermore, by estimating the trun
ation error in the original nonlin-ear numeri
al solution, and using the adjoint solution to estimate the 
onsequential errorin the fun
tional of interest, one 
an obtain an improved estimate with twi
e the orderof a

ura
y (Giles & Pier
e 1998, 1999; Pier
e & Giles 1998, 2000). Future develop-ments along these lines will lead to great improvements in a

ura
y for key engineeringquantities su
h as lift and drag.
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